

US005103004A

United States Patent [19

Willms et al.

[11] Patent Number:

5,103,004

[45] Date of Patent:

Apr. 7, 1992

[54] N-SULTAMSULFONAMIDES

[75]	Inventors:	Lothar	Willms,	Hillscheid; Klaus	S
------	------------	--------	---------	-------------------	---

Bauer, Hanau; Hermann Bieringer, Eppstein/Taunus; Helmut Bürstell, Frankfurt am Main, all of Fed. Rep.

of Germany

[73] Assignee: Hoechst Aktiengesellschaft,

Frankfurt am Main, Fed. Rep. of

Germany

[21] Appl. No.: 749,158

[22] Filed: Aug. 23, 1991

Related U.S. Application Data

[62] Division of Ser. No. 493,946, Mar. 15, 1990, Pat. No. 5,073,185, which is a division of Ser. No. 263,817, Oct. 28, 1988, Pat. No. 4,925,480.

[30] Foreign Application Priority Data

Oct	. 31, 1987 [DE]	Fed. Rep. of Germany	3736959
[51]	Int. Cl. ⁵	C07D 275/02; C07	D 279/02;

[56] References Cited

U.S. PATENT DOCUMENTS

4,534,790	8/1985	Wolf	71/93
4,7 18,937	1/1988	Willms et al.	71/93

FOREIGN PATENT DOCUMENTS

0131258 7/1984 European Pat. Off. .

OTHER PUBLICATIONS

Makino et al., Chemical Abstracts, vol. 112, entry 216980y (1990).

Primary Examiner—John M. Ford Attorney, Agent, or Firm—Curtis, Morris & Safford

[57] ABSTRACT

Heterocyclically substituted N-sultamsulfonamides, processes for their preparation and their use as herbicides and plant growth regulators.

Compounds of the formula I or their salts

$$(R^{1})_{a}$$

$$(CH_{2})_{c}$$

$$S=0$$

$$(R^{2})_{b}$$

$$(CH_{2})_{e}$$

$$S=0$$

$$X R^{4}$$

$$|| | | |$$

$$SO_{2}-NH-C-N-R^{3}$$

wherein

 R^1 and R^2 denote H, halogen, alkyl, alkenyl, alkynyl or alkoxy, which can be substituted, or denote —(CH₂.)_n—COOR¹¹;

R³ denotes H, alkyl, alkenyl or alkynyl;

R⁴ denotes a heterocyclic radical of the formulae

$$-\langle \bigcup_{N}^{R^5} = \text{or } -\langle \bigcup_{N}^{N} \bigcap_{R^5}^{R^7}$$

where E is CH or N; X is O or S and a, b, c, d, e in each case denote 0, 1 or 2, with the proviso that $c+d+e \ge 2$, possess excellent herbicidal and plant growth-regulating properties.

2 Claims, No Drawings

N-SULTAMSULFONAMIDES

This application is a division of application Ser. No. 07/493,946, filed Mar. 15, 1990, now U.S. Pat. No. 5 5,073,185, which is a division of application Ser. No. 07/263,817, filed Oct. 28, 1988, now U.S. Pat. No. **4,925,4**80.

It is known that heterocyclically substituted sulfonylureas show herbicidal and plant growth-regulating 10 properties (for example EP-A-131,258).

However, they show disadvantages upon use, such as, for example, high persistence or insufficient selectivity.

It has now been found that heterocyclically substituted N-sultamsulfonamides are particularly suitable as herbicides and plant growth regulators.

The present invention thus relates to compounds of the formula (I) or their salts

$$(R^{1})_{a}$$

$$(CH_{2})_{c}$$

$$S=0$$

$$(R^{2})_{b}$$

$$(CH_{2})_{c}$$

$$S=0$$

$$(CH_{2})_{c}$$

$$SO_{2}-NH-C-N-R^{3}$$

$$(R^{2})_{b}$$

in which

R¹ and R² independently of one another denote hydrohalogen, (C_1-C_8) -alkyl, (C_2-C_8) -alkenyl, (C_2-C_8) alkynyl or (C_1-C_8) -alkoxy, it being possible for these radicals to be optionally substituted once or or twice by (C_1-C_4) -alkoxy or (C_1-C_4) -alkylthio; or denotes $-(CH_2)_n$ - $COOR^{11}$, where n denotes a number between 0 and 2,

 \mathbb{R}^3 denotes hydrogen; (C₁-C₈)-alkyl; (C₂-C₈)-alkenyl or (C_2-C_8) -alkynyl,

R⁴ denotes a heterocyclic radical of the formulae

$$-\langle \bigcup_{N}^{R^5} = \text{or } -\langle \bigcup_{N}^{R^7} = \mathbb{R}^7$$

where

E is CH or N,

R⁵ and R⁶ independently of one another denote hydrogen; halogen; (C_1-C_4) -alkyl or (C_1-C_4) -alkoxy, both 55of which can optionally be halogenated once or more $di-[(C_1-C_4-)-alkoxy]-(C_1-C_2)-alkyl;$ than once; (C₃-C₆)-cycloalkyl, ---OCHR⁸COOR⁹; -NR⁹R¹⁰ or (C₁-C₄)-alkylthio,

R⁷ denotes (C₁-C₄)-alkyl,

R⁹ and R¹⁰ independently of one another denote hydrogen; (C_1-C_4) -alkyl; (C_2-C_4) -alkenyl or (C_2-C_4) -alkynyl

R¹¹ denotes hydrogen, (C₁-C₈)-alkyl, (C₂-C₄)-alkenyl or (C₂-C₄)-alkynyl, each of which can optionally be 65 substituted once or more than once by halogen or (C_1-C_4) -alkoxy radicals,

X denotes oxygen or sulfur and

a, b, c, d and e independently of one another denote the number 0, 1 or 2, with the proviso that the total of c+d+e is larger than, or equal, 2.

The compounds of the formula I can form salts in which the hydrogen of the -SO₂-NH-group is replaced by a cation suitable for agriculture. In general, these salts are metal salts, in particular alkali metal salts, alkaline earth metal salts, or optionally alkylated ammonium salts or organic amine salts. They are preferably prepared in inert solvents, such as, for example, water, methanol or acetone, at temperatures of from 0° to 100° C. Suitable bases for the preparation of the salts according to the invention are, for example, alkali metal carbonates, such as potassium carbonates, alkali metal hydroxides and alkaline earth metal hydroxides, ammonia or ethanolamine.

Preferred compounds of the formula I are those in which R¹ and R² independently of one another denote 20 hydrogen, (C₁-C₄)-alkyl which is substituted as described above, or halogen; a, b, c, d and e independently of one another denote the numbers 0, 1 or 2, but, with the proviso that $c+d+e \ge 2$ and ≤ 4 , \mathbb{R}^3 denotes hydrogen, (C₁-C₄)-alkyl or allyl; R⁴ denotes a radical of the 25 formula

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

more than once by halogen or to be substituted once 35 and R5 and R6 independently of one another denote halogen, (C_1-C_4) -alkyl or (C_1-C_4) -alkoxy, both of which can be substituted by halogen, and X stands for oxygen.

> Halogen preferably denotes fluorine, chlorine or bromine. Halogenated alkyl or halogenated alkoxy are taken to mean, in particular, the radicals CF₃, CH2—CH2Cl, CH2CH2Br, OCF2H and OCH2CF3. Halogenated alkenyl or halogenated alkynyl denotes, in particular, CH₂CH=CHCl, CH₂CCl=CCl₂ and $CH_2-C\equiv CCH_2-Cl.$ (C₃-C₆)Cycloalkyl denotes, in particular, cyclopropyl. Particularly preferred compounds of the formula (I) are those in which R¹ and/or R² denote(s) hydrogen and (C₁-C₄)-alkyl which is sub-50 stituted as described above, R3 denotes hydrogen, a+b is 0, 1 or 2, d is 0, c+e is 3 or 4, in particular 4, R⁴ denotes a radical of the formula

$$-\left\langle \bigcup_{N}^{R^{5}}\right\rangle_{R^{6}}^{R^{5}}$$

and R⁵ and R⁶ independently of one another denote chlorine, bromine, (C_1-C_4) -alkyl, (C_1-C_4) -alkoxy, OCF₂H, OCH₂CF₃ or CF₃, and their salts.

The present invention further relates to a process for the preparation of compounds of the general formula (I), which comprises

(a) reacting a compound of the formula (II)

(II)

$$(R^{1})_{a}$$

$$(CH_{2})_{c}$$

$$(CH_{2})_{c}$$

$$N-SO_{2}-N=C=X$$

$$(R^{2})_{b}$$

with a compound of the formula (III)

$$\begin{array}{c}
H-N-R^4\\ \downarrow\\ R^3
\end{array} \tag{III}$$

or

(b) when X is oxygen, reacting a compound of the formula (IV)

$$(R^{1})_{a}$$

$$(CH_{2})_{c}$$

$$SO_{2}$$

$$|CH|$$

with a chlorosulfonylurea of the formula (V)

and, if appropriate, converting the resulting compound into a salt thereof.

The compounds of the formulae (II) and (III) are preferably reacted in inert aprotic solvents, such as, for example, acetonitrile, dichloromethane, toluene, tetrahydrofuran or dioxane, at temperatures between 0° C. and the boiling temperature of the solvent.

The N-sultamsulfonyl isocyanates of the formula II are novel and can be prepared by reacting the sultams of the formula II with chlorosulfonyl isocyanate. Thus, the compounds of the formula II and the process for their preparation also constitute a part of the present 45 invention. invention. This process is preferably carried out in inert organic solvents, such as, for example, toluene, xylene or chlorobenzene, following the known reaction of open-chain secondary sulfonamides with chlorosulfonyl isocyanate (German Offenlegungsschrift 2,257,240).

The reaction of the compounds (IV) with the chlorosulfonylureas (V) is preferably carried out in inert solvents, such as, for example, dichloromethane, acetonitrile, tetrahydrofuran, dioxane or dimethoxyethane, at temperatures of from -70° C. to 150° C., if appropriate 55 in the presence of a base as the HCl-binding agent. Bases which can be employed include alkali metal carbonates, alkali metal bicarbonates, alkaline earth metal carbonates or alkaline earth metal bicarbonates, such as, for example, K₂CO₃, NaHCO₃ and Na₂CO₃, or tertiary 60 amines, such as, e.g, pyridine or triethylamine.

The sultams (V) are known from the literature or can be prepared by processes known from the literature (cf., for example, Liebigs Ann. 646 (1961), pp. 32-45; Liebigs Ann. 651 (1962), pp. 17-29; C.A. 89 (1978), 179478 Z; 65 Bull. Chem. Soc. Jap. 44 (1971), 771-777, Tetr. Lett. (1972), p. 213; Chem. Ber. 93 (1960), p. 784). The chlorosulfonylureas (V) are accessible from the amines of

the formula (III) and chlorosulfonyl isocyanate (EP-A 141,199).

The starting substances of the formula (III) are known or can be prepared by processes known in prin-5 ciple, for example by cyclizing the corresponding guanidine derivatives with appropriately substituted 1,3diketones, compare for example "The Chemistry of Heterocyclic Compounds", Volume XVI (1962) and Supplement I (1970), or by derivatizing cyanuric chlo-10 ride, cf., for example, "The Chemistry of Heterocyclic Compounds", L. Rapaport: "s-Triazines and Derivatives" (1959).

The compounds of the formula I according to the invention show an excellent herbicidal activity against a 15 broad range of economically important monocotyledon and dicotyledon weeds. The active substances also have a good action against perennial weeds which produce shoots from rhizomes, root stocks or other perennial organs and which cannot be easily controlled. In this (IV) 20 context, it does not matter if the substances are applied before sowing, or using the pre-emergence or postemergence method. Some representatives of the monocotyledon and dicotyledon weed flora which can be controlled by the compounds according to the inven-25 tion may be mentioned individually as examples, but this naming is not to be taken to mean a restriction to certain species.

The monocotyledon weed species which are well controlled include, for example, Avena, Lolium, (V) 30 Alopecurus, Phalaris, Echinochloa, Digitaria, Setaria etc. and Cyperus species from the annual group, and the perennial species include Agropyron, Cynodon, Imperata and Sorghum etc., and also perennial Cyperus species.

Of the dicotyledon weed species, the range of action covers species such as, for example, Galium, Viola, Veronica, Lamium, Stellaria, Amaranthus, Sinapis, Ipomoea, Matricaria, Abutilon, Sida etc. from the annual plants, and Convolvulus, Cirsium, Rumex, Artemisia 40 etc. from the perennials.

The weeds occurring under the specific culture conditions in rice, such as, for example, Sagittaria, Alisma, Eleocharis, Scirpus, Cyperus etc., are also very well controlled by the active substances according to the

If the compounds according to the invention are applied to the soil surface before germination, either emergence of the weed seedlings is prevented completely, or the weeds grow until they have reached the 50 cotyledon stage but growth then ceases and, after a period of three to four weeks, the plants eventually die completely. When the active substances are applied using the post-emergence method to the green parts of the plants, growth also stops dramatically very soon after treatment, and the weeds remain in the growth stage of the time of application, or, after a certain period of time, die more or less rapidly so that competition from the weeds, which is detrimental for the crop plants, can thus be prevented at a very early stage and in a sustained manner by using the new compounds according to the invention.

Even though the compounds according to the invention have an excellent herbicidal activity against monocotyledon and dicotyledon weeds, crop plants of economically important crops such as, for example, wheat, barley, rye, rice, maize, sugar beet, cotton and soya beans, are damaged to a negligible extent only, or not at all. Thus, the present compounds are very suitable for

6

selectively controlling undesired plant growth in agricultural crops.

In addition, the compounds according to the invention have growth-regulating properties in crop plants. They engage in the plant metabolism in a regulating 5 manner and can thus be employed for facilitating harvesting, such as, for example, by initiating desiccation, abscission and stunted growth. Furthermore, they are also suitable for generally regulating and inhibiting undesired vegetative growth without simultaneously 10 destroying the plants.

Inhibition of vegetative growth plays an important role in many monocotyledon and dicotyledon crops because lodging can hereby be reduced, or prevented completely.

The agents according to the invention can be employed in the conventional preparations as wettable powders, emulsifiable concentrates, sprayable solutions, dusting agents, seed dressing agents, dispersions, granules or microgranules.

Wettable powders are preparations which are uniformly dispersible in water and which, besides the active substance, also contain wetting agents, for example, polyoxyethylated alkylphenols, polyoxyethylated fatty alcohols, alkylsulfonates or alkylphenylsulfonates, and 25 dispersing agents, for example sodium ligninsulfonate, sodium 2.2'-dinaphthylmethane-6,6'-disulfonate, sodium dibutylnaphthalenesulfonate and also sodium oleoylmethyltaurate, in addition, if appropriate, to a diluent or inert substance. They are prepared in a customary manner, for example by grinding and mixing of the components.

Emulsifiable concentrates can be prepared for example by dissolving the active substance in an inert organic solvent, for example butanol, cyclohexanone, dimethyl- 35 formamide, xylene and also higher-boiling aromatics or hydrocarbons, with the addition of one or more emulsifiers. In the case of liquid active substances, all or some of the solvent can also be omitted. Emulsifiers which can be used are, for example: calcium salts of alkylaryl- 40 sulfonic acids, such as Ca dodecylbenzenesulfonate, or nonionic emulsifiers, such as fatty acid polyglycol esters, alkylaryl polyglycol ethers, fatty alcohol polyglycol ethers, propylene oxide/ ethylene oxide condensation products, fatty alcohol/propylene oxide/ethylene 45 oxide condensation products, alkyl polyglycol ethers, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters or polyoxyethylene sorbitol esters.

Dusting agents can be obtained by grinding the active substance with finely divided solid substances, for ex- 50 ample talc or natural clays, such as kaolin, bentonite, pyrophillite or diatomaceous earth.

Granules can be produced either by spraying the active substance onto adsorptive, granulated inert material or by applying active substance concentrates onto 55 the surface of excipients such as sand, kaolinites or granulated inert material, by means of binders, for example polyvinyl alcohol, sodium polyacrylate or alternatively mineral oils. Suitable active substances can also be granulated in the manner which is conventional for 60 the preparation of fertilizer granules, if desired mixed with fertilizers.

The active substance concentration in wettable powders is, for example, about 10 to 90% by weight, the remainder to 100% by weight comprising conventional 65 formulation components. In the case of emulsifiable concentrates, the active substance concentration can be about 5 to 80% by weight. Dust-form formulations

usually contain 5 to 20% by weight of active substance, and sprayable solutions about 2 to 20% by weight. In the case of granules, the active substance content depends partly on whether -, the active compound is liquid or solid and on which granulation auxiliaries, fillers etc. are used.

In addition, the active substance formulations mentioned contain, if appropriate, the adhesives, wetting agents, dispersing agents, emulsifiers, penetrants, solvents, fillers or excipients which are conventional in each case.

For use, the concentrates, present in commercially available form, are diluted, if appropriate, in a conventional manner, for example using water in the case of wettable powders, emulsifiable concentrates, dispersions and, in some cases also for microgranules. Dustform and granulated preparations and also sprayable solutions are usually not further diluted with other inert substances before use.

The application rate required varies with the external conditions, such as temperature and humidity, amongst others. It can vary within wide limits, for example from 0.005 to 10.0 kg/ha or more of active substance; preferably, however, it is from 0.01 to 5 kg/ha.

If appropriate, mixtures or mixed formulations with other active substances, such as, for example, insecticides, acaricides, herbicides, fertilizers, growth regulators or fungicides are also possible.

The following examples illustrate the invention in greater detail.

FORMULATION EXAMPLES

A. A dusting agent is obtained by mixing 10 parts by weight of active substance and 90 parts by weight of talc or inert substance, and comminuting the mixture in a hammer mill.

B. A wettable powder which is readily dispersible in water is obtained by mixing 25 parts by weight of active substance, 64 parts by weight of kaolin-containing quartz as inert substance, 10 parts by weight of potassium ligninsulfonate and 1 part by weight of sodium oleoylmethyltaurate as wetting and dispersing agent, and grinding the mixture in a pin disk mill.

C. A dispersion concentrate which is readily dispersible in water is obtained by mixing 20 parts by weight of active substance with 6 parts by weight of alkylphenol polyglycol ether (Triton X 207), 3 parts by weight of isotridecanol polyglycol ether (8 EO) and 71 parts by weight of paraffinic mineral oil (boiling range, for example, about 255 to above 377° C.), and grinding the mixture in a ball mill to a fineness of below 5 microns.

D. An emulsifiable concentrate is obtained from 15 parts by weight of active substance, 75 parts by weight of cyclohexanone as solvent and 10 parts by weight of oxyethylated nonylphenol (10 EO) as emulsifier.

CHEMICAL EXAMPLES

EXAMPLE 1

N-(1,4-Butanesultam)-sulfonyl isocyanate

A solution of 7.78 g (0.055 mol) of chlorosulfonyl isocyanate in 20 ml of absolute chlorobenzene is added dropwise at 0° C. to a suspension of 6.78 g (0.05 mol) of 1,4-butanesultam—prepared in accordance with Liebigs Ann. 651 (1962), p. 26—in 80 ml of absolute chlorobenzene. When the dropwise addition is complete, the temperature is slowly increased to 125°-130° C., and the mixture is heated for about 6 h at 130° C. The mixture is

cooled and the solvent is removed on a rotary evaporator. The oil remaining (12.0 g \triangleq 100% of theory) is employed without purification.

EXAMPLE 2

1-[N-(1,4-Butanesultam)sulfonyl]-3-(4,6-dimethylpyrimidin-2-yl)-urea

A solution of 6.24 g (0.026 mol) of N-(1,4-butanesultam)sulfonyl isocyanate in 20 ml of dichloromethane is added dropwise at 0° C. to 3.08 g (0.025 mol) of 2amino-4,6-dimethylpyrimidine in 80 ml of absolute dichloromethane. The mixture is allowed to warm to room temperature, and stirring is continued for 18 hours. The reaction solution is washed with 0.5N hydrochloric acid and water and dried over sodium sulfate, and the solvent is then removed on a rotary evaporator. The oil remaining is crystallized from dichloromethane/n-heptane. 8.36 g (92% of theory) of 1-[N-(1,4-butanesultam)-sulfonyl]-3(4,6-dimethylpyrimidin-2-yl)-urea of m.p. 145°-147° C. are obtained.

EXAMPLE 3

1-[N-(1,3-Propanesultam)-sulfonyl]-3-(4,6-dimethylpyrimidin-2-yl)-urea

2.2 ml (0.025 mol) of chlorosulfonyl isocyanate are initially introduced into 100 ml of absolute acetonitrile at 40° C., and 3.88 g (0.025 mol) of 2-amino-4,6-dimethoxypyrimidine is added under nitrogen. This suspension is stirred at 0° C. for about 1 h and cooled to -40° C., and 3.07 g (0.025 mol) of 1,3-propanesultam, dissolved in 20 ml of absolute CH₃CN, are added. The mixture is allowed to warm to room temperature in the course of 4 h, and stirring is continued for 18 h at room temperature. The residue is filtered off with suction and suspended in 50 ml of absolute acetonitrile at 0° C., and 3.5 ml (0.025 mol) of triethylamine are added. The mixture is stirred for 2 h at room temperature, and the residue is filtered off with suction, washed with water and dried in vacuo. 9.21 g (96.6% of theory) of 1-[N-(1,3-propanesultam)-sulfonyl]-3-(4,6-dimethoxy-pyrimidin-2-yl)-urea of m.p. 166°-170° C. are obtained.

TABLE 1-continued

		Q-SO ₂ -NH	$ \begin{array}{cccc} O & R^3 & N \\ - & & & \\ - & & & \\ \end{array} $	– /		
Example	Q	R ³	R ⁵	R ⁶	E	m.p.

				Ro		
Example	Q	R ³	R ⁵	R ⁶	E	m.p.
14		H	OCH ₃	CH ₃	N	
. 15	$\begin{bmatrix} SO_2 \\ 1 \\ N- \end{bmatrix}$	H	OCH ₃	OCH ₃	N	
16	CH_3 SO_2 $N-$	H	CH ₃	CH ₃	CH	
17	CH_3 SO_2 $N-$	H	OCH ₃	CH ₃	СН	
18	CH_3 SO_2 N			OCH ₃	СН	68-71
19	CH_3 SO_2 $N-$			OCH ₃	СН	
2 0·	CH_3 SO_2 $N-$	H	OCH ₃	Cl	СН	
21	CH_3 SO_2 N			NHCH ₃	СН	
22	CH ₃ —SO ₂			Br	ĊН	•
23	CH_3 SO_2 N			SCH ₃	СН	
24	CH_3 SO_2 I $N-$		OCHF ₂	OCH ₃	CH	
25	CH_3 SO_2 $N-$		OCH ₃	CH ₃	N	
26	CH ₃ — SO ₂		OC ₂ H ₅	NHCH ₃	N	
27	CH ₃ — SO ₂	H	OCH ₃	N(CH ₃) ₂	N	
28	$CH_3 \xrightarrow{\qquad \qquad } SO_2$ $CH_3 \xrightarrow{\qquad \qquad } N-$	H	CH ₃	CH ₃	CH	•
29	$CH_3 \qquad \qquad$	H	OCH ₃	CH3	CH	

TABLE 1-continued

$$SO_2$$
 H OCH₃ OCH₃ N

 $CH_3 \longrightarrow N CH_3$ OCH₃ N

$$CH_3 \xrightarrow{SO_2} H NH_2 OCH_3 N$$

$$CH_3 \xrightarrow{CH_3} CH_3$$

SO₂ CH₃ OCH₃ CH₃ N
$$CH_3 \longrightarrow N \longrightarrow CH_3$$

40
$$SO_2$$
 H OCH₃ OCH₃ CH C_2H_5

41
$$C_2H_5$$
 C_2H_5 C_2H_5 C_2H_5 C_2H_5 C_2H_5 C_3 C_4 C_4 C_5 C_4 C_5 C_6 C_7 C_8 C

TADIE	4
IABLE	1-continued

$$Q-SO_2-NH-C-N- \left\langle \bigcup_{\substack{l|l\\N}} R^5$$

$$R^5$$

$$E$$

$$R^6$$

				R ⁶		
Example	Q	\mathbb{R}^3	R ⁵	R ⁶	E	m.p.
42	C_2H_5 SO_2 $N-$	Н	CH ₃	СН ₃	CH	
4 3	C_2H_5 SO_2 $N-$	H	OCH ₃	CH ₃	N	
44	(CH ₃) ₂ CH SO ₂	H	OCH ₃	OCH ₃	СН	
45	SO_2 $CH_3)_2CH$ $N-$	H	OCH ₃	Cl	СН	
46	SO_2 I $N (CH_3)_2CH$		OCH ₃	CH ₃	CH	
47	SO ₂ I N- CH ₃ O	H	OCH ₃	OCH ₃	СН	
. 48	SO ₂ N-		CH ₃	CH ₃	СН	
49	CH ₃ O SO ₂	H	OCH ₃	Cl	CH	
50	CH ₃ OCH ₂ SO ₂ N-	H	OCH ₃	OCH ₃	СН	
51	CH ₃ OCH ₂		OCH ₃	CH ₃	N	
52	CH ₃ OOC	H	OCH ₃	OCH ₃	CH	110-111
53	CH ₃ OOC SO ₂	H	OCH ₃	OCH ₃	CH	
54	CH ₃ OOC SO ₂	H	OCH ₃	Cl	CH	

$$Q-SO_2-NH-C-N-\left(\bigcup_{N=-\infty}^{R^3} E \right)$$

$$Q-SO_2-NH-C-N-\left(\bigcup_{N=-\infty}^{R^6} E \right)$$

				Ro		
Example	Q	\mathbb{R}^3	R ⁵	R ⁶	E	m.p.
55	CH ₃ OOC	H	OC ₂ H ₅	Cl	CH	
56	CH ₃ OOC SO ₂	H	OCH ₃	OCH ₃	СН	
57	CH ₃ OOC SO ₂	H	OCH ₃	CH ₃	N	
58	C ₂ H ₅ OOC	H	OCH ₃	OCH ₃	CH	
59	C ₂ H ₅ OOC	H	CH ₃	CH ₃	CH	•
60	C_2H_5OOC	H	OCH3	OCH ₃	N .	
61	CH ₃ OOCCH ₂	H	OCH ₃	OCH ₃	CH	
62	CH ₃ OOCCH ₂	H	OCH ₃	ClCH ₂	N	
63	C ₂ H ₅ OOCCH ₂	H	OCH ₃	OCH ₃	CH	
64	CH ₃ — SO ₂	H	OCH ₃	OCH ₃	CH	
65	CH ₃ — SO ₂	H	OCH ₃	CH ₃	СН	
66	CH ₃ —SO ₂	H	CH ₃	CH ₃	CH	
67	CH ₃ — SO ₂	CH ₃	OCH ₃	CH ₃	N	

-

•

T	Α	D.	T 1	1	~	`	٠ .	in	11	۵/	1
11	4	D.	LJ] -	Cl	H	IL.	111	u	CL	1

$$Q-SO_2-NH-C-N-\left\langle \bigcup_{\substack{|| \\ || \\ N}} R^5$$

$$E$$

$$N - \left\langle \bigcup_{\substack{|| \\ R^6}} R^6 \right\rangle$$

Example	Q	R ³	R.5	R ⁶	E	m.p.
68	CH ₃ — SO ₂	C ₂ H ₅	OCH ₃	OCH ₃	N	
69	CH ₃ — SO ₂	Ħ	OCH ₃	CH ₃	N	
7 0		Η .	OC ₂ H ₅	NHCH ₃	N	
71	CH ₃ — SO ₂	H	OCH ₃	NHCH ₃	CH	
72	CH ₃ — SO ₂		Cl	SCH ₃	CH .	
73	CH ₃ — SO ₂		Cl	OCH ₃	CH	
74	CH ₃ — SO ₂		OCHF ₂	OCHF ₂	СН	
75	CH ₃ — SO ₂			OCH3	N	
76	$\begin{array}{c c} CH_3 & SO_2 \\ \hline & I \\ CH_3 & N- \end{array}$		OCH ₃	OCH3	СН	•
77	$\begin{array}{c c} CH_3 & SO_2 \\ \hline & 1 \\ CH_3 & N- \end{array}$		OCH ₃	OCH ₃	СН	
78	CH ₃ — SO ₂ CH ₃ — N—		OCH ₃	Cl	СН	
79	CH ₃ —SO ₂		OCH ₃	CH ₃	N	
80	C_2H_5 C_2 C		OCH ₃	OCH ₃	СН	
81	C ₂ H ₅ — SO ₂	H	OCH ₃	C1	СН	
82	C ₂ H ₅ — SO ₂		OCHCF ₂	OCH ₃	СН	•
83	C ₂ H ₅ — SO ₂		CH ₃	CH ₃	CH	
84		H	OCH ₃	OCH ₃	СН	

TABLE 1-continued

$Q-SO_2-NH-C-N-\left(\bigcup_{\substack{N \\ N}} R^5$ E $N = \left(\bigcup_{\substack{N \\ R^6}} R^6 \right)$

				R ⁶		
Example	Q	R ³	R ⁵	R ⁶	E	m.p.
85	C_2H_5 SO_2 C_2H_5 $N-$	H	OCH3	Cl	CH	
86	CH_3 $CH - SO_2$ CH_3 CH_3	H	OCH ₃	OCH ₃	CH	
87	CH ₃ CH SO ₂ CH ₃ CH ₃	H	OCH ₃	CH3	N	
88	CICH ₂ —— SO ₂	Н	OCH3	OCH ₃	CH	
89	CICH ₂ — SO ₂	H	OCH ₃	CH ₃	CH	
90	ClCH ₂ — SO ₂	H	OCH ₃	CH ₃	N	
91 ·	$\begin{array}{c c} CCl_3 & SO_2 \\ \hline & I \\ N- \end{array}$	H	OCH ₃	OCH ₃	СН	
92	$\begin{array}{c c} CCl_3 & SO_2 \\ \hline & I \\ N- \end{array}$	H	OCH ₃	Cl	СН	
93	CF ₃ — SO ₂	H	OCH ₃	OCH ₃	CH	
94	CF ₃ — SO ₂	H	CH ₃	CH ₃	CH	
95	CF ₃ —— SO ₂	H	OCH ₃	CH ₃	N	
96	CCI ₃ — SO ₂	H	OCH ₃	OCH ₃	CH	
97	CC1 ₃ — SO ₂	H	CH ₃	CH ₃	CH	
98	CF ₃ — SO ₂		OCH ₃	OCH ₃	СН	
99	CF ₃ — SO ₂	H	OCH ₃	CH ₃	CH	

TABLE 1-continued

		Q—SO ₂ —NH		E		
		_		R ⁶		
Example	Q	R ³	R ⁵	R ⁶	E	m.p.
100	$\sqrt{\frac{SO_2}{N-}}$	H	OCH ₃	CH ₃	CH	
101	$\sqrt{\frac{SO_2}{N-}}$	H	CH ₃	CH ₃	CH	161-163
102	SO ₂	H	OCH ₃	Cl	СН	148-149
103	$\left\langle \begin{array}{c} SO_2 \\ I \\ N- \end{array} \right\rangle$	H	CH ₃	C!	CH	
104	$\left\langle \begin{array}{c} SO_2 \\ I \\ N- \end{array} \right\rangle$	H	OCHF ₂	Cl	СН	
105	$\sqrt{\frac{SO_2}{N}}$	H	OCHF ₂	OCH3	CH	•
106	$\left\langle \begin{array}{c} SO_2 \\ I \\ N- \end{array} \right\rangle$	H	OCHF ₂	OCHF ₂	CH	
107	$\left\langle \begin{array}{c} SO_2 \\ I \\ N- \end{array} \right\rangle$	H	OC ₂ H ₅	Cl	СН	
108	SO ₂	H	OC ₂ H ₅	CH ₃	СН	
109	SO ₂	H	OC ₂ H ₅	OCH ₃	CH	
110	SO₂ N-	H	OCH ₃	SCH ₃	СН	•
111	SO ₂	H	OCH ₃		СН	

TABLE 1-continued

	Q	SO ₂ NH	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	R ⁵		
Example	Q	R ³	R ⁵	R ⁶ R ⁶	E	m.p.
112	SO ₂	Н	OCH ₃	NHCH ₃	CH	
113	$\sqrt{\frac{SO_2}{N-}}$	H	OCH ₃	H(CH ₃) ₂	CH	
]]4	SO_2 N	H	OCH ₃	NH ₂	CH	
115	SO_2 $N-$	CH ₃	OCH ₃	OCH ₃	CH	
116	SO_2 N N	CH3	OCH3	CH ₃	CH	
117	$\left\langle \begin{array}{c} SO_2 \\ 1 \\ N- \end{array} \right\rangle$	CH ₂ CH=CH ₂	OCH ₃	OCH ₃	СН	
118	SO_2 $N-$	OCH3	OCH ₃	OCH ₃	СН	•
119	$\sqrt{\frac{SO_2}{N}}$	H	OCH ₃	OCH ₃	N	
120	SO_2 $N-$	H	OCH ₃	CH ₃	N	
121	SO ₂	H	CH ₃	CH ₃	N	
122	SO ₂	H	OCH ₃	NHCH3	N	
123	SO ₂	H	OCH ₃	N(CH ₃) ₂	N	

TABLE 1-continued

		•	Y — F	ζ6	
Example	Q	R ³	R ⁵	R ⁶	E m.p.
124	SO ₂	H	OC ₂ H ₅	NHCH3	N
125	SO ₂	H	OCH ₃	OCH ₂ CF ₃	N
126	$\left\langle \begin{array}{c} SO_2 \\ I \\ N- \end{array} \right\rangle$	H	OCH ₃	OCHF ₂	N
127	$\left\langle \begin{array}{c} SO_2 \\ I \\ N- \end{array} \right\rangle$	H	OCH ₃	CH ₂ Cl	N
128	$\left\langle \begin{array}{c} SO_2 \\ I \\ N- \end{array} \right\rangle$	H	OCH ₃		N
129	$\sqrt{\frac{SO_2}{N}}$	H	OCH ₃	CH(OCH ₃) ₂	N
130	SO ₂	H	SCH3	CH3	N
131	SO ₂	H	SCH ₃	C ₂ H ₅	N
132	SO ₂	H	SCH ₃	OCH ₃	N
133	SO ₂	H	SCH ₃	OC ₂ H ₅	N -
134	SO ₂	H	CH ₂ COOCH ₃	OCH ₃	N
135	SO ₂	H	CH ₂ COOCH ₃	OC ₂ H ₅	N

 CH_3

137

TABLE 1-continued

			3 7 001111111111111111111111111111111111	·		
$Q-SO_2-NH-C-N \longrightarrow R^5$ $Q-SO_2-NH-C-N \longrightarrow R^6$						
Example	Q	\mathbb{R}^3	R ⁵	R ⁶	E	m.p.
136	SO_2 $N-$	CH3	OCH3	OCH ₃	N	

OCH₃

 CH_3

$$Q-SO_2-NH-C-N \longrightarrow \begin{pmatrix} R^5 \\ N \\ N \\ N \end{pmatrix} = \begin{pmatrix} R^5 \\ E \\ R^6 \end{pmatrix}$$

	R^{6}						
Example	Q	\mathbb{R}^3	R ⁵	R ⁶	E	m.p.	
147	CH ₃ SO ₂ I	H	OCH ₃	NHCH ₃	СН		
148	CH ₃ SO ₂ I	H	OCHF ₂	OCH ₃	CH		
149	CH ₃ SO ₂ N	H	OCHF ₂	OCHF ₂	CH		
150	CH ₃ SO ₂ N	H	OCH3	OCH ₃	N		
151	CH ₃ SO ₂ I	H	OC.H.3	CH3	N	•	
152	CH ₃ SO ₂ I	CH ₃	OCH ₃	CH ₃	N		
153	CH ₃ SO ₂ N-	H	OCH ₃	NHCH3	N		
154	CH ₃ SO ₂ I	H	OCH ₃	NHC ₂ H ₅	N		
155	CH ₃ — SO ₂ N-	H	OCH ₃	OCH ₃	CH		
156	CH ₃ — SO: N-	H	OCH ₃	CH ₃	CH	•	

$$Q-SO_2-NH-C-N-\left(\bigcup_{\substack{l \\ N}} \mathbb{R}^5$$

$$0 \quad \mathbb{R}^3 \quad \mathbb{N} \longrightarrow \mathbb{R}^5$$

$$E$$

$$N \longrightarrow \mathbb{R}^6$$

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					R ⁶		
$CH_{3} \longrightarrow \begin{array}{c} SO_{2} \\ N- \end{array}$ $158 \longrightarrow \begin{array}{c} SO_{2} \\ N- \end{array}$ $CH_{3} \longrightarrow \begin{array}{c} CH_{3} \longrightarrow CH_{3} \longrightarrow CH_{3} \longrightarrow CH_{3} \longrightarrow CH_{3}$ $CH_{3} \longrightarrow \begin{array}{c} SO_{2} \\ N- \end{array}$ $CH_{3} \longrightarrow \begin{array}{c} SO_{2} \\ N- \end{array}$ $CH_{3} \longrightarrow \begin{array}{c} SO_{2} \\ N- \end{array}$ $CH_{3} \longrightarrow \begin{array}{c} CH_{3} \longrightarrow CH_{3} \longrightarrow CH_{3} \longrightarrow CH_{3} \longrightarrow CH_{3}$ $CH_{3} \longrightarrow \begin{array}{c} SO_{2} \\ N- \end{array}$ $CH_{3} \longrightarrow \begin{array}{c} SO_{2} \\ N- \end{array}$ $CH_{3} \longrightarrow \begin{array}{c} SO_{2} \\ N- \end{array}$ $CH_{3} \longrightarrow \begin{array}{c} CH_{3} \longrightarrow CH_{3} \longrightarrow CH_{3} \longrightarrow CH_{3} \longrightarrow CH_{3} \longrightarrow CH_{3} \longrightarrow CH_{3}$ $CH_{3} \longrightarrow \begin{array}{c} SO_{2} \\ N- \end{array}$ $CH_{3} \longrightarrow \begin{array}{c} SO_{2} \\ N- \end{array}$ $CH_{3} \longrightarrow \begin{array}{c} CH_{3} \longrightarrow CH_{3$	Example	Q	R ³	R ⁵	R6	E	m.p.
$CH_{3} \longrightarrow \begin{array}{c} SO_{2} \\ N- \end{array}$ $CH_{3} \longrightarrow \begin{array}{c} CH_{3} \longrightarrow CH_{3$	157	CH ₃ — SO ₂ I N—	H	CH ₃	CH ₃	СН	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	158	$CH_3 \longrightarrow \begin{cases} SO_2 \\ I \\ N - \end{cases}$	H	OCH ₃	Cl	CH	
161 CH ₃ — SO ₂ N— H OCH ₃ OCH ₃ N 162 CH ₃ — SO ₂ N— CH ₃ CH SO ₂ N— H OCH ₃ CH ₃ CH CH CH CH CH CH CH CH CH C	159	$CH_3 \longrightarrow \begin{array}{c} SO_2 \\ I \\ N- \end{array}$	Н	СН ₃	Cl	CH	
161 CH ₃ — SO ₂ N— H OCH ₃ OCH ₃ N 162 CH ₃ — SO ₂ N— CH ₃ CH SO ₂ N— H OCH ₃ CH ₃ CH CH CH CH CH CH CH CH CH C	160	$CH_3 \longrightarrow \begin{pmatrix} SO_2 \\ I \\ N - \end{pmatrix}$	H	OCHF2	OCHF ₂	CH	
CH ₃ CH ₃ OCH ₃ CH ₃ N SO ₂ H OCH ₃ OCH ₃ CH SO ₂ N OCH ₃ CH CH ₃ CH SO ₂ N OCH ₃ CH CH CH ₃ CH							
164 SO2 N- CH3 H OCH3 CH3 CH 165 H OCH3 CH3 CH 166 H CH3 CH3 CH	162	$CH_3 \longrightarrow \begin{array}{c} SO_2 \\ I \\ N- \end{array}$	H	OCH ₃	OCH ₃	N	
CH ₃ H OCH ₃ CH ₃ CH CH CH CH CH CH CH CH CH C	163	$CH_3 \longrightarrow \begin{pmatrix} SO_2 \\ I \\ N - \end{pmatrix}$	CH ₃	OCH ₃	CH ₃	N	
165 H OCH ₃ CH ₃ CH CH ₃ CH CH ₃ CH	164	$\left\langle \begin{array}{c} SO_2 \\ I \\ N- \end{array} \right\rangle$	H	OCH ₃	OCH ₃	CH	
	165	SO ₂	H	OCH ₃	CH ₃	CH	
CH_3	166	N-	H	CH ₃	CH ₃	CH	

 CH_3

CH₃

168
$$H$$
 OCH₃ OCH₃ N

SO₂

N

CH₃

170 H OCH₃ OCH₂F₅ CH
$$\stackrel{SO_2}{\downarrow}$$
 $\stackrel{N}{\longleftarrow}$

174
$$CH_3$$
 H OCH_3 CH_3 N CH_3 N CH_3 N N

$$Q-SO_2-NH-C-N-\left(\bigcup_{N=-\infty}^{R^3} \mathbb{R}^5 \right)$$

$$Q-SO_2-NH-C-N-\left(\bigcup_{N=-\infty}^{R^6} \mathbb{R}^6 \right)$$

	\mathbb{R}^6							
Example	Q	R ³	R ⁵	R ⁶	Ε	m.p.		
176	CH ₃ SO ₂ N N CH ₃	H	OCH ₃	OCH ₃	CH			
177	CH ₃ SO ₂ I N CH ₃	H	CH ₃	CH ₃	CH			
178	CH ₃ SO ₂ N CH ₃	H	OCH ₃	OCH ₃	N			
179	CH ₃ SO ₂ I N CH ₃	H	OCH ₃	CH ₃	N			
180	CH_3 SO_2 N N CH_3	H	OCH ₃	OCH3	CH			
181	CH ₃ SO ₂ N N CH ₃	H	OCH ₃	CH ₃	CH	•		
182	CH ₃ SO ₂ N N CH ₃	H	OCH ₃	Cl	CH			
183	CH ₃ SO ₂ N N CH ₃	H	OCH ₃		N			

$$Q-SO_2-NH-C-N-\left(\bigcup_{N}^{R^3}\bigvee_{N}^{N-1}E\right)$$

			N -	-		
				R ⁶		
Example	Q	R ³	R ⁵	R ⁶	E	m.p.
184	CH ₃ OOC SO ₂	H	OCH ₃	OCH ₃	СН	
185	CH ₃ OOC SO ₂ N-	H	OCH ₃	· OCH3	N	
186	CH ₃ OOC SO ₂	H	OCH ₃	C1	СН	
187	C ₂ H ₅ OOC SO ₂	H	OCH ₃	OCH ₃	CH	
188	C ₂ H ₅ OOC SO ₂	H	CH ₃	CH3	CH	
189	C ₂ H ₅ OOC SO ₂	H	CH ₃		CH	
190	C ₃ H ₇ OOC SO ₂ N-	H	OCH ₃	OCH3	CH	
191	C7H9OOC SO2	H	OCH ₃	OCH ₃	CH	
192	CH ₃ OOC — SO N-	H 	OCH ₃	OCH ₃	CH .	
193	CH ₃ OOC — SO N-) ₂	CH ₃	CH ₃	СН	

TABLE 1-continued

TABLE 1-continued

$$Q-SO_2-NH-C-N-\left\langle \bigcup_{N=-\infty}^{R^5} E \right\rangle$$

$$R^6$$

				R ⁶		
Example	Q	R ³	R ⁵	R ⁶	E	m.p.
215	CI SO_2 I N	H	OCH ₃	CH ₃	N	
216	$CI \longrightarrow \begin{cases} SO_2 \\ I \\ N - \end{cases}$	H	OCH ₃	OCH3	СН	
217	C1	H	OCH3	CH3	N	
218	CI SO ₂	H	OCH ₃	OCH ₃	CH	
219	CI SO ₂ N—	H	OCH ₃	CH3	N	
220	SO ₂	H	OCH ₃	CH3	CH	172-173
221	SO ₂	H	OCH ₃	CH ₃	CH	162-164
222	SO_2 $N-$	H	OCH ₃	Cl	СН	148-149
223	SO ₂	H	CH ₃	Cl	CH	
224	SO_2 $N-$	H	CH ₃	Br	CH	
225	SO ₂	H	OCH ₃	Br	CH	

TABLE 1-continued

$$Q-SO_2-NH-C-N-\left\langle \bigcup_{N=0}^{R^3} \bigvee_{N=0}^{N} - \bigcup_{N=0}^{R^5} E\right\rangle$$

				R ⁶		
Example	Q	\mathbb{R}^3	R ⁵	R ⁶	E	m.p.
-226	SO ₂	H	OCHF ₂	OCHF ₂	СН	
227	SO ₂	H	OCHF ₂	OCH ₃	CH	
228	SO ₂	H	OCH ₃	OCH ₂ CF ₃	СН	
229	SO_2 N	H	OC ₂ H ₅	OCHCF3	СН	
230	SO ₂	H	OC ₂ H ₅	OC ₂ H ₅	СН	
231	SO ₂	H	SCH ₃	CH ₃	CH	
232	SO ₂	H	OCH ₃	NHCH ₃	·CH	
233	SO ₂	H	CH ₃	N(CH ₃) ₂	СН	
234	SO ₂	H	OCH ₃		CH	
235	SO ₂	H	CH ₃		CH	
236	SO ₂	H	OCHF ₂	OCHF ₂	CH	•
237	SO ₂	CH ₃	OCH ₃	OCH ₃	CH	

TABLE 1-continued

TABLE 1-continued

	· Q-	-SO ₂ -NH-	$-\frac{1}{C} - \frac{1}{N} - 1$	E		
Example	Q	R ³	R ⁵	`R ⁶	E	m.p.
250	SO ₂	H	OCH ₃		N	
251	SO ₂	H	OCH ₃	OCH ₂ CF ₃	N	
252	SO ₂	H	CH ₃	OCH ₂ CF ₃	N	
253	SO_2 $N-$	CH3	OCH ₃	CH3	N	
254	SO ₂	СH ₃	OCH ₃	OCH3	N	
255	SO ₂	CH ₃	OCH ₃	NHCH ₃	N	
256	SO ₂	H	OCH ₃	OCH ₃	CH	48-50
257	SO ₂	H	OCH ₃	CH ₃	СН	
258	SO ₂	H	CH ₃	CH ₃	СН	
259	SO ₂	H	OCH ₃	Cl	СН	
260		Н	OCH ₃	Br	СН	

Н

261

OC₂H₅

OCH₃

CH

•

•

•

CO . TO T TO	
TARLE	1-continued
	1 COMMINGE

	Ç)—SO ₂ —NH·	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	E		
Example	Q	R ³	R ⁵	R ⁶	E	m.p.
262	SO ₂	H	OC ₂ H ₅	OC ₂ H ₅	CH	
263	SO ₂	H	OCH ₃	NHCH3	CH	
264	SO ₂	H	OCH ₃	CH ₃	N	
265	SO ₂	H	OCH ₃	NHCH3	N	
266	SO ₂	СH3	OCH3	CH ₃	N	
267	SO ₂	H	OCH;	OCH ₂ CF ₃	CH '	
268	SO ₂	H	OCH3	OCH3	СН	
269	SO ₂	H	OCH ₃	CH3	CH	
270	SO ₂	H	CH ₃	CH ₃	CH	
271	SO ₂	H	OCH ₃	C 1	CH	
272	SO ₂	H	CH ₃	Cl	CH	
273	SO ₂	H	OCH ₃	OCH ₂ CF ₃	CH	

TABLE 1-continued

$$Q-SO_2-NH-C-N \longrightarrow \bigoplus_{\substack{\parallel & \parallel \\ N \ }} E$$

$$Q \qquad R^3 \qquad R^5 \qquad R^6 \qquad E \qquad m.p.$$

	R ⁶							
Example	Q	R ³	R ⁵	R ⁶	E	m.p.		
274	SO ₂	H	OCHF ₂	OCHF ₂	СН			
275	SO ₂	H	OCH ₃	CH ₃	N			
276	SO ₂	СH ₃	OCH ₃	CH ₃	N			
277	SO ₂	H	OH3		N			
278	SO ₂	H	OC ₂ H ₅	NHCH ₃	N			
279	SO ₂	H	SCH ₃	CH3	N	•		
280	SO ₂	H	OCH ₃	OCH3	CH			
281	SO ₂	H	OCH3	CH ₃	СН			
282	SO ₂	H	CH ₃	CH ₃	CH			
283	SO ₂	H	OCH ₃	CI	CH			
284	SO ₂	H	OCHF ₂	OCHF ₂	CH			
285	SO ₂	H	SCH ₃	CH ₃	CH			

TABLE 1-continued

	Q-	-SO ₂ -NH-	$ \begin{array}{c c} O & R^3 & N & - \\ -C & N & - \\ \hline N & - \\ \end{array} $	R ⁵ E R ⁶		
Example	Q	R ³	R ⁵	R ⁶	E	m.p.
286	SO ₂	H	OC ₂ H ₅	NHCH3	CH	
287	SO ₂	H	OCH ₃	CH ₃	N	
288	SO ₂	CH ₃	OCH ₃	CH ₃	N	
289	SO ₂	H	OCH ₃	OCH3	N	
290	SO ₂	H	OCH ₃	OCH ₂ CF ₃	N	
291	SO ₂	H	OCH3		N	
292	SO ₂	H	OCH3	OCH ₃	СН	
293	SO ₂	H	OCH3	CH ₃	CH	
294	SO ₂	H	CH ₃	CH ₃	CH	
295	SO ₂	H	OCH ₃	Cl	CH	
296	SO ₂	H	OCHF ₂	OCHF ₂	CH	
297	SO ₂	H	OCHF ₂	OCH ₃	CH	

TABLE 1-continued

$$Q-SO_2-NH-C-N-\left(\bigcup_{N=-\infty}^{N-1} R^5\right)$$

$$R^5$$

$$E$$

$$R^6$$

				R ⁶		
Example	Q	\mathbb{R}^3	R ⁵	R ⁶	E	m.p.
298	SO ₂	H	OCHF ₂	CH ₃	CH	
299	SO ₂	H	OCH3	CH ₃	N	
300	SO ₂	CH ₃	OCH ₃	CH ₃	N	
301	SO ₂	H	OCH3	OCH3	N	
302	SO ₂	H	CH ₃	CH ₃	N	
303	SO ₂	N	H	CH3	CH ·	•
304	CH ₃ SO ₂ N- CH ₃	H	OCH3	OCH3	CH	
304	CH ₃ SO ₂ N CH ₃	H	OCH ₃	OCH ₃	CH	
305	CH ₃ SO ₂ N CH ₃	H	OCH ₃	CH ₃	N	
306	CH ₃ SO ₂ N-	H	OCH ₃	OCH ₃	СН	112-114

TABLE 1-continued

$$Q-SO_2-NH-C-N \longrightarrow \begin{pmatrix} R^5 \\ N \\ N \end{pmatrix} = \begin{pmatrix} R^5 \\ E \\ N \end{pmatrix}$$

				R ⁶		
Example	Q	\mathbb{R}^3	R ⁵	R 6	E	m.p.
307	CH ₃ SO ₂ N-	H	OCH3	CH ₃	СН	
308	CH ₃ SO ₂ N N CH ₃	H	CH ₃	CH ₃	CH	
309	CH ₃ SO ₂ N CH ₃	H	OCH3	CI .	CH	
310	CH ₃ SO ₂ N CH ₃	H	OCHF2	OCHF ₂	СН	
311	CH ₃ SO ₂ N CH ₃	H	OCH3	NHCH3	СН	
312	CH ₃ SO ₂ N CH ₃	H	OCH3	CH ₃	N	•
313	CH ₃ SO ₂ N CH ₃	CH ₃	OCH ₃	CH ₃	N	
314	CH ₃ SO ₂ N CH ₃	H	OCH ₃	OCH ₃	N	

TABLE 1-continued

$$Q-SO_2-NH-C-N-\left\langle O R^3 N - \left\langle O R^5 N - \left\langle O R^6 N - O R^6 N - \left\langle O R^6 N - O R^6 N$$

Example	Q	\mathbb{R}^3	R ⁵	R ⁶	E	m.p
315	CH ₃ SO ₂ N N	H	CH ₃	CH ₃	N	
316	CH ₃ Cl SO ₂	H	OCH ₃	OCH ₃	СН	
317		H	OCH ₃	CL	СН	
318		H	OCH ₃	CH3	CH	
319		H	CH3	CH ₃	CH	
220	CI SO ₂	H	OCH ₃	OCH ₃	СН	
321	C1 SO ₂	H	CH3	CH ₃	CH	
322	CI SO ₂	H	OCH ₃	NHCH ₃	CH	
323	CI SO ₂ N-	H	CH ₃	H	CH .	
324	SO ₂	H	OCH ₃	OCH ₃	СН	

TABLE 1-continued

	Q-	-SO ₂ NH-	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
Example	Q	R ³	R ⁵	R ⁶	E	m.p.
325	SO_2 N N	CH ₃	OCH ₃	CH ₃	N	
326	SO_2 N N	H	OCH ₃	OCH ₃	N	
327	SO_2 N N	H	OCH3		N	
328	CI SO ₂ N	H	OCH ₃	CH ₃	CH	
329	C1 SO2 N	Н	OCH3	CH ₃	CH .	
330	SO ₂	H	OCH3	H	CH	
331	Cl SO2	H	OCH ₃	OCH ₃	СН	
332	CI SO ₂	H	OCH ₃	CH ₃	N	
333	CI SO ₂	H	OCH ₃	H	N	
334	CI SO ₂ I N	H	OCH ₃	OCH ₃	CH	
335	CI SO ₂	H	OCHF ₂	OCHF ₂	CH	

TABLE 1-continued

$$Q-SO_2-NH-C-N-\left\langle \bigcup_{\substack{|| \\ || \\ N}} R^5$$

$$E$$

$$R^6$$

			•	R ⁶		
Example	Q	R ³	R ⁵	R ⁶	E	m.p.
336		Н	CH ₃	· CH ₃	СН	
337	SO_2 SO_2 N	H	OCH ₃	OCH ₃	CH	
338	SO_2 I N	H	SCH3	CH ₃	CH	
339	SO_2 N N	H	OCH ₃	CH ₃	N .	
340		H	OCH ₃	OCH ₃	CH	
341	SO_2 N	H	CH3	CH ₃	CH	•
342	C! SO ₂	H	OCH3	CH ₃	N	
343	SO ₂	H	OCH ₃	OCH ₃	CH	
344	SO_2 I N	H	CH ₃	CH ₃	CH	
345	SO ₂	H	OCH ₃	CH ₃	N	
346	COOCH ₃ SO ₂	H	OCH ₃	OCH ₃	CH	

TABLE 1-continued

$$Q-SO_2-NH-C-N-\left(\bigcup_{N=-\infty}^{R^3} \mathbb{R}^5 \right)$$

			\sim		
				R ⁶	
Example	Q	\mathbb{R}^3	R ⁵	R ⁶	E m.p.
347	COOCH; SO ₂ I	H	CH ₃	CH3	CH
348	COOC ₂ H ₅ SO ₂ N-	H	OCH ₃	OCH ₃	CH
349	CH ₃ OOC SO ₂		OCH3	OCH ₃	CH
350	CH ₃ OOC SO ₂	H	CH ₃	CH3	CH
351	CH ₃ OOC SO ₂	H	OCH3	CH3	N
352	SO ₂ SO ₂ N-	H	OCH3	OCH ₃	CH
353	SO ₂ I N-	H	OCH3	Cl	CH
354	C_2H_5OOC SO_2 $N-$		OCH ₃	OCH ₃	CH
355	SO ₂ I N CH ₃ COC	H	OCH ₃	OCH ₃	CH
356	SO ₂ I N CH ₃ OOC	H	OCH ₃	CH ₃	N

TABLE 1-continued

$$Q-SO_2-NH-C-N \longrightarrow \begin{pmatrix} R^5 \\ N \\ N \end{pmatrix} = \begin{pmatrix} R^5 \\ N \\ R^6 \end{pmatrix}$$

			N -	R ⁶		
Example	Q	R ³	R ⁵	R ⁶	E	m.p.
357	SO ₂ I N CH ₃ OOC	CH ₃	OCH ₃	CH ₃	N .	
358	COOCH ₃ SO ₂ I N-	H	OCH ₃	OCH ₃	СН	
359	COOCH ₃ SO ₂ N-	H	OCH ₃	CH ₃	N	
360	SO ₂	H	OCH3	OCH ₃	CH	
361	CH3OOC SO	· H 2	OCH3	OCH3	CH	
362	CH ₃ OOC SO	H 2	OCH ₃	CH ₃	N	
363	CH ₃ OOC SO	CH ₃	OCH ₃	OCH ₃	CH	
364	CH ₃ OOC SO N	H 2	OCH ₃	OCH ₃	CH	
365	CH ₃ OOC SO	•	OCH ₃	Cl	CH	•
366	SO SO N-	H 2	OCH ₃	CH ₃	N	

$$Q-SO_2-NH-C-N-\left\langle \begin{array}{c} R^5 \\ \parallel & \mid \\ N \end{array} \right\rangle$$

$$R^6$$

	_	- 1	· ~ 5	 	- -	
Example 377	Q	R ³	R ⁵ OCH ₃	R ⁶	E CH	m.p.
3//	SO ₂ I N-		осп		CH	
378	SO ₂	H	CH ₃	· CH ₃	CH	
379	SO ₂	H	OCH3	CH3	N	
380	CH ₃ SO ₂ I N-	H	OCH3	OCH ₃	СН	
381	CH ₃ SO ₂ I N-	H	OCH ₃	CH ₃	CH	
382	CH ₃ SO ₂ I N CH ₃	H	OCH ₃	Cl	CH	
383	CH ₃ SO ₂ I N CH ₃	H	OCHF ₂	OCHF ₂	CH	
384	CH ₃ SO ₂ I N CH ₃	H	OCH ₃	CH ₃	N	
385	CH ₃ SO ₂ I N CH ₃	CH ₃	OCH ₃	CH ₃	N	
386	CH ₃ SO ₂ I N CH ₃	H	OCH ₃	NHCH ₃	N	
387	CH ₃ SO ₂ N- CH ₃	H	OCH ₃	OCH ₂ CF ₃	N	

TABLE 1-continued	TA	BLE	E 1-coi	ntinued
-------------------	----	-----	---------	---------

$$Q-SO_2-NH-C-N \longrightarrow \begin{pmatrix} R^5 \\ & 1 \\ & N \end{pmatrix} = \begin{pmatrix} R^5 \\ & \\ & \\ & \\ & \\ & R^6 \end{pmatrix}$$

		$\sim \frac{1}{R^6}$				
Example	Q	\mathbb{R}^3	R ⁵	R ⁶	E	m.p.
388	CH ₃ SO ₂ I	H	OCH3	OCH ₃	CH	
389	CH ₃ SO ₂ I N-	CH ₃	OCH ₃	OCH ₃	CH	
390	CH ₃ SO ₂ I	H	OCH3	·CH3	N	
391	SO ₂ N CH ₃	H	OCH3	OCH3	CH	
392	SO ₂ N CH ₃	H	OCH3	Cl	CH ·	
393	SO ₂ N CH ₃	·H	CH ₃	CH ₃	CH	
394	SO ₂ N N CH ₃	H	OCH ₃	CH ₃	N	
395	CH ₃ SO ₂ N-	H	OCH ₃	OCH ₃	CH	
396	CH ₃ SO ₂ N	H	OCH ₃	CH ₃	CH	

CH₃

TABLE 1-continued

TABLE 2-continued TABLE 2 \mathbb{R}^5 R^5 Example m.p. Example H OCH₃ CH₃ 405 H OCH3 OCH3 CH **40**0 H OCH3 OCH3 CH 401 406 H OCH3 OCH3 CH H OCH3 OCH3 CH 402 CH3 H OCH₃ Cl 407 CH 55 H OCH₃ OCH₃ CH H OCH₃ CH₃ N **6**0 409 H OCH3 OCH3 CH H OCH₃ OCH₃ CH 404

TABLE 2-continued

BIOLOGICAL EXAMPLES

The damage to the weeds and the tolerance by crop plants were scored according to a key where numbers from 0 to 5 express the activity. In this key:

- 0 denotes no action
- 1 denotes 0-20% action or damage
- 2 denotes 20-40% action or damage
- 3 denotes 40-60% action or damage
- 4 denotes 60-80% action or damage
- 5 denotes 80-100% action or damage

1. Pre-emergence Action on Weeds

Seeds or rhizome pieces of monocotyledon and dicotyledon weeds were placed in plastic pots containing 40 sandy loam and covered with soil. Various dosages of aqueous suspensions or emulsions of the compounds according to the invention formulated as wettable powders or emulsion concentrates were then applied to the surface of the cover soil, applying about 600-800 l/ha of 45 water.

After treatment, the pots were placed in the green-house and kept under good growth conditions for the weeds. Visual scoring of the plant damage or the emergence damage was carried out after emergence of the 50 test plants after a trial period of 3-4 weeks, comparing them to untreated control plants. As shown by the score data in Table 2, the compounds according to the invention have a good herbicidal pre-emergence activity against a broad range of weed grasses and weeds

2. Post-emergence Action on Weeds

Seeds or rhizome pieces of monocotyledon and dicotyledon weeds were placed in plastic pots in sandy loam, covered with soil and grown in the greenhouse under 60 good growth conditions. Three weeks after sowing, the test plants were treated in the three-leaf stage.

Various dosages of the compounds according to the invention formulated as wettable powders or emulsion concentrates were sprayed onto the green parts of the 65 plants, applying about 600-800 l/ha of water, and the action of the preparations was scored visually after the test plants had remained in the greenhouse for about 3

to 4 weeks under optimum growth conditions, comparing them to untreated control plants.

The agents according to the invention also exhibit a good herbicidal activity against a broad range of economically important weed grasses and weeds in the post-emergence treatment (Table 3).

3. Tolerance by Crop Plants

In further greenhouse experiments, seeds of a relatively large number of crop plants and weeds were placed in sandy loam and covered with soil.

Some of the pots were treated immediately as described under 1., and the remainder was placed in the greenhouse until the plants had developed two to three true leaves and were then sprayed with various dosages of the substances according to the invention as described under 2.

Four to five weeks after application, with the plants remaining in the greenhouse, visual scoring revealed that the compounds according to the invention did not cause any damage to dicotyledon crops, such as, for example soya beans, cotton, oilseed rape, sugar beet and potatoes when applied either as a pre-emergence and post-emergence treatment, even at high dosages of active substance. Furthermore, some of the substances also left crops of the Gramineae such as, for example barley, wheat, rye, sorghum millet species, maize or rice, unaffected. Thus, the compounds of the formula I exhibit high selectivity on application for controlling undesired plant growth in agricultural crops.

TABLE 4

35	Pre-emergence action of the compounds according to the invention					
	Product Dosage herbicidal action					<u> </u>
	No.	kg of a.i./ha	SIA	CRS	STM	LOM
•	2	0.6	5	5	5	5
40	3	0.6	5	5	5	5
. –	6	0.6	5	5	4	5
	18	0.6	5	5	5	5
	30	0.6	5	5	5	5
	52	0.6	5	4	5	4
	101	0.6	5	5	5	5
45	102	0.6	5	5	5	5
	143	0.6	5	5	5	5
	220	0.6	5	5	5	5
	221	0.6	5	5	5	5
	227	0.6	5	5	5	5
.	256	0.6	5	5	4	5
50	306	0.6	5	5	5	5

TABLE 5

	Post-emergence action						
55	Product	Dosage	herbicidal action				
	No.	kg of a.i./ha	SIA	CRS	STM	LOM	
,	2	0.6	5	5	5	5	
	3	0.6	5	5	5	5	
	6	0.6	5	5	4	5	
60	18	0.6	5	5	5	5	
	30	0.6	4	5	5	5	
	52	0.6	5	5	5	5	
	101	0.6	5	5	5	5	
	102	0.6	5	5	5	5	
c e	143	0.6	5	5	5	5	
65	220	0.6	5	5	5	5	
	221	0.6	5	5	5	5	
	222	0.6	5	5	5	5	
	256	0.6	5	5	5	5	

10

TABLE 5-continued

Post-emergence action						
Product	Dosage	herbicidal action			ı	
No.	kg of a.i./ha	SlA	CRS	STM	LOM	
306	0.6	5	5	5	5	

Abbreviations:

SIA = Sinapis alba

CRS = Chrysanthemum segetum

STM = Stellaria media

LOM = Lolium multiflorum

Inhibition of Growth in Cereals

In experiments on young cereal plants (wheat, barley, rye) at the 3-leaf stage, grown in dishes in the green- 15 house, the plants were sprayed with compounds according to the invention at various concentrations of active substance (kg/ha) until dripping wet.

When the untreated control plants had reached a height of about 55 cm, the additional growth was measured on all plants and the growth inhibition was calculated as a percentage of the additional growth of the control plants. In addition, the phytotoxic action of the compounds was observed, with 100% denoting cessation of growth, and 0% denoting growth corresponding to that of the untreated control plants. It was evident that the compounds possess very good growth-regulating properties. The results are compiled in the table below.

TABLE 6

Compounds	Application	Inhibi	Phytotox.		
of Ex. No.	conc. kg/ha	wheat	barley	rye	action
3	0.62	25	24	43	по
	0.31	18	17	29	damage
101	0.62	19	22	35	no
	0.31	15	17	29	damage

We claim:

1. A compound of formula II

$$(R^{1})_{a}$$

$$(CH_{2})_{c}$$

$$(CH_{2})_{c}$$

$$(CH_{2})_{e}$$

wherein:

R¹ and R² independently of one another are hydrogen, halogen, or are (C_1-C_8) -alkyl, (C_2-C_8) -alkenyl, (C_2-C_8) -alkynyl or (C_1-C_8) -alkoxy, each of which is unsubstituted or mono- or polysubstituted by halogen, or is mono- or disubstituted by (C_1-C_4) -alkoxy or (C_1-C_4) -alkylthio; or are $-(CH_2)_n$ -COOR¹¹, where n is an integer from 0 to 2;

 R^{11} is hydrogen, or (C_1-C_8) -alkyl, (C_2-C_4) -alkenyl or (C_2-C_4) -alkynyl each of which is mono- or polysubstituted by halogen or (C_1-C_4) -alkoxy radicals;

X is oxygen or sulfur; and

a, b, c, d and e independently of one another are 0, 1 or 2, with the proviso that the sum of c, d and e is greater than or equal to 2.

2. A compound of formula II as claimed in claim 1 wherein:

R¹ and R² independently of one another are hydrogen, halogen or (C₁-C₄)-alkyl which is unsubstituted, mono- or polysubstituted by halogen or mono- or disubstituted by (C₁-C₄)-alkoxy or (C₁-C₄)-alkylthio;

a and b independently of one another are 0, 1 or 2, but with the proviso that the sum of c, d and e is greater than or equal to 2 and less than or equal to 4; and

X is oxygen.

45

40

50

55

60