0 0 I 0 O OO

USO0S5157663A

United States Patent p9 11 Patent Number: 5,157,663

Major et al. [45] Date of Patent: Oct. 20, 1992

[54] FAULT TOLERANT COMPUTER SYSTEM processing system, a replicated system can take over
(75] Inventors: Drew Major; Kyle Powell; Dale without interruption. The invention provides a software

| Neibaur. all :Jf Orem Utz:h solution for providing a backup system. Two servers

_ ’ ’ are provided, a primary and secondary server. The two

[73] Assignee: Novell, Inc., Provo, Utah servers are connected via a communications channel.

[21] Appl. No.: 586,807 The servers have associated with them an operating

system, The present invention divides this operating

[22] Filed: Sep. 24, 1990 system into two “engines.” An I/O engine is responsible
[S1] Int. CLS ..o nenrannanes GO6F 11/20 for handling and receiving all data and asynchronous
[52] U.S.CL oo 371/9.1; 371/12; events on the system. The 1/0 engine controls and

364/268.3: 364/268.6; 364/268.9;: 364/265.2; interfaces with physical devices and device drivers. The
364/285.3; 364/280.3; 364/DIG. 1; 364/944; operating system (OS) engine is used to operate on data
364/944.2; 364/DIG. 2; 395/575 received from the 1/0 engine. All events or data which

[SB] Field of Search 371/91, 81, 8.2, 12, can change the state of the op.erating system are chan-
364/200, 900 neled through the 1/0 engine and converted to a mes-
[56] References Cited sage format. The 1/0 engine on the two servers coordi-

nate with each other and provide the same sequence of

U.S. PATENT DOCUMENTS messages to the OS engines. The messages are provided

4,471,429 9/1984 Porterccocovvevvviveennrvenrinnnnn, 3647200 to a message queue accessed by the OS engine. There-
4,530,052 7/1985 King st 364/200 fore, regardless of the timing of the events, (i.e., asyn-
(4087 7/1990 Kap oo 364/200 Chronous events), the OS engine reccives all events
4959768 9/1990 Gerhart ... '371,9.1 X sequentially through a continuous sequential stream of
4,979,108 12/1990 Grabbe ..o..ovvevoverrreereeesreenn.. 364,200 input data. As a result, the OS engine is a finite state

automata with a one-dimensional input “view’ of the
rest of the system and the state of the OS engines on
both primary and secondary servers will converge.

Primary Examiner—Robert W. Beausoliel
Attorney, Agent, or Firm—Hecker & Harriman

[57] ABSTRACT
A method and apparatus for providing a fault-tolerant
backup system such that if there is a fatlure of a primary 32 Claims, 7 Drawing Sheets
PRIMABR Y SERLVER. 5£ CONPARY SERVER
l_—_—b"’ M _______]
oS é'Né//VE /O l s ENG/INE /&

c?c?

£V£ NTS Q
VEA' 7. REQUESTS
REQUESTS A SPEED | EVENTS
Caumwm T/ONS /5.4
85 '

//0 ENGINE _-- /O EMGINE

'\ 8
6d z
65
5
JIi 4 : FIa
, YIME R /L ' SO TIMEAR,
KEYBOARD. | AEYBOARD.
I DISPLASY. ETC. l DISPLAY. ETC

5,157,663

Sheet 1 of 7

Oct. 20, 1992

U.S. Patent

[914

e MSOMLIN
_.l DU ‘b & ISV VLT A PSS
(: : .Qw‘%n.n:w»\
5/ WL .
Fp2 | pp
: MS/T | WSYT 5
<9 S <
| &7 29D
: ¥¢/
_ FMENF n\\ 1 | ﬁ\\
' S7785 :
S \swouvommwwos iy
S S IO SUNIAZ | OF7S LS SLSINOYY |
" .ﬂ.k)x.w__.u_n\
_ N\wo
. oy INMIONF SO O/ wé\mv\,\.w SO
QM>QM% mw\v\Q\,\Q.o.um, IINYFS AXOWIS

U.S. Patent Oct. 20, 1992 Sheet 2 of 7 5,157,663

,70 ENGINE

V=

MNESSASE
LEVEL

REQUES T EVENT MESSAS/ZING
DEQUEOING Emoeowe

Manacement| O/SK | AN | DISPLAY | TIMER | KEYBOAR
SOFTWARE
OEVICE | DEVICE | DEVICE | DEV/ICE DEV/C6

FIG. 2

oS5 ENG/NE
/C

OCLPERATING STS7T EM
MANAGEMENT | LD/ISK LAN |LOISPLAY | TIMER | KEYBOARD
SOF 7 WARE

MESSAGE | REQUEST MESSAGE = EVENT OFQUEOING
LEVEL ENIOEINGS 32

FIG. S

U.S. Patent Oct. 20, 1992 Sheet 3 of 7 5,157,663

0O ENGINE

REQUESTS ‘ EVENTS

MANAGEMENT EVENT /S RECE/IVED
LAYER FROM THE (/O

DETERMINES /F ENEG/NE AND /S

NELL TO DO | B/VEN TO THE
AFPPROPRIATE
MANAGEMENT
LAPER

BULLS A MANAGEMEN T
REQUEST7 FOR LAY ERL.
THE /O ENGINE COMPLETES
AND SETS OP | THE INITIAL

FOR A REPLY /O REQUEST
EVENT

U.S. Patent Oct. 20, 1992 Sheet 4 of 7 5,157,663

/O ENGINE

FPRIMARY SERVER SECONDARY SERVER

59

MANBEEMENT LATYER
DETERMINES THAT

THERE /1S AN EVENT

WA/7 FOR AN
EVENT FROM THE
FPRIMARY

FOR THE OS ENG/NE SERQVER,
S/
DON'T
ACCERLT TH/IS
EVENT BoLT EVENT

NTO MESSAGE

AND GIVEN 7O

SECONLPARY
SERVE R

EVENT

ACCERLPTEL BT
SECONDARY

SERVER

- NARCCERLT 7H/S
EVENT

POT EVENT IN

YES

SECONLARTY
QoS EVENT

QUEVE

0T EVENT N
PRMARSY OS
EVENT QUEOE

FIlG. 48

U.S. Patent Oct. 20, 1992 Sheet 5 of 7 5,157,663

PRIMARTY SERVER SECONDARY SERVER

MESSAGE (LEVEL
DETERMINES

THERE /S A
REQOEST
AvA/L ABLE

MESSAGE LEVEL
PETERMINES THERE
/IS A REQUEST

AVAILABLE

NECESSAK
OR SECONDARRY

PROCESSOR 70
EXECOTE,

NO

GECONDAK
1O ENGINE NO
EXECOT/ION

REQUIRE LD

EXECOTE
THE
REQUEST

ECONDARS 1/D
ENGINE EXECOTION

COMPLETED

SO
WS REQUES o
| GENERATE A DONE
A4 COMPLE TION
e EVENT
GENERATE A DONE
COMPLETION
EVENT 5
WAIT FOR THE /

CORRE S PONLING
EVENT FROM THE
PRMARY FROCESSOR

CENERATE THE

COMPLE T/ON
EVENT
70 STEL S5 7O S7TERP 59
OF F/6. 98 OF F/6.45
\mrerrrsere— sttt

FI1G. 4C

U.S. Patent

W/ T H

FPRIMARY

PRIMARY | S5
NO SECONLARY |

Oct. 20, 1992

FPRIMAR T

Sheet 6 of 7

FI1G.5

SECONLARY

YO MANAGEMENT S&
SOF TWARE
PREFARES FOR
SYNCHRONIZA TION
S/
/O ENSINES /0 ENGINES 9/
EXCHANGE EXCHANG E
STATE STATE
WEFORMATION INFORMATION
&8
TRANSFER. RECEIVE OS 9=
OS ENG/INE ENGINE
MEMORY /MAGE MEMORY /MAGE
7O SECONDARY F~ROM
PRIMAR Y
93
PRIMAR Y SECONDAR P
W/ T A WY/ 7/
SECONDARY _ PRIMARY
n———v——-—l

FPROCESSOR STNCHROMIZATION SEQUENCE -

5,157,663

FI1G.6

U.S. Patent Oct. 20, 1992 Sheet 7 of 7 5,157,663

LPROCESSOR 2 PROCESSOR 3

EVENTS - REQUESTS REQESTS

PROCESSOR L PROCESSOR 3

FIG.7

5,157,663

1
FAULT TOLERANT COMPUTER SYSTEM

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to the field of operating system
software-based fault-tolerant computer systems utihiz-
ing multiple processors.

2. Background Art

In computer system applications, it is often desired to
provide for continuous operation of the computer sys-
tem, even in the event of a component fatlure. For ex-
ample, personal computers (PC’s) or workstations often
use a computer network to allow the sharing of data,
applications, files, processing power, communications
and other resources, such as printers, modems, mass
storage and the like. Generally, the shanng of resources
is accomplished by the use of a network server. The
server 1s a processing unit dedicated to managing the
centralized resources, managing data, and sharing these
resources with client PC’s and workstations. The
server, network and PC’s or workstations combined
together constitute the computer system. If there 1s a
failure in the network server, the PC’s and workstations
on the network can no longer access the desired central-
ized resources and the system fails.

To maintain operation of a computer system during a
component failure, a redundant or backup system is
required. One prior art backup system involves com-
plete hardware redundancy. Two identical processors
are provided with the same inputs at the hardware sig-
nal level at the same time during operation of the com-
puter system. Typically, one processor is considered the
primary processor and the other is a secondary proces-
sor. If the primary processor fails, the system switches
to the secondary processor. An example of such a hard-
ware redundancy system is described in Lovell, U.S.
Pat. No. 3,444 528. In Lovell, two identical computer
systems receive the same inputs and execute the same
operations. However, only one of the computers pro-
vides output unless there is a failure, in which case the
second computer takes control of the output. In opera-
tion, the output circuits of the backup computer are
disabled until a malfunction occurs in the master com-
puter. At that time, the outputs of the backup computer
are cnabled.

The use of identical processors or hardware has a
number of potential disadvantages. One disadvantage is
the complexity and cost of synchronizing the processors
at a signal level.

Another prnior art method of providing a backup
system is referred to as a “‘checkpoint” system. A check-
pomt system takes advantage of a principle known as
“finite state automata.” This principle holds that if two
devices are at the same state, identical inputs to those
devices will result in identical outputs for each device,
and each device will advance to the same 1dentical state.

In a checkpoint system, the entire state of a device,
such as the processor state and associated memory, is
transferred to another backup processor after each op-
eration of the primary processor. In the event of a fail-
ure, the backup processor is ideally at the most recent
valid state of the primary processor. The most recent
operation 1s provided to the backup processor and oper-
ation continues from that point using the backup proces-
sor. Alternatively, the state information is provided to
mass storage after each operation of the primary proces-
sor. In the event of a failure, the stored state information

10

15

20

235

30

35

45

50

55

65

2

1s provided to a backup processor which may or may
not have been used for other operations prior to that
event.

One prior art checkpoint system is described in Gla-
ser, U.S. Pat. No. 4,590,554. In Glaser, a primary pro-
cessor is provided to perform certain tasks. A secondary
processor is provided to perform other tasks. Periodi-
cally, the state of the primary processor is transferred to
the secondary processor. Upon failure of the primary
processor, any operations executed by the prnimary pro-
cessor since the last synchronization of the primary and
backup processors are executed by the backup proces-
sor to bring it current with the primary processor. The
system of Glaser, as well as other checkpoint systems,
suffer 2 number of disadvantages. One disadvantage 1s
the amount of time and memory required to transfer the
state of the primary system to the secondary system.
Another disadvantage of checkpoint systems is the in-
terruption of service upon failure of the primary system.
The secondary system must be “brought up to speed”
by execution of messages in a message string.

One prior art attempt to solve this problem is to up-
date only those portions of the state of the primary
system that have been changed since the previous up-
date. However, this requires complex memory and data
management schemes.

It is an object of the invention to provide a backup
system that does not require specialized hardware for
the synchronization of the backup system.

It is another object of the invention to provide a
backup system which is transparent to asynchronous
events.

It is still another object of the present invention to
provide an improved backup system for network server
operation.

It 1s another object of the present invention to pro-
vide continuous service through a single hardware
component failure.

SUMMARY OF THE INVENTION

The invention is a method and apparatus for provid-
ing a fault-tolerant backup system such that if there is a
failure of a primary processing system, a replicated
system can take over without interruption. The primary
and backup processing systems are separate computers
connected by a high speed communications channel.
The invention provides a software solution for synchro-
nizing the backup system. The present invention 1s im-
plemented as a network server, but the principles be-
hind the invention could be used in other processing
environments as well. Each server may utilize one or
more processors. The servers use a specially architected
operating system. The present invention divides this
operating system into two “engines.” An input/output
(1/0) engine is responsible for handling and receiving
all data and asynchronous events on the system. The
I/0 engine controls and interfaces with physical de-
vices and device drivers. The operating system (OS)
engine is used to operate on data received from the 1/0
engine. In the primary server, these engines are referred
to as the primary I/0 engine and the primary OS en-
gine.

All events or data which can change the state of the
operating system are channeled through the 1/0 engine
and converted to a message format. The messages are
provided to a message queue accessed by the OS en-
gine. Therefore, regardless of the timing of the events,

5,157,663

3

(i.e., asynchronous events), the OS engine receives all
events sequentially through a continuous sequential
stream of input data. As a result, the OS engine is a finite

state automata with a one-dimensional input “view” of

the rest of the system. Thus, even though the OS engine
is operating on asynchronous events, the procession of
those events is controlled through a single-ordered
Input sequence.

On startup, or when a secondary processor is first
provided, the primary processor is “starved,” that is, all
instructions or other state-changing events are halted
until the OS engine reaches a stable state. At that point,
the state is transferred to the OS engine of the backup
system. From that point on, identical messages (events)
are provided to each OS engine. Because both systems
begin at an identical state and receive identical inputs,
the OS engine part of the systems produce identical
outputs and advance to identical states.

The backup system also divides the operating system
into a secondary OS engine and a secondary 1/0 en-
gine. The secondary I/0 engine is in communication
with the primary [/O engine. Upon failure of the pn-
mary system, the remainder of the computer system 1s
switched to the secondary system with virtually no
interruption. This is possible because each event is exe-
cuted substantially simultaneously by the backup sys-
tem and the primary system. Thus, there is no loss of
system operation during a component failure. In addi-
tion, no transfer of state is required once initial synchro-
nization has been achieved. This reduces system com-
plexity, reduces memory managing requirements and
provides for uninterrupted service.

BRIEF DESCRIPTION OF THE DRAWINGS

F1G. 1 is a block diagram of the preferred embodi-
ment of the present invention.

F1G. 2 is a detailed view of the 1/0 engine of F1G. 1.

FIG. 3 is a detailed view of the OS engine of FIG. 1.

FIG. 4A is a flow diagram illustrating OS engine
operation during execution of requests and events.

FIG. 4B is a flow diagram illustrating operation of

primary and secondary 1/0 engines during execution of
events.

F1G. 4C is a flow diagram illustrating operation of

h

10

15

20

23

30

33

40

primary and secondary 1/0 engines during execution of 45

requests.

FIG. 5 is a diagram illustrating state transitions of this
invention.

FIG. 6 is a flow diagram illustrating primary and
secondary system synchronization.

FIG. 7 is a block diagram of an alternate embodiment
of this invention.

DETAILED DESCRIPTION OF THE
INVENTION

A fault-tolerant system used as a network server 1s
described. In the following description, numerous spe-
cific details are set forth in order to provide a more
thorough description of the present invention. It will be
apparent, however, to one skilled in the art, that the
present invention may be practiced without these spe-
cific details. In other instances, well-known features
have not been described in detail so as not to obscure
the invention.

BLOCK DIAGRAM OF THIS INVENTION

A block diagram of the preferred embodiment of this
invention is illustrated in FIG. 1. The invention pro-

30

35

R

4

vides a primary processor and operating system gener-
ally designated by those elements within dashed lines 21
and a backup or secondary processor and operating
system generally designated by those elements falling
within dashed lines 22. The primary operating system
21 comprises an operating system (OS) engine 10 cou-
pled to an input/output (1/0) engine 12. The 1/0 en-
gine and OS engine communicate via “event” and “re-
quest” gqueues. The 1/0 engine writes events onto the
event queue and the OS engine reads the events. The
OS engine writes requests onto the request queue and
the I/O engine reads the request.

The backup 22 includes its own OS engine 16 that
communicates through event queue 17 and request
queue 42 to I/0 engine 18. 1/0 engine 12 communicates
with 170 engine 18 through a high speed communica-
tions bus 15A and B. 15A and B are one hardware chan-
nel that is used to communicate two types of messages,
A and B. The high speed communications bus s used to
transfer events from the primary server to the second-
ary server (15A). It is also used for other communica-
tion between the 1/0 engines (15B). 1/0 engine 12 also
may access mass storage 14 through line 13. 1/0 engine
12 is also coupled to other devices, such as timers, key-
boards displays, etc., shown symbolically as block 44A
coupled to 1/0 engine 12 through bus 64. 1/0 engine 18
is coupled through line 19 to mass storage 20. The 1/0
engine 12 and 1/0 engine 18 are each connected to
network 23. 1/0 engine 18 is coupled to block 44B
(timers, keyboards, display, etc.) through bus 65.

The 1/0 engine 12 receives data and asynchronous
events from the computer system of which it is a part.
For example, if the invention is used as a network
server, the 1/0 engine 12 receives LAN packets from
other devices coupled to the network. The 1/0 engine
also controls and interfaces with physical devices and
device drivers, such as mass storage device 14, a key-
board or a timer.

The OS engines operate on data received from the
1/0 engines via the event queues 11 and 17. After a
desired operation has been performed, the data 1s re-
turned to the I/O engines via the request queues 41 and
42 for output to other system devices.

. The primary server 21 receives data or events from
the network 23 on input line 24. The 1/0 engine 12
converts these events or data into a “message” format.
Each message represents data or an event which can
change the state of the operating system. The 1/0 en-
gine 12 provides these messages first to bus 15A, and
when [/0 engine 18 signals that it has received the
message, the message is then given by 1/0 engines 12
and 18 to both the OS engines through the event mes-
sage queue buses 11 and 17. These messages are exe-
cuted sequentially by OS engines 10 and 16. By queue-
ing the messages, time dependency is removed from the
system so that all asynchronous events are converted
into a synchronous string of event messages. By separat-
ing the OS engine from the I/0 engine, the OS engine
is made to operate as if it were a finite state automata
having a one dimensional view of the system (i.e., the
event message queue). |

The buses 15A and 15B linking the primary 1/0 en-
gine 12 to the secondary 1/0 engine 18 utilize a bi-direc-
tional communications channel. Ideally, the buses 15A
and B provide high speed communications, have low
latency and low CPU overhead. Any suitable communi-
cations channel can be utilized with this invention, in-

5,157,663

S

cluding bus extenders and local area network (LAN)
cards.

The OS engine and 1/0 engine can be implemented
with a single processor if desired. Alternatively, sepa-
rate processors, one for the OS engine and one for the
I/0 engine, can be utilized. Additional OS engines,
using additional processors, can also be utilized in this
mvention. The states of all OS engines are then mir-
rored.

Regardless of whether one or two processors is uti-
lized for the OS engine and 1/0 engine, system RAM
memory is divided between the two engines. The I/0
engine can access OS engine memory but the OS engine
cannot access 1/0 engine memory. This is because
memory buffer addresses may be different for the pri-
mary and secondary 1/0 engines, leading to the state of
the primary and secondary OS engines becoming differ-
ent if they were allowed to access addresses in 1/0
engine memory.

It 1s not necessary for the primary and backup servers
to have identical processors. The performance of the
processors should be similar (CPU type, CPU speed)
and the processors must execute instructions in the same
manner, not necessarily at the pin and bus cycle level
but at the values written to memory and the instruction
sequencing level. For example, an 80386 microproces-
sor manufactured by Intel Corporation of Santa Clara,
Calif, could be used in the primary server with an Intel
80486 1n the secondary server. The secondary engine is
required to have at least as much RAM as i1s being used
by the pnnmary OS engine. In addition, both the primary
and secondary servers should have the same amount
and configuration of disk storage.

Hardware and/or software upgrades and changes can
be made to the system without loss of service. For ex-
ample, a user may wish to add more RAM to the pri-
mary and secondary servers. To accomplish this, the
primary or secondary server is taken out of the system.
If the primary server is taken off line, the secondary
server will treat that occurrence as a failure and will
begin to operate as the primary server, such that there is
no disruption or interruption of the operation of the
system. The off-line server can then be upgraded and
placed back on-line. The servers are then resynchro-
mzed and the other server is taken off line and up-
graded. After upgrade of the second server, it is placed
back on-line and the servers are resynchronized and
both start using the newly added RAM. Thus, hardware
and software upgrades can be made without loss of
service. Although the invention is described in relation
to network servers, it has equal application to general
purpose computer systems.

To imtialize the secondary operating system, all new
events are withheld from the primary OS engine 10
until it has reached a stable state. At that point, the state
of the OS engine 10 (embodied in the memory image of
the OS engine 10) i1s transferred through message bus
15B 1o the OS engine 16 of the backup operating sys-
tem. The OS engine 10 then has a state identical to OS
engine 16. At this time, all messages generated by 1/0
engine 12 that are provided to OS engine 10 are also
provided on bus 15A to 1/0 engine 18 for transfer to OS
engine 16. Since both OS engines 10 and 16 begin in an
identical state and receive identical inputs; each OS
engine will advance to an identical state after each
event or message.

In the present invention, identical messages produce
identical states in the primary and backup operating

10

13

20

25

30

35

40

45

30

55

65

6

system engines, such that prior art checkpointing opera-
tions are not required. Time dependent considerations
are minimized, and synchronization of the respective
OS engines for simultaneous operation is unnecessary
because synchronous and asynchronous events are pro-
vided to a message queue, the message queue serving as
a method to convert asynchronous events to synchro-
nous events.

If there is a failure of a primary system, the 1/0 en-
gine 18 of the secondary operating system is coupled to
the network 23. The secondary I/0 engine 18 is then
used to generate messages which are provided to the
secondary OS engine 16. Because the backup operating
system is at the same state as the primary operating
system, no loss of operation to the clients using the
server occurs during a server switchover.

170 ENGINE/OS ENGINE SEPARATION

In the present invention, the I1/0 engine and OS en-
gine are substantially logically independent. To prevent
unwanted state changes that cannot be mirrored on the
backup OS engine, data shared by the 170 and OS en-
gines 1s controlled, as further described below. Each
engine has its own stand-alone process scheduler, com-
mand interpreter, memory management system, and
code associated with that portion of the OS essential to
its function.

The division between the OS engine and 1/0 engine
1s made above the hardware dniver level at the driver
support layer. The drniver support layer software 1s
duplicated in both the 1/0 engine and the OS engine
and maintains the same top-level interface. The support
layer software is modified for the I/0 engine and the
OS engine. The driver support layer of the 1/0 engine
maintains driver level interfaces and communicates to
physical hardware drivers. It converts hardware driver
level events into messages which are provided to the
event queue of the OS engine.

The OS engine has no hardware driver interface
support routines, such as for registering interrupts or
allocating 1/0 port addresses. When the OS engine
requests an operation involving a hardware component
(e.g., writing or reading from disk), the driver support
layer software in the OS engine converts the action into
a request and provides it to the I/O engine request
queue for execution. The results of that request are then
returned to the OS engine as an event message gener-
ated by the 1/0 engine driver support layer.

1/0 ENGINE

Referring now to FIG. 2, the 1/0 engine consists of
three levels, a driver level, a management software level
and a message level. Device drivers 26A-26E drive
hardware elements such as printers, storage devices
(e.g., disk drives), displays, LAN adaptors, keyboards,
etc. The management software level includes control-
lers for device drivers. For example, the disk block 27
controls the disk device driver (e.g., disk device driver
26A). Disk block 27 controls the imitiation of disk reads
and writes. In addition, disk block 27 tracks the status of
a disk operation. The disk block 27 of the primary 1/0
engine (i.e., I/O engine 12) communicates the status of
disk operations to the backup 1/0 engine. The primary
mass storage 14 and the secondary mass storage 20 are
substantially identical systems. If the primary 1/0 en-
gine executes a read from disk 14, it communicates to
I/0 engine 18 that the read has been completed. If the
primary 1/0 engine completes the read first, the data

5,157,663

7

may be sent as a message on bus 15B to the secondary
1/0 engine 18. Alternatively, 1/0 engine 18 reads the
data from its own disk dnve 20.

The LAN block 28 controls external communications
such as to a local area network. This invention is not
limited to local area networks, however, and any type
of communication may be utilized with this invention.
The LAN controller receives information packets from
the network and determines whether to provide that
packet to the OS engine. |

The display block 29 controls communications to a
display device such as a CRT screen through device
driver 26C. The timer block 30 drives the system time
clock and keyboard block 31 provides an interface and
communication with a keyboard.

Message block 47 converts system events into mes-
sages to provide to the event queune of the OS engine
and dequeues requests from the OS engine. A message
consists of a header field and a data field. The header
field indicates the type of message or operation. The
data field contains the data on which the operation 1s to
be executed. The message level communicates event
messages with the I/O engines through event bus 15A.

OS ENGINE

Referring to FIG. 3, the OS engine includes message
level 32 to dequeue event messages received from the
I/0 engine in sequential order and to enqueue requests
to provide OS engine requests to the request block 47 of
the 170 engine. The OS engine also includes manage-
ment software corresponding to the management soft-
ware of the 1/0 engine. For example, the OS engine
includes disk management software 33, LAN manage-
ment software 34, message management software 35,
timer management software 36 and keyboard software
37. The top level 48 of the OS engine is the operating
system of the computer system using this invention.

The disk management software 33 controls the mir-
rored copies of data on the redundant disks 14 and 20.
When a disk operation is to be performed, such as a disk
read operation, the disk management software 33 deter-
mines whether both 1/0 engines 12 and 18 will perform
a read operation or whether the primary 1/0 engine 12
will perform a read and transfer the data to the second-
ary 1/0 engine 18. The timer management software 36
controls timer events. Generally, an operating system
has a timer that is interrupted periodically. Often this
timer interruption is used for time dependent opera-
tions. In this invention, a timer interrupt is itself an
event on the input queue. By turning the timer interrupt
into a message, the timer events become relative instead
of absolute. Time events are changed from asychronous
to synchronous events. The LAN block 34, display
block 35 and keyboard block 37 control network, dis-
play and keyboard events, respectively.

OPERATION

When the OS engine receives an event message, sev-
eral changes can occur to the state of the OS engine and
these changes can take some finite time to occur. In this
invention, once a message has been accepted by the OS
engine, the OS engine performs all operations that can
be performed as a function of the message. After all
such operations are performed, the OS engine checks
the message queue to determine if another message is
available for execution. If there is no other message
available, the OS engine becomes inactive until a mes-
sage is available. This method of operation 1s required

10

13

20

25

30

35

45

35

635

8

so that the primary OS engine and the second OS en-
gine remain synchronized. New messages can be given
to the primary and secondary OS engines at different
times because the 1/0 engines are asynchronous. There-
fore, the presence or absence of a new event cannot be
acted upon or utilized to change the state of the OS
engine.

In the preferred embodiment of the present invention,
the OS environment is defined to be non pre-empting.
Pre-emption is inherently an asynchronous event. In the
prior art, an executing task can be interrupted and re-
placed by another task by a timer interrupt. Because the
present system executes a single message at a time, the
timer interrupt or pre-emption request does not affect
the OS engine until it reaches that message in the mes-
sage queue. The task running on the OS engine must
relinquish control before the timer event can be re-
ceived and executed by the OS engine.

INTERENGINE COMMUNICATION

In the present invention, communication between the
OS engine and 1/0 engine is controlled. The invention
is designed to preserve a single source of input to the OS
engine, thereby preventing time dependent events and
changes made by the 1/0 engines from affecting the
state of the OS engine.

Communication between the 1/0 engine and OS
engine Is Characterized as follows:

1. The OS engine can only access its own OS engine
memory. All communication between the OS engine
and the 1/0 engine must occur in the memory of the OS
engine. The OS engine cannot access memory desig-
nated as 1/0 engine memory. Memory coherency 1s
preserved. The primary OS engine and secondary OS
engine are mirrored in this invention, but the primary
I/0 engine and secondary 1/0 engine are not. There-
fore, memory contents of each 1/0 engine can be differ-
ent. So long as the OS engines do not access the 1/0
memory, the state synchronization is maintained.

2. When the OS engine requests that a block of mem-
ory be modified by the 1/0 engine, the OS engine may
not access that memory block until the 1/0 engine sends
back an event notifying the OS engine that the modifi-
cation had been done. The primary and secondary OS
engines do not operate in exact synchronization. There
may be some skewing and divergence of their opera-
tions (although the states always converge). In addition,
the primary and secondary 1/0 engines may modify the
OS engine memory at different times. If decisions were
then made by the OS engine related to the current value
of a memory location in the process of being changed
by the 1/0 engine and the memory locations contain
different data due to the different modification times,
the synchronization of the states between the two OS
engines would be lost.

In actual operation, if the OS engine requires a copy
of data from the 1/0 engine, it allocates a work buffer to
hold the data and provides the address of the work
buffer to the 1/0 engine. The 1/0 engine copies the
requested data into the work buffer and generates an
event to the OS engine confirming that the data has
been placed. The OS engine copies the data from the
work buffer to its ultimate destination and releases the
work buffer.

3. The 1/0 engine cannot change memory designated
as OS engine memory unless it has been given explicit
control over that memory location by the OS engine.
Once the 1/0 engine has transferred control of the OS

5.157,663

9

engine memory back to the OS engine, (via an event)
the 1/0 engine cannot access that memory.

4. The OS engine software cannot “poll” for a change
in a memory value without relinquishing control of the
processor during the poll loop, because the OS engine
cannot be preemptive or interrupt driven in the present
implementation. All changes are made via events, and
new everts are not accepted until the processor is relin-
quished by the running process.

When the primary server fails, the secondary server
becomes the primary server. The address of the OS
engine does not change, but messages received from the
“network™ are rerouted to direct the messages to the
secondary server.

DISK MIRRORING

The primary storage 14 and the secondary storage 20
must be mirrored for operation of this invention. When
a new secondary engine 1s brought on line, the disk
system maps the drives on the secondary engine to the
corresponding drives on the primary engine. The drives
on the two engines are marked with a “current synchro-
nization level” counter that can be used to indicate
which dnive 1s more current or that two drives are
already fully synchronized. If there is any change to the
synchronization state (i.e., the other server has failed)
the current synchronization level is incremented by the
surviving server. The surviving engine also starts track-
ing memory blocks which are written to disk. When the
failed engine comes back on line, after verifying that it
has the same media as before, the repaired engine can be
resynchronized by transferring over only the memory
blocks that were changed while it was out of service.
When the system 1s first brought up and the original
primary engine is brought on line, it tracks which disk
blocks have been changed for the same reasons.

PRIMARY AND SECONDARY 1/0 ENGINE
COMMUNICATION

The 1/0 engine of the primary system determines the
sequence of events provided to the primary OS engine
and the secondary OS engine. An event plus any data
that was modified in the primary OS engine memory is
communicated to the secondary OS engine before the
primary OS engine is given the event in its event queue.
This communication is over bus 15A. The secondary
system’s 1/0 engine modifies the secondary OS engine
memory and provides the event to the secondary OS
engine.

In addition to communicating events, the primary
and secondary 1/0 engines communicate other infor-
mation. Mechanisms are provided so that various driver
layer support routines can communicate with their
counterparts in the other system. This communication is
bi-directional and is over bus 15B. Examples of such
communication include completion of disk 1/0 requests
and communication of disk 1/0 data when the data is
only stored on one of the systems due to disk hardware
failure.

There are two procedures used for communications
between the OS engines. “AddFSEevent” is used by
the 1/0 engine to give an event to the OS engine and
“MakelORequest” is called by the OS engine to com-
municate a request to the 1/0 engine. AAdFSEvent can
only be called by the primary 1/0 engine. Both calls use
a request type or event type to identify the request or
event being made. In addition, both calls pass a parame-
ter defined in a function-specific manner. For example,

10

15

20

25

30

35

45

30

35

65

10

it may be a pointer to a data structure in the OS engine
memory.

When the pnmary system /0 engine modifies a data
structure in the OS engine, the same modification needs
to be made in the secondary OS engine as well before
the event can be given to the OS engine. AddFSEvent
can be given pointers to data structures in the OS engine
that will be transferred to the secondary server along
with events to transfer OS engine data modifications to
the secondary system.

In the secondary system, there are handler proce-
dures in the 1/0 engine, one per request type, that are
called when events are received from the primary
server. The handler procedure is called with the origi-
nal parameter, and pointers to the areas in the OS en-
gine that need to be modified.

The secondary 1/0 engine event handler procedures
have the option of accepting or holding off the events.
Hold off would be used if the event is in response to a
request from the OS engine and the secondary system
has not got the request yet. If the event wasn’t held off,
then potentially memory could be prematurely changed
in the OS engine. Usually, the event handlers in the
secondary 1/0 engine remove an outstanding request
that they have been tracking and signal to accept the
event. After the data is copied, the event is given to the
secondary OS engine. Note that the secondary system
event handlers can do other modifications to OS engine
memory if necessary by the implementation.

It 1s important for the primary 1/0O engine to wait
until the secondary system receives an event before
giving the event to the primary OS engine. Otherwise,
the primary OS engine could process the event and
provide a response before the original event has been
transferred to the secondary system (the event could be
delayed 1n a queue on the primary system waiting to be
sent to the secondary system). If the primary system
generated a request that was a function of the event not
yet transferred to the secondary system, then if the
primary system failed, its state, as viewed from an exter-
nal client, would not be synchronized with the second-
ary system.

SERVER STATES OF OPERATION AND
TRANSITIONS

The 1/0 engine software runs in four states: no server
active state, primary system with no secondary state,
primary system with secondary state, and secondary
system state. In addition, the 1/0 engine makes the
following state transitions: no server active to primary
system no secondary, primary system no secondary to
primary system with secondary, and secondary system
to pnmary system. There are some additional states that
occur during the synchronization of a secondary sys-
tem.

The states of the system of this invention are illus-
trated in FIG. 5. As noted, the 1/0 engine operates in
one of four states S1, S2, S3 and S4. State S1, no server
engine, occurs when the 1/0 engine is operational but
the OS engine is not. State 2, primary no secondary,
occurs when both the 1/0 engine and OS engine are
loaded, but the system 1s not mirrored. When the system
1s mirrored, it will become the primary OS engine and
the 1/0 engine will act as the primary I/0 engine.

State 3 is referred to as primary with secondary. In
this state, the 1/0 engine 1s running in a mirrored pri-
mary system. State S4, secondary with primary, occurs

5,157,663

11

when the 1/0 engine is running in a mirrored secondary
system.

There are five possible state transitions that can be
experienced by the I/0 engine. These are indicated by
lines T1-TS. The first transition T1 is from state S1 to
state S2. This transition occurs after the OS engine is
activated.

The second transition T2 is from state S2 to state 83
and occurs within the primary system when it 1s syn-
chronized with the secondary system. Transition T3 is
from state S1 to state S4 and occurs within the second-
ary system when the OS engine is synchronized with
the primary system.

Transition T4 is from state S4 to state S2 and occurs
when the primary system fails. Transition TS is from
state S3 to state S2 and occurs when the secondary
system fails.

SECONDARY SERVER TRACKING AND
EXECUTION OF REQUESTS

The secondary system 1/0 engine receives requests
from its own OS engine but usually does not execute
them. Instead, it enqueues the request and waits until
the primary 1/0 system responds to the request, then
gets a copy of the response (the Event generated by the
primary 1/0 system), unqueues its own copy of the
request and allows the response “event” to be given to
its own OS engine.

The secondary 1/0 engine has to enqueue the re-

10

15

20

23

quests from the OS engine for several reasons. First of 30

all, the OS engine usually expects some sort of response
“event” from every one of its requests. If the primary
systern fails, then the secondary system (now primary
system) completes the request and generates the appro-
priate response event. Another reason is that the sec-
ondary system has to wait until it has received the re-
quest before it can approve receiving the response event
(a case which can occur if the primary system is signifi-
cantly ahead of the secondary system)}, otherwise the
secondary system may transfer data to its OS engine
that the OS engine is not yet prepared to received. If the
secondary system has enqueued the request 1t will ac-
cept the response event; if not it signals the primary
system to “hold off” and try again.

There are requests given by the OS engine that may
need to be executed by both servers and then have the
actual completion “event” coordinated by the primary
system. One example of this is disk writes. The second-
ary system has to signal the primary system when 1t is
done with the request; the primary system waits until it
has completed the write and has received completion
confirmation from the secondary system before it gen-
erates the completion “event.”

A flow diagram illustrating the execution of events
and requests is illustrated in FIGS. 4A-4C. Refernng
first to FIG. 4A, the operation of the OS engines is
illustrated.

The operation of the OS engine when it generates a
request is shown at steps 51 and 52. The operation of the
OS engine when it receives an event is shown at steps 53
and 54. At step 51, the management layer of the OS
engine determines that there is a need to perform an I/0
operation. At step 52, the OS engine generates a request
for the 1/0 engine and enters a wait mode, waiting for
a reply event from the 1/0 engine.

At step 53, an event is received from the 1/0 engine
in the event queue of the OS engine. The event is given
to the appropriate management layer block such as the

35

45

50

35

65

12
disk block, LAN block, keyboard block, etc. At step 34,
the management layer completes the initial 1/0 event
by matching it with the original request.

A flow chart illustrating the operation of the 1/0
engine during event processing states is illustrated in
FIG. 4B. Steps 55-58 illustrate the primary 1/0 engine
and steps 59-63 illustrate the secondary 1/0 engine. At
step 55, the management layer of the primary 1/0 en-
gine determines there is an event for the OS engine. At
step 56, this event is built into a message and communi-
cated to the secondary 1/0 engine. The primary 1/0
engine then waits until the secondary 1/0 engine has
acknowledged the event before providing the message
to the primary OS engine. At decision block 57, a deci-
sion is made as to whether the event has been accepted
by the secondary OS engine. If the event has not yet
been accepted, the primary 1/0 engine waits until ac-
knowledgement has been made. If the secondary 1/0
engine has accepted the event, satisfying the condition
of decision block 57, the 1/0 engine places the event in
the primary OS engine event queue at step 58.

The secondary 1/0 engine, at step §9, waits for an
event from the primary I/0 engine. At decision block
60, the secondary 1/0 engine determines whether it is
ready for the received event. If the secondary 1/0 en-
gine is not ready, it sends a don’t accept message to the
primary 1/0 engine at step 61 and returns to step 39 to
wait for another event. If the secondary 1/0 engine is
ready to take the event, and the conditions at decision
block 60 are satisfied, the secondary 1/0 engine sends
an acknowledgement of the event to the primary 1/0
engine at step 62. The secondary 1/0 engine then places
the event in the secondary OS engine event queue at
step 63.

FIG. 4C illustrates the processing state of the 1/0
engine when processing requests generated by the OS
engine. Steps 70-74 illustrate the state of the primary
170 engine during these operations and steps 75-81
illustrate the secondary 1/0 engine during these opera-
tions. At step 70, the message level of the I/0 engine
determines that there is a request available in the request
queue. At step 71, the request is executed by the 1/0
engine. This request may be a disk write operation, send
a packet on the LAN, etc. At decision block 72, it 1s
determined whether execution of the request by the
secondary 1/0 engine is also required. If no other exe-
cution is required, the primary 1/0 engine proceeds to
step 74. If a secondary execution is required, the pn-
mary [/O engine proceeds to decision block 73. If the
secondary processor is completed, the primary 1/0
engine proceeds to step 74A. If the secondary step 1s not
completed, the primary 1/0 engine waits until the sec-
ondary step has been completed. At decision block 74A,
determination is made as to whether the request gener-
ates a completion event. If the answer is yes, the pn-
mary I/0 engine proceeds to step 74B and generates the
completion event. If a completion event is not required,
the primary 1/0 engine proceeds to step 74C and 1is
done.

At step 75, the secondary 1/0 engine message level
determines that there is a request available from the OS
engine. At decision block 76, determination is made as
to whether the secondary processor is required to exe-
cute the request. If the secondary 1/0 engine 1s to exe-
cute the request, a secondary 1/0 engine proceeds to

step 77 and executes the request. After execution of the

_ request, the secondary I/0 engine informs the primary

1/0 engine of completion. If the secondary 1/0 engine

5.157.663

13

is not to execute the request, the secondary 1/0 engine
proceeds to decision block 79 and determines whether
the request generates a completion event. If there 1s no
completion event generated by the request, the second-
ary 1/0 engine proceeds to step 80, and 1s done. If the
request does generate an event, the secondary 1/0 en-
gine awaits the corresponding event from the primary
1/0 engine at step 81.

SERVER SYNCHRONIZATION SEQUENCE

During the synchronization of the secondary system
with the primary system, the entire “state” of the OS
engine, as well as the state of the primary 1/0 engine
pertaining to the state of the OS engine, must be com-
municated to the secondary system. To initiate the syn-
chronization of the primary and secondary systems, the
primary OS engine system 1s ‘“‘starved” of new events.
That 1s, no new events are provided to the event queue
of the primary system. After the message queue of the
primary system is empty, the primary system OS engine
loops, waiting for a new event. When the OS engine is
waiting for a new event, it again is in a stable state and
remains consistent until a new event Is encountered.
The entire state of the OS engine 1s then contained in
the memory image of the OS engine; the memory image
1s then simply transferred to the secondary system.
Eventually, both of the OS engines are given the same
set of new events and begin mirroring each other.

A flow diagram illustrating the synchronization se-
quence of this invention is illustrated in FIG. 6. Steps
85-89 represent the states and transitions of the primary
server. Steps 90-93 represent the states and transitions
of the secondary server. The primary server s initially
at state S2 at step 85 and the secondary server 1s initially
at state S1 (I/O engine only) at step 90.

The 1/0 engines coordinate the synchronization se-
quencing. When the servers are given a command to
synchronize, the management software of the primary
1/0 engine prepares for synchronization at step 86. This
allows the various driver support layers t0 communi-
cate with the OS engine and complete any tasks that
would prevent synchronization. The primary system
starts “‘starving” the OS engine and stops taking re-
quests from the OS engine, as well.

Next, any outstanding requests that are being exe-
cuted by the 1/0 engine are completed (and the appro-
priate completion event transferred to the OS engine
memory 1image but 1s hidden and not given at this time
to the OS engine). At step 87 and 91, the 1/0 engines
exchange state information. The primary 1/0 engine
provides its state information to the secondary 1/0
engine so that the I/0 engines are aware of the state of
each other plus the secondary 1/0 engine becomes
aware of any outstanding state from the OS engine. This
step 1s represented by step 91 of the secondary 1/0
engine sequence.

At step 88, the primary 1/0 engine transfers the OS
engine memory image to the secondary server. This
corresponds to step 92 of the secondary server sequence
in which the secondary 1/0 engine receives the OS
engine memory image from the primary server.

At step 89, the synchronization is complete and the
primary system is in state S3, (primary with secondary).
Similarly, corresponding step 93 of the secondary
server, the synchronization process 1s complete and the
secondary server 1s in state S4.

There can be server or communications failures dur-
ing the synchronization sequence. If the primary system

10

13

20

25

30

3§

40

45

50

35

65

14

fails or the server-to-server communication link fails,
the secondary system must quit as well. If the secondary
system fails or if the communication link fails, the pri-
mary system must recover and return back to the
“PrimaryNoSecondary” S2 state. These failures are
signaled at different times during the synchronization
sequence. After the change happens, the hidden and
queued up events are given back to the OS engine and
the 1/0 engine starts processing requests from the OS
engine again. If a failure occurs during synchronization,
the I/0 engine management software needs to undo
whatever changes have been done to synchronize and
return back to the non-mirrored state.

TRANSITION DUE TO PRIMARY SERVER
FAILURE

When the primary system fails, the secondary system
must be able to step in and assert itself as the server,
with the only thing that changed being the LAN com-
munications route to reach the server. Packets being
sent to the server at the time of failure can be lost. How-
ever, all LAN communication protocols must be able to
handle lost packets. The secondary 1/0 management
support layers are notified of the failure.

When the failure occurs, the driver support layers
need to take any outstanding requests they have from
the OS engine and complete executing them. The se-
condary-turned-primary system’s AddFSEvent proce-
dure is activated prior to the failure notification so that
new events can be given to the OS engine. Any mes-
sages being sent to the former primary system are dis-
carded. Any requests from the OS engine that were
waiting data or completion status from the primary
system are completed as 1s. There 15 a need to use a
special event to notify the OS engine that the servers
were changed. For example, a special event is used to
tell the OS engine to send a special control packet to all
of the clients, indicating that the change occurred. This
can accelerate the routing level switchover to the new
server,

TRANSITION DUE TO SECONDARY SERVER
FAILURE

When there is a secondary system failure, all mes-
sages queued to be sent to the secondary system are
discarded. If the messages are OS engine events, they
are simply provided to the OS engine. The dniver sup-
port layer of the 1/0 engine completes any requests that
were waiting pending notification from the secondary
system.

MULTIPLE OS ENGINES AND EXTRA
PROCESSORS

The present invention has been described in terms of
primary and secondary servers that each have a single
OS engine. An alternate embodiment of the present
invention is illustrated in FIG. 7 in which the primary
and/or secondary server can have one or more OS
engines. Referring to F1G. 7, the primary server is com-
prised of three processors. Processor 1 implements the
I/0 engine of the primary server. A first and second OS
engine are implemented on processor 2 and processor 3,
respectively.

Similarly, the secondary server has a first processor
implementing an I/0 engine and second and third pro-
cessors implementing first and second OS engines. In
operation, multiple event queues are maintamed for
each OS engine so that each OS engine operates on the

5,157,663

15

same events. In this manner, the states of each OS en-

gine can be maintained substantially identical so that
upon failure of one server, another can begin operation.
Thus, a fault tolerant computer system has been de-

scribed. 5

We claim:

1. A method for providing a fault tolerant computer

system comprising the steps of:

providing a first processing means for operation of
said computer system, said first processing means 10
comprising a first operating system (OS) engine
and a first input/output (1/0) engine;

providing a second processing means, said second
processing means comprising a second operating
system (OS) engine and a second input/output 15
(I/0) engine;

determining a state of said first processing means and
providing said state to said second processing
means;

defining an operation that can change said state of 20
said first OS engine as an event,

providing a plurality of events to said first I/O engine
and converting each of said events into a message;

providing said message to a first message queue in
said first OS engine and to a second message queue 23
in said second OS engine;

executing said message in said first OS engine and
said second OS engine;

switching said computer system operation to said
second processing means upon failure of said first 30
processing means, such that no loss of operation of
said computer system occurs during said switch-
over.

2. The method of claim 1 further including the steps

' 35

providing each event to said second 1/0 engine when
said first processing means does not operate;

converting each of said events to a message in said
second 1/0 engine;

providing said message to said second message queue
in said second OS engine for execution by said
second OS engine.

3. The method of claim 1 wherein said steps of deter-

mining the state of said first processing means and pro-

viding said state to said second processing means com-

prises the steps of:

executing in said first OS engine any messages avail-
able to said first OS engine until said first OS en-
gine has achieved a stable state; and,

transferring a memory image of said first OS engine
through said first 1/0 engine to said second pro-
cessing means.

4. The method of claim 1 wherein said first process-

ing means comprises at least one processor.

5. The method of claim 1 wherein said second pro-

cessing means comprises at least one processor.

6. The method of claim 1 further including the steps

45

35

of:

generating a request in said OS engine, said request
for accomplishing an input/output operation;

providing said request to a first request queue in said
first 1/0 engine for execution by said first 1/0
engine;

generating a reply to said first OS engine to indicate
execution of said request.

7. The method of claim 1 wherein said event 1s asyn-

65

chronous.

8. A fault tolerant computer system comprising:

16

first processing means for operation of said computer
system, said first processing means compnsing a
first operating system (OS) engine and a first input-
/output (1/0) engine;

second processing means comprising a second operat-
ing system (OS) engine and a second input/output
(1/0) engine;

said first I/O engine coupled to said second 1/0 en-

gine on a first bus;

said first I/0 engine including a converting means for

converting operations that can change said state of
said first OS engine into &8 message;

said first /0 engine for providing said message to a

first message queue in said first OS engine and to a
second message queue in said second OS engine;
said first OS engine and said second OS engine in-

cluding means for executing said message;

means for switching said computer system operation

to said second OS engine upon failure of said first
processing means such that no loss of operation of
said computer system occurs during said switch-
oVer.

9. The computer system of claim 8 wherein said first
processing means comprises at least one processor.

10. The computer system of claim 8 wherein said
second processing means comprises at least one proces-
SOT.

11. The computer system of claim 8 further including
a first storage means coupled to said first processing
means, said first storage means storing 2 memory image
corresponding to said state of said first OS engine.

12. The computer system of claim 11 further includ-
ing a second storage means coupled to said second pro-
cessing means, said second storage means storing a
memory image corresponding to said state of said sec-
ond OS engine.

13. The computer system of claim 8 wherein said first
OS engine controls execution of instructions of said
computer system.

14. The computer system of claim 13 wherein said
second OS engine controls execution of instructions of
said computer system when said first OS engine cannot
execute said instructions.

- 15. The computer system of claim 8 wherein said 1/0
engine controls communication with input and output
devices.

16. The computer system of claim 8 wheremn said
message comprises synchronous and asynchronous
events. '

17. A method for providing a fault tolerant computer
system comprising the steps of:

providing a first processing means for operation of

said computer system, said first processing means
comprising a first operating system (OS) engine
and a first input/output (1/0) engine;

providing a second processing means comprising a

second operating system (OS) engine and a second
input/output (I/0) engine;

determining a state of said first processing means and

providing said state to said second processing
means;

defining an operation that can change said state of

said first OS engine as an event;

providing a plurality of events to said first 1/0 engine

and serializing said events into an event sequence;
providing successive events in said event sequence to
said first OS engine and to said second OS engine;

5,157,663

17

executing said successive events in said first OS en-

gine and said second OS engine,

switching said computer system operation to said

second processing means upon failure of said first
processing means, such that no loss of operation to
sald computer system occurs during said switch-
over.

18. The method of claim 17 further including the
steps of:

providing each event to said second 1/0 engine when

said first processing means does not operate;
sertalizing said events into an event sequence in said
second 1/0 engine;

providing successive events of said event sequence to

said second OS engine for execution by said second
OS engine.
19. The method of claim 17 wherein said step of de-
termining the state of said first processing means and
providing said state to said second processing means
comprises the steps of:
executing in said first OS engine any successive
events available to said first OS engine until said
first OS engine has achieved a stable state; and,

transferring a memory image of said first OS engine
through said first 1/0 engine to said second pro-
cessing means.
20. The method of claim 17 wherein said first process-
Ing means comprises at least one processor.
21. The method of claim 17 wherein said second
processing means comprises at least one processor.
22. The method of claim 17 further including the
steps of:
generating a request in said OS engine, said request
for accomplishing an input/output operation;

providing said request to a first request queue in said
first 1/0O engine for execution by said first 1/0
engine;

generating a reply to said first OS engine to indicate

execution of said request.

10

15

18

second processing means comprising a second operat-
ing system (OS) engine and a second input/output
(1/0) engine;

said first 1/0O engine coupled to said second 1/0 en-
gine on a first bus;

said first 1/0 engine including a converting means for
converting operations that can change said state of
said first OS engine into an operation sequence;

said first 1/O engine for providing said operations in
sequence to said first OS engine and to said second
OS engine;

said first OS engine and said second OS engine in-
cluding means for executing said operations;

means for switching said computer system operation
to said second OS engine upon failure of said first
processing means such that no loss of operation of
said computer system occurs during said switch-
over.

25. The computer system of claim 24 wherein said

20 first processing means comprises at least one processor.

25

30

35

23. The method of claim 17 wherein said plurality of 40

events are asynchronous.
24. A fault tolerant computer system comprising:
first processing means for operation of said computer
system, said first processing means comprising a
first operating system (OS) engine and a first input-
/output (I/0) engine;

45

30

55

65

26. The computer system of claim 24 wherein said
second processing means comprises at least one proces-
SOF.

27. The computer system of claim 24 further includ-
ing a first storage means coupled to said first processing
means, said first storage means storing a memory image
corresponding to said state of said first OS engine.

28. The computer system of claim 27 further includ-
ing a second storage means coupled to said second pro-
cessing means, said second storage means storing a
memory image corresponding to said state of said sec-
ond OS engine.

29. The computer system of claim 24 wherein said
first OS engine controls execution of instructions of said
computer system.

30. The computer system of claim 29 wherein said
second OS engine controls execution of mstructions of
saild computer system when said first OS engine cannot
execute said instructions.

31. The computer system of claim 24 wherein said
1/0 engine controls communication with input and
output devices.

32. The computer system of claim 24 wherein said
sequence comprises synchronous and asynchronous

operations.
* = 9 ¥ %

	Front Page
	Drawings
	Specification
	Claims

