United States Patent [
Okamoto

[54) METHOD FOR SELECTIVE
BACK-TRACKING IN A HIERARCHICAL
SYSTEM CONTAINING A FLAG WHICH
INDICATES THE VALIDITY OF A
CHOICE-POINT

Toshio Okamoto, Tokyo, Japan
Kabushiki Kaisha Toshiba, Kawasaki,

[75] Inventor:

[73] Assignee:

Japan

[21] Appl. No.: 406,417
[22] Filed: Sep. 13, 1989
[30] Foreign Application Priority Data

Sep. 14, 1988 [JP] Japancccieiineniinnnns 63-228520
CRUIEE U o K IO GO6F 12/00
[52] US.Cl oo 395/378; 364/DIG. 1;

364/281.1; 364/275; 395/1

[58] Field of Searchcc.occeiiiiiniennnen, 395/375, 1
[56] References Cited

U.S. PATENT DOCUMENTS

corrrvesrenes 39576350
crresensenss 3957375

4,931,931 6/1990 Syreetal
5,016,164 5/199}1 Srivastava

O 1 T O 00

~ US005136698A
(11] Patent Number: 5,136,698
[45] Date of Patent: Aug. 4, 1992

FOREIGN PATENT DOCUMENTS
62-495446 3/1987 Japan .

OTHER PUBLICATIONS

Warren, “An Abstract Prolog Instruction Set,” SRI]
International, Technical Note 309, Oct. 1983, pp. 1-30.

Primary Examiner—Thomas C. Lee
Assistant Examiner—Paul Harrity
Artorney, Agent, or Firm—Foley & Lardner

[57) ABSTRACT

A method of back-tracking in a computer processing
operation in which the programmer can be provided
with a number of different types of the back-track con-
trolling, from which a suitable one can freely be se-
lected in accordance with the need of the programmer.
In this method, a flag is provided in each choice point,
for indicating a type of back-track controlling, and a
stack which contains an address of a choice point speci-
fied as a present choice point by a present choice point
register and an address of a preceding choice point
which i1s immediately preceding the present choice
point is utilized in changing indication of the flag.

8 Claims, 9 Drawing Sheets

U.S. Patent Aug. 4, 1992 Sheet 1 of 9 5,136,698

FIG.1 (A)

PRIOR ART

/ % source

FIG.1 (B)

PRIOR ART

U.S. Patent Aug. 4, 1992 Sheet 2 of 9 5,136,698

FIG.2 (B
FIG.2 (A) (B)
MEMORY I
REGISTERS '
i I
CP—=
P
- CP
==
— B o
==
H
. HB
S
PLD -
= e
aoxz -
| A3X3 UP
dlun Bl
Tb

Wi LNJWNOHY IFHL 40 INTVA TVILINI.....

95,136,698

L# INIWNOHY 3HL 40 INTVA IVILINI ...
H H3ALSID3H 40 INTVA HIALSIOIY

dl H3alSIO3H 40 INTVA H3ALSIDTY -
A1VOid3dd JFALLVNYHALTY 40 3a090 -----

llllll

-
S dd HI1SI93H 40 ANIVA HIALSIOIY -----
b (LNIOd FDI0HD 3 H3LSID3IY 40 INTVA HILSIOFY ...
& ONIG3234d OL HILNIOd MNI) 8 HALSIDIY 40 3NTVA HILSIOIY ...
(‘d'D) LNIOd IDIOHD
) (a)
&
< u# S31GVIHVA ININVINHId
o "
«

L# S31GVIHVA LNINVIWHI -
(LNIWNOHIAN3I dO H3A1SI1934H 40 ANTVA H31SID3Y ...

ONId303Hd OL H3LINIOd MNIT) 3 HILSIDIH 40 INTVA HILSIODIY ---.

(Au3) INJWNOHIANS

(V) m.c__"_

U.S. Patent

U.S. Patent Aug. 4, 1992 Sheet 4 of 9 5,136,698

FIG.4
/ % source
a: - b,!,cd.
a: - ef.
*/
a/0:
4 try__me__else L3 (1)
L1:
mark__cutt
allocate
call b/0,0 (4)
cut
call ¢/0,0
deallocate
execute d/0
L3:
trust__me__else_ fall
L2:

allocate
call e/0,0
deallocate

‘execute f/0

5,136,698

Sheet S of O

~ Aug. 4, 1992

U.S. Patent

llllllllllllll

lllllllllllllllllllllllll

An_v G 0_u_

i el e S N e e S Sp e e s =

on G o_u_

llllllllll

Bv G o_.._ Ev G o_"_

U.S. Patent Aug. 4, 1992 Sheet 6 of 9 5,136,698

FIG.6 (B) FIG.6 (C)

U.S. Patent Aug. 4, 1992 Sheet 7 of 9 5,136,698

FIG.7
/ % source
a: - b,%,c.d.
a: - e,f.
*/
a/0:
/ try__me__else L3 (1)
L1 "
mark__cutt
allocate
call b/0,0
scut
call ¢/0,0
deallocate
execute d/0
L3:

trust.__me__else falil

allocate
call e/0,0
deallocate
execute f/0

U.S. Patent , Aug. 4, 1992 Sheet 8 of 9 5,136,698

FIG.8 (B) FIG.8 (C)

Aug. 4, 1992 Sheet 9 of 9 5,136,698

5,136,698

1

METHOD FOR SELECTIVE BACK-TRACKING IN
A HIERARCHICAL SYSTEM CONTAINING A
FLAG WHICH INDICATES THE VALIDITY OF A
CHOICE-POINT

BACKGROUND OF THE INVENTIONS

1. Field of the Invention

The present invention relates to a method of back-
tracking to be performed by a computer, operating
under commands of a program usually written in a logic
type language such as PROLOG.

2. Description of the Background Art

Under a program written in a logic type language
such as PROLOG, a computer is required to be capable
of performing a process called back-tracking, in which
an execution of an alternative predicate is automatically
attempted in a case of a fatlure of an execution of a
certain predicate.

Namely, as in an exemplary program of FIG. 1(A)
which commands performing of the sequence of pro-
cesses illustrated in FIG. 1(B), when there are two
admissible clauses “b, !, c, d” and “e, {* for a certain
predicate “a” to be executed, i.e., the predicate *“‘a” 1s
executable if one or the other of these possibilities *b, |,
c, d” and “e, can successfully be executed, the first
one *b, |, ¢, d” will be attempted first, and only when
the execution of this first one *b, |, ¢, d” has failed, an
attempt is automatically made for an execution of an-
other alternative one “e, f’. Here, in attempting the
execution of the alternative one “e, {, it is necessary to
restore initial conditions used in the abortive attempt for
the execution of the first one “b, !, ¢, d”, in order to
maintain consistency. |

Conventionally, for the purpose of assisting a pro-
grammer in handling such back-tracking processes ef-
fectively, there is provided a back-track controlling
means which enable the programmer to explicitly con-
trol the performance of the back-tracking processes,
within the framework of logic type languages. Such a
back-tracking control means is often called an operator,
among which a most notable example being a cut opera-
tor in PROLOG.

In the example of FIG. 1 (A) above, there 1s a cut
operator *I” which will be carried out after the success-
ful execution of the predicate “b”. This cut operator
functions such that when the process reaches this cut
operator *'!”, the back-tracking of the predicate *a” will
not take place any more. Thus, when the execution of
the predicate *b™ fails in the attempt to perform the first
clause “b, |, ¢, d”’, the back-tracking to the alternative
clause “e, " will be performed as the failure of the
execution of the predicate “b” occurs before the cut
operator “!” is reached, as indicated by a dashed line in
FIG. 1{B), whereas when the execution of the predicate
“c” fails, the back-tracking will not be performed as this
failure of executing the predicate *“c’ occurred after the
cut operator “!” has been reached, so that the failure of
the execution of the predicate “a” will be confirmed at
this point, without attempting the alternative clause “e,
. The process may then go back further to a superior
predicate preceding the predicate “a” for which the
predicate *‘a” is a part of an admissible clause.

However, conventionally, such a back-track control-
ling means is actually realized by a computer in essen-
tially a single manner, so that it has not been possible to
provide the programmer with a number of different
types of such back-track controlling means, from which

10

15

20

25

30

35

435

50

335

60

65

2

a suitable one can freely be selected in accordance with
the need of the programmer. As a consequence, the
programming in a logic type language has been very
inflexible as far as the back-track controlling means is
concerned, such that in order to facilitate sufficient
handling of the back-tracking, a highly skillful program-
ming has been indispensable, which subsequently com-
plicates the program itself, in which case the debugging
1s more difficult and running time becomes longer.

SUMMARY OF THE INVENTION

It 1s therefore an object of the present invention to
provide a method of back-tracking in a computer pro-
cessing in which the programmer can be provided with
a number of different types of the back-track control-
ling means, from which a suitable one can freely be
selected in accordance with the need of the program-
mer, such that the effective handling of the back-track-
ing by the programmer is possible with a simple pro-
gram so that the flexibility in programming can be en-
hanced.

According to one aspect of the present invention,
there is provided a method of back-tracking in a com-
puter processing, comprising the steps of: (a) for each
predicate to be executed, creating a choice point con-
taining: values of arguments of this predicate at a begin-
ning of execution of this predicate; register values of
registers necessary for carrying out back-tracking; and a
flag indicating this choice point as either valid or in-
valid; (b) with respect to a certain choice point, creating
a stacking containing; an address of a choice point speci-
fied as a present choice point by a present choice point
register; and an address of a preceding choice point
which 15 immediately preceding the present choice
point; (c) resetting indication of the flag of a certain
choice point from valid to invalid, or from invalid to
valid, by using the address of the present choice point in
the stacking; (d) in back-tracking for a certain predicate
whose flag indicates that it is valid, back-tracking ac-
cording to the register values of the registers in the
present choice point; (e) in back-tracking for a certain
predicate whose flag indicates that it is invalid, resetting
a register value of the present choice point register from
a location of the present choice point to a location of a
nearest valid choice point superior to the choice point
corresponding to that predicate; and back-tracking ac-
cording to the register values of the registers in the
nearest valid choice point.

According to another aspect of the present invention,
there is provided a method of back-tracking in a com-
puter processing, comprising the steps of: (a). for each
predicate to be executed, creating a choice point con-
taining: values of arguments of this predicate at a begin-
ning of execution of this predicate; register values of
registers necessary for carrying out back-tracking; and a
flag indicating some integer value; (b) with respect to a
certain choice point, creating a stacking containing; an
address of a choice point specified as a present choice
point by a present choice point register; and an address
of a preceding choice point which is immediately pre-
ceding the present choice point; (¢) changing indication
of the flag of a certain choice point from one integer
value to another integer value, by using the address of
the present choice point in the stacking; (d) in back-
tracking for a certain predicate whose flag indicates an

~integer n, resetting a register value of the present choice

point register from a location of the present choice

5,136,698

3
point to a location of an n-th mearedt vahid choice supe-
nor to the choice point corresponding to that predicate;
and back-tracking according to the register values of
the registers in the n-th nearest valid choice point.
Other features and advantages of the present inven-
tion will become apparent from the following descrip-
tion taken in conjunction with the accompanying draw-

Ings.
BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1 (A) and (B) are an illustration of a part of a
program written in PROLOG and a diagram illustrat-
ing corresponding sequence of processes, respectively,
for explaining a conventional back-tracking process.

FI1GS. 2(A) and (B) are diagrammatic illustrations of
a register and a memory of a computer, respectively, by
which the method of back-tracking according to the
present invention is to be carried out.

FIGS. 3(A) and (B) are diagrammatic illustrations of

an environment and a choice point, respectively, to be 20

used in the method of back-tracking according to the
present invention.

FIG. 4 1s an illustration of a part of a program written
in PROLOG and corresponding WAM commands
compiled, for explaining a first type of back-track con-
trol in one embodiment of the method of back-tracking
according to the present invention.

F1GS. 5(A), (B), (C), and (D) are diagrammatic illus-
trations of the states of the stack area in the memory of
FIG. 2(B) 1n a course of back-tracking using the first
type of back-track control.

FI1GS. 6(A), (B) and (C) are another diagrammatic
illustrations of the states of the stack area in the memory
of FIG. 2 (B) in a course of back-tracking using the first
type of back-track control.

FIG. 7 is an illustration of a part of a program written
iIn PROLOG and corresponding WAM commands
compiled, for explaining a second type of back-track
control in one embodiment of the method of back-track-
ing according to the present invention.

FI1GS. 8(A), (B) and (C) are diagrammatic illustra-
tions of the states of the stack area in the memory of
F1G. 2(B) in a course of back-tracking using the second
type of back-track control.

FI1GS. 9(A) and (B) are another diagrammatic illus-
trations of the states of the stack area in the memory of
FIG. 2(B) in a course of back-tracking using the second
type of back-track control.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

In the embodiment of the method of back-tracking
according to the present invention to be described be-
low, a computer to be used is assumed to possess regis-
ters and a memory of the form shown in FIGS. 2(A)
and (B), respectively.

Namely, the memory is divided into five areas com-
prising a code, a8 heap, a stack, a trail, and a push down.
The code is the area 1n which program codes are stored.
The heap is the area in which global data are stored.
The stack is the area in which local data and register
values during executions of processes are stored. The
trail is the area 1n which a state of unification is stored.
The push down is the area to be utilized for other tem-
porary data processing. These areas can be extended in
directions indicated by arrows inside the memory in
F1G. 2(B), and locations in the memory are identified
invertedly, i.e., upper location in the memory is at lower

10

13

25

30

35

40

45

35

65

4

position in FIG. 2(B) and vice versa, as is customary.
These areas are managed by register values of the vari-
ous registers, as indicated on left side of the memory.
The registers comprise those having the register values
for managing the memory, indicated as (A) in FIG.
2(A), as well as others having register values indicating
arguments of predicates involved and other temporary
quantities to be stored, indicated as (B) in FIG. 2(A).

Also, PROLOG is used as an exemplary logical type
language to command this computer, and a PROLOG
compiler called WAM (Warren Abstract Machine)
described by D. H. D. Warren in “An Abstract Prolog
Instruction Set”, Technical note 309, Artificial Intelli-
gence Center, SRI International, October 1983, is used.
Here, however, the WAM commands described by
Warren are extended to accommodate cut operators
which he does not consider in the above reference.

Now, in operating under such commands, blocks
called environments (Env) and choice points (C.P.) will
be utilized in the stack area of the memory of the com-
puter. Locations of the environment and the choice
point are to be indicated by register values of a register
E and a register B, respectively, while a top of the stack
area is to be indicated by a register value of a register A.

An environment is to be created whenever a clause is
to be executed and, as shown in FIG. 3(A), each envi-
ronment contains values of permanent variables Y.
»~ Y n Which are required to be kept unchanged during
the execution of that clause, as well as register values of
registers E and CP. In particular, the register value of
the register E which serves as a link pointer to the
preceding environment is contained at a top of the envi-
ronment.

On the other hand, a choice point is to be created for
the sake of back-tracking whenever a predicate is to be
executed. As shown in FIG. 3(B), each choice point
contams an address L in the code area at which an
alternative predicate of that predicate is stored, so as to
locate the alternative predicate to be attempted in a case
of the failure of that predicate, and initial values of
arguments A),-,A,, of that predicate prior to the at-
tempt for the execution of that predicate, which are

‘required to be given to the alternative predicate when

the alternative predicate is to be attempted. In addition,
each choice point contains register values of registers B,
E, CP, TR, and H. In particular, the register value of
the register B which serves as a link pointer to the pre-
ceding choice point is contained at a top of the choice
point. Furthermore, each choice point carries a flag for
indicating validity of the choice point itself.

These environments and choice points will be created
in the stack area whenever necessary and deleted when-
ever their uses are over.

Now, one embodiment of a method of back-tracking
according to the present invention, in which a program-
mer can be provided with two types of back-track con-
trols will be described.

Referring now to FIGS. 4 to 6, a first type of back-
track control in this embodiment will be explained. This
first type of back-track control is essentially equivalent
to a usual cut operator.

FIG. 4 shows a part of a source program written in
PROLOG which involves a usual cut operator “!I’, and
corresponding WAM commands compiled.

Now, before executing the predicate “a”, an environ-
ment Env-0 and a choice point C.P. -0 corresponding to
a superior predicate for which the predicate “a” belongs
to are present in the stack area, with register E and B

5,136,698

S

indicating the locations of the environment Env-0 and
the choice point C.P.-0, respectively, as shown in FIG.
5(A). The environment is represented by a dashed
square, whereas the choice point is represented by a
solid square. In addition, a pointer between the environ-
ments 1s represented by a dashed arrow, whereas a
pointer between the choice point 1s represented by a
solid arrow.

Then, in executing a command “try_me_e¢lse L.3"” at
a line (1), a choice point C.P.-1 corresponding to the
predicate “a’” is created, with the register value of the
register B in FIG. §5(A) stored at the top of the choice
point as a link pointer to a preceding choice point, as
shown in FIG. 8(B). The link thus created 1s indicated
by a solhid arrow in FIG. $(B). Also, the flag of the
choice point C.P.-1 is set to *0o” to indicate that this
choice point i1s valid. Furthermore, the register value of
the register B is changed at this point to indicate the
present choice point which is the choice point C.P.-1.

Next, in executing a command “mark__cut 1” at a line
(2), a stacking S-1 containing an address of the present
choice point C.P.-1 as a top value and an address of the
preceding choice point C.P.-0 as a bottom value is cre-
ated at the top of the stacking area, as shown in FIG.
85(C). The stacking is represented by a double square,
and the links made by this stacking S-1 are also indi-
cated in FIG. C). This command “mark_cut 1 at a
line (2) and a command “‘cut” at a line (§) make up a pair
of commands corresponding to the cut operator “!” 1n
the source program.

Next, in executing a command *allocate” at a line (3),
an environment Env-1 corresponding to a clause “b, |, c,
d” is created at the top of the stack area, with the regis-
ter value of the register E in FIG. 5(A) stored at the top
of the environment as a link pointer to a preceding
environment, as shown in FIG. §(D).

After these, the execution of the predicate “b” is
attempted by the command “call /0,0 at a line (4).

When this execution of the predicate *'b” succeeds,
the cut operator “!” will be reached next. At this point,
the register value of the register E 1s still indicating the
environment Env-1 because it is still in a middle of
executing the clause *b, !, ¢, d”, but the register value of
the register B may not be indicating the choice point
C.P.-1 any more. Such a case arises when the execution
of the predicate “b”, called for another clause making
up the predicate “b”, in which case additional choice
points are created as the predicates of that another
clause are executed. Thus, the register value of the
register B may be indicating the choice point C.P.-k, as
shown in FIG. 6(A).

Now, when the command .“cut” at a line (8) 1s per-
formed, the register value of the register E is utilized to
locate the stacking S-1 which is right below the position
indicated by the register E, and then by using the bot-
tom value of the stacking S-1, the register value of the
register B is reset to indicate the choice point C.P.-0, as
shown in FIG. 6(B).

As a result, before the execution of the next predicate
“c” is attempted by the command *call ¢/0,0” at a line
(6), all the choice points above the choice point C.P.-0
are deleted, including the choice point C.P.-1 for the
predicate “‘a”, as shown in FIG. 6(C), so that the further
back-tracking for the predicate *‘a” becomes impossible,
since the choice point C.P.-1 contained information
necessary in performing back-tracking for the predicate
“a”. Therefore, when the execution of the predicate *c”
fails, the back-tracking is performed according to the

10

15

20

23

35

40

45

33

65

6

choice point C.P.-0, in other words, the failure of the
execution of the predicate “‘a” is determined as soon as
the execution of the predicate “c” fails in this case, as
the cut operator “!”’ is supposed to function.

Referring now to FIGS. 7 to 9, a second type of
back-track control in this embodiment will be ex-
plained. This second type of back-track control utilizes
a special cut operator **$” which functions differently
from the usual cut operator “”’ utilized in the first type
of back-track control.

FI1G. 7 shows a part of a source program written in
PROLOG in which the special cut operator “$” re-
places the cut operator “$” of the first type of back-
track control, and corresponding WAM commands
compiled. Here, the only difference between this pro-
gram of FIG. 7 and that of FIG. 4 is that a command
“cut” corresponding to the cut operator “I” of the first
type of back-track control is replaced by a new com-
mand “scut” corresponding to the special cut operator
“$” of this second type of back-track control, so that
procedures for lines (1) to (4) are identical to those
explained above in conjunction with FIGS. 5(A) to (D),
which will not be repeated.

Now, as in the first type of back-track control ex-
plained above, after the completion of the line (4), the
register value of the register E is still indicating the
environment Env-1 because it is still in a middle of
executing the clause “b, $, ¢, d”, but the register value
of the register B may not be indicating the choice point
C.P.-1 any more. Such a case arises when the execution
of the predicate “b” called for another clause making up
the predicate “b”, in which case additional choice
points are created as the predicates of that another
clause are executed. Thus, the register value of the
register B may be indicating the choice point C.P.-k, as
shown in FIG. 8(A).

Then, when the command *scut™ at a line (5) is per-
formed, the register value of the register E is utilized to
locate the stacking S-1 which is right below the position
indicated by the register E, and then by using the top
value of the stacking S-1, the flag of the choice point
indicated by this top value which is the choice point
C.P.-1 in this case 1s reset to “x” to indicate that this
choice point C.P.-1 is invalid, as shown in FIG. 8(B).

In a case of this second type of back-track control, the
back-tracking is performed in a usual manner so long as
the flag of the choice point indicated by the register
value of the register B indicates that this choice point is
valid, as in a situation shown in F1G. 8(C).

On the other hand, when the flag of the choice point
indicated by the register value of the register B indicates
that this choice pont is invalid, as in a situation shown
in FIG. 9(A), the back-tracking is performed after the
register value of the register B is reset to indicate the
nearest valid choice point among the preceding choice
points which is the choice point C.P.-0 in this case, as
shown in FIG. 9(B). In other words, in back-tracking
from an invalid choice point, the register value of the
register B is reset to indicate a choice point immediately
preceding this invalid choice point as long as the imme-
diately preceding choice point is a valid one. When the
immediately preceding choice point is also an invalid
one, the register value of the register B is reset to indi-
cate a choice point next-to-immediately preceding this
invalid choice point as long as this next-to-immediately
preceding choice.point is a valid one, and so on.

Thus, with this second type of back-track control,
when the next predicate “c” is executed by the com-

5,136,698

7

mand *call ¢/0,0” at a line (6) and this execution failed,
the back-tracking is performed for the alternative predi-
cate of the predicate “b” as in the usual back-tracking,
since the choice point for the predicate “b” carries a
flag indicating “0”. In addition, if this back-tracking for
the predicate “b” also fails, the back-tracking proceeds
according to the choice point C.P.-0, since the choice
point C.P.-1 15 to be skipped as it is invalid, and will
subsequently be deleted along with all the choice points
above the choice point C.P.-0 as the register value of
the register B is reset to indicate the nearest valid choice
point among the preceding choice points, so that when
the further back-tracking for the predicate “a” becomes
impossible.

As described, in this embodiment, two types of the
back-track controls can be provided, and the program-
mer can utilize desired one of these two by simply
choosing either a usual cut operator *!” or a special cut
operator “$” in a program.

It is to be noted that in the above embodiment, the
choice point utilizes the flag which can have two values
“o" or “x"” only, as only two types of back-track con-
trols are involved. However, this feature may be modi-
fied such that, for instance, the flag can have n different
integer values which invalidates n preceding choice
points, so that it is possible to provide n different types
of back-track controls.

Besides this, many modifications and vanations of the
above embodiments may be made without departing
from the novel and advantageous features of the present
invention. Accordingly, all such modifications and van-
ations are intended to be included within the scope of
the appended claims.

What is claimed 1s:

1. A computer implemented method of back-tracking
in a computer processing operation, comprising the
steps of: |

(a) for a predicate that i1s to be executed, creating a

choice point containing:

values of arguments of this predicate at a beginning
of execution of this predicate;

register values of registers necessary for carrying
out back-tracking; and

a flag indicating this choice point as either valid or
invalid;

(b) with respect to a certain choice point, creating a

stack containing;

an address of said certain choice point specified as
a present choice point by a present choice point
register; and

an address of a preceding choice point which 1s
immediately preceding the present choice point;

(c) resetting the flag of a certain choice point from

valid to invalid, or from invalid to valid, by using
the address of the present choice point in the stack;

(d) in tack-tracking for a certain predicate, determin-

ing whether said certain predicate contains a flag
which indicates that said certain predicate is valid
or invalid; |

(e) for a certain predicate whose flag indicates that it

is valid,
back-tracking according to the register values of
the registers in the present choice point;

(f) for a certain predicate whose flag indicates that it

is invalid,

resetting a register value of the present choice
point register from a location of the present
choice point to a location of a nearest valid

5

10

13

20

25

30

35

45

50

33

60

635

choice point superior to the choice point corre-
sponding to that predicate; and

back-tracking according to the register values of
the registers in the nearest valid choice point.

2. The method of claim 1, wherein the computer
processing operation is performed under a program
written in a logic type language, and wherein the step
(b) 1s performed in response to a presence of a particular
operator in the program, the particular operator having
two distinctive and interchangeable types, while the
step (c) is performed in response to a type of the particu-
lar operator present in the program.

3. The method of claim 1, wherein register values of
registers contained in each choice point include a regis-
ter value of a register indicating a location of an alterna-
tive predicate to be attempted in a back-tracking, and a
register value of a register indicating a location of the
preceding choice point.

4. The method of claim 1, wherein the computer
processing operation further utilizes an environment
containing permanent variables for each clause to be
executed, and wherein the stack is created such that
when the back-tracking starts, the stack is located adja-
cent to a newest environment.

3. A computer implemented method of back-tracking
In a computer processing operation, comprising the
steps of:

(a) for a predicate that is to be executed, creating a

choice point containing:
- values of arguments of this predicate at a beginning
of execution of this predicate; . |
register values of registers necessary for carrying
out back-tracking; and
a flag indicating some integer value;
(b) with respect to a certain choice point, creating a
stack containing;
an address of said certain choice point specified as
a present choice point by a present choice point
register; and |
an address of a preceding choice point which is
immediately preceding the present choice point;
(c) changing the flag of a certain choice point from
one integer value to another integer value, by using
the address of the present choice point in the stack:

(d) in back-tracking for a certain predicate, determin-

ing whether said certain predicate contains a flag

which indicates an integer n;

(e) for a certain predicate whose flag indicates an

integer n,

resetting a register value of the present choice
point register from a location of the present
choice point to a location of an n-th nearest valid
choice point superior to the choice point corre-
sponding to that predicate; and

back-tracking according to the register values of
the registers in the n-th nearest valid choice
point.

6. The method of claim 5, wherein the computer
processing operation is performed under a program
written in a logic type language, and wherein the step
(b) is performed in response to a presence of a particular
operator in the program, the particular operator having
n distinctive and interchangeable types where n is an
integer, while the step (c) is performed in response to a
type of the particular operator present in the program.

7. The method of claim 5, wherein register values of
registers contained in each choice point include a regis-
ter value of a register indicating a location of an alterna-

5,136,698
9 10

tive predicate to be attempted in a back-tracking, and a containing permanent variables for each clause to be
register value of a register indicating a location of the executed, and wherein the stack is created such that
preceding choice point. when the back-tracking starts, the stack is located adja-

8. The method of claim 5, wherein the computer cent 10 a newest environment.
processing operation further utilizes an environment 5 * = * 3 3

10

15

20

25

30

35

45

50

55

65

	Front Page
	Drawings
	Specification
	Claims

