United States Patent [9

Baker et al.

UL AU AR T

US005109510A
(11) Patent Number: 5,109,510

145] Date of Patent: Apr. 28, 1992

[54)

[75)

[73]

[21]
[22]

[63]

[51]
[52]

(58]
[56]

SYSTEM CONCURRENTLY RUNNING
APPLICATION PROGRAMS AND
SELECTIVELY ROUTING DEVICE INPUT
TO RESOURCE CONTROLLER CREATED
VIRTUAL TERMINALS AND
REALPHYSICAL DEVICES
Inventors: David C. Baker; Kathryn A. Bohrer;
Gregory A. Flurry, all of Austin,
Tex.; Peter Lucas, San Jose, Calif.;
James R. Rhyne, Stamford, Conn.
Assignee: International Business Machines
Corporation, Armonk, N.Y.
Appl. No.: 225,630
Filed: Jul, 27, 1988
Related U.S. Application Data
Continuation of Ser. No. 820,451, Jan. 17, 1986, aban-
doned.
INt. ClLo oerieeeeccrreti e essensaes GO6F 9/46
US.CL ...covriiireeerrrnreenn. 395/650; 364/286;
364/281.4;: 364/281.7; 364/286.3; 364/DI1G. |
Field of Search ... 364/200 MS File, 900 MS File
References Cited
U.S. PATENT DOCUMENTS
4,091,448 5/1978 Clausingccocciiiiniiniininnnnn, 364/200
4.104.721 8/1978 Marksteinet al. 364/200
4,152,761 5/1979 Lowe et eernanenrnns 364/200
4247906 1/1981 Corwin ...ccevvveevniiiiriceennnes 364/900
4,384,324 S/1983 Kim .oivvviriiieiiiiiieniciiiirceee, 364,200
4,400,769 8/1983 Kanedacoovvrrvinreennren 364/200
4,403,288 9/1983 Chnstiancoooovverivevrenn. 364/200
4,435,780 3/1984 Herringlonccoccceereee. 3647900
4 527,236 771985 Ermolovich ...ocoinvveeeninnnnn. 364/200
4,543,627 9/19B5 Schwab i, 364/200
4,553.202 1171985 TIUFYN oo, 364,/200
4.555.775 1171985 PiKke ooovceeirieniiirieenrieeenneeen. 3647900
4,586,134 4/1986 Norstedtooevvvivvevnriecnnnen. 364/200

4,503,349 &6/1986 Chaseetal ..oovevvvveenirvnnnn.. 364/200

4604682 8/1986 Schwancevvvvivviiiiinnnnns 364,/200
4628446 12/1986 Hoffner, Il ..., 364 /200
4642.790 271987 Minshull et al. 364 /900
4,761,642 8/1988 Huntzinger ...l 340/721
4885681 12/1989 Umenooceieniicenircnnnnens 364200
4914619 471990 Harms ...ocooeiivccvviicenirerenneenns 364 /900
4916608 471990 Schultzccvvvviinnriiennnne.. 3647200
4,956,771 9/1990 Neustaedercccevviccennaeen. 364/200

OTHER PUBLICATIONS

Virtual Terminal Management in a Multiple Process
Environment, Proc. of the 7th Symposium of Operating
Sys. Principles, operating Systems Review 13(No. 5, 5
Dec. 1979) Assoc. for Computing Machinery, NY, pp.
86-97. |

O'Reilly, J. D., Multiple Concurrent Independent Ses-
sions on a Display Terminal, vol. 21, No. 4 Sep. 1978, pp.
1524-1525, IBM TDB.

Meyrowitz, Moser; Bruwin, An Adaptable Design Strat-
egy for Window Manager/Virtual Terminal Systems,

1981, ACM, pp. 180-189.

Primary Examiner—Thomas C. Lee

Assistant Examiner—Eric Coleman

Atiorney, Agent, or Firm—Wayne P. Bailey; Manlyn D.
Smith

157} ABSTRACT

A method of, and apparatus for, running several appl-
cations concurrently on a processing system. Virtual
terminals are created for running the applications.
However, the virtual terminals perform as though the
processing system were a single terminal system. In this
way, any application written for a single terminal sys-
tem can run in this multiple virtual terminal environ-
ment. For interaction with one of the several applica-
tions running on this system, the real physical resources
of the system are reallocated to the virtual terminal
running the selected application.

11 Claims, 4 Drawing Sheets

U.S. Patent

Apr. 28, 1992

Sheet 1 of 4

VIRTUAL TERMINAL
SUBSYSTEM

VIRTUAL RESOURCE MANAGER

INPUT
a1 !

/O DEVICES
40

FIG. 1

ﬁ

APPLICATION PROGRAM 5,

OPERATIONSYSTEM 4

VIRTUAL MACHINE

60

5,109,510

U.S. Patent Apr. 28, 1992 Sheet 2 of 4 5,109,510

1S

92

91

RESOURCE VIRTUAL
CONTROLLER TERMINAL
310 MODE
— PROCESSOR

340

VIRTUAL
DISPLAY
DRIVER

330

SCREEN
MANAGER

320

e | [z | [aaue | s
DEV VI E
DRIVER & pRIVER 1% | priverR £2| | priver ¥°

U.S. Patent Apr. 28, 1992 Sheet 3 of 4 5,109,510

A
OFERATING P SCREEN }
|
|
|
|
|

10 310

SEND OPEN
10

« FOR NEW VT:
- ALLOCATE MEMORY
- CREATE PROCESS
- CREATE ID'S 102
- CREATE COMMUNI-
CATION PATHS
» UPDATE GLOBAL
DATA STRUCTURE

REQUEST SM TO
ACTIVATE NEWVT 104

REQUEST DD TO

ROUTE INPUTTO 105
NEW VT o

REQUEST CURRENTLY
ACTIVE VT (VIMP1) 107
DEACTIVATE =~ —

I |
ST NEW VT .
2) ACTIVATE 109] |

|

REQUE
(VIMP

REFLECT NEW ACTIVE
VI (VIMP2)IN 111
INTERNAL STATUS —

RETURN VT NAME

TOO.S.ANDVT 112
PATHNAMETOO.S.

FIG. 3A

U.S. Patent Apr. 28, 1992

DEVICE
DRIVER(S)
(OD)

« PLACE NEW VT PATHS
IN ROUTING
STRUCTURE 106

» SET UP DEVICE MODE
FOR NEW VT

« SEND CURRENT DEVICE
STATUS TO NEW VT

VIRTUAL TERMINAL
MODE PROCESSOR FOR
CURRENTLY ACTIVE VT

(VIMP1) 330

« TURN OFF VIRTUAL
DISPLAY 108

- TURN OFF VIRTUAL
SPEAKER

Sheet 4 of 4 5,109,5 10

VIRTUAL TERMINAL
MODE PROCESSOR FOR
NEW VT

(VIMP2) 1334

« QUERY AVAILABLE
DEVICES 103

« CHOOSE DISPLAY
TO USE

* TURN INPUT ON/OFF

» TURN ON VIRTUAL
DISPLAY 110

- TURN ON VIRTUAL
SPEAKER

5,109,510

1

SYSTEM CONCURRENTLY RUNNING
APPLICATION PROGRAMS AND SELECTIVELY
ROUTING DEVICE INPUT TO RESOURCE
CONTROLLER CREATED VIRTUAL TERMINALS
AND REALPHYSICAL DEVICES

This application is a continuation of application Ser.
No 06/820,451 filed. Jan. 17, 1986, now abandoned.

BACKGROUND ART

1. Field of the Invention

This invention relates to processing systems and more
particularly to processing systems performing multiple
tasks while sharing the same physical resources.

2. Background Art

Two types of data processing systems are known 1n
the art. One type has a single workstation with input-
/output devices that communicate with its own sepa-
rate processor. The other type has a plurality of work-
stations that share and access the same processor.

A user of either of these systems is confronted with a
problem of not being able to effectuate interrupt driven
events at the user’s command. For example, while a user
1s using the system for creating a report using an editor,
the user may need to interrupt the word processing
session and switch instantly to another program, such as
to look up a phone number that resides in a program
that 1s different from the one the user 1s using as an
editor.

This problem has been addressed such that a system
allows the output display to share its screen with a
plurality of programs at the same time. To accomplish
this, the screen 1s divided such that each program is
shown on its own portion of the output display screen.
This 1s commonly referred to as screen sharing.

However, this method of screen sharing 1s expensive
since a large amount of CPU cycles are required.
Screen sharing i1s expensive because all of the multiple
windows contained on the one screen must be main-
tained. Also, there 1s an additional expense in clipping
the output display of the application to subscreen
boundaries.

Another problem with screen sharing is that a large
amount of development time is needed to write the
application program in a way that it will be executabie
in a screen sharing environment. Also, each application
must be aware that it 1s working 1n this multiple acuivity
environment.

Screen shanng also imposes additional requirements
on an application. Usually the applications have to share
resources such as the screen display. The applications
must also agree to the amount of screen that each appli-
cation will receive. Thus, the apphcation must. know
that 1t 1s working with something less than the full por-
tion of the screen.

Another problem arises with processing systems that
utilize an UNIX"® operating system. UNIX operating
systems allow multiple activities, thus creating a multi-
process system. This is referred to as a multi-thread
environment. This allows a user to run several applica-
tions at one time. However, only one application can
actually interact with the terminal. If more than one
application tries to interact with the terminal at the
same time, there is an undesired conglomeration of
output from the applications. The user must then con-
trol the output from the other applications in the back-

10

15

20

25

30

35

45

35

65

2

ground. This is called blind background processing,

which is difficult to monitor.
¢ UNIX s a trademark of AT&T Bell Laboratones.

One way to solve this multi-thread problem is to add
physical devices to the workstation. However, it 1s not
expedient for every task and/or virtual machine to have
a unique physical terminal. The cost of multiple dis-
plays, keyboards, locators, and other interactive re-
sources prohibits a profusion of such devices. A work-
station is generally restricted to the number of devices it
can support by the adaptor slot or the power limitations.
The facihities such as office or desk space, electrical
outlets, etc., also place constraints in the number of
devices that a user can effectively use. There are addi-
tional inconveniencies in the physical movement of
multiple devices. Also, refocusing of one’s concentra-
tion 15 required when a multiplicity of interactive de-
vices are used.

SUMMARY OF THE INVENTION

It 1s therefore an object of this invention to present a
user interface that allows the user to switch readily back
and forth between multiple activities in a multi-process
system.

It is a further object of this invention to reduce the
processing overhead of a multiple activity environment.

It 1s a further object of this invention to ehminate the
need for an application program to know that it is run-
ning in a multiple activity environment while running in
the processing system.

It 15 a further object of this invention to control the
output display of multiple applications in a multi-proc-
ess system.

It 1s a further object to minimize system cost and
maximize operator convenience.

In the processing system of this invention, the physi-
cal interactive resources are shared by a plurality of
applications in a multiple thread environment with the
utilization of virtual terminals. Virtual terminals pro-
vide terminal Input/Output in support of multi-tasking
for an operating system running in a single virtual ma-
chine and/or multiple virtual machines. The term vir-
tual terminal implies the appearance, to a virtual ma-
chine or several virtual machines, of more terminals
than actually physically exist on the workstation.

The virtual terminals time share the physical displays,
resulting in a full screen virtual terminal management
subsystem. However, the implementation of time shar-
ing does not restrict application packages from space
sharing the screen of a single virtual terminal among
multiple processes.

Thus the processing system of this invention opens,
closes, activates, and deactivates virtual terminals as
needed by applications to simulate their own actual
hardware 1/0 devices. Hence, the applications perceive
that they are in an environment that gives them the full
resource. This includes the resources of the display,
memory, keyboard and locator input. In other words,
an entire screen is given to the application as opposed to
sharing portions of the screen with other applications.

When in use, an application has total use of these
resources. However, when not in use, the processing
system removes these resources from the application
without the applications’ awareness. It does this by
substituting virtual output resources to allow the appli-
cation to continue execution until it requires user input.

5,109,510

3

BRIEF DESCRIPTION OF THE DRAWING

F1G. 1 shows the layers of a processing system.

F1G. 2 shows the components of the virtual terminal
subsystem.

FIG. 3 shows the steps of adding operating system
constructs (structure) to create virtual terminals.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

FIG. 1 shows the layers of a processing system 100 of
this invention. The application 80 runs on an operating
system 10, such as UNIX. The next layer is the virtual
machine interface 20. Next i1s the virtual resource man-
ger 60 which manages all of the input/output devices
40. The virtual terminal subsystem 30 i1s part of the
virtual resource manager 60.

In the processing system 100 of this invention, a user
driven user interface switches between activities upon a
command from the user. This processing system virtual-
izes the use of the resources 40, such that the entire
resource 40 is given to an application 50 for a user’s
activity. This 1s carned out in the virtual terminal sub-
system 30. The virtual terminal subsystem 30 provides
terminal support for the virtual machine 80, 81, 82 envi-

ronment.

Virtual terminals 330, 331, 332 (FIG. 2) provide ap-
plications 50, 51, 52 (FIG. 1) with the freedom to act as
if they own the entire real terminal 40. Virtual terminals
330, 331, 332 (F1G. 2) give the virtual machines 80, 81,
82 (FIG. 1) the impression that there are more display
devices 421, 422 than are physically present, that there
are more input devices 411, 412 than are physically
present, and that these devices have different character-
istics than the physical devices 40. Also, with virtual
terminals 330, 331, 332 (FIG. 2) a program 50 (F1G. 1)
can be written such that it is independent of the specifics
of physical terminal devices 40, e.g., display buffer or-
ganizations, presence of optional input devices, etc.
Additionally, virtual terminals 330, 331, 332 (FIG. 2)
relieve the programmer of developing individualized
mechanisms for dealing with the limitations of the ac-
tual resources 40.

This processing system 100 allows muluiple program
activity at the lowest layer 60 of the system design as
opposed to the application level 50 as discussed in the
Background Art section of this application. Virtuahza-
tion of terminals is at the very base 30 of the processing
system 100. In this way, any apphcation that 1s used in
the system 100 can take advantage of multiple activities
regardless of the internal structure of that particular
program 50. The program does not have to consider the
implementation of virtual terminals 330, 331, 332, (FIG.
2), and does not know that it is being utilized in that
fashion. Virtualization occurs at a fundamental layer 60
of the processing system 100 as opposed to implement-
ing it within an application 50.

Virtualization occurs below the operating system 10
at the fundamental layer called the wvirtual resource
manager 60. The virtual resource manager 60 i1s respon-
sible for disk, memory and terminal virtualization.

Many different virtual machines 80, 81, 82 can run on
the virtual resource manager 60, with each virtual ma-
chine 80, 81, 82 running a different operating system 10.

The virtual terminal model of this invention utihzes
the emulation of a glass teletype, such as a keyboard
send/receive (KSR) teletype, although other models
could be used.

3

10

15

20

25

30

35

45

33

65

4

The terminal model of the preferred embodiment
supports the terminal requirements for the UNIX oper-
ating system in a virtual machine environment 80, 81,
82. The UNIX operating system requires a glass tele-
type emulation such as the Digital Equipment Corpora-
tion VTI100, or IBM 310] which is an enhancement of
the original keyboard send/receive (KSR) teletype.

The KSR terminal model is an ASCII terminal emu-
lation in the spirit of the ANSI 3.64 standard utilizing a
PCASCI1I code set rather than the ANSI 3.4/3.41 code
sets. The ANSI 3.64 data stream is extended, as speci-
fied by the standard, to support enhanced sound genera-
tion capability, to handle the flow of locator events, and
to provide various controls to switch physical displays,
fonts, and terminal characteristics.

Each virtual terminal 330, 331, 332 (FI1G. 2) embodies
the charactenstics of a single keyboard send/receive
terminal. That 1s, it recognizes and processes the data
stream 90, 91, 92 received from the virtual machine 80,
81, 82 causing the requested actions to occur. These
include moving the cursor or drawing characters onto
the virtual display 350, inserting or deleting lines, clear-
ing the screen, or changing the attributes with which
characters are rendered. In addition to these actions, the
outbound data stream 190 can cause the generation of
sequences of continuous tone sounds, or cause the vir-
tual display 350 to be rendered on any of the available
physical displays 440.

A virtual terminal 330, 331, 332 receives input from a
virtual keyboard and/or a virtual locator, and outputs
to a virtual display 350. Thus the virtual terminal can
always expect to get input from its virtual input devices
and can always output to its virtual display 350. These
virtual devices may or may not have physical devices 40
(FIG. 1), 410, 420, 430, 440 (FIG. 2) allocated to them.
Therefore, the virtual terminal 330, 331, 332 may not
actually get input or write to a physical display. As each
virtual terminal 330, 331, 332 recognizes and processes
the data stream 290 inbound from the keyboard 410, it
can, if requested, automatically echo various characters
and simple functions back to its virtual display 350. This
behavior permits the application to run as if it were
using a real KSR terminal. Thus the large body of old
applications require no modification to run in this vir-
tual terminal environment.

FIG. 2 shows the components of a virtual terminal
manager (subsystem) 30 within the virtual resource
manager 60. The virtual machine interface 20 is the top
level presented to all virtual machines 80, 81, 82 (FIG.
1) of all support for the virtual resource manager.
Below the virtual machine interface layer 20 are the
components of the virtual terminal manager.

The virtual terminal manager comprises a resource
controller 310, a screen manager 320, a keyboard device
driver 410, a locator device driver 420, a sound device
dnver 430, 2 display device dnver 440, and multiple
virtual terminals 330.

The resource controller 310 initializes and terminates
the subsystem. It also allows a virtual machine to query
and modify the configuration and characteristics of the
interactive devices, the real terminal, available to the
user. Furthermore, it allocates and deallocates the sys-
tem resources required for the operation of a virtual
terminal as it is opened and closed, i.e., created or de-
stroyed.

The screen manager 320 performs the allocation of
physical devices to the virtual devices used by the vir-
tual terminals. The screen manager, in conjunction with

5,109,510

S

the kevboard and locator device drivers, implements
the time and space sharing required to virtuahze these
mput devices. In a similar manner, the screen manager,
in cooperation with the virtual display dniver, imple-
ments the time sharing required to virtualize a display.
At any time the display is allocated to one and only one
of the virtual displays used by the virtual terminals.

The screen manager allocates all the physical devices
en masse 10 the virtual devices of the active virtual
terminal. The active virtual terminal is the terminal
with which the user may interact. The active virtual
terminal can actually get input and produce output on a
display.

The screen manager also provides for reallocation of
the physical resources. The impetus for reallocation
results from either user requests or application requests.
User requests are through the logical keyboard, or a
similar logical mouse, allocated to the screen manager.
1t involves deallocating the resources from the cur-
rently active virtual terminal and the allocation to the
newly active virtua) terminal. This allocation requires
the cooperation of both virtual terminals involved. As
mentioned above, the participation of the device drivers
ensures synchronization of events such as keystrokes
and work request acknowledgements.

Another component of the virtual terminal manager
subsystem is the keyboard device driver 410. The key-
board device driver routes input events from the real
kevboard to virtual terminals based on instructions from
the screen manager. |

Optional components of the virtual terminal manager
subsystem are the locator device dnver 420, and the
sound device driver 430. The locator device drniver
routes input events from the real locator to virtual ter-
minals based on instructions from the screen manager.
The sound device driver provides sound for the subsys-
tem.

Also, there are from one to four display device dnv-
ers 440 which service interrupts from the display adap-
tors. '

The virtual terminal manager subsystem comprises
{from one to 32 virtual terminals. Each virtual terminal
has an instance of the virtual terminal mode processor
340. The virtual terminal mode processor provides the
K SR-like behavior of the virtual terminal. Each virtual
terminal also has an instance of the virtual display
driver 350. The virtual display driver 350 is the target of
all virtual terminal mode processor outputs to the dis-
play, and virtualizes the display. Each virtual terminal
also has a common device utility by which the virtual
terminal mode processor communicatles its resource
requests to the resource controller.

VIRTUAL TERMINAL SUBSYSTEM
INITIALIZATION

Initialization of the virtual terminal subsystem is per-
formed by the resource controller. First, the resource
controller must receive a list containing the real devices
(displays, keyboard, etc.) identifiers for the various

10

15

20

25

30

35

45

33

other subsystem components, fonts, and the virtual 60

terminal defaults. Initialization requires: 1) checking the
above initialization information for completeness and
correctness, 2) initializing the real input devices, 3)
processing the supplied fonts, 4) creating the screen

manager, 5) creating the paths necessary for communi- 65

cation with the screen manager, 6) attaching the input
devices to the screen manager, 7) attaching the screen
manager to the virtual resource program check handler,

6

and 8) initializing the global data structure shared be-
tween some components.

The resource controller initializes the subsystem in
the following manner. The following routine 1s 1n pro-
gram design language from which source and machine

code are derivable.

INITIALIZE GLOBAL DATA STRUCTURE
IF THE INITIALIZATION INFORMATION NOT
COMPLETE AND CORRECT
THEN
PRESENT ERROR INDICATION
ELSE
CALL INIT_DEVICES
CALL CREATE_SM
PRESENT SUCCESS INDICATION
PREPARE TO SERVICE RESOURCE COM-
MANDS FROM THE OPERATING SYSTEM

The routine INIT_DEVICES initiahizes the various
device drivers in the systemn and places the requisite
information in the global data structure for use by van-
ous components. It also derives the information neces-
sary for the system use of the fonts identified in the
initialization parameter. The routine also creates com-
munication paths from the devices to the resource con-
troller (RC).

The routine CREATE_SM creates the screen man-
ager (SM) process and communication paths from it to
the resource controller (RC), keyboard and locator
device drivers, and the operating system.

VIRTUAL TERMINAL OPEN

After initialization, the resource controller 310 1s
ready toO accept resource requests. When a request IS
received from an operating system 10 to open (create) a
virtual terminal step 101, (FIG. 3), the resource control-
ler 310 takes the following steps: 1) creates the process
for the virtual terminal, 2) performs the necessary func-
tions (copy, bind) on the virtual terminal mode proces-
sor to j establish a functioning process, 3) establishes
communication paths to/from the virtual terminal
mode processor and from/to the device drivers present,
4) assigns an external identifier to the virtual terminal, 5)
attaches the virtual machine to the virtual terminal, and
6) initializes the wvirtual terminal process, passing the
requisite information in the process initialization param-
eters, step 102.

The resource controller 310 opens a virtual terminal
as indicated above by the following routine:

IF MAXIMUM NUMBER OF VIRTUAL TERMI-
NALS OPEN
THEN
INDICATE NO SUCCESS
ELSE .
CREATE_VT
CREATE_PATHS
INITIALIZE THE VIRTUAL TERMINAL (see
below)
TELL_SM (OPEN)
INDICATE_SUCCESS

The routine CREATE _VT copies the code for the
virtual terminal mode processor (VTMP). This permits
each virtual terminal to have its own data and stack
space. The routine then creates a process for the virtual

5,109,510

7

termunal. It also creates names for internal and external
(operating system) identification of the virtual terminal.

The routine CREATE_PATHS establishes commu-
nication paths to/from the virtual terminal from/to the
device drivers present and the operating system that
requested the open. It also establishes communication
paths from the screen manager (SM) to the virtual ter-
minal. Both CREATE_VT and CREATE_PATHS
save information in the global data structure.

The routine TELL_ _SM tells the screen manager
{(SM) that a new virtual terminal 1s opened. It sends the
name of the new virtual terminal {(and index into the
global data structure) so the screen manager (SM) can
derive needed information. The screen manager (SM)
proceeds 10 make the virtual terminal active (see be-
low), step 104 (FIG. 3). The routine TELL _SM waits
for the screen manager (SM) to finish before allowing
the resource controller (RC) to continue.

The routine INDICATE _SUCCESS returns the
external identifier for the virtual terminal and a commu-
nication path from the operating system to the virtual
terminal to the operating system, step 112.

The wvirtual terminal mode processor (VIMP) 331
must finish the imtialization of the wirtual terminal.
After the virtual terminal is initialized, the virtual termi-
nal mode processor performs the following routine, step

103:

QUERY_DEVICES
SELECT_DISPLAY
SELECT_INPUT

The routine QUERY _DEVICES returns the 1dent-
fiers for the available devices. The routine SELEC-
T_DISPLAY allows the virtual terminal mode proces-
sor (VTMP) to choose which of the available displays
to use. The SELECT _DISPLAY function copies the
virtual display driver for the chosen display and binds
the copy to the virtual terminal lode processor. This
allows the virtual terminal to use its virtual display
independently of other virtual terminals. The wvirtual
terminal may begin to interact with the user when it
becomes active.

The routine SELECT_INPUT allows the wvirtual
terminal mode processor (VTMP) to choose to receive
or not receive input events from the keyboard and/or
locator.

At this point, the operating system i1s able to commu-
nicate with the virtual terminal. The operating system
also 1s able 10 1ssue screen management commands con-
cerning the virtual terminal, if attached the screen man-
ager.

VIRTUAL TERMINAL CLOSE

To close a virtual terminal that has been opened by
the above stated steps, either the operating system or
the virtual terminal may issue a close request.

The resource controller (RC) receives the command
and performs the following actions:

TELL_SM (CLOSE)
RECOVER_RESOURCES
INDICATE_COMPLETION

The routine TELL_SM sends a command to the

screen manager (SM) identifying the virtual terminal to
close, via the internal identifier. It waits for the screen
manager (SM) to complete its dunies (see below). The
routine RECOVER_RESOURCES recovers all re-

10

15

20

25

30

45

35

65

8

sources (storage, control blocks, etc.) used by the closed
virtual terminal and removes the virtual terminal from
the global data structure. The routine INDICATE _
COMPLETION notifies the operating system (if it is
the requestor) of completion; a virtual terminal cannot -
be notified because 1t no longer exists.

The screen manager (SM) performs the following
actions while the resource controller (RC) waits:

COMMAND _MP(CLOSE)
NEW_VT_ACTIVE
ACK_RC

The routine COMMAND_MP sends a CLOSE
command to the virtual terminal via the communication
path between them, and waits for the virtual terminal
(VTMP) to respond. The routine NEW_VT_AC.
TIVE makes another virtual terminal active, that is,
allocates the real input and output devices to that vir-
tual terminal (see below). The routine ACK_RC com-
municates with the RC which allows the RC to con-
tinue its close processing.

The virtual terminal mode processor (VITMP) re-
ceives the CLOSE command and performs the follow-
Ing actions:

RELEASE _DISPLAY
ACK_SM
TERMINATE

The RELEASE_DISPLAY routine indicates to the
virtual display driver (VIDD) that it can release its re-
sources. The ACK _SM routine allows the screen man-
ager (SM) to continue 1ts close processing. TERMI-
NATE 1s not a routine; the virtual terminal mode pro-
cessor (VIMP) termiunates the virtual terminal process
by returning.

VIRTUAL TERMINAL
ACTIVATION/DEACTIVATION

The act of making a virtual terminal active may hap-
pen because of an open or close, or because the user has
requested that another virtual terminal be made active.
It requires the cooperation of the screen manager, (SM)
320, the virtual terminal mode processor (VITMP) 330
(or equivalent) for the currently active virtual terminal,
the virtual terminal mode processor (VITMP) for the
next active virtual terminal 331, and the input device
drivers 410, 420. The screen manager (SM)} 310 per-
forms the following actions:

FIND_VT
COMMAND_KDD(NEW_VT)
COMMAND_LDD(NEW_VT)
COMMAND_VT(DEACTIVATE)
COMMAND_VT(ACTIVATE)
UPDATE_DATA(NEW_VT)

The routine FIND_VT determines what virtual
terminal should be made active. The result depends on
the rules for screen management and the actual com-
mand received.

The routine COMMAND_KDD sends a command
to the keyboard device driver (KDD) identifyinq the
virtual terminal to receive input from the keyboard.
The routine COMMAND_LDD sends a command to
the locator device drniver (LDD) identifying the virtual
terminal to receive input from the Jocator. These rou-
tines wait for the device drivers to complete their ac-

5,109,510

9

tions before returning. The device drivers perform iden-
tical actions (see below).

The routine COMMAND_VT with the deactivate
option causes the currently active virtual termmal to
perform whatever actions are necessary (see below),
step 107. The routine COMMAND_VT with the acti-
vate option causes the newly active virtual terminal to
perform whatever actions are necessary (see below).

The routine UPDATE_DATA manipulates the
screen manager's (SM’s) internal structures so that 1t
knows what virtual terminal 1s active, step 111.

The keyboard device driver (KDD) and/or the loca-
tor device driver (LDD) perform the following, step
106:

SET_NEW_PATH _MODES
SEND_STATUS
ACK_SM

The routine SET_NEW_PATH_MODES places
the identifier for the communication path to the newly
active virtual terminal into an internal structure. It also
sets up the correct operating mode of the device for the

virtuzal terminal.

The routine SEND_STATUS informs the virtual
terminal about the current device status, 1.e., what rele-
vant keys (or buttons) are already pressed when the
virtual terminal becomes active.

The routine ACK__SM allows the screen manager
(SM) to continue 1ts processing in a synchronized fash-
Ion.

The virtual terminal mode processor (VTMP) of the
virtual terminal becoming inactive performs the follow-

ing:

DEACTIVATE_VDD
NO_SOUND

The routine DEACTIVATE _VDD tells the virtual
display driver (VDD) for the virtual terminal that it
cannot write to the display, but must buffer output from
the wvirtual terminal. The routine NO_SOUND sets
internal flags for the virtual terminal mode processor
(VTMP) so that 1t does not send operating system re-
quests for sound to the sound device driver (SDD).

The virtual terminal mode processor (VITMP) of the
virtual terminal becoming active performs the follow-

ing, step 110:

ACTIVATE_VDD
SOUND_OK

The routine ACTIVATE_VDD tells the virtual
display driver (VDD) for the virtual terminal that it can
write to the display; however, the virtual display driver
(VDD) first sends the buffer it maintained to the dis-
play. Thus the user sees the most current information
available from the apphcation. The routine SOUN-
D_OK sets internal flags for the virtual terminal mode
processor (VITMP) so that it sends operating system
requests for sound to the sound device driver (SDD).

At this point, the user is able to interact with the
newly active virtual terminal.

DESCRIPTION OF OPERATION

The virtual terminal takes input from the virtual ma-
chine in the form of output that would have been di-
rected to the real display terminal. It virtualizes it into

10

15

20

25

3O

35

45

33

65

10

its instance. If the virtual terminal is the active terminal,
1.e., the terminal the user is currently interacting with,
then the terminal has as much real resource as 1t re-
quires. It gets all of the input from the locator device
driver and the keyboard device driver. Therefore the
inputs from that driver will be routed to that instance of
that terminal. Any sound that it generates will go to the
sound device driver, and any display that it generates
will be passed to a display driver, and will be presented
to the user on the actual screen of the display device.

Other instances of virtual terminals that may be
opened but not currently active could be getting output
from a virtual machine. When they are getting this
output the virtual machine interface level appears ex-
actly the same to their virtual machine, whether they
are active or inactive, Therefore, when an inactive
virtual terminal gets an output request to display, 1n-
stead of sending that request to a device driver, it will
be virtualizing that into a device driver buffer.

This buffer 1s a piece of storage (RAM) to hold the
current state of the display. At any instant, the virtual
presentation space buffer of a virtual terminal contains
the accumulated front of screen representation of all
output requests sent to the virtual terminal. If the termai-
nal gets activated by the user, the contents of the virtual
device buffer will be displayed on the actual display
screen.

At the time that a particular virtual terminal is given
real physical display resources, it must convert the ac-
cumulated data in the virtual presentation space to real
display device commands. This results in the user being
able to see the current snapshot of information. In other
words, when a virtual terminal 1s forced to relinquish its
real display resources, it is conceptually similar to the
user turning his head away from a real terminal for a
penod of time. When he turns his head back to look at
it, he sees the total accumulated display modification to
that point in time.,

It 1s important that the presentation space buffer be
updated even when no real devices are allocated to it.
These virtualized presentation buffers are maintained in
device dependent form in the display device driver
component of the virtual terminal management subsys-
tem.

The screen manager interacts with a user in the fol-
lowing fashion. A ring of terminals exists such that each
time a virtual terminal is opened it is placed into this
ring. At the time a user wants to interact with a particu-
lar terminal, and therefore a particular application, the
user can hit a certain key sequence on the keyboard.
This key sequence 1s transmitted to the screen manager
by the keyboard device driver. The screen manager
determines by checking the ring structure, which of the
terminals currently available to the user should be made
active. In this manner a user can decide which activity
or which application he selects to interact with at any
given time.

The activities involved in changing the activity state
of a terminal involve the screen manager, the device
drivers and the virtual terminals. The sequence of
events 1s as follows. At the time the screen manager is
notified that a new terminal is supposed to be made
active, it sends the new routing information to an input
device driver. The keyboard or locator device driver
receives this information and decides that it then needs
to change the routing such that input events go to the
newly active virtual terminal.

5,109,510

11

Such is the case for the input devices. The output
devices are handled in a slightly different fashion. The
virtual terminal is notified by the screen manager that it
is 10 become inactive. The virtual terminal itself is re-
sponsible, in the case of the sound device dniver, for
deciding that 1t can no longer send sound reguests to the
sound device driver to produce sound audible to the
user.

For the virtual display driver there i1s a different
mechanism. In this case, the virtual display dnver is
evidenced to the virtual terminal as a series of routines
that can be called by the virtual termnal to produce
output on the display. At the time a terminal 1s made
inactive, it calls a routine of the virtual display driver
that indicates that the terminal is mnactive. In this case,
when a virtual machine tries to output to a display
through its virtual terminal, the virtual display driver
places any information that it would send to the device
in the virtual presentation space, instead. This allows
the application that is using the virtual terminal to com-
municate with the virtual terminal as if 1t were sull
active. The terminal that is becoming active calls a
routine of the virtual display driver that indicates that
the terminal is active. The virtual terminal is now able
to use its virtual display driver in the same manner as it
would when it was inactive, but its virtual display
driver 1s now free to actually write to the display
adapter.

As a result an application using a virtual terminal,
does not need to know whether it is the active or inac-
tive virtual terminal. It can communicate with its virtual
terminal at any time. Any updates it does to its display
are made visible when its virtual terminal becomes ac-
tive again. The application is totally unaware that its
virtual terminal 15 tnactive.

We claim:

1. A method of running concurrently a plurality of
apphication programs on a operating system within a
processing system, said method comprising:

creating, in a sublayer of the operating system of the

processing system, a plurahity of full screen virtual
terminals having a plurality of wvirtual input and
output resources;

activating selectively, in response to an input event

from a user, a first one of said plurality of virtual
terminals at a time; and

allocating a plurality of real physical resources of the

processing system to the plurality of virtual input
and output resources of the activated virtual terma-
nal.

2. The method of claim 1 further compnising the steps
of deallocating the plurality of real physical resources
of the first selected active virtual terminal when a sec-
ond one of said plurality of virtual terminals 1s selec-
tively activated, and reallocating the plurality of real
physical resources to the second virtual terminal selec-
tively activated.

3. The method of claim 1 wherein the step of allocat-
ing further comprises the steps of routing, by an input
device driver in the operating system, a plurality of
input events from a real physical input device of the
processing system to the first active virtual terminal;
and routing, by an output device driver in the operating

10

15

20

25

30

35

45

33

60

12

from the first selected active terminal to a continually
updated buffer.

5. A method of running concurrently a plurality of
application programs on a processing system having an
operating system and a sublayer of the operating system
for managing a plurality of input and output devices and
said application programs, saild method comprising:

initiahzing, by a resource controller of the processing

systern, the sublayer of an operating system of the
processing system for creating a plurality of virtual
terminals;

receiving, by the resource controller from the operat-

Ing system, a request to open at least one of said
virtual terminals;

activating, by a screen manager, one of said opened

virtual terminals at a ime; and

routing, by an input device dnver in the operating

system based on instructions from the screen man-
ager, a plurality of input event from a real physical
input device of the processing system to the active
virtual terminal.

wherein the step of initializing further comprises

initializing a plurality of real physical devices, cre-
ating the screen manager for managing virtual
terminal activation and deactivation requests from
the operating system and from the resource con-
troller, creating at least one path for directing a
plurality of commands between the screen man-
ager and the operating system, creating at least one
path for directing a plurality of commands between
the screen manager and the resource controller,
attaching a plurality of real physical device drivers
to the screen manager, and initializing a global data
structure.

6. A method of running concurrently a plurality of
application programs on a processing system having an
operating system and a sublayer of the operating system
for managing a plurality of input and output devices and
said application programs, said method compnising:

initializing, by a resource controller of the processing

system, the sublayer of an operating system of the
processing system for creating a plurality of virtual
terminals:
receiving, by the resource controller from the operat-
ing system, a request to open at least one of said
virtual terminals; "

activating, by a screen manager, one of said opened
virtual terminals at a time; and

routing, by an mnput device driver in the operating

system based on instructions from the screen man-
ager, a plurality of input events from a real physical
input device of the processing system to the active
virtual terminal,

wherein the step of receiving a request to open fur-

ther comprises the steps of creating the wvirtual
terminal, creating at least one path between the
virtual terminal and the operating system, creating
a plurality of paths between the virtual terminal
and the device drivers, and creating a path between
the virtual terminal and the screen manager.

7. A method of running concurrently a plurality of

application programs on a processing system having an
operating system and a sublayer of the operating system

system, output from the first active virtual terminal to a 65 for managing a plurality of input and output devices and

real physical output device.
4. The method of claim 2 wherein the step of deal-
locating further comprises the step of routing output

said applications programs, said method comprising:

initializing, by a resource controller of the processing
system, the sublayer of an operating system of the

3,109,510

13

processing system for creating a plurality of virtual
terminals; |

receiving, by the resource controller from the operat-
ing system, a request to open at least one of said
virtual terminals;

activating, by a screen manager, one of said opened
virtual terminals at a time;

routing, by an mput device driver in the operating
system based on instructions from the screen man-
ager, a plurality of input events from a real physical
input device of the processing system to the active
virtual terminal;

receiving, by the resource controller, a command to
close the active virtual terminal; and

activating an existing inactive virtual terminal by
allocating the real physical devices to the activated
virtual terminal.

8. A method of running concurrently a plurality of

application programs on an operating system within a
processing system, said method comprising:
sending an open command the operating system of
the processing system to a resource controller for
creating a plurality of new virtual terminals;
sending a request from the resource controller to a
screen manager for activating a first one of said
plurality of virtual terminals, in response to an
input event from a user;
sending a request from the screen manager to an input
device driver to route input to the first virtual
terminal;
placing, b the input device driver, at least one path
for the first virtual terminal in a routing structure;
sending, by the input device driver, a current device
status to the first virtual terminal;

10

15

20

25

30

35

45

33

63

14

requesting, by the screen manager, the currently ac-

tive virtual terminal to deactivate;

routing output from said deactivated virtual terminal

to a buffer;

requesting, by the screen manager, the first virtual

terminal to activate;
routing output from said activated virtual terminal to
a real physical output device; and

returning, by the resource controller, the path name
of the activated virtual terminal to the operating
system.

9. A method of running concurrently a plurality of
application programs on an operating system within a
processing system, said method comprising:

sending an open command from the operating system

to a resource controller for creating a plurality of
new virtual terminals;

sending a request from the resource controller to a

screen manager for activating a first one of said
plurality of virtual terminals, in response to an
input event from a user;

specifying, by a device driver of the operating sys-

tem, a path of the active virtual terminal in a rout-
ing structure; and

returning, by the resource controller to the operating

system, the virtual terminal name and path name.

10. The method of claim 9 further comprising the step
of routing, through the path in the routing structure, a
plurality of input events from a real physical input de-
vice of the processing system to the activated virtual
terminal.

11. The method of claim 9 further comprising the step
of routing, through the path in the routing structure,
output requests from the active virtual terminal to a real

physical output device.
* =0 * ¥ =

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENTNO. : 5,109,510
DATED . April 28, 1992

INVENTOR(S) : David C. Baker; Kathryn A. Bohrer: Gregory A. Flurry;
Peter Lucas; and James R. Rhyne

it is certified that error appears in the above-indentified patent and that said Letters Patent is hereby
corrected as shown below:

On the Title page, item [54] and in Col. 1, line 6: delete "REALPHYSICAL"
and insert —REAL PHYSICAL-—.

Col. 9, linme 33, after "ing" insert ——, step 108--:
Col. 11, line 38, delete "on a" and insert ——on an—;
Col. 12, line 19, delete "event®™ and inset -—events——;

line 21, delete "." and insert —-,——:and

Col. 13, line 33, delete "b" and insert -—-by—,.

Signed and Sealed this
ITwentieth Day of February, 1996

- IS uce Tedomarr

BRUCE LEHMAN

Amg %Cer Commissioner of Patents and Trademaris

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

