United States Patent [
May et al.

US005130977A
(11] Patent Number: 5,130,977

[45s] Date of Patent: Jul, 14, 1992

[S4] MESSAGE ROUTING

751 Inventors: Michael D, May; Brian J. Parsons;
Peter W. Thompson; Christopher P.
H. Walker, all of Bristol, United

Kingdom
[73] Assignee: Inmos Limited, Bristol, England
[21] Appl. No.: 546,092

[22] Filed: Jun. 29, 1990
130} Foreign Application Priority Data

Jun. 30, 1989 [GB] United Kingdom ................. 8915137
[S1T Int. CL5 ettt ee e, H04J 3/24
[52] US.CL .., 370/60; 370/94.1
[58] Field of Search ....................... 370/94.1, 60, 60.1,

370/53, 58.1, 58.2, 58.3

FOREIGN PATENT DOCUMENTS
0274709 7/1988 European Pat. Off. .

OTHER PUBLICATIONS

“Deadlock-Free Message Routing in Multiprocessor
Interconnection Networks” IEEE Transactions on
Computers, vol. C-36, No. 5, May, 1987.

“A High Performance Wide-Area Packet-Switched
Network Using Optical Fibers” IEEE Pacific Rim Con-
ference on Communications, Computers and Signal Pro-
cessing, Jun. 4-5, 1987.

Primary Examiner—Douglas W. Olms
Assistant Examiner—Alpus H. Hsu
Attorney, Agent, or Firm—Edward D. Manzo

[57] ABSTRACT

A routing switch includes an input for receiving serial
packets from a source node in a computer network, a
plurality of outputs, switch circuitry for selectively

[56] References Cited Interconnecting said input to a selected one of said out-
puts and header reading circuitry for reading the header
U.S. PATENT DOCUMENTS portion of a packet received at the input prior to receiv-
4,603,416 7/1986 Servel et al. ...coccovvervrerrrnnnen. 370/60  1ng all of the packet. The switch also has a random
4,651,318 3/1987 Luderer ......eecvvrereenenn. 370/60  header generator which produces header portions gen-
4,661,947 4/1987 Leaetal. ..evereeceecnnennens 370/60 erated at random which are then read by the header
4,679,180 7/1987 Olson et al. .covvrervreriiennnnennes 370/60 reading circuitry. The header reading circuitry is cou-
4,682,283 7/1987 R.Obb ................................... 364/2% p]ed to the SWltCh Circultry to COnnect to Sald lnput one
:*gig’gﬂ g; gg; f“ﬁ‘c’ka """""""""""""""""" 57307/09/4 6{1) of said outputs in dependence on said random header.
4780.870 1071988 h‘;cgsa? S 17o/60  The random header portion is then discarded at the
4813038 3 /1989 Lee . g _____ T 2e0/60 routing switch 1dentified thereby to reveal the original
4,937,817 6/1990 LiN weooeveeeomeeeomeeeeeememeeeemenenneene 370/60  header.
4947 388 8/1990 Kuwahara et al. ................ 370/94.1
4,965,788 10/1990 Newman .........cccorereerncnne 370/94.1 22 Claims, 8 Drawing Sheets
NTIALIZATION LoGIC b0
A
. I___i-_Q_B ——__LoAl — - m == q
A00RESS| wieavac| | AND l
SELECTOR |
o 61 s
SELEE’HEST %51 0 B L
Y DATA
7 DATA
= 3:||La = ba
= e e e S, SN
= . 78 CLacK
o .
=1 ®
2= |CROSSBAR .
— | SWITCH .
= LOAD LOAD
= I T S ey -
ADORESS | |yrepvar | | RANDOM
HEADER
ot Do) [GERERATIR L
INISCARD
21 0 hyy :” S%EEEST HEADER
Ln
ATA
DATA
- I\~ 6n




U.S. Patent July 14, 1992 Sheet 1 of 8 5,130,977

=

F1G.1
.

262 ISEARD -La
12a|p 13- . sgfch[EST 20 18 s
OISV HEADER BUFFER [T
e N () JATA
. . -4—-l HEADER STRIPPER -— T
> 1La I U U N
= . 28 CLOCK
aw . |
= .
= |CROSSBAR .
= | SWITCH .
= LOAD LOAD
< =" ¢  — ~— "3~ ——=———= .
ADORESS INTERVAL RANOOM |
HEADER |
SELECTOR|  |GENERATOR L,-Ln
32 ]U SELEET ' |
=~ HEADER BUFFER -~ '

DATA
-6n

] e T
HEAOER STRIPPER 0



U.S. Patent July 14, 1992 Sheet 2 of 8 5,130,977

F1G.2

¢ QATAOUT n
REQUEST.IN INPUT BUFFER - CODES
34

FCT.SEEN] ;1 [SEND.FCT 18

LB.--:
REQUEST OUT
DATA IN OUTPUT BUFFER | CODES OUT
L0 b
CLOCK .
!
10 INITIALIZATION
L0GIC FIG.3
10 INTERVAL
SELECTOR LOAC
20 ‘ 61 | FLAG |-62
\ BISCARD REQUEST
DATA SELECT FLAG T ) %E[%HEST
WANTED CONTROL LOGIC .
N 3L

SET.m]
RESET
5
FULL
EMPTY
GOT.TOKEN.f
SET sl

GOT.EOP
GOT.TOKEN.b

FIFO BUFFER MUX?
g out} T 5
12a 60 "
- - -s TCH |

- TA IN
TOKEN BUFFER L ABB

50



U.S. Patent July 14, 1992 Sheet 3 of 8 5,130,977

FIG.4
' 70N- 16-8IT REGISTER 6
22 T REGSTER BASE ANO UMIT

_16-BIT_REGISTER
5-BIT REGISTER BASE D S
' bbn-]
72

ADORESS
GATE
26

T5-BIT REGISTER 1 66b
- BASE AND LIMIT bbb

|
 16-BIT REGISTER

Ba
BASE ANO LIMIT
5-BIT REGISTER EUMPARATUR A6 a
J0A -

- JER0
76
73 16 BIT REGISTER
GATE — COMPARATOR
DISCARD ISELECT 7, HEAODER

- 61 %



U.S. Patent July 14, 1992 Sheet 4 of 8 5,130,977
FlG 5 16-8IT RAMOOM 80
NUMBER GENERATOR '
ZL\
16-8IT REGISTER REMAINDER .
LOAD
FLAG TOKENIZER
F0= - 86
REQUEST HEADER
25 27
FlG 6 LOAD] ~ |LOAD
FLAG FLAG "
79~ FLAG s FLAG. | / .
FINISHED ol
7— SEND CONTROL LOGIC DATA WANTEgB
REQUEST DATA
][t].ATA IN TOKEN BUFFER 0ATA OUT
) .

L0



U.S. Patent

QUT.
F'G8 1La 16b_ 1he

INPUTS

122

F1G.7

IN.]

IN.Z
12b

IN.3

M2c

IN.&

 July 14, 1992 Sheet 5 of 8

IN

0UT2~ QUTPUTS  OUT3

1d ~qu7 ¢
HErEE

HE
..-m.!
1 BN
— NESENE

86(2 2} -
1. 1Y
i .‘-i-
llll 1

~12d

IN.5
12e

]

5,130,977



U.S. Patent July 14, 1992 ~ Sheet 6 of 8 5,130,977

‘ 10 OUTPUT
=i =
== =
=Y=
— DATAUN({LJ) DATAIN(T J+)
=  REQ.IN(L)) 881,) REQ.IN(1,J+1)
E; 26~ |
= AOOR R
=it
=S = 2
S| =
DATA.IN{LJ) — DATAIN(T,J +1) L

941
REQ.IN(1,)) REQ.INILJ+1)

SWITCH
T |.ARB
90 o REQ |
92
R

== COMPARATOR
== 26

AOCR



U.S. Patent

FIG.1

R

- RS2 RS3
10 ) 2 9) (3,4 ke
.01 02 2,3)
= % %1
10 T 12
TRANSPUTER

July 14, 1992

req

961

L.ARB

Sheet 7 of 8

req

I+2 ARB

TRANSPUTER

5,130,977

94142

R




U.S. Patent July 14, 1992 Sheet 8 of 8 5,130,977

TERMINAL | " TERMINAL
— LINK — — LNK
@iﬁ—-——ﬂ RS RS
TERMINAL TERMINAL
LINK | LINK

O e HE
O e O
TERMINAL |

MINA
- LINK hita ,
O Lo HE
- | TERMINAL | T TERMINAL |
— LINK T LINK

ONO



5,130,977

1
MESSAGE ROUTING

FIELD OF THE INVENTION

This invention relates to message routing, and partic-
ularly to a method of routing messages in a computer

network, and to a computer network having a routing
switch.

BACKGROUND OF THE INVENTION

This 1s a co-pending application to application Ser.
No. 07/546,402 filed Jun. 29, 1989.

It 1s frequently desired to connect processing devices
such as microcomputers in a network so that one mi-
crocomputer can communicate with others in the net-
work. In such networks it is unduly restrictive if a mi-
crocomputer can communicate only with its immediate
neighbors, 1.e. those devices hardwired to it. It is cur-
rently known for microcomputers in a network to be
capable of executing a process whose function is to
route messages through the network. That is, the pro-
cess would recelve a message and execute an instruction
the effect of which would be to pass the message to the
appropriate neighboring microcomputer where it might
be required to repeat the procedure. This is costly both
in terms of process execution time on the microcom-
puter and in terms of the work required to allocate
processes of a program to different microcomputers in a
particular network format:

Message routing devices of various kinds are known.
Some are specific to a particular network format while
others operate by providing switched channels between
processing devices connected to the routing device.

A known problem with routing messages through
networks 1s that of “hot spots’, that 1s where a few
hardwired connections become overworked due to the
data traffic thereon.

SUMMARY OF THE INVENTION

According to one aspect of the present invention
there is provided a method of routing message packets
through a succession of routing switches in a computer
network having a plurality of nodes at least some of
which have respective identifications, which method
comprises:

a) outputting a message packet serially from a source
node, said message packet having both a destination
node indicator identifying a destination node in the
network and a message portion;

b) supplying said message packet to an input of a rout-
ing switch having a plurality of outputs selectively
connectable to said input;

C) at the routing switch, generating an additional node
indicator for the message packet, said additional node
indicator identifying an intermediate node selected at
random from a plurality of nodes in the network;

d) reading said additional node indicator and selectively
connecting t one of said outputs in dependence on
said additional node indicator:

e) transmitting the message packet through said routing
switch from said input via said one of the outputs to
the intermediate node identified by said additional
node indicator; and, |

f) at said intermediate node, using the original destina-
tion node indicator to determine further routing of
the message packet.

The invention also provides in another aspect a com-
puter network having a plurality of nodes at least some

10

15

20

23

30

33

435

50

55

65

2

of which have respective identifications, said network

comprising;:

a plurality of computer devices each including a proces-
sor for executing a process, message links for input-
ting and outputting messages from and to other de-
vices in the network, and packet generating circuitry
for generating message packets with both a node
indicator indicating a destination node identification
and a message portion; and

at least one routing switch, said routing switch includ-
ing an input for receiving message packets from a
source node, a plurality of outputs, switch circuitry
for selectively interconnecting said input to a selected
one of said outputs, a generating circuit coupled to
said input and operable to generate an additional node
indicator for the message packet, which node indica-
tor identifies an intermediate node selected at random
from a plurality of nodes in the network and reading
circuitry for reading the additional node indicator
and being coupled to said switch circuitry to connect.
to satd input one of said outputs in dependence on
said randomly generated node 1ndicator.

The 1nvention provides in a further aspect a routing
switch for routing messages between computer devices
in a network having a plurality of nodes at least some of
which have respective identifications, each computer
device including packet generating circuitry for gener-
ating message packets with both a node indicator indi-
cating a destination node identification and a message
portion, said routing switch including an input for re-
celving message packets from a source node, a plurality
of outputs, switch circuitry for selectively interconnect-
ing said input to a selected one of said outputs, a gener-
ating circuit coupled to said input and operable to gen-
erate an additional node indicator for the message
packet, which node indicator identifies an intermediate
node selected at random from a plurality of nodes in the
network and reading circuitry for reading the additional
node indicator and being coupled to said switch cir-
cuitry to connect to said input one of said outputs In
dependence on said randomly generated node indicator.

It can been shown in theory that the random direc-
tion of messages through a network relieves otherwise
overworked hardwired connections between devices.

The aspects of the invention are particularly, but not
exclusively, applicable to networks of intercommuni-
cating microcomputers with other devices. It 1s particu-
larly applicable to the communication between devices
which are coupled by pairs of unidirectional communi-
cation lines along which bit packets of one or more
formats are transmitted serially such that one particular
bit packet (referred to hereinafter as the flow control
token) is transmitted to control the quantity of other bit
packets transmitted along the other communications
line. It 1s particularly, but not exclusively, applicable to
the communication between devices which transmit
sequences of bytes of data as sequences of bit packets
followed by a particular bit packet which is an end of
sequence marker. It is particularly applicable to the
communication between more than two devices which

transmit sequences of bytes of data as sequences of bit

packets in which the first one or several bytes of each
sequence is the header portion. Such communication
systems are described in our copending patent applica-
tion No. 07/546,589 (Page White & Farrer Ref: 64199),
the contents of which are herein incorporated by refer-
ence.



3

Preferably each output is selectable for a range of
destination node 1dentifications. This is termed herein
“interval labelling”. It enables the header reading cir-
cuitry to adopt a very simple form, for example to in-
clude a small look up table having a number of registers
equal to the number of switch outputs, which can oper-
ate quickly. All that is required is to determine the range
within which the destination node identified by the
header Portion falls. Since the header reading circuitry
can be small, 1t 1s possible to duplicate 1t several times on
chip so that for a routing switch with several inputs
there may be header reading circuitry associated with
each input or with each group of a small number of
inputs. This removes a bottleneck which would other-
wise reduce the efficiency of the routing device in the
case that packets arrive on several inputs simulta-
neously.

Although “interval labelling” schemes exist in the-
ory, problems arise in that interval labelling schemes do
not permit arbitrary message routes through a network
nor do they allow a message to be transmitted effi-
ciently through a series of connected networks: the
route 1s predetermined by the node indicator and the
interval selection algorithm used in the reading cir-
cuitry, which is specific to each network.

These problems are solved 1n accordance with a pre-
ferred embodiment of the present invention by provid-
ing in the routing switch deletion circuitry which can
be set to delete the node indicator of the packet just
before 1t 1s transmitted. In this way, if a message packet
with two node indicators is dispatched through a com-
puter network having a succession of routing switches,
the first node indicator will be *“used up” in the first
routing switch of which the deletion circuitry is set to
delete the node indicator and the second will be used at
the succeeding routing switch to which it has been sent.
This enables connections of networks of routing
switches and processing devices to be made to each
other thereby giving considerable flexibility to network
formats. It also means that, as a node indicator is only
required to direct the message through one routing

5,130,977

3

10

15

20

25

30

35

switch, it need only contain sufficient information to -

identify the output of that routing switch and can hence
be short. Not only does this enable the interval selection
algorithm to operate quickly to decode the indicator, it
also means that the transmission time for the node indi-
cator i1s minimized.

Preferably the switch circuitry of the routing switch
has a arbitration circuitry for controlling the use of each
output when packets arriving simultaneously at a plu-
rality of inputs require a common output.

The routing switch is particularly useful for routing
messages between a first computer device at the source
node and a second computer device at the destination
node 1n which each packet output by the source node 1s
acknowledged by the destination node when that
packet 1s received thereby. To this end the packet gen-
erating circuitry of the computer devices is capable of
generating an acknowledgement packet on receipt of a
data packet. In this regard reference i1s made to our
copending application No. 07/546,589 (Page White &
Farrer Ref: 64199), the contents of which are hereby
incorporated by reference, which describes computer
devices for forming computer networks to which this
invention is particularly applicable. The data packets
and acknowledgement packets form the basis of syn-
chromzed process to process communication between

45

50

35

60

635

4

processes executed by processor to remote computer
devices.

By synchronized process to process communication
is meant that the communicating processes are at corre-
sponding program stages when message transmission 13
effected. A message could comprise a plurality of the
aforementioned data packets.

Other problems which have arisen in the past with
routing schemes are the problem of deadlock in com-
puter networks and the problem of ensuring that a rout-
ing scheme is valid, i.e. that all messages are routed to
their destination nodes and do not circulate endlessly.
The present inventors have devised an interval labelling
algorithm which is discussed in more detail in the spe-
cific description which follows and which overcomes
these problems.

According to another aspect of the invention there 1s
provided a method of encoding data for transmission 1n
bit packets in which method each packet contains an
equal number of ones and zeros, said packets being of a
predetermined bit length and forming a finite set of the
permutations of equal numbers of ones and zeros,
wherein a first subset of said finite set 1s selected for use
as data packets and a second, distinct subset of said finite
set is selected for use as control packets for controlling
the transmission of said data packets.

The invention also provides in a preferred embodi-
ment a method of avoiding deadlock in message routing
which method comprises partitioning the outputs of
each device into two subsets, so that message packets
with headers which have been randomly generated are
always output on outputs belonging to the first set, and
message packets from which the randomly generated
headers have been deleted are always output on outputs
belonging to the second set.

The invention also provides a message packet coding
scheme which method comprises forming bit packets
which are six bits long, each packet containing three
ones and three zeros, sixteen combinations of which are
taken to represent different values of four bits of data,
one combination 1s used to represent the end of message
packets and one combination is used to control the flow
of data codes and end of packet codes in the opposite
direction.

For a better understanding of the present invention
and to show how the same may be carried into effect,
reference will now be made, by way of example, to the
accompanying drawings:

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 15 a block diagram of a routing switch:;

FIG. 2 1s a block diagram of a link module of the
routing switch;

FIG. 31s a block diagram of the header portion buffer
of the routing switch;

FIG. 4 is a block diagram of the header reading cir-
cultry of the routing switch;

FIG. 5§ 1s a block diagram of the random header gen-
erator;

FIG. 6 1s a block diagram of the header deletion
CIrcuitry;

FIG. 7 represents part of the switching circuitry of
the routing switch; |

FIG. 8 shows the flow of data through part of the
switching circuitry;

FIG. 9 shows the external connections to one of the
switch elements of the switch circuitry;



5,130,977

S

FIG. 10 1s a block diagram of the structure of a
switch element;

FIG. 11 1s a diagram illustrating operation of the
arbitration circuitry of the switch circuitry;

FIG. 12 1s an example of a computer network In
deadlock;

FIG. 13 1s an example of a grid computer network;

FIG. 14 1s another example of a computer network
illustrating interval selection;

DESCRIPTION OF THE PREFERRED
EMBODIMENT

F1G. 1 shows the basic constructional features of a
routing switch 1 in accordance with a preferred em-
bodiment of the invention. In FIG. 1, heavy arrows
designate data paths while lighter arrows indicate in-
struction paths. The routing switch includes switch
circuitry in the form of a crossbar switch 10 in which
any one of a plurality of message inputs 12¢... 12n can
be connected to any one of a plurality of message out-
puts 14g. .. 14n. In the preferred embodiment there are
32 inputs and 32 outputs, pawred to form 32 message
links. The crossbar switch has output link arbitration
circuitry 32 which prevents more than one input being
connected to each output at any one time. For the sake

10

I35

20

25

of clarity only two links are shown, designated La, Ln,

indicated by a broken line surrounding the components
of the link. The following description relates to link La,
but all the other links are identical subject to the possi-
ble sharing of some of their components as discussed
later.

The link La includes a communications device re-
ferred to herein as a link module 18 which serves to
connect the routing switch to another similar routing
switch or to any other device and arranged for receiv-
ing and sending message packets to and from the rout-
ing switch. This connection 1s achieved by a bidirec-
tional pair of unidirectional channels 4, 6a. Each mes-
sage packet i1s 1n a serial data format and includes a
header identifying the destination node of the packet. A
destination or source node in a computer network is

generally but not always a computer device capable of

executing processes.

Serial Data Format

A particularly suitable serial data format for the link
modules 1s clock-with-data encoding. By sending three
zero bits and three one bits in each six-bit period, DC-
balance is preserved, and the clock signal can be ex-
tracted using a phase-locked loop. This technique is
called 3-out-of-6 coding. There are 20 distinct 3-out-of-
6 codes. In order to transmit bytes of data efficiently, 16
of these codes are assigned to represent the different
possible values of a nibble (4 bits). Thus a byte can be
sent in two codes. Where transmission must be continu-

30

335

40

45

30

33

ous (for example in a phase-locked loop system), it is

necessary to have a single null code which is transmait-
ted when no other code can be transmitted.

If a message packet is sent directly from a source
device to a destination device it is not necessary for the
length of the packet to be represented within the packet;
it 1s only necessary to ensure that the source device and
destination device agree on the length. However, where
packets pass through routing switches, it must be possi-

ble for these routing switches to determine the length of 65

the packet passing through so that the (temporarily
connected) route through the switch circuitry 10 can be

disconnected as the end of the packet is output. Unless

6

every packet 1s the same length, this requires that the
protocol provides an indication of the packet length,
either by a termination marker or an initial length count.
The introduction of an initial length count increases the
packet delay through the routing switch and also re-
quires logic to count through the packet. A better tech-
nique 1s therefore to reserve a control token as the end-
of-packet marker.

The complete protocol for a 3-out-of-6 coding system
is therefore as shown in the following table. Exactly
which bit-patterns correspond to which tokens is en-
tirely arbitrary, and so is not shown.

16 data values
1 flow-control token (FCT)
] end-of-packet token (EQOP)
1 null token (NULL)
I

unassigned

It will be appreciated that the 3-out-of-6 coding
scheme 1s only one of many that could be used, pro-
vided that the requirements above for an end-of-packet
and a “flow-control token” (discussed later) are met. In
particular 1t will be appreciated that there is no neces-
sity for the control codes to have the same format or
length as encoded data values, nor for data to be trans-
mitted as a series of four-bit values, provided that a
stream of bytes can be transmitted efticiently.

The link module 1s connected to a header buffer 20 by
an input data path 36 and an output instruction path 34.
The link module is also connected to a header stripper
28 by an output data path 40 and an input instruction
path 38. The header buffer 20 can communicate with
header reading circuitry in the form of an interval selec-
tor 22 via Discard and Select paths 21, 61, and is perma-
nently connected to the interval selector 22 via a
Header connection 23. The interval selector 22 reads
the header portion of an incoming packet, determines
therefrom the output of the switch circuit 10 to which
the message should be directed and sets the switch cir-
cuitry 10 accordingly. To this end, an instruction Ad-
dress path 26 permits the interval selector 22 to commu-
nicate with the switch circuitry 10. The switch circuitry
can transmit instructions to the header buffer via path
19. The header buffer 20 can also communicate with a
random header generator 24 via Request and Header
paths 25, 27 for a purpose which will be described here-
inafter. A message packet is output from the switch via
the header stripper 28, the purpose of which will also be
described heremnafter. The header stripper can transmit
instructions to and from the switch circuitry 10 via
paths 29, 31, 7. Reference numeral 30 designates initial-
1zation circuitry used to set up the routing switch for
operation. The operation of each component of the
routing switch will now be described.

It will be appreciated that the necessity to transmit a
packet header before each block of data reduces the
effective time avatlable for the transmission of data and
hence reduces the effective data bandwidth. Thus it is
desirable to make the packet headers as short as possi-
ble. However it 1s also desirable to be able to specify any
one of a large number of terminal links of a network in
the case that a large network is required. To this end the
present invention allows for the size of packet headers
to be varied, so that they may be sufficiently large to
allow all the terminal hnks of a large network to be
specified, or in the case of a small network may be made



5,130,977

7

smaller to reduce the diminuation of the effective data
bandwidth. In the preferred embodiment each routing
device contains a flag which determines whether packet

headers are one or two bytes in length. One byte is the
shortest size of header which does not disturb the view

of packets as consisting of a sequence of bytes, and two
bytes is sufficient to enable 65,536 terminal links to be
distinguished.

Link modules and their flow-control mechanism

Each link module 18 accepts requests for data from
the header buffer 20 along path 34, and subsequently
supplies data along path 36. It also makes requests for
data from the header stripper 28 along path 38 and
subsequently receives data along path 40. It is important
that flow control is maintained between the routing
switch and a device connected thereto by the link mod-
ule. To do this the link module 18 multiplexes flow-con-
trol information into data streams between the routing
switch and a device connected thereto. To do this with-
out consuming too much of the bandwidth, in order to
maximize the rate of transmission of data, the link mod-
ules control the flow of data items in batches rather than
individually. To this end each link module includes a
buffer large enough to hold a complete batch of data
items, and 1s capable of counting how many data items
remain both to be sent and to be received. A simple way
to regulate the flow of blocks of data i1s to reserve as a
flow-control token a particular code from the set of
codes which the link module 18 may transmit and re-
ceive. A flow-control token 1s transmitted whenever the
link moduile 18 of the routing switch has sufficient
buffer space for an entire batch of data.

The link modules regulate the flow of data items
without regard to the packets which they may consti-
tute. At any instant, the data items buffered by a link
module may form part or all of one or more consecutive
packets.

Referring now to FIG. 2, each link module com-
prises: an output buffer 42 which converts data items
and flow-control information into a serial format used
for transmission, and transmits thém at a frequency
determined by a clock signal ¢; and an input buffer 44,
which decodes the serial format into data items, which
it stores, and flow-control information, which it trans-
mits to the output buffer 42.

The unit of flow control 1s a flow control batch. Each
batch of data consists of a plurality of codes, where each
code represents either four bits of data or is an end-of-
packet code. For example, the flow control batch could
consist of sixteen codes.

Each link module connected to a separate device
which has its own link module or similar communicat-
ing device maintains a count of the number of data items
that 1t may send to the other link module without re-
ceiving any further flow-control information. This
count 1s called the credit. Each link of a connected pair
of link modules maintains a count of the number of data
itemns that it may be sent by the other link module with-
out sending any further flow-control information. This
count is called the debit.

Each link of a connected pair of link modules indi-
cates that 1t 1s prepared to receive another batch of data
items by sending a flow-control token. When it does so
it increases its debit by the number of data items in a
batch. When the other link of the pair receives the
flow-control token it increases its credit by the number
of data items in a batch.

10

15

20

25

30

35

4()

45

50

55

65

8

The flow-control mechanism of the link modules will
now be explained with reference to FIG. 2, and assum-
ing a serial data format similar to that described above.

It will be appreciated, however, that the flow-control
mechanism would work in essentially the same way if a

different data format were used, or indeed if data items
were sent using parallel signals rather than in a serial
format.

Whenever the input buffer 44 receives on channel 4
and decodes a flow-control token it signals the output
buffer on the path 41 called fct.seen. Whenever the
output buffer receives a signal on the path 41 fct.seen, it
increments its count of the number of codes still to be
transmitted (its credit), by the size of the flow-control
batch.

The input buffer 44 maintains a count of the number
of codes to be received before the credit of the con-

‘nected link module of the separate device is exhausted.

This count should be the same as the corresponding
credit in the output buffer of the connected link module
of the separate device connected to the routing switch,
apart from discrepancies caused by codes in transit
between the two link modules.

The input buffer 44 contains a first-in, first-out buffer
(FIFO) which can buffer at least as many codes as are
contained in a flow-control batch. Codes other than null
codes and flow-controi tokens are stored in the buffer,
and a count is maintained of the number of codes in the
buffer. When a signal is received on the path 34 called
request.in the input buffer 44 removes the first element
from the FIFO and sends it on the path 36 called data.-
out, and decrements the count of the number of codes
stored in the FIFO, unless there are no codes in the
FIFQ, in which case it sends the first code it receives,
other than null codes and flow-control tokens, directly
on the path data.out.

Whenever the sum of the number of codes in the
input buffer 44 and the number of codes to be received
before the current flow-control batch 1s exhausted (the
debit) is less than the difference between the size of the
buffer and the size of a flow-control batch, the input
buffer 44 signals the output buffer 42 on the path 43
called fct.request. The output buffer then sends a flow-
control token at the first opportunity.

It will be appreciated that if the size of the input
buffer FIFO is exactly equal to the size of the flow-con-
trol batch, the input buffer will signal the output buffer
to send a flow-control token only when the input buffer
FIFO i1s completely empty and the current flow-control
batch 1s completely exhausted. For this reason it 1s ad-
vantageous to make the input buffer FIFO somewhat
larger in capacity than the size of the flow-control
batch, in order that the flow of data does not stall.

There now follow descriptions of the input and out-
put buffers in the OCCAM 2 language. In these descrip-
tions codes are represented by bytes, and signals are
represented by channels carrying boolean values only.
The OCCAM language is described in The OCCAM 2
Reference Manual, which is hereby incorporated by
reference.

In OCCAM 2, the link module 18 1s represented by
the parallel composition of the input and output buffers
44, 42. The paths leaving and entering the module are
assumed to be defined in a wider scope. Then the link
module is represented by: CHAN OF BOOL f{ct.seen,
send.fct, fct.sent:



5,130,977

9

CHAN OF BOOL fct.seen, send.fct, fct.sent:
PAR
OutputBuffer (clock.in, codes.out, data.in, request.out,
fct.seen, send.fct, fct.sent)
InputBuffer (codes.in, data.out, request.in, fct.seen,
send.fct, fct.sent)

The input buffer 1s described by the piece of OCCAM

given in Annex 1 and 1A. The FIFO is here imple- 10

mented as a circular buffer with a capacity of input.buf-

fer.size, with two pointers into it (‘first’ and ‘last’).
This would correspond to the use of a small piece of

random access memory in the input buffer itself. It will

be appreciated that other techniques could be used to 15

implement the FIFO without affecting the flow-control
mechanism of the link modules. The input buffer size
must be at least as great as the flow control batch size.
If the flow-control batch size were 16, the input buffer

size would have to be at least 16, and for smooth flow of 20

data 1t might be somewhat larger, for example 20.

The output buffer also contains a short FIFO to
smooth the flow of data. There is no restriction on the
size of this FIFO imposed by the flow-control mecha-
nism. The output buffer requests data to send by signal-
ling on the path 38 request.out whenever it has space to
buffer a code. At any time thereafter it may receive a
code to be transmitted on the path 40 data.in.

The output buffer maintains a count of the number of

codes still to be transmitted before the current flow- 30

control batch is exhausted. Every time it transmits a
code other than a null code or a flow-control token it
decreases this count by one.

‘The output buffer is represented by the piece of
OCCAM given in Annex 2. It contains a FIFO with
capacity output.buffer.size, which might be for example
3. This piece of OCCAM (Annex 2) illustrates an alter-
native implementation of the FIFO, as a linear array
whose contents are successively moved down when-
ever a code 1s removed from the bottom. It will be
appreciated that a similar implementation could have
veen used for the input buffer, or that the circular buffer

implementation used in the input buffer could have been
used in the output buffer.

23

35

It will be appreciated that an equivalent degree of 45

flow-control could be obtained in an alternative system
in which the output buffer initializes its ‘credit’ to the
size of a flow-control batch and the input buffer initial-
1zes 1ts ‘tokens outstanding’ to the same value, instead of

- both being initialized to zero as shown here. In that case 50

a flow control token would only be sent after the first
flow-control batch had been transmitted, instead of
before, as in the description above.

The Header Buffer

The structure of the header buffer 20 of each link La
. . . Ln is illustrated in FIG. 3. The header buffer is
controlled by control logic designated generally by
block 51. There 1s a token buffer 50, which can hold one
token, which can either be a nibble of data or an end-of-
packet token. This token buffer 50 signais when it has
received a token along the path 36 which is an end-of-
packet token on the wire marked Got.EOP, and signals
on the wire marked Got.token.b whenever it receives
any other token. It transmits its contents to a switch 52
when it receives a signal from the control logic 51 on
Send.t. The switch is controlled by the control logic 51
so that when a signal Set.sl is high the switch 52 trans-

33

63

10

mits its input to a multiplexor 54. When the signal Set.s1
1s low the switch 52 transmits its input to an output
multiplexor 56. The multiplexors 54, 56 are controlled
by signals Set.m2 and Set.m1 from the control logic 51.
The header buffer 20 also includes a first-in-first-out
buffer (FIFO) 58 with sufficient capacity for a 2-byte
header (4 tokens). It is permanently connected to the
interval selector 22 by the Header connection 23 which
1s not shown 1n FIG. 3. When the signal set.m1 is high,
the multiplexor 56 transmits the output of the FIFO to
the channel DataOut 12a, When the signal Set.ml 1s
low, the output multiplexor 56 transmits the output of
the switch 52 to the path 124 DataOut. When the signal
Set.m2 1s high, the multiplexor 54 transmits the output
of the random header generator 24 (F1G. 1) received on
path 27 to the FIFO. When the signal Set.m2 1s low the
multiplexor 54 transmits the output of the switch 32 to
the FIFO. Whenever the FIFO 58 receives a token, it
signals on the path Got.token.f, unless it is filled by the -
token, in- which case it signals on the path Full. It out-
puts a token whenever it receives a signal on the path
Send.h. If it becomes empty it signals on the path
Empty. If it receives an input on the path Reset it dis-
cards all its contents, but does not signal on the path
Empty. The effective size of the FIFO 1s controlled by
an associated flag 60 which is a packet header length
flag If this flag is set, packet headers are 2 bytes long
and the FIFO signals on the path Full only when it
contains four tokens. If this flag is not set, packet head-
ers are | byte long and the FIFO signals on the path
Full only when it contains two tokens. In this case, the
upper two tokens.of the FIFO are forced to zero. The
packet header length flags 60 are set identically in all
the links L.a to Ln, and it will be appreciated that they
could be implemented with a single latch whose output
1s fanned out to all the links. There is also a flag 62
associated with the control logic 51 which is the ran-
domization flag for the link. If this flag is set, a random
header is obtained from the random header generator 24
for each packet arriving through the link. To enable this
flag to be set differently for each link, there is a separate
latch 1n each link.

The behaviour of the header buffer 20 depends on the
setting of this randomization flag of the link La:
if the flag 62 is set, the header buffer 20 signals the
- random header generator 24, and stores the random

header which 1s returned. As soon as any data arrives

from the link module 18, it signals on the path 61

called Select the connected interval selector 22;
if the flag 62 is not set, the header buffer is filled with
the first data to arrive, and when it contains a header

(1 or 2 bytes, depending on the setting of the packet

header length) it signals the connected interval selec-

tor 22.

If the selector 22 signals to the buffer 20 that the
header is to be discarded, this is done by resetting the
FIFO 58, and the header buffer is refilled from the data
stream, and when i1t contains a header (1 or 2 bytes,
depending on the setting of the packet header length) it
signals the connected interval selector. The header
buffer transmits its contents in response to requests
received from the crossbar switch 10. If the randomiza-
tion flag of the link is set, the header buffer refills itself
from the random header generator, otherwise it refills
itself from the data stream, and repeats the cycle after
passing on a flow-control token.

The state machine description of the control logic 51
is given in Table I.



5,130,977

11

The Interval Selector

The operation of the interval selector 22 will now be
explained with reference to FIG. 4. The interval selec-
tor performs the routing decision for each packet by
means of an interval selection algonthm. The contents
of the FIFO 58 of the header buffer 20 are presented
continuously to a ‘ladder’ of 33 base and limit compara-
tors 664 . . . 66n of which four are shown on the right of
the figure. There are 33 comparators because there are
32 links in the described embodiment. Each comparator
is connected to a pair of registers 68q. .. 68n, except the
lowest comparator 66q, whose base 1s fixed at zero.
Each register 68:-1 is connected to the base of one com-
parator 68/ and the limit of another 68i-1, except for the
top register 687 which is connected only to the limit of
the topmost comparator 66n. In normal use, the regis-
ters are programmed with a non-decreasing set of 16-bit
values, such that the top of the ‘ladder’ is not zero. The
output of each comparator is connected to a respective
5-bit register 70a . . . 70n whose contents are sent to an
address gate 72 if the packet header 1s greater than or
equal to the base and less than the limit which are con-
nected to the associated comparator. At the bottom of
FIG. 4 1s shown a single-value ‘portal’ comparator 74,
whose outputs are gated by a Select gate 73 receiving
the ‘Select’ signal from the header buffer 20. When the
Select signal is sent by the header buffer the contents of
the header buffer FIFO 58 is the packet header, which
1s connected by header path 23 to the input of the com-
parator 74. If the packet header is not equal to the con-
tents of a 16-bit register 76 connected to the comparator
74, a ‘N0’ signal 1s sent to the Select gate 73, which then
allows the address which s produced from the ‘ladder’
of base and limit comparators 60a. . . 66n to be sent out
to the crossbar switch 10 along path 26. If the packet
header 1s equal to the contents of the 16-bit register 76
connected to the comparator 74, a ‘Yes’ signal 15 sent to
the header buffer 20 telling it to discard that header via
path 21. In this case the output of the ladder of compar-
ators is not sent to the crossbar switch 10.

The Random Header Generator

The operation of the random header generator will
now be described with reference to FIG. 5. A random
number generator 80 at the top of FIG. § generates
16-bit pseudo-random numbers using a shift-register
with feedback or some other method. When it receives
a signal from a remainder unit 82 connected thereto it
produces such a number. The remainder unit 82 com-
putes the remainder of this number by the value held in
an assoclated 16-bit register 83. When the remainder
unit 82 receives a signal from a tokenizer unit 86 it sends
on this 16-bit computed remainder, and requests another
pseudo-random number from the random number gen-
erator 80. The tokenizer stores the 16-bit remainder
until it receives a request from the header buffer 20
along path 28. It then transmits the least significant four
bits of the remainder, and shifts down the remaining bits
by four places. It repeats this action until it has sent the
number of nibbles corresponding to the length of the
header (which is 2 or 4 depending on the setting of the
assoclated flag 60 (which is shown in FIG. 3) and then
restarts its cycle. It will be appreciated that the range of
random headers generated could be made completely
general by incorporating an additional 16-bit register
and an adder to add its contents to the output of the

10

15

20

25

30

35

40

45

50

55

65

12

remainder unit before passing the result to the toke-
nizer.

The Header Stripper

The operation of the header stripper will now be
described with reference to FIG. 6. It can be seen that
there is a single token buffer 85, which is in fact identi-
cal to the token buffer 50 in the header buffer 20 (FI1G.

3). The token buffer 85 signals to control logic 84 when

it has received a token along the path 14q Dataln which
is an end-of-packet token on the wire marked Got.EOP,
and signals to control logic 84 on the wire marked Got.-
token.b whenever it receives any other token. It trans-
mits its contents on DataOut path 40 when it receives
from the control logic 84 a signal on Send.t. The control
logic 84 is a state machine with the state transitions
shown in Table II.

The Crossbar Switch

The crossbar switch 10 is a 32 by 32 array of switch
elements 88. FIG. 7 shows a portion of the crossbar
switch 10 showing 20 switch elements with thick ar-
rows indicating the flow of data. Requests for data flow.
in the opposite direction and are not shown in FIG. 7.
Initially all the switch elements are “off”’, 1.e. In state A
in FIG. 7. When input i is to be connected to output ]
then switch element 88 (1, j) 1s switched “on” and the
data flows from the input to the selected output as
shown in state B in FIG. 7.

F1G. 8 shows the flow of data in a 4-by-5 section of
the crossbar switch 10 when two of the switch elements

- Y and Z are set “on” and all the others are “off”’. Notice

that in this configuration the input 1254 in.2 is connected
to the output 14¢ out.3 and that input 12¢ in.3 1s con-
nected to output 146 out.2. Note that the switch element
U 88 (2,2), which is in the ‘off’ state, is passing data for
both of these connections. Note also that the ‘on’ state
of switches Y 88 (3,2) and Z 88 (2,3) has disconnected
switch V 88 (3,3), but this is of no consequence, since
the input 1n.3 is connected to out.2 via switch Y, so that
switch V is not needed to pass data from that input; and
that output out.3 has been connected to input in.2. The
arbitration circuitry 32 means that switch V is not re-
quired to pass data to output out.3 either.

The external connections of each switch element 88
(1,j) are shown in FIG. 9. The line ADDR, which is the
address path 26 from the interval selector 22, is con-
nected to all the switch elements in each row, 1.e. those
with the same i1 value. These connections are discussed
more fully in the following. Each switch element 88 (i,))
of the crossbar switch is identical and the block struc-
ture of one of these elements is shown in FIG. 10. There
are three main components: a switch 90, a comparator
92 and an arbiter server (ARB) 94 which are described
in turn below. |

Note that the communications between the compo-
nents of the switch element and between the arbiter
servers of each switch element are all synchronised, i.e.
there is an implicit handshake 1n each one. These arbiter
servers form the arbitration circuitry indicated dia-
grammatically in FIG. 1 by reference numeral 32.

The switch 90 is set via an internal path called set. In
its “off” state (A in FIG. 7) data and request signals pass
undiverted through the switch 99, i.e. |

data.in(i,j) is connected to data.in(i,j+1)
req.in(i,j) is connected to reg.in(i,j+ 1)



5,130,977

13

-continued

data.out(1,]) 1s connected to data.out(i+1,j)
req.out(i,j) is connected to req.out(i+1,j)

On receiving a signal on ‘set’ the switch is set “on” (B
in FI1G. 7) so that the data from input 1 is diverted to

output j and the requests from output j are diverted to
input 1, i.e.:

data.in(},}) is connected to data.out(i+1,j)
req.in(i,j} is connected to reg.out{i-+1,J).

The switch is reset by a signal on set.

A state machine description of the behaviour is given
in Table II].

The comparator 92 decides when the switch 90 is to
set and reset. In order to set the switch 90 an address
will be received along path 26 from the interval selector
22 (FIG. 1) and if this corresponds to the output index
j of the switch element the comparator 92 signals along
req to the arbiter server 94. The address output ADDR
of the interval selector 22 is connected to all the switch
elements of the input row i, but since the output index ]
1s different for each switch element of the row only one
of the comparators will respond. When the signal on
channel req is accepted by the arbiter server 94 this
indicates that input i has been selected to use output j
(1.e. input 1 has “privilege”) and the comparator then
signals along the internal path set to set the switch 90.
Requests for data are then transmitted from the output
to the input and data codes from the input to the output
via the switch 90 until an end-of-packet token is re-
ceived by the header stripper 28 which communicates
~along path ‘finished’ 29 that the packet has been passed.
The switch 1s reset and the privilege relinquished by the
comparator signalling along set and req respectively.

The state machine description of the comparator is
given in Table IV.

For a given output j the arbiter servers 94 of the
elements 88 (i,j) form a ring arbiter serving that output.
This 1s to ensure that at any time only one input can be
connected to that output. The arbiter servers 94/ are
connected in a ring via channels L and R as shown in
FIG. 11. At any time one of the servers 94 holds the
“privilege” i.e. it can grant the use of the output to its
switch 90. A comparator requests the use of the output
along path req and it is then said to be candidate. If the
request 1s accepted then the switch 90 uses the output
and communicates again along the same path when it
has finished. A non-priviliged server 94 transmits a
request from its comparator or from its left hand chan-
nel to the ring along R. When the request reaches the
privileged arbiter server, it is reflected back to the left
until 1t reaches the arbiter server that issued the request
which then becomes privileged. A server that is candi-
date will ignore a clockwise circulating request until it
has served its comparator. The implementation of this
strategy of passing requests clockwise and reflecting the
privilege counterclockwise means that no messages
need actually be reflected: the compietion of a commu-
nication along the req channel is interpreted as granting
the use of the output to that switch..

The state machine description of the arbiter server is
given in Table V.

. Consider the following example. Suppose that in
FIG. 11 the arbiter server 94i+2 has the privilege, the
~ arbiter server 94i+1 neither has privilege nor is candi-

5

10

15

20

25

30

33

45

50

33

65

14

date and the arbiter server 94i has just become candi-
date. Consider what happens on the L and R channels
of each server.

Arbiter server 94i: There is a pending request on req
but this arbiter server is still in the notpriv state until it
can output on R. This communication can only com-
plete 1f arbiter server 94i4-1 inputs on its L channel.

Arbiter server 9414 1: The above output on R is in
effect a pending communication on the L channel of
arbiter server 94i+ 1. In order to communicate on chan-
nel L it must first output on its channel R.

Arbiter server 941+ 2: This is using the output and
now has a pending communication on its input L. In
order to complete the communication it must first re-
ceive the second of its communications along req (i.e.
this switch element has finished using the output) to
change its state to priv. Once in this state it can com-
plete the communication along L.

This communication being completed allows the
arbiter server 941+1 to complete its communication
along R and in turn the arbiter server 94i can now com-

plete 1ts communication on req passing the privilege to
this server.

Initialization of Flags and Registers

The tollowing parameters must be supplied before
the routing switch can operate:

The packet header length (1 or 2 bytes)

The comparator settings for the interval selectors 22,
and the associated output link numbers for each range
of destination node identifications;

The portal comparator value for the interval selector
22;

For each link: the ‘randomize on input’ and ‘strip header
on output’ flags must be set;

The range of the random headers (if any of the ‘random-
ize on input’ flags are set).

These have to be inputted by the routing switch and
loaded into the appropriate latches and registers. This
could be done in a variety of ways, for example by
sending pre-defined command codes down an extra
dedicated link, which has channels to all the latches and
registers. Note that all the interval selectors and random
header generators must be programmed identically.
This 1nitialization is indicated diagrammatically in FIG.
1 by initialisation logic 30.

The device has been described with one interval
selector and one random header generator per link. It
will be appreciated that both of these units are used only
once or twice per packet input by the link, and so could
in principle be shared between several links, connected
by a bus, using an arbitration scheme to resolve multiple
simultaneous requests for either resource. For example
the arbitration method used in the crossbar switch 10
could be used to share an interval selector or random
header generator between several links.

The operation of the routing switch to achieve effi-
cient routing of messages in a computer network will
now be described. FIG. 13 shows an example of a net-
work which uses a plurality of routing switches RS to

route messages between source nodes and destination

nodes represented in FIG. 13 by circles marked N. The
routing switches are interconnected by their links L,
each link having a hard wired bidirectional pair of uni-
directional channels as represented by reference numer-
als 4, 6 in FIG. 1. The source and destination nodes N of
the network can be any type of computer device, but



5,130,977

135

the routing switch described herein 1s particularly appli-
cable for networks having microcomputers as described

in GB 111399 and in our copending British Patent Ap-
plication No. (Page White & Farrer Ref: 64199). Con-

nections to destination and source nodes N are called
terminal links in FIG. 13. In FIG. 13 each routing

switch 1s shown with four message links —in fact in the
embodiment described above there are 32.

Wormhole Routing

The routing switch of FIG. 1 dynamically switches
message packets from its inputs to its outputs according
to the values of the packet headers.

In most known packet-switching networks each in-
termediate routing switch inputs a packet, decodes the
header, and then forwards the packet to the next rout-
ing switch. This is called store-and-forward routing.
This 1s undesirable because it requires storage in each
routing switch for transmitted packets and it causes
potentially long deiays between the output of a packet
and its reception.

A more efficient approach 1s wormhole routing, in
which the routing decision 1s taken as soon as the header

10

15

20

of the packet has been inputted by the routing switch. If 25

the output channel 6a . .. 6n chosen is free, the header
is output from it, and the rest of the packet is sent di-
rectly from the input to the output without being stored
in the routing switch. This means that data of a packet
can be passing through several routing switches at the
same time, and the header of the packet may be received
by the destination node N p before the whole packet has
been transmitted by the source node Ns. Thus this
method can be thought of as a form of dynamic circuit
switching, in which the header of the packet, in passing
through the network, creates a temporary circuit (the
‘wormbhole’) through which the data flows. As the tail
of the packet is pulled through, the circuit vanishes.
This method overcomes the problems of store-and-
forward routing, but it has the disadvantage that if a
routing switch 1s unable to send a packet on immedi-

30

35

ately (because the required output channel 14 is busy) -

all the message links through which the packet i1s cur-
rently passing are occupied (in that direction) until it
can proceed. The number of message links which are
‘occupied’ by a stalled worm is the ratio of the packet
~ size to the buffer capacity of each connected pair of
links.

Note that, as far as the senders and receivers of pack-
ets are concerned, the wormhole routing 1s invisible. Its
only effect 1s to minimise the latency in the message
transmission. If one or more intermediate routing
switch were to store-and-forward the packet it would
still be delivered correctly. The routing switches of the
present invention can hence be connected in networks
containing other types of routing devices.

Referring to FIG. 1, the header of a message packet
arriving at the link La on the channel Data.in 4ag is
passed by the link module 18 to the header buffer 20.
Either that header or a header generated by the random
header generator 24 is sent to the interval selector 22
which addresses the crossbar switch 10 according to the
header. The switch circuitry 10 is hence set to connect
the input 12a of link module La to the appropriate out-
put 141, and the incoming message passes through the
routing switch. .

45

50

55

60

65 ...

16
Deadlock

An important property of a communications network
1s that 1t should not “deadlock”. In fact, deadlock can

occur in most networks unless routing switches in the
network operate in accordance with a routing algo-
rithm which is designed to prevent it. For example,
consider the square of four routing switches RS1-R54
shown in FIG. 12. The messages in transmission are
indicated by the arrows M1-M4. Suppose that every
routing switch attempts to send a message to the oppo-
site corner at the same time, and that the routing algo-
rithm routes messages in a clockwise direction. Then
each link will become ‘busy’ sending a message to the
adjacent routing switch and the network will deadlock
because no message can proceed to its destination.

It is important to understand that deadlock 1s a prop-
erty of the network topology and the routing algorithm
used, and so it can also anise even if packets can be
buffered at routing switches before they are transmit-
ted. In the above example, a single packet buffer at each
corner 1s sufficient to remove the deadlock (provided
that no new messages are initiated before the first four
have been delivered). In general, however, the number
of packet buffers needed to eliminate deadlock depends
on the network topology, the routing algorithm and the
applications program. This is clearly not a satisfactory
basis for the architecture of a general purpose routing
system. Wormbhole routing has always been considered
to exacerbate the problem of deadlock, since long mes-
sages can trail through the network occupying several
links.

Such problems can be avoided by choosing networks
for which it is possible to devise deadlock-free worm-
hole routing algorithms. In such networks, buffers need
to be employed only to smooth the flow of data through
the network and to reduce congestion; a buffer of size
much less than the length of a packet would often be
sufficient for this purpose. Most important of all, the
buffering needed is not dependent on the network size
or the communications pattern, and so the inventors
have found that it is possible to construct a single uni-
versal routing switch which can be used for networks of
arbitrary size and for communications patterns of arbi-
trary complexity. One suitable algorithm for use in the
interval selector 22 is described below under the head-
ing “Interval Routing”.

Interval Routing

Consider a network consisting of a collection of rout-
ing switches RS connected together by bidirectional
message links. Some links of the routing switches are
connected to devices extenor to the network, for exam-
ple to microcomputers such as the Transputer. Such
links are called terminal links, as shown in the example
of FIG. 13. Message packets enter and leave the net-
work from and to source and destination nodes via
terminal links.

The routing switches themselves neither create nor
destroy packets.

An interval labelling scheme issues identifications to
destination nodes by assigning a distinct label to each
terminal link. For simplicity, the labels for a network
with n terminal links can be numbers in the range [0, |,
, n—1]. At each routing switch RS in the network,
each output channel has one or more associated inter-
vals—in this example a set of consecutive labels. The
intervals associated with the output channels are non-



5,130,977

17

overlapping and every label will occur in exactly one
interval. As described above, these intervals are set in
the interval selector 22 by the base and limit compara-
tors 66 a . . . n in FIG. 4.

As a message packet arrives at a routing switch, its
header portion 1s examined by the interval selector 22 to
determine which interval contains a matching label; the
message 1s then forwarded along the output channel 14
associated with that interval.

For example, consider the simple network shown in
F1G. 14. This shows a network of four routing switches
(RS1, RS2, RS3, RS4), which has four terminal links,
each of which is connected to a transputer TO0, T1, T2,
T3. The numbers assigned to the terminal links are those
shown on the transputers. The intervals associated with
the output channels of the routing switches are shown
next to the corresponding message. Each interval is
shown as a pair of numbers [X,y). The corresponding
link will be selected if and only if the header of the
packet is greater than or equal to the first number of the
interval and less than the second number of the interval.

For example, if the interval is [1,4), packets with
headers 1, 2 or 3 will be selected, but those with headers
0, 4 and above will not.

Other links of the routing switches which are not
shown can be assumed to be associated with intervals in
which the two numbers are the same (x=y) and which
will consequently never be selected.

Now consider what happens if the transputer T0 in
FIG. 14 sends a packet with a header of 1 to its con-
nected routing switch, labelled RS1 in FIG. 14. The
routing switch RS1 compares the header with each of
its intervals, and finds that the header is contained in the
interval [1,4). Thus the outgoing link connected to rout-
ing switch RS2 will be selected. When the header of the
packet 1s input by routing switch RS2 it is compared
with all the intervals of that device. The header falls
into the interval [1,2), so the link connected to tran-
sputer 1 is selected. The packet is then routed into tran-
sputer T1.

Now consider what happens if the transputer T2
sends a packet with a header of 0 to its connected rout-
ing switch, labelled RS3 in FI1G. 14. The routing switch
compares the header with each of its intervals, and finds
that the header is contained in the interval [0,2). Thus
the outgoing link connected to routing switch RS2 will
be selected. When the header of the packet is input by
routing switch RS2 it is compared with all the intervals
of that device. The header falls into the interval {0,1), so
the link connected to routing switch RS1 is selected.
When the header of the packet is input by routing
switch RS it is compared with all the intervals of that
device. The header falls into the interval [0,1), so the

link connected to transputer TO is selected. The packet
1s then routed into transputer TO.

Thus we see that in this example links of the network |

of routing switches can be assigned intervals so that
packets can be sent from transputer T0 to transputer T1
and from transputer T2 to transputer T0. Messages can
in fact be sent between any pair of transputers in this
example.

However it is not obvious that such a labelling
scheme can always be found that will succeed in routing
all packets to their destinations. Indeed, one chosen at
random will almost certainly not do so, because it will
contain cycles, i.e. packets will circulate forever. A
labelling scheme which correctly delivers all packets is

5

10

15

20

25

30

33

45

50

33

60

65

18

called valid. There now follows an algorithm to gener-
ate a valid labelling scheme for any network.

Algorithm to Interval-label Any Network

Please note that in the following description the word
“node” 1s used to designate junction nodes in the net-
work, 1.e. routing switches. It is not restricted to the
destination and source nodes discussed above.

First cover the network with a spanning tree, which
includes all the terminal links. Remove any leaf nodes
without any terminal links, and remove any duplicate
links between nodes of the tree. All links which are not
part of the tree are given intervals with the upper and
lower limits the same, so that they can never be se-
lected. Now label the links in the spanning tree as fol-
lows:

Let N be the total number of terminal links of the
network. At all times, let i1 be the number of terminal
links labelled so far (i is initially zero). Starting from the
root node R of the spanning tree, for each node V, set
Jv to the current value of i, then successively label each
terminal link from the current node V with the interval
[1,i+ 1) (incrementing i each time). Then pick an outgo-
ing link of the tree from V and give it the interval [i,a),
where a 1s to be determined later. Proceed to the con-
nected node, and repeat this procedure until a leaf node
of the spanning tree is reached, and all its terminal links
are labelled.

Now backtrack; each time a link is traversed up the
tree, label the return link to the tree with the pair of
intervals [i, N), {O,j). (This is the reason why a 32 tree
link routing device is provided with 33 intervals.) If the
subtree just labelled contains the last leaf node in the
tree, 1=N and so we can discard the second interval.
Having backtracked to the previous node, V, replace
the undetermined a.v with i1 (note that the value of 1 is
different from when the lower bound of the interval
was assigned, since terminal links have been labelled
since then). Now pick an unlabelled branch of the tree,
give it the interval [i,a), and proceed until all subtrees
have been labelled.

This algorithm is formalized in the recursive proce-
dure given in Annex 3. The algorithm is invoked by
picking a terminal link T of the root node R, setting i to
zero, and calling LABELTREE (4, T, R, N).

As an example consider the network shown in FIG.
14. The labelling shown is generated by the above algo-
rithm if it is called with R router RS1, T the link to
transputer T0, 1 zero and N equal to four.

Proof of Validity

It can be shown that the labelling generated by the
above algorithm 1s always valid.

Consider a packet with header m that arrives at a
node V. There are two cases to consider, depending on
whether the terminal link numbered m belongs to a
subtree of V or not:

Case I: m belongs to a subtree of V.

. Each link to a subtree of V is labelled with the inter-
val {i,a), where i is the label of the first terminal link-of
the subtree, and a is one more than the label of the last
terminal iink in the subtree. Terminal links of V are a
special case of this rule.

Thus the packet with header m will be routed down
the link to the subtree which contains the terminal link
with label m, and so by induction the packet is routed
out of the correct terminal link.

Case 1I: m does not belong to a subtree of V.



5,130,977

19

From the algorithm it can be seen that all terminal
links of subtrees of any node V have labels between j
(the number of terminal links labelled when the algo-
rithm reaches V) and 1,, where 1, is the value of 1 when
the algorithm backtracks from V. By construction, the 5
link from V .to the rest of the tree 1s associated with the
intervals containing all labels outside this range. Thus 1f
the terminal link labelled m does not belong to a subtree
of V the packet will be routed up the tree.

By induction, the packet must eventually reach a
node such that the terminal link labelled m belongs to a
subtree of that node. By the first case above, the packet
1s now routed to the correct terminal node.

The above algorithm also has the important property
that a network operating in accordance therewith is free 15
of deadlock.

Proof of Deadlock Freedom

Consider the two ends of a link joining two nodes, V
and W, where V is nearer the root of the tree. At V the
link 1s labelled with the interval [i,a), where i is the label
of the first terminal link of the subtree starting with W,
and a i1s one more than the label of the last terminal link
in the subtree. At W the link is labelled with the pair of
intervals [i,N), [O,)). Since these intervals have no label 25
iIn common any packet which i1s routed along the link in
one direction can never be routed along the same link in
the opposite direction. Thus no packet 1s ever sent fur-
ther up the tree than necessary, for if it were, 1t would
have to backtrack along one or more links, which the 30
preceding argument has shown to be impossibie.

Now consider a collection of subtrees Tx, indexed by
k. Each subtree T has one root link rx connecting 1t to
the larger tree. Consider the larger subtree T formed by
connecting the root links of all the Tk to a routing node
R. A further link from T is the root link r of the whole
subtree. Any packet arriving at R along any of the rxis
routed either to one of the r; j==k) or to r. We assume,
as an inductive hypothesis, that each of the T, 1s dead-
lock-free, and so any packet routed to one of the T; will
eventually be routed out of a terminal link and con-
sumed. Any packet routed out along r will be consumed
by the environment. Any packet arriving on r will be
routed to one of the T, and similarly consumed. It re-
mains to show that a subtree with only one node is
deadlock-free; this is true provided that the terminal
links will send and receive packets at the same time. By
induction on the size of subtree, the deadlock-freedom
of the whole network follows.

It will be appreciated that the labelling produced by
this algorithm does not route packets by the shortest
possible routes unless the network is itself a tree. How-
ever 1t does produce a valid deadlock-free routing.

For certain other classes of networks (for example
binary n-cubes and m-dimensional grids with no wrap-
around) valid deadlock-free interval labellings are
known which deliver packets by shortest routes.

Redundant Labelling

It will be appreciated that the operation of the inter-
val selector allows more than a single label to be associ-
ated with each terminal link of a routing switch. A valid
labelling scheme in which each terminal link is associ-
ated with a single label can be transformed into one in
which a selected terminal link is associated with a range
of labels as follows:

If the label associated with the selected terminal link
1s k, the associated interval is [k, k+1). To extend this

10

20

35

40

45

50

55

65

20

interval to {k,k+m), modify the other intervals in the
scheme as follows:

Replace any interval [a,b) in which a=k and k<b
(that is, the interval contains k) with the interval
[a,b+m);

Replace any interval [a,b) in which a>k with the
interval [a+m, b+m);

Leave other intervals unaltered.

By repeating this process, any number of terminal
links can be given ranges of associated labels.

If an interval containing more than one label is associ-
ated with a terminal link, then it will be appreciated that
packets with a range of header values will be routed out
of that link. Thus the labelling is redundant in the sense
that only one label was required to route packets out of
that link. However if the terminal link does not delete
the headers of packets leaving the network via it then
the redundancy of the labelling may be used to encode
additional information into the packet header. This is
useful for example in the case of our co-pending Appli-
cation No. 07/546,859 (Page White & Farrer Ref:
64199) where the redundancy of the labelling can be
used to identify a particular virtual link of a microcom-
puter connected to the terminal link of the network.

By combining the selection of the virtual link with
additional information it is possible to minimise the total
length of header information included with the packet.

Universal Routing

Multiprocessor interconnection networks are very
troubled by the phenomenon of hot-spots, where the
performance of the whole network 1s limited because
traffic is funneled through a few routing switches or
message links. This can occur either as a consequence of
the applications program (in which case little can be
done) or because of the routing algorithm used; even in
the case where processors connected to terminal links
of the network communicate only in pairs, so the net-
work could 1n principle route all the required messages
without collision, some routing algorithms can deliver
performance an order of magnitude or more below the
capacity of the network.

The operation of a simple routing algorithm for net-
works discussed herein is described in the following and
consists of two phases. In the first phase each packet is
dispatched to a randomly chosen node using an appro-
priate (deadlock-free) greedy aigorithm. In the second
phase, each packet 1s forwarded to its final destination
node, again using an appropriate (deadlock-free) greedy
algonithm. A greedy algorithm is one which takes a
shortest path to its destination.

Addition and Discard of Random Headers

This is implemented using the present routing switch
by setting the randomize flag 60 (FIG. 5) on each termi-
nal link L.a . . . Ln of the routing switch which is a
terminal link of the network. Whenever a packet starts
to arnive along such a link, the random header generator
24 generates a random number and the header buffer 20
and interval selector 22 behave as if this were the packet
header. The remainder of the packet then follows the
newly supplied random header through the network
until the header reaches the intermediate (random) des-
tination. At this point, the first phase of the routing
algorithm is complete and the random header must be
removed to allow the packet to progress to its final
destination in the second phase. In order to remove the
random headers each routing switch is programmed



5,130,977

21

with its i1dentity as an intermediate destination, and
every packet that arrives at the switch has its header
checked against this value. Whenever the header of a
packet corresponds to the intermediate identity of a
routing switch, that header is discarded in response to
the Discard signal from the interval selector 22 and the
following bytes of the packet which represent the origi-
nal packet header are processed with the interval label-
ling algorithm.

In this way packets can be given random headers to
route them to a randomly chosen intermediate destina-
tton and have them deleted again at the intermediate
destination so that the second phase of the routing algo-
rithm can proceed to take the packets to their originally
chosen terminal links.

Avoliding Deadlock

Unfortunately, performing routing in two phases In
the same network makes the paths of the packets more
complicated. The result is that deadlock can now occur.

One solution to this problem is to ensure that the two
phases of the routing algorithm use completely separate
links. The set of labels produced for the interval label-
ling 1s partitioned into two subsets. The first subset, e.g.
the low half contains the labels used to identify the
intermediate destinations; labels from this subset are
randomly generated and used as headers for the ran-
domizing phase. The labels in the second subset, e.g. the
high half are used for the terminal links, and so the
original headers of the packets are chosen from this
subset and used for the second and final (destination)
phase. Similarly the links are partitioned into two sub-
sets, one subset for the first, randomizing phase and one
subset for the second, destination phase. Links in the
first subset are associated with intervals which are con-
tained in the low half of the set of labels, and links in the
second subset are associated with intervals which are
contained in the high half of the set of labels.

Effectively this scheme provides two separate net-
works, one for the randomizing phase, and one for the
destination phase. The combination will be deadlock
free if both of the networks are deadlock-free. The
simplest arrangement is to make the randomizing net-
work have the same structure as the destination net-
work—and to make both employ a deadlock-free rout-
ing algorithm.

Multi-phase Routing

The main disadvantages of an interval labelling
scheme are that it does not permit arbitrary routes
through a network, and it does not allow a message to
be routed through a series of networks. These problems
are overcome in the described routing switch by the
header stripper 28. As described above, each message
link of a routing switch can be set to delete the header
of every message just before it is transmitted. The result
is that the data immediately following becomes the new
header as the message enters the next node.

Now suppose there is a module which i1s a labelled
network, some of whose terminal links connect to other
such modules. Now if these message links are set to

10

15

20

25

30

35

435

50

35

65

22

remove the header, a packet addressed to one of them
will in fact be transmitted with the header that got it
there replaced by a subsequent portion of the message
to form a new header to take it to a further destination.

Now consider two such modules connected by one or
more links. If a routing switch in one module sends a
packet with the address of one of the terminal links of
that module connected to the other module, then before
the packet traverses the connecting message link the
header 1s deleted and a new address 1s revealed as the
header. Provided this is an appropnate label for the
other module’s network the packet will now be deliv-
ered in the usual way. The only complication is that the

packet must be sent with the final address prepended to
the data part.

If the terminal link of the second module to which the
packet is addressed is connected to a third module and
is set to delete headers also, the packet can be directed
into yet another module, where a third address is pulled
to the front. In this way an arbitrary number of module
boundaries can be crossed, provided enough extra head-
ers are included when the packet is first sent.

In the extreme case the ‘modules’ can be individual
routing switches, so that the packet i1s explicitly steered
by the set of headers and the interval labelling becomes
trivial. This 1s useful for permutation networks where
one wishes to obtain conflict-free routing.

Modular Composition of Networks

Where network modules are connected together,
care must be taken not to introduce the possibility of
deadlock. Even though the labelling schemes within
each module may be deadlock-free, a set of multi-phase
messages might produce a deadlocked configuration.

Suppose we have a higher-level network, each of
whose ‘nodes’ is a module. The conditions for the total
network to have deadlock-free routing are simply:
the routing strategy in the top-level network must be

deadlock-free;
the individual modules must be deadlock-free;
the modules must have full interconnectivity.

The last point means that the paths of packets to
nodes in the module, the paths of packets from nodes in
the module, and the paths of packets passing through to

“other modules must not traverse the same link in the

same direction.

Thus provided these conditions are met, the simple
mechanism of header deletion enables networks of arbi-

trary size and complexity to be constructed with effi-
cient deadlock-free routing of message packets.

The above description relates to a routing switch
which can be formed as an integrated circuit or a single
chip, with the input and output data paths 4a... 4n, 6a
. . . 6n having dedicated pins. It is also envisaged that a
routing switch could be combined with a microcom-
puter on a single chip, in which case effectively all the
message links of the microcomputer would be perma-
nently connected to links of the routing switch by on
chip connections. Off chip communication would then
occur always via the free links of the routing switch.



5,130,977
23 24

ANNEX 1

ZROC Ioounlduffer (CEAN QO 23TTT Coces . 2. Zata.Jux,

CEAN CF 3CCL Recuemst .-, ICT . Seen, Senc.

wister.siza] 3YTT HuzZferx

T, LadsT, T"okenst. 2 utfered, depr=

30CL -mguest . pending, ocutput.duzler, r=adv

ICOL s—gmal ! -- uUsed 0 senc and I=celive sigmals; L1It= value 12 nevex
. .. 2ROC Sendo Toxen () == detai.ad LaCTer

3T-E Coge

fi::t

r

i1
4§
}!

la:t = O, 0 == Zxotialise Tle Dgoizitmers Lato the bus

Teguest . Dending, ounTuT.Zuxler ., Irsacwv = TALSZ, TRCD

WEL L

‘
i

l

PRSI

SRI? -« _gT=ore 3 el CTCe

707 == a Zlow—~<zDotool TOXen 2as fesn mecsived

T2t .Seen ! sag=al -~ LnzZoz—m tZe outsux Dulisr oI caos
ZLSZ ==~ DUl tlia I=calLved CICe LIIC toe Duller

S

~asT = (last = 1) \ Lozut.Zufla-.sice
ToXens sufifsreac = Toxeans SUstaves a7
Semat = o Ccassh -

. Dencding == TIie ITuIZazed ITCe LS WIInTad 3aLT=acy

3=
cCnloxen () == seTs Iacuest.Dencllig T2 ITaloD

SKL?

Recuest.l2 ? sigmal -= 3 r=cuest I 2uZlsazsc cCata

el skl
: o
niflle =

coxens . susiszes < O - sens Toxken LI aAny SuZZar=d
SencCnlToxern ()] == sets ZT=Cue

toxens buzZZered = { -— Tae ouz
Tecuest . Denclac = TRUL

esc. 2T ! gigmal -~ asx guTYLT Dulisr T senc an ICT
cuTDuT.dufisz . Teadyv T Ialla
cerst T cepit + ILow. STniIolL . Zansh,sncoe

rad

—aAr~>=



5,130,977
25

ANNEX 1A

The aroccecure SencCnioken 1s as oilows:

PRCC SencOzmToxkemn ()
STY

sata.ous ouSiez {3t

fizst = (fizsm + 1) \ izouz.buifex.s
coxens bhuZffered = Cokens buffered -

Tequest . Pendlng = FALSZ

-
H
wlink

26



5,130,977
27 28

ANNEX 2

CC CSumounBu=Zfer (CEAN CF 3CCL Clgock. .

fu
i

CEZAN CF 2¥yTTY Caoces  Juw, ac

- v - g — ol T -
CEAN OF 20QL Recuest.Cut., Tcz.3een, Sencd.TTz, FTT.SenT,

(ouzour . suZfexr, size]3YTY bDuffisr-ec.tokens

-7 ¢ount, CcredoT

3COL wastiog.Zcoxr.token, want.IoT o

300QL signa. | -- used T3 send and sec=ive signals; LIs Talue L3 tever used
SZQ

o Losmralise

e count = 0, 0

wastTing. IS .Ttoxken, want.IIT = FALSZ, IALSI

Clock.Zn 7?7 szzzma.n. == CLOCK TIZXS: senc a Ccoce
WANLT . 200 == Ymma IThTUT DUuSZer s qsxed foz= a f o nm, mn o ma sanT
SZQ

Coces . Ovx ! TCT

rcz.Sent ! sigmal -~ tell t2e Loout Dufier Tle Ccoce L= sent
want .22z = FTALSE
(cowne > 0) AND (czmmgi= > Q)
Saf ==~ CcunTuT a toxen
Cocem=s Ovn | DuZieres.stcoxens i J)
-= snuZ=Zla 9D The DuZZ=er croTenc

- =
=g =~ = J TOR (ouzodut.>zufis- size -~ 1)
L

suZferses . toxkens (i) = DuZiarec. toxens i+l
-
o) bhelyed = scoumT - o
CIMmsT = SArmo s T -

TRUZ ~= CeZiullT CDTLCHR. NCTIIZS ense T OO

Cacemps  Ou= ! NG

Senc . gt ? sigmal .- ZL0W CORITIITL Sessuested v Lnput ouZlarx
wazt. Iz = TRUZ
TocT.Seen ? zicmal -~ It seen Dy Ladut Sulfez: adsust crm=coc
cxedit = grecit -~ Zlow . gconmTroli.otatsh. size
waitiag.Zox.tcxken a 2Jata.lz ? bDuZiszes toxens {csunt)
SEQ
counmT = ocunmT -~ o
WRLTIDS.ITx.toxken (= ITAL3SZ
((NOT waLz_zg.Zco.toxen) AND (csunmzt < outruT.zuZffasx . sfize) ) « S3ITZ
S - ~CiITaTtTe feaciniess T oulfsr cata



5,130,977
29 30

ANNEX 3

PROCEDURE LABELTREE (VAR i, VALUE L, U, N)
VAR 1
BEGIN
3 1= iy
WHILE there are unlabelled terminal links at this node
BEGIN |
choose an unlabelled terminal link;
lable it with [i,3i+1);
i = i+d;
END;
WHILE there are any unlabelled links at this node
BEGIN
choose an unlabelled link X, label it [i, a);
let V be the node connected by K;
LABELTREE (i, K, V, N); -- note that this changes the value of 1
replace a with 1i;
END;

IF L is not terminal THEN -- L will only be terminal when we have finished
BEGIN '
label L with [0, 3);
IF i < N THEN label L with [i,N) as well; ’
END;

END;



31

5,130,977

o,

32

J
TABLE I
state input Output Next State
Ready Flag.r Set.m2 wait.for. RHG.or.token
Request
Request Data
-Flag.r ~Set.m2 wait.for.header.token
Set.sl]
Request Data
wait.for.header.token Got.token.b  Send.t walt.for.fifo
wait.for fifo Got.token.f Request Data wait.for.header.token
Full Select wait.for.select.or.token
Request Data
wait.for.select.or.token Got. EQOP send.header.then eop
Got.token.b wait.for.select
Discard Reset wait.for.header.token
Data Wanted Set.ml send.header.or.get.token
Send.h
wait.for.select Discard Reset clear.buffer
Data Wanted Set.ml send.header
- Send.h
clear.buffer Send.t wait.for.fifo
send.header.or.get.token Got.token.b send.header
Data Wanted Send.h send.header.or.get.token
Empty -Set.sl walit.for.request.or.token
-Set.ml
Got.EQOP send.header.then.eop
send.header Data Wanted Send.h send.header
Empty -Set.sl wait.for.request
-Set.ml
send.header.then.cop Data Wanted Send.h send.header.then.eop
Empty -Set.sl have.eop
-Set.m|
wait.for.request.or.token Crot.token.b wait.for.request
Data Wanted wait.for.token
Got.EOP have.eop
wait.for.request Data Wanted Send.t wait.for.request.or.token
Request Data
wait.for.token Got.token.b  Send.t - watt.for.request.or.token
Request Data
Got.EOP Send.t Ready
have.eop Data Wanted Send.t Ready
wait.for, RHG.or.token Got.token.b . wait.for RHG
Got.token.f  Request wait.for. RHG.or.token
Full -Set.m?2 wait.for.first.token
wait.for. RHG Got.token.f Reguest wait.for. RHG
Fuil -Set.m2 wait.for.seiect
Set.sl
Select
wait.for.first.token - Got.token.b  Set.sl] wait.for.select
Select
50
TABLE II
State Input Qutput Next State
Ready Flag.s ready.to.stripl
-Flag.s ready.set
33 ready.set Data Wanted wait.for.send
Send wait.for.request
wait.for.send send Request Data wait.for.tok
walit.for.req Data Wanted Request Data wait.for.tok
wait.for.tok Got.token.b  Send.t wait.for.req
Py Got. EQP Send.t Ready
60 Finished
ready.to.stripl  Send Request Data strip.tok.and.req.1
Data Wanted ready.to.strip2
ready.to strip2  Send Request Data strip.tok.1
strip.tok.and.req Data Wanted strip.tok. 1
1 Got.token.b  Request Data strip.tok.and.req.2
65 strip.tok.and.req Data Wanted strip.tok.2
2 Got.token.b wait.for.req
-Flag.}
Got.token.b  Request Data  stnip.tok.and.req.3
Flag.1



5,130,977

TABLE Il-continued
State input QOutput Next State
strip.tok.and.req Data Wanted strip.tok.3
3 Got.token.b  Request Data strip.tok.and.req.4 5
strip.tok.and.req Data Wanted strip.tok.4
4 Got.token.b wait.for.req
strip.tok. ] Got.token.b  Request Data strip.tok.2
strip.tok.2 Got.token.b  Request Data wait.for.tok
-Flag. 1
Got.token.b  Request Data strip.tok.3
Flag.! 10
strip.tok.3 Got.token.b  Request Data stnip.tok.4
strip.tok.4 Got.token.b  Reqguest Data wait.for.tok
TABLE III (5
State Input Output Next State
off set —- on
on set — off
20
TABLE IV
State  Input Output Next State
wait ADDR(adr = 1) req priv
wait ADDR(adr # j) — walit
priv — set 1sset
1sset — send flow 25
flow finished set wait
req
TABLE V 10
State Input Qutput Next State
notprv L R notprv
notpnv req R using
using req — priv
priv req — using
priv L — notpriv 35
req
We claim:

1. A method of routing message packets through a
succession of routing switches in a computer network

which includes a plurality of nodes having respective

identifications, which method comprises:

~a) outputting a message packet serially from a source
node, said message packet having both a destina-
tion node indicator identifying a destination node
in the network and a message portion;

b) supplying said message packet to an input of a
routing switch having a plurality of outputs selec-
tively connectable to said input;

c) at the routing switch, generating an additional
node indicator for the message packet, said addi-
tional node indicator identifying an intermediate
node selected at random from a plurality of nodes
in the network;

d) reading said additional node indicator and selec-
tively connecting said input to one of said outputs
in dependence on said additional node indicator;

e) transmitting the message packet through said rout-
ing switch form said input via said one of the out-
puts to the intermediate node identified by said
additional node indicator; and,

f) at said intermediate node, using the original desti-
nation node indicator t0 determine further routing
of the message packet.

2. A method as claimed in claim 1 in which said mes-
sage packet is outputted from said source node with first
and second destination node indicators, said method
further comprising the step of at one of said routing

43

50

35

63

34

switches deleting said first node indicator so that, on
receipt of the packet by a successive routing switch,
said second node indicator i1s used as the destination
node indicator.

3. A method as claimed in claim 1 when used to route
messages between a first processing device constituting
the source node and a second processing device consti-
tuting the destination node in which each message
packet output by the source node is acknowledged by
the destination node when that message packet is re-
ceived thereby.

4. A method as claimed in claim 1 in which the out-
puts of each routing switch are divided into at least two
sets, and wherein message packets with additional node
indicators are always output on outputs belonging to
one of the sets, and message packets with destination
node indicators are always output on outputs belonging
to another of the sets.

S. A method as claimed in claim 1 wherein each out-
put of the routing switch is selectable for a respective
range of destination node identifications.

6. A method as claimed in claim 1 wherein the mes-
sage packet 1s output from the intermediate node, with

the additional node indicator which identified that in-
termediate node having been discarded.

7. A method as claimed in claim 1 wherein the rout-
ing switch has a plurality of inputs and additional node
indicators are provided for all message packets input at
only a selected set of said inputs and not for message
packets input at others of said plurality of inputs.

8. A computer network including a plurality of nodes
having respective identifications, said network compris-
ing:

a plurality of computer devices each including a pro-
cessor for executing processes, message links for
inputting and outputting messages from and to
other devices in the network, and packet generat-
ing circuitry for generating message packets each
with both a node indicator indicating a destination
node identification and a message portion; and

a plurality of routing switches, each routing switch
including an input for receiving said message pack-
ets from a source node, a plurality of outputs,
switch circuitry for selectively interconnecting
said input to a selected one of said outputs, a gener-
ating circuit coupled to said input and operable to
generate an additional node indicator for the mes-
sage packet, which additional node indicator iden-
tifies an intermediate node selected at random from
a plurality of nodes in the network and reading
circuitry for reading the additional node indicator
and being coupled to said switch circuitry to con-
nect to said input one of said outputs in dependence
on said randomly generated node indicator.

9. A computer network as claimed 1n claim 8 which
comprises a plurality of interconnected routing
switches so that each message packet uses a succession
of such routing switches between the source and desti-
nation nodes.

10. A computer network as claimed in claim 9 in
which destination nodes are identified by addresses
selected from a first set of addresses and intermediate
nodes are identified by addresses selected from a second
set of addresses, said second set being distinct from said
first set.

11. A computer network as claimed in claim 8 In
which the or each routing switch has a plurality of



5,130,977

35
inputs, each selectively connectable to any of said plu-
rality of outputs.
12. A computer network as claimed in claim 11 in

which the or each routing switch has associated with

each of its inputs a respective generating circuit and
control circuitry for setting an operative state of se-

lected ones of said generating circuits.

13. A computer network as claimed in claim 11
wherein the or each routing switch has arbitration cir-
cuitry to control the use of an output which has been
selected to be connected to more than one input.

14. A computer network as claimed in claim 8 for
routing message packets having first and second desti-
nation node indicators through a succession of routing
switches in which one of said routing switches in said
succession further comprises deletion circuitry for de-
leting the comprises deletion circuitry for deleting the
first destination node indicator of a said message packet
received thereby so that on receipt of the packet by a
successive routing switch the second node indicator
provides the destination node identification.

15. A computer network as claimed in claim 8 in
which at least some of said plurality of routing switches
comprise discard circuitry operable to compare the
node indicator with an identification of the routing
switch and to discard the node indicator which was
previously generated randomly when that node indica-
tor 1dentifies the routing switch in question.

16. A computer network as claimed in claim 8 further
compnsing a further plurality of routing switches each
of which further comprises discard circuitry operable to
compare the node indicator with an identification of the
routing switch and to discard the node indicator which
was previously generated randomly when the node
indicator identifies the routing switch in question.

17. A routing switch for routing messages between

computer devices in a network having a plurality of

nodes at least some of which have respective identifica-
tions, each computer device including packet generat-
ing circuitry for generating message packets with both

5

i0

15

20

25

30

35

40

45

50

33

65

36

a node indicator indicating a destination node identifica-
tion and a message portion, said routing switch includ-
ing an input for receiving message packets from a
source node, a plurality of outputs, switch circuitry for
selectively interconnecting said input to a selected one
of said outputs, a generating circuit coupled to said
input and operable to generate an additional node indi-
cator for the message packet, which node indicator
identifies an intermediate node selected at random from
a plurality of nodes in the network and reading circuitry
for reading the- additional node indicator and being
coupled to said switch circuitry to connect to said input
one of said outputs in dependence on said randomly
generated node indicator.

18. A routing switch as claimed in claim 17 wherein
each output designates a respective range of destination
node identifications.

19. A routing switch as claimed in claim 17 which has
a plurality of inputs, each selectively connectable to any
of said plurality of outputs.

20. A routing switch as claimed in claim 19, which
has associated with each of its inputs a respective gener-
ating circuit and control circuitry for setting an opera-
tive state of selected ones of said generating circuits.

21. A routing switch as claimed in claim 17, for rout-
ing message packets having first and second destination
node indicators and which further comprises deletion
circultry for deleting said first destination node indica-
tor of a said message packet received thereby so that on
receipt of the message packet by a successive routing
switch connected thereto the second destination node
indicator 1s used as the node indicator.

22. A routing switch as claimed in claim 17, which
comprises discard circuitry operable to compare the
node indicator with an identification of the routing
switch and to discard the node indicator which was
previously generated randomly when that node indica-

tor identifies the routing switch in question.
x x x x *x



UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENTNO. : 5,130,977
DATED . July 14, 1992
INVENTOR(S) : Michael D. May; Peter W. Thompson

It is certified that error appears in the above-indentified patent and that said Letters Patent is hereby
corrected as shown below:

On the title page, delete '"Brian J. Parsons" and "Christopher P.H. Walker"
as named inventors.

Signed and Sealed this
Second Day of November, 1993

Attest: ﬁw uW\

BRUCE LEHMAN

Attesting Officer Commissioner of Patents and Trademarks




	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

