

US005087336A

United States Patent

Liboff et al.

Patent Number: [11]

5,087,336

Date of Patent: [45]

Feb. 11, 1992

[54]	METHODS AND APPARATUS FOR
	REGULATING TRANSMEMBRANE ION
	MOVEMENT UTILIZING SELECTIVE
	HARMONIC FREQUENCIES AND
	SIMULTANEOUS MULTIPLE ION
	REGULATION

Inventors: Abraham R. Liboff, Birmingham, [75]

> Mich.; Bruce R. McLeod, Bozeman, Mont.; Stephen D. Smith, Lexington,

[73] Assignee: Life Resonances, Inc., Bozeman,

Mont.

subsequent to Apr. 4, 2006 has been

The portion of the term of this patent

disclaimed.

[21] Appl. No.: 343,017

[*] Notice:

[22] Filed: Apr. 25, 1989

Related U.S. Application Data

[63] Continuation-in-part of Ser. No. 295,164, Jan. 9, 1989, Ser. No. 280,848, Dec. 7, 1988, Ser. No. 265,265, Oct. 31, 1988, Pat. No. 5,067,940, Ser. No. 172,268, Mar. 23, 1988, Pat. No. 4,932,951, Ser. No. 923,760, Oct. 27, 1986, Pat. No. 4,818,697, and Ser. No. 254,438, Oct. 6, 1988, said Ser. No. 280,848, is a continuation of Ser. No. 923,760.

[51]	Int. Cl. ⁵	
[52]	U.S. Cl	
	204/1	64; 204/180.1; 204/193; 435/173

[58]

204/164, 180.1; 435/173 [56]

References Cited

U.S. PATENT DOCUMENTS

3,566,877	3/1971	Smith et al 128/422
3,890,953	6/1975	Kraus et al 128/1.5
3,893,462	7/1975	Manning 128/421
3,911,930	10/1975	Hagfors et al 128/421
3,952,751	4/1976	Yarger 128/422
4,105,017	8/1978	Ryaby et al 128/1.5
4,266,532	5/1981	Ryaby et al 128/1.5
4,428,366	1/1984	Findl et al 128/1.5
4,459,988	7/1984	Dugot 128/419 F
4,535,775	8/1985	Brighton et al 128/419 F
4,548,208	10/1985	Miemi 128/419 F
4,561,426	12/1985	Stewart 128/1.5
4,600,010	7/1986	Dugot 128/419 F
		Moore 128/1.5

4,622,952	11/1986	Gordon	128/1.3
4,622,953	11/1986	Gordon	128/1.3
4,654,574	3/1987	Thaler	320/14
4,683,873	8/1987	Cadossi et al	128/1.5
		Griffith et al.	
·		Liboff et al 204	
		Liboff et al	

OTHER PUBLICATIONS

Blackman et al, Bioelectromagnetics 6:1-11 (1985). "Stimulation of Fracture Healing with Electromagnetic Fields of Extremely Low Frequency" (EMF of ELF) Clinical Orthopedics & Related Research, No. 186, 6/84.

"Interactions Between Electromagnetic Fields and Cells" Chiabrera, et al. Plenum Publishing (1985), pp. 281-291.

"A Role for the Magnetic Field in the Radiation-Induced Efflux of Calcium Ions from Brain Tissue in Vitro", Bioelectromagnetics 6:327-337 (1985).

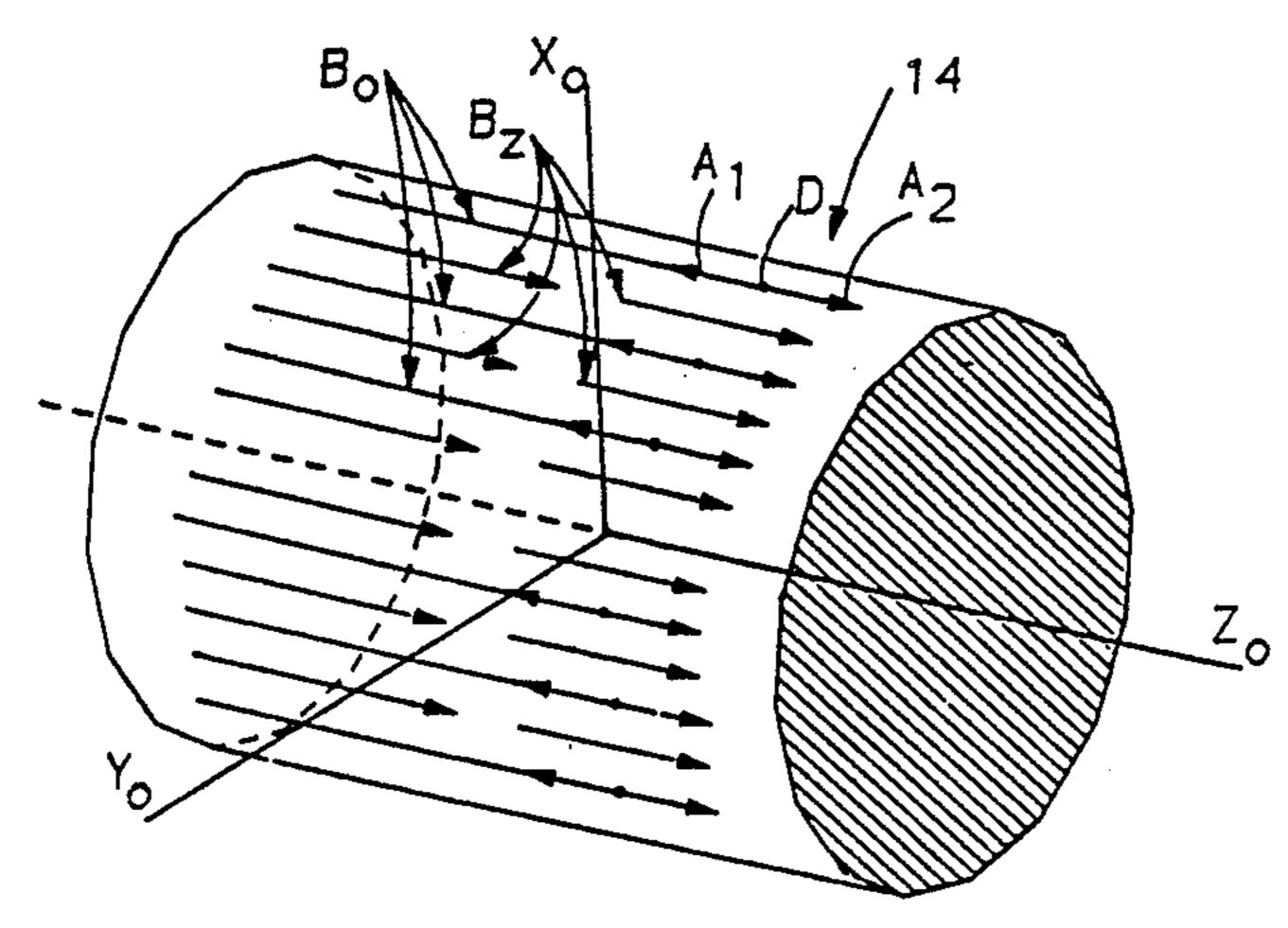
"Bioelectrochemical Studies of Implantable Bone Stimulation Electrodes"; Biolectrochemistry and Bioenergetics 5,222–238 (1978).

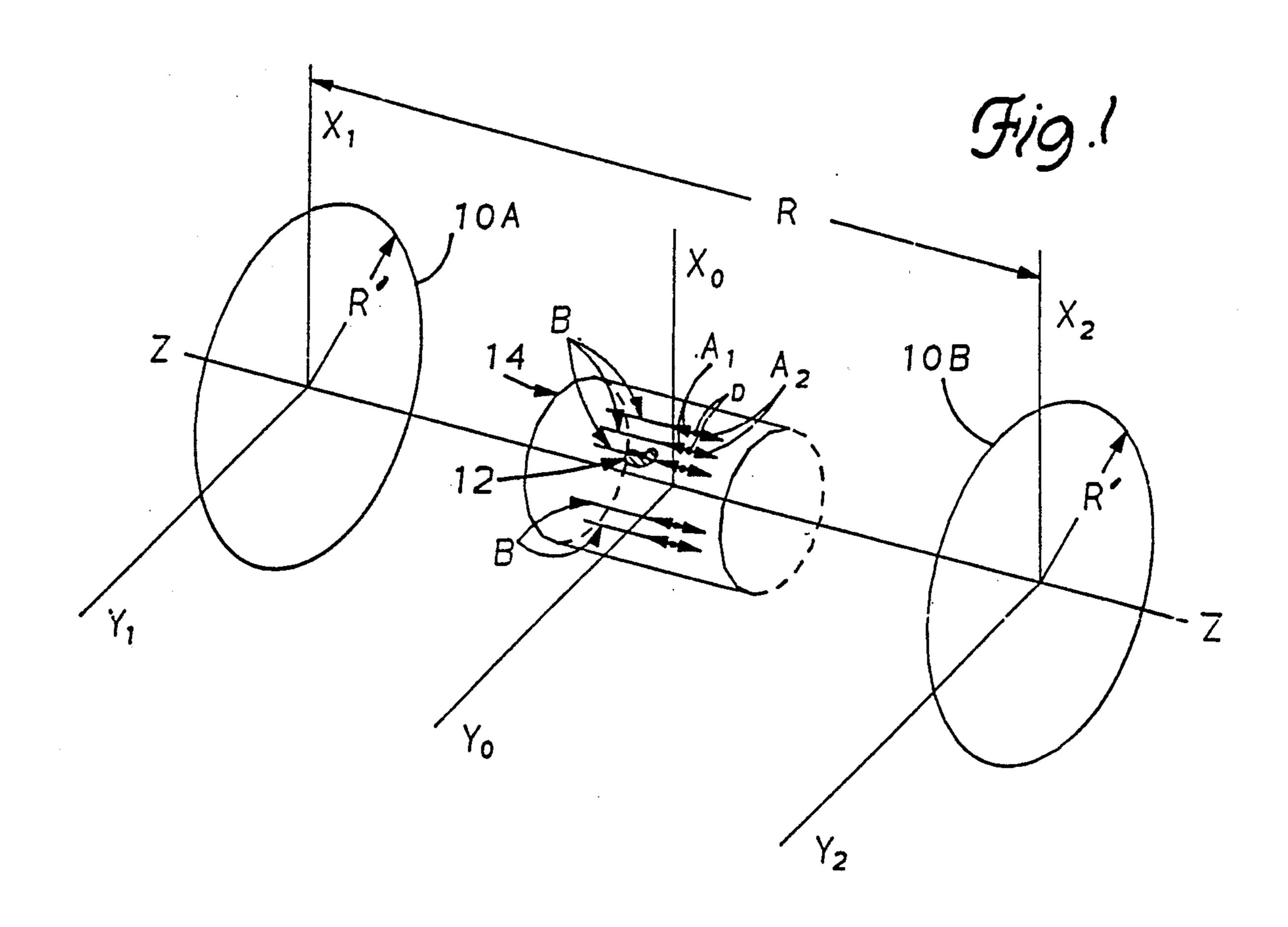
"Inducing Bone Growth in Vivo by Pulse Stimulation"; Clinical Orthopedics and Related Research, No. 88, 10/72.

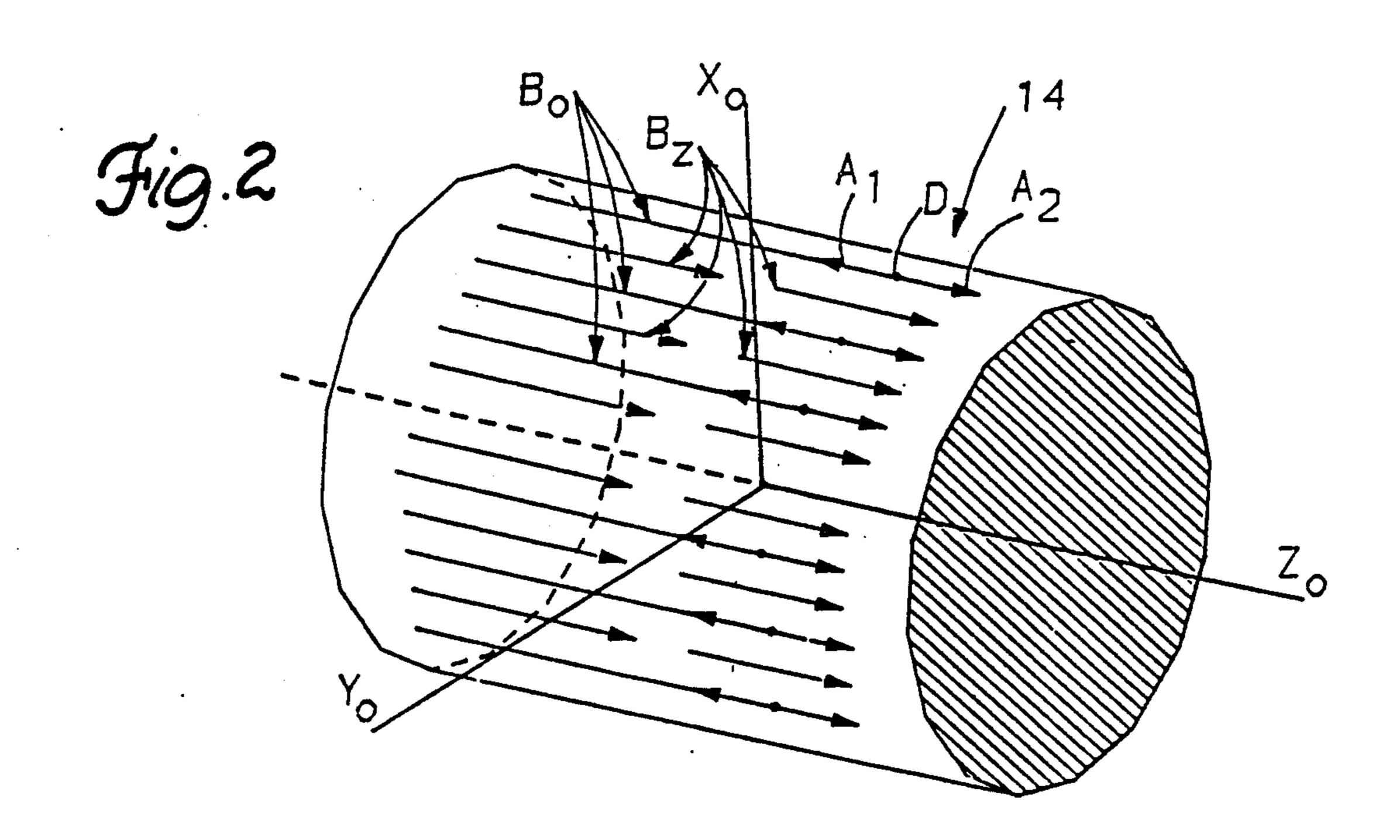
"Clinical Experience with Low-Intensity Direct Current Stimulation of Bone Growth"; Clinical Orthopedics and Related Research, No. 124, 5/77.

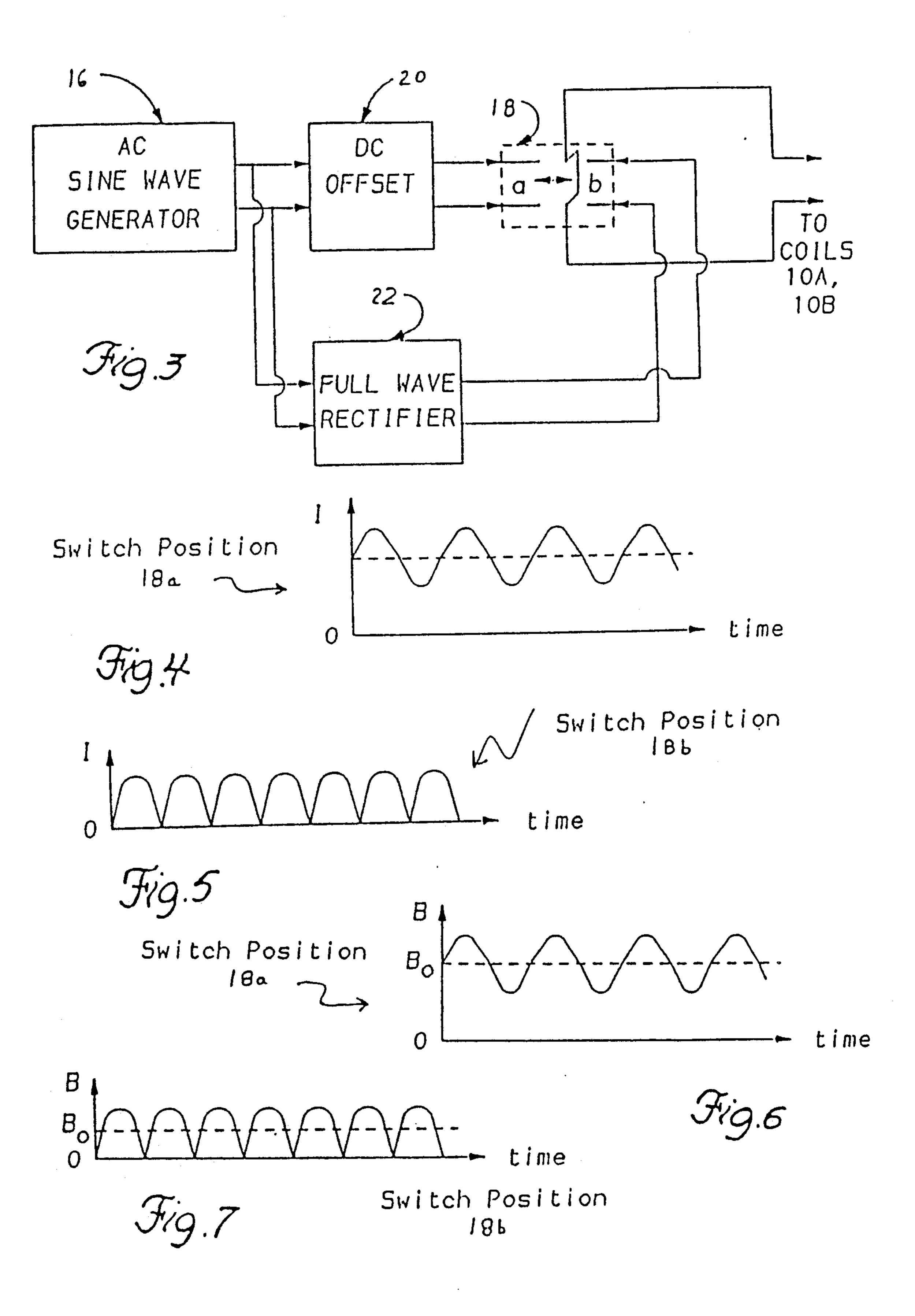
"Geomagnetic Cyclotron Resonance in Living Cells", Journal of Biological Physics, vol. 13, 1985.

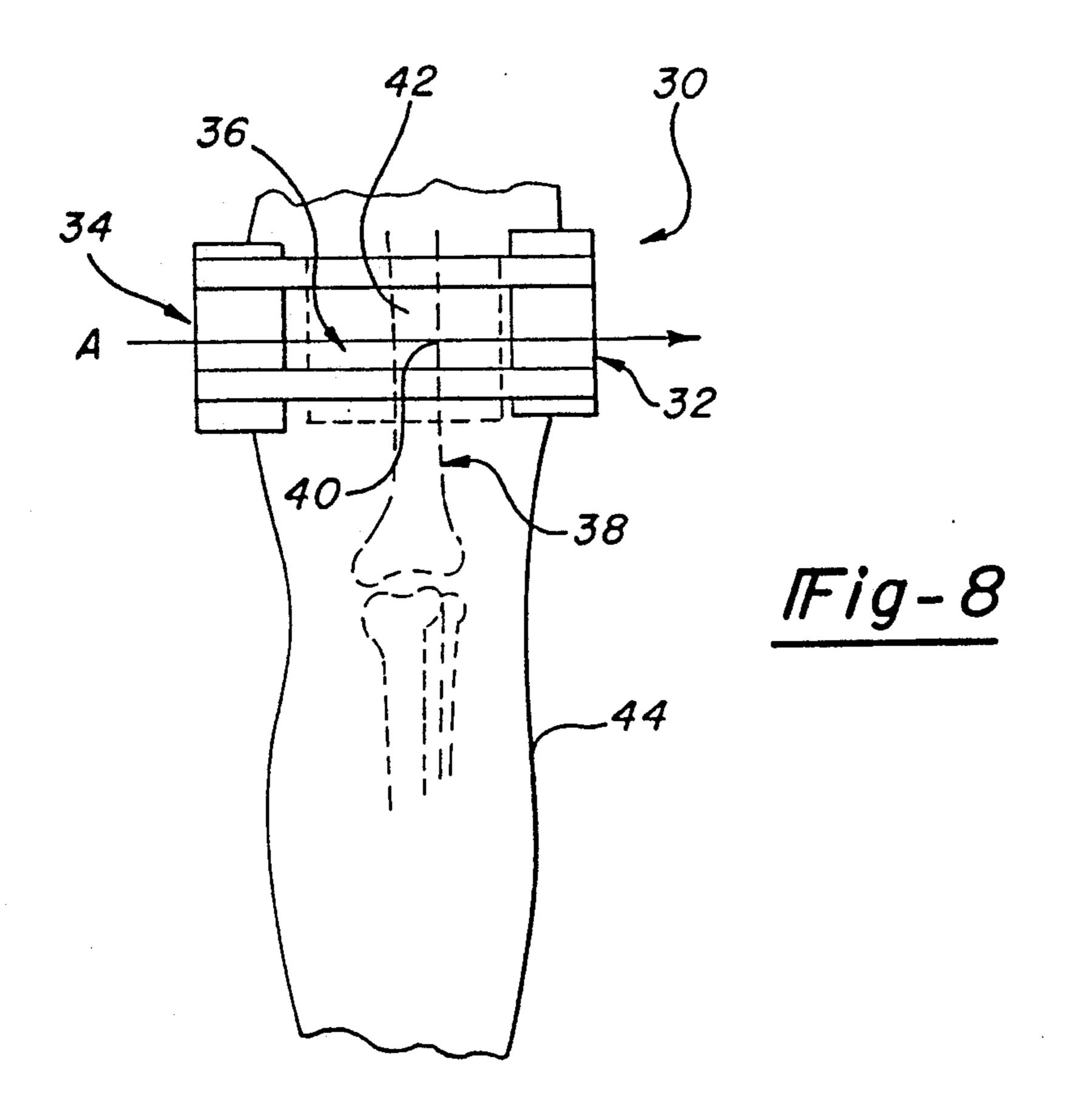
Primary Examiner—John Niebling

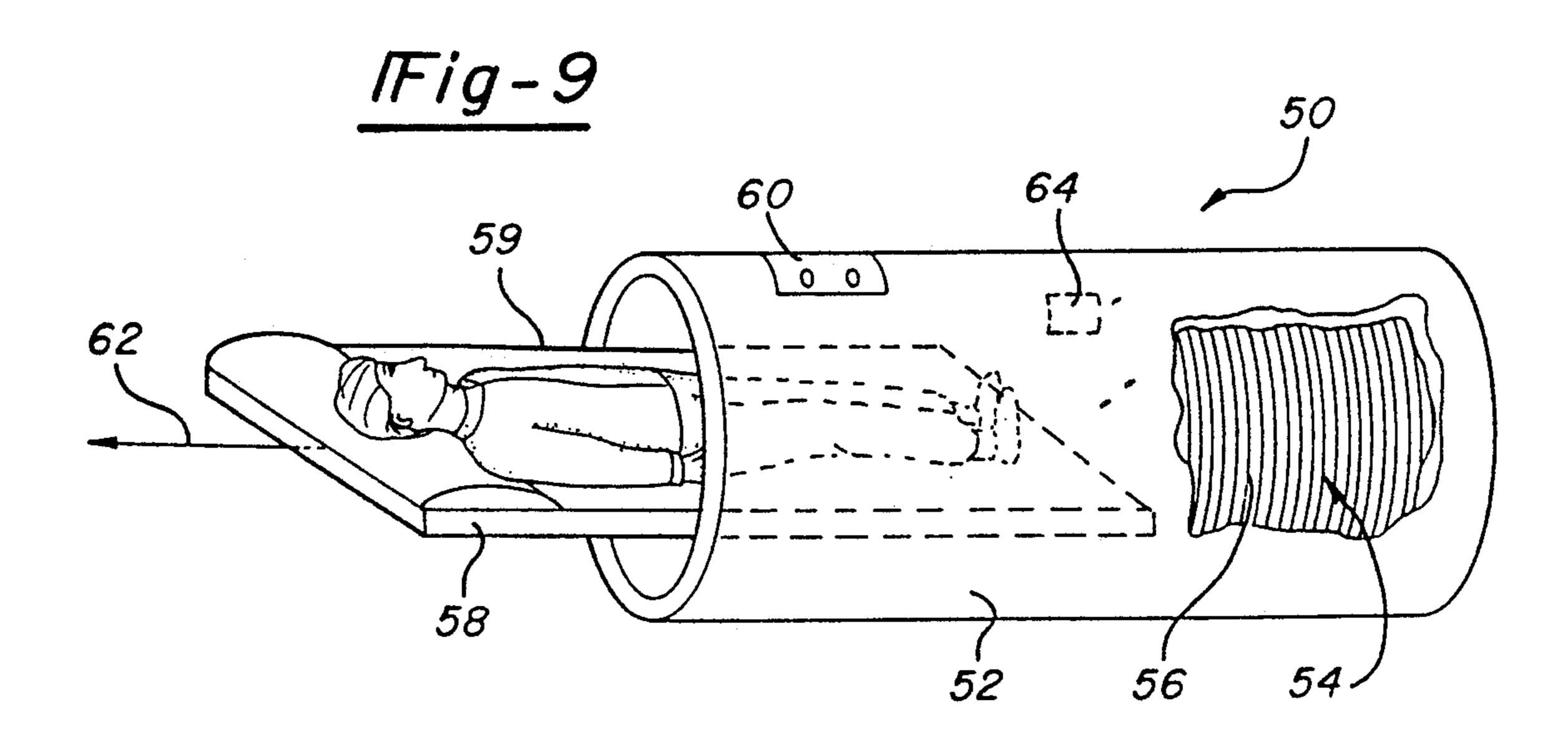

Assistant Examiner—Arun S. Phasge


Attorney, Agent, or Firm-Dykema Gossett


[57] **ABSTRACT**


Methods and apparatus for regulating ion movement across biological membranes are provided. In one aspect, harmonic frequencies of a fluctuating magnetic field based on cyclotron resonance principles are provided for selectively enhancing transmembrane ion movement. In another aspect, a method and apparatus are provided for simultaneously regulating the transmembrane movement of multiple distinct ionic species using a fluctuating magnetic field. Therapeutic applications of harmonic tuning and multiple tuning are also provided.


36 Claims, 3 Drawing Sheets



METHODS AND APPARATUS FOR REGULATING TRANSMEMBRANE ION MOVEMENT UTILIZING SELECTIVE HARMONIC FREQUENCIES AND SIMULTANEOUS MULTIPLE ION REGULATION

INTRODUCTION

This patent application is a continuation in part of each of the following U.S. patent applications, the disclosures of which are all expressly incorporated herein by reference: U.S. patent application Ser. No. 280,848, filed Dec. 7, 1988, which is a continuation of U.S. patent application Ser. No. 923,760, filed Oct. 27, 1986, entitled 15 "Techniques For Enhancing the Permeability of Ions Through Membranes," now U.S. Pat. No. 4,818,697; U.S. patent application Ser. No. 172,268, filed Mar. 23, 1988, entitled "Method and Apparatus for Controlling Tissue Growth With an Applied Fluctuating Magnetic 20 Field", U.S. Pat. No. 4,932,951; U.S. patent application Ser. No. 265,265, filed Oct. 31, 1988, entitled "Method" and Apparatus for Controlling the Growth of Cartilage", U.S. Pat. No. 5,067,940; U.S. patent application Ser. No. 254,438 filed Oct. 6, 1988, entitled "Method 25" and Apparatus for Controlling the Growth of Non-Osseous, Non-Cartilaginous Solid Connective Tissue"; and U.S. patent application Ser. No. 295,164, filed Jan. 9. 1989, entitled "Techniques for Controlling Osteoporosis Using Non-Invasive Magnetic Fields," all of which 30 have been assigned to the assignor of the present invention.

FIELD OF THE INVENTION

The present invention relates generally to methods and apparatus for regulating the movement of ions across cell membranes. More specifically, the present invention provides methods and apparatus for regulating the transmembrane movement of preselected ions in biological systems using selected harmonic frequencies which are based on the charge-to-mass ratio of the preselected ions. The present invention also provides a method and apparatus for simultaneously regulating the transmembrane movement of two or more distinct ionic species across a membrane. The present invention further provides methods and apparatus for the therapeutic treatment of selected body tissues.

BACKGROUND OF THE INVENTION

The role of biological ions as mediators of cellular 50 activity is well established. In U.S. patent application Ser. No. 923,760, the inventors of the present invention disclose novel techniques for controlling the movement of a preselected ionic species across the membrane of a living cell. Therein, the relationship between ion movement and fluctuating magnetic fields is described and a method and apparatus are provided by which ion movement can be selectively controlled. Having discovered that ion movement through a biochemical membrane can be controlled by creating a specific relationship 60 between the strength of a fluctuating magnetic field and the rate of the field oscillation, and that the relationship can be predicted using the cyclotron resonance equation, the frequency of which is:

$$f_c = \frac{Bq}{2\pi m}$$

the present inventors provided a foundation on which a number of useful inventions are based.

Accordingly, in U.S. patent application Ser. No. 923,760, it is disclosed that by exposing a region of living tissue of a subject such as a human or animal subject to an oscillating magnetic field of predetermined flux density and frequency, the rate of tissue growth can be controlled. Specifically, it is disclosed therein that by tuning a fluctuating magnetic field to the specific cyclotron resonance frequency of a preselected ion such as Ca++ or Mg++, the rate of bone growth can be stimulated. It is anticipated that this treatment will be highly beneficial in the treatment of fractures, bone nonunions, and delayed unions. In addition, the use of cyclotron resonance tuning to control the growth rate of non-osseous, non-cartilaginous connective solid tissue is described in U.S. patent application Ser. No. 254,438. In U.S. patent application Ser. No. 265,265, a method and apparatus based on cyclotron resonance tuning are disclosed which allow the growth rate of cartilaginous tissue to be regulated. Still another important use of cyclotron resonance tuning, one of particular significance in the treatment of elderly patients, is disclosed in U.S. patent application Ser. No. 295,164. Therein, a method and apparatus for treating and preventing osteoporosis, both locally and systemically, is set forth. Therefore, it will be appreciated that cyclotron resonance regulation of ion movement is instrumental in a number of highly beneficial inventions in the field of medicine.

As described more fully in the foregoing United States patent applications, the inventors of the present invention discovered that ion movement through cell membranes can be achieved with the use of a magnetic field generating device in connection with an oscillator for creating a fluctuating magnetic flux density where a predetermined relationship between frequency and field strength is established. Preferably the magnetic field generating device includes a pair of Helmholtz coils. A cell or region of tissue, such as bone, cartilage or the like, is positioned between the Helmholtz coils such that a uniform magnetic field of controlled parameters permeates the target cell or tissue. As will be appreciated, in most instances the cell or tissue which is exposed to the applied magnetic field is also subject to a local magnetic field having a component in the direction of the applied field. In these applications, a magnetic field sensing device is provided to measure the combined or total magnetic flux, i.e. the sum of the applied magnetic field parallel to an axis which extends through the cell and the component of the local field in this direction.

In the preferred embodiments of the foregoing inventions, the charge-to-mass ratio of an ion, the transmembrane movement of which is to be regulated, is used to determine the frequency at which the applied magnetic field is oscillated to provide a predetermined relationship between the charge-to-mass ratio of the ion and the strength and frequency of the magnetic field. This relationship is determined using the cyclotron resonance equation, $f_c = Bq/2\pi m$, where f_c is the frequency of the oscillating magnetic field in Hertz, q/m is the charge-tomass ratio of the ion in Coulcombs per kilograms, and B is a non-zero average value of the magnetic flux density 65 in Tesla along the axis permeating the subject cell or tissue. When the field includes a component of the local field, this value is a non-zero net average value of the combined or resultant magnetic field.

The present invention is directed toward certain modifications in cyclotron resonance regulation of ion movement. More specifically, the present invention addresses the desirable goal of simultaneously regulating transmembrane movement of two different ionic 5 species, for example Ca⁺⁺ and Mg⁺⁺, and also to additional frequencies which are effective for a single ion.

Therefore, it is an object of the present invention to provide a method and apparatus by which the move- 10 ment of a single ionic species across a cell membrane can be regulated by a fluctuating magnetic field having a frequency selected from a group of frequencies based on the fundamental cyclotron resonance frequency. It is a further object of the present invention to provide a 15 method and apparatus by which the transmembrane movement of two or more distinct ionic species in a single system may be simultaneously regulated using a fluctuating magnetic field having a predetermined ratio between the frequency and average field strength. It is 20 still a further object of the present invention to provide a number of techniques for the therapeutic treatment of biological subjects which are based on the tuning principles set forth herein.

SUMMARY OF THE INVENTION

In accordance with the present invention there is provided in one aspect a method for regulating the movement of a preselected ion across a cell membrane. The method includes the steps of generating an applied 30 magnetic field parallel to a predetermined axis which projects through a space in which at least one living cell or a target tissue is positioned. The cell or target tissue is surrounded by a fluid in the presence of a preselected ion. The applied magnetic field, alone or in combination 35 with a component of the local magnetic field parallel to the predetermined axis, permeates the target cell or tissue. The applied magnetic field is fluctuated at a predetermined rate such that the magnetic flux density along the predetermined axis, which in the presence of 40 a local magnetic field includes the local component, has a non-zero average value.

Transmembrane movement of a preselected ion is controlled by creating and maintaining a predetermined relationship between the frequency of the fluctuations 45 and the non-zero average value of the magnetic flux density along the predetermined axis based on the charge-to-mass ratio of the preselected ion. This predetermined relationship is determined using the equation $f_{ch} = XBq/2\pi m$ where f_{ch} is the frequency of the fluctu- 50 ating magnetic flux density in Hertz, B is the non-zero average value of the flux density parallel to the predetermined axis in Tesla, q is the charge of the preselected ion in Coulombs, m is the mass of the preselected ion in kilograms, and X is a preselected odd integer greater 55 than one. In this manner, a number of higher harmonic frequencies are provided by which transmembrane movement of a preselected ionic species can be regulated. An inventive apparatus for carrying out the method of the present invention is also provided.

In another aspect, the present invention provides a method for simultaneously regulating the transmembrane movement of two or more different ions across a cell membrane. In a preferred embodiment, the method comprises generating an applied magnetic field parallel 65 to a predetermined axis which projects through a designated space. In the presence of at least two different predetermined ionic species, a living cell or tissue in a

biological fluid is placed in the designated space such that the target cell or tissue is exposed to the applied magnetic field. In one embodiment, the target cell or tissue is also exposed to a local magnetic field having a component parallel to the predetermined axis. The magnetic flux density along the predetermined axis is fluctuated to create a non-zero average value. Where a local field is also present, this non-zero average value is the net non-zero average value of the applied and local field components parallel to the predetermined axis.

A predetermined relationship between the frequency of the fluctuations and the non-zero average value of the magnetic flux density along the axis is then created and maintained which simultaneously controls the movement of two or more preselected ions. In one embodiment, the predetermined relationship is determined by first solving the equation $f_c = Bq/2\pi m$ at a generally randomly selected value of B for each distinct preselected ion, where f_c is the frequency of the field fluctuations in Hertz, B is the non-zero average value of the flux density parallel to the predetermined axis in Tesla, q is the charge of each preselected ion in Coulombs, and m is the mass of each preselected ion in 25 kilograms. The value of B is preferably between about 1.0 and about 10,000 μ Tesla. This establishes the fundamental cyclotron frequency for each ion. A value f_{cs} , not necessarily equal to to f_c , is then determined at which the magnetic flux density is oscillated. The value of f_{cs} is preferably selected such that none of the individual ion f_c values deviate more than 5 percent from the f_{cs} value. In most instances, there will be no f_{cs} value available based on the fundamental f_c values of the preselected ions. Accordingly, a higher odd harmonic frequency of at least one of the preselected ions is determined with the equation $f_{ch} = XBq/2\pi m$ as previously explained. The values of fc and fch are examined to determine whether an f_{ch} value can be selected based on a 10 percent and most preferably a 5 percent deviation factor. If not, the process is continued for each value of f_{ch} , beginning with the lowest odd harmonic f_{ch} values until a value of f_{cs} can be established within the 5 percent deviation. Hence, at the value selected for B during the calculation of the f_c or f_{ch} values, the magnetic flux density to which the target cell or tissues exposed is fluctuated along the axis at the f_{cs} frequency. This specific relationship between frequency and field strength brings about simultaneous transmembrane movement of the preselected ions. An apparatus adapted to simultaneously regulate more than one ionic species in this manner is also provided.

In still another aspect of the present invention, the concepts of harmonic tuning and multiple ion tuning are used for therapeutic treatment of a region of tissue in a human or animal subject. In particular, the present invention provides a therapeutic treatment modality for bone tissue to stimulate bone growth and/or reduce osteoporosis. In still another embodiment, the growth characteristics of cartilaginous tissue or non-osseous, non-cartilaginous connective tissue are regulated. In still another aspect, systemic treatment and/or prevention of osteoporosis is also provided.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other advantages and features of the invention will be described more fully hereinafter and in connection with the accompanying drawings in which:

FIG. 1 is a schematic, perspective view of a living cell exposed to a fluctuating magnetic field in accordance with the present invention.

FIG. 2 is a schematic diagram illustrating the formation of a combined or net magnetic flux density which 5 includes a local field component in accordance with the present invention.

FIG. 3 is a schematic electrical diagram of an apparatus for generating the ion-regulating, fluctuating magnetic field of the present invention.

FIGS. 4 through 7 illustrate signal waveshapes generated by the apparatus shown in FIG. 3.

FIG. 8 illustrates the present invention for use in local treatment of living tissue in vivo.

FIG. 9 illustrates the use of the present invention for 15 providing systemic therapeutic treatment.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring no to FIG. 1 of the drawings, a pair of field 20 coils 10A and 10B having the arrangement and attributes set forth more fully in the aforementioned U.S. patent application Ser. No. 923,760 are seen by which an applied magnetic field is generated which permeates living cell 12 in predetermined volume or space 14. As 25 will become more apparent hereinafter, living cell 12 may comprise one or more distinct cells, cell aggregates, organoids or tissue. In particular, living cell 12 may comprise a region of tissue such as a region of bone in a living host, either man or animal. Cell 12 contains a 30 specific complement of intracellular ionic species and will generally be surrounded by a liquid containing ionic species required for cell and tissue function.

Coils 10A and 10B, as well as space 14 are shown in relation to a rectangular coordinate axis system with the 35 mid-planes of each coil positioned at X_1 , Y_1 , and X_2 , Y_2 and separated by a distance R. The center of each coil is aligned with the Z-axis and has a radius R'. Those skilled in the art will recognize that coils 10A and 10B are arranged in Helmholtz configuration. Accordingly, 40 a uniform applied magnetic field having a flux density B is generated in space 14 by coils 10A and 10B. As will be explained more fully, in most applications, B will be the average value of the net or combined magnetic flux density in space 14 resulting from the applied field and 45 a pre-existing local field component such as the earth's geomagnetic field. Thus, a magnetic field of known, controllable parameters permeates cell 12 along a predetermined axis. The value of B may be preferably measured by a magnetic field sensor or the like. In the 50 present invention, the applied magnetic field is fluctuated at a predetermined frequency. This characteristic is illustrated by opposed arrows A1 and A2 which are separated by a dot "D."

Referring now to FIG. 2 of the drawings, in that 55 embodiment of the present invention in which space 14 is subject to a local magnetic field, the local magnetic field will have a component vector in the direction of the Z-axis which penetrates space 14 and cell 12. The Z-axis represents the aforementioned predetermined 60 axis which extends through the target cell or tissue to be influenced in accordance with the present invention. It is that component of the magnetic field parallel to this predetermined axis which is regulated to produce transmembrane ion movement in the present invention. In 65 FIG. 2, the applied magnetic field which is parallel to the predetermined axis Z is shown as B₀. The local magnetic field component parallel to the Z-axis is illus-

6

trated as B_z. It is to be understood that space 14 represents the region in which the magnetic flux density as regulated by the present invention is substantially uniform. Space 14 should be large enough to accommodate the target cell or tissue to be treated. In this embodiment, B is the average value of the combined applied and local field components, i.e. the net average value of the sum of B₀ and B_Z.

Referring now to FIG. 3 of the drawings, in one embodiment coils 10A and 10B receive electrical signals from a conventional AC sine wave generator 16 connected by means of a switch 18 either to a DC offsetting network 20 or a full-wave rectifier 22, although other waveforms may be suitable. The instantaneous current I supplied to coils 10A and 10B as a function of time is shown for both switch positions 18A and 18B in FIGS. 4 and 5, respectively. Similarly, the instantaneous magnetic flux density, B₀ in FIG. 2, produced within space 14 is depicted as a function of time for both switch positions 18A and 18B in FIGS. 6 and 7, respectively.

When coils 10A and 10B are energized by the apparatus shown in FIG. 3 of the drawings, the coils generates a magnetic flux density within volume 14 that varies with time as shown in FIGS. 6 and 7. An applied non-zero average magnetic flux density B, uniform throughout spacer 14, results either from an offset sinusoidal signal or from a full-wave rectified signal applied to coils 10A and 10B. As stated, where space 14 is subject to a local magnetic field, B is the net non-zero average magnetic flux density of the applied and local field parallel to the predetermined axis. The effect of this Z-component of the local flux density will be to change the non-zero average applied magnetic flux density B_o shown in FIG. 2 to a different net average value.

As fully explained in the aforementioned U.S. patent application Ser. No. 923,760, be creating a relationship between the rate of fluctuation or frequency of the magnetic field parallel to the predetermined axis which extends through space 14 and thus through the target tissue or cell 12, and the magnetic flux density along this axis, a fundamental frequency based on the charge-tomass ratio of a preselected ionic species can be determined at which movement of the preselected ionic species across the cell membrane can be regulated. The parameters of this relationship are determined with reference to the cyclotron resonance frequency $f_c = Bq/2\pi m$. In other words, the magnetic flux density along the Z-axis, which includes a local component vector if a local field exists, is regulated such that the charge-to-mass ratio of the preselected ion equals the ratio of 2π times the supplied frequency f_c times the non-zero average magnetic flux density B.

In the present invention, this fundamental frequency, f_c , is effectively multiplied by a selected odd integer to produce a frequency which also causes the preselected ion to move across the cell membrane of cell 12. Unless otherwise specified, as used herein, the term "odd integers" or "odd integer" shall mean positive, non-zero integers. The preferred odd integers for use in the present invention which provide harmonic frequencies that are effective in causing transmembrane ion movement are selected from the group consisting of the following integers: three, five, seven, nine, eleven, thirteen, fifteen, seventeen and nineteen. Additional harmonic frequencies based on multiplying the fundamental frequency by an odd integer may also be suitable in some applications. Even integers have not been found useful. The frequencies for a given preselected ion and known

magnetic flux density B can be determined with reference to the equation $f_{ch} = XBq/2\pi m$ where f_{ch} is the frequency in Hertz of the fluctuating magnetic field along a predetermined axis extending through the target tissue, B is the magnetic flux density along the axis in 5 Tesla, q is the charge of the preselected ion in Coulombs, m is the mass of the preselected ion in kilograms, and X is a selected odd integer greater than one. It has been found that many of the preferred odd multiple harmonic frequencies are substantially as effective in 10 promoting transmembrane ion movement as are the fundamental frequencies. As stated, the preferred values of X are the odd integers three, five, seven, nine, eleven, thirteen, fifteen, seventeen, and nineteen. Ion movement of a number of ionic species can be controlled or regu- 15 lated in this manner, including Ca++, Mg++, K+, Li⁺, Na⁺, Cl⁻ and HCO₃⁻. Other ions may be also suitable in a particular application.

In those applications where random changes in the local field component along the predetermined axis may 20 occur, it is preferred that the magnetic field generating device of the present invention include a magnetic field sensor, such as a Hall effect device, to measure the magnetic flux density B along the predetermined axis. It is also preferred that microprocessing means described 25 in the aforementioned U.S. patent application Ser. No. 172,268 be included with the field generator and magnetic sensor such that the rate of fluctuation (f_{ch}) of the field and/or the value B of the field can be automatically changed to compensate for changes in the local 30 field component. This allows the predetermined relationship to be maintained despite these local changes.

In the preferred embodiment of the present invention, the concept of tuning the cyclotron resonance frequency to an odd harmonic as previously described is 35 used in connection with the therapeutic treatment modalities as described in the aforementioned U.S. patent applications Ser. Nos. 172,268, 265,265, 254,438 and 295,164. More specifically, and referring now to FIG. 8 of the drawings, treatment apparatus 30 is shown hav- 40 ject. ing treatment heads 32 and 34, each of which encloses a field coil such that treatment heads 32 and 34 comprise a pair of Helmholtz coils by which a uniform magnetic field is generated in space 36, which in this instance is occupied by a region of living tissue. The general design 45 of treatment apparatus 30 is explained in more detail in U.S. patent application Ser. No. 172,268, which is incorporated herein by reference. Accordingly, and for the purposes of illustration, a human femur 38 having frac-In order to stimulate the growth of fractured ends 40 and 42, a fluctuating magnetic field is established using treatment apparatus 30 in which the frequency of fluctuations is determined with reference to the aforementioned modification of the cyclotron resonance equa- 55 tion: $f_c = XBq/2 \pi m$. In a preferred aspect, X is 3 and the preselected ionic species is calcium. Magnesium and potassium regulation, in addition to other ions, is also useful. Accordingly, in one preferred embodiment, a frequency of 15.31 Hertz is established for the Ca++ 60 ion where the combined or composite magnetic flux density parallel to a predetermined axis A has a net non-zero average value of 20.0µ Tesla and a peak-topeak amplitude of 40.0µ Tesla to stimulate bone growth. The higher harmonic tuning of the present 65 invention is similarly useful in the regulation of cartilage growth and the growth of non-osseous, non-cartilaginous connective tissue as described in the aforemen-

tioned U.S. patent applications. For stimulating cartilage growth a frequency of 75.71 Hertz at a B value of 20.0μ Tesla with a peak-to-peak amplitude of 40.0μ Tesla is suitable. This represents cyclotron resonance tuning for the Mg^{++} ion where X is 3. In the case of non-cartilaginous, non-osseous solid connective tissue a frequency of 15.31 Hertz with a B value of 20.0 μ Tesla and peak-to-peak amplitude of 40.0µ Tesla is suitable for stimulating growth. This represents cyclotron resonance tuning to the Ca++ ion where X is 1.

The present invention is also useful in the systemic treatment and/or prevention of osteoporosis as will now be described in connection with FIG. 9 of the drawings. Accordingly, systemic treatment apparatus 50 is shown which comprises a tube or cylinder 52 of a non-magnetic material such as plastic. Tube 52 houses a large solenoid 54 which contains multiple turns of wire 56 which extend substantially the entire length of systemic treatment apparatus 50. A gurney or platform 58 is provided on a track system (not shown) which allows platform 58 to move between a first position outside tube 52 to a second position inside tube 52. A controller 60 is provided along with the necessary circuitry for energizing solenoid 54 to create a magnetic field in the direction of axis 62, which in this embodiment projects through the central bore of solenoid 54 and subject 59. A fluctuating, and in most instances a combined or composite magnetic field, having a magnetic flux density parallel to predetermined axis 62 is generated. The combined magnetic flux density along the axis is maintained at a predetermined relationship to the frequency of the fluctuations. Again, the frequency of the fluctuating field is determined with reference to the equation $f_c = XBq/2\pi m$, where X is a selected odd integer. In the most preferred embodiment, the preselected ionic species to which the fluctuating magnetic field is tuned using this odd harmonic technique comprises Ca++ where X is 5. This treatment is effective in diminishing or preventing osteoporosis in a human or animal sub-

In still another aspect of the present invention, a method and apparatus for simultaneously regulating the transmembrane movement of two different ionic species is provided. This technique is based in part on the principles of odd harmonic frequencies as described above. In the development of cyclotron resonance tuning, the present inventors recognized that it may be desirable in some instances to simultaneously regulate the transmembrane movement of two or more preselected ions. tured ends 40 and 42 is shown in phantom within leg 44. 50 In this manner, the benefits of ion movement of each such ion could be achieved simultaneously, and quite possibly, a beneficial synergism might be achieved. One such method of simultaneous multiple ion regulation is set forth in the aforementioned U.S. patent application Ser. No. 923,760. Therein, a method is disclosed for simultaneously enhancing the transmembrane movement of two distinctly different ionic species such as a hydrogen ion and a potassium ion. In the present invention, multiple ion tuning is achieved by regulating magnetic flux density along a single axis. In accordance with the present invention, a relationship between the frequency of the fluctuating magnetic field and a non-zero average value of the magnetic flux density is provided such that the field is simultaneously tuned to effect transmembrane movement of more than one type of ionic species at the same time.

More specifically, it has been found that the fundamental cyclotron resonance frequency of a preselected ionic species may be within a few percent of a selected odd multiple of the fundamental frequency of a different ionic species. In addition, an odd harmonic cyclotron resonance frequency of one preselected ionic species may be substantially the same as a different odd har-5 monic frequency of another preselected ionic species. This principle of "harmonic overlap" may be extended to three, four, or possibly even a greater number of different ionic species where a "common" frequency can be found which is substantially equal to a fundamen-10 tal or odd multiple harmonic frequency of each of the ionic species involved. In this manner, it is possible to simultaneously regulate the transmembrane movement of two or more different ionic species.

With reference now again to FIG. 1 of the drawings, 15 the target tissue or cell 12 is placed between coils 10A and 10B in space 14, again in the presence of a liquid medium which may be the natural cell environment. At least two different ionic species to be regulated are present. A magnetic field having a flux density along a 20 predetermined axis, the Z axis in FIG. 1, is generated in most embodiments a local magnetic field having a component along the predetermined axis will be present. A non-zero average value or net average value of the magnetic flux density to be initiated parallel to the axis 25 is then selected. The value of B is preferably between about 1.0 to about 10,000 μ Tesla, with a peak-to-peak amplitude of about 2.0 to about 20,000 μ Tesla.

In one embodiment the fundamental frequency at which the fluctuating magnetic field would be oscil- 30 lated for cyclotron resonance regulation of transmembrane ion movement is calculated individually for each different ionic species to be regulated using the equation $f_c = Bq/2\pi m$ for a selected value of B, which is again the non-zero average value of the flux density along the 35 predetermined axis. As previously explained, f_c as in Hertz, q as in Coulombs, and m is in kilograms. q/m is the charge-to-mass ratio of the preselected ion. Once the fundamental cyclotron resonance frequency (f_c) of each ion to be regulated is calculated, a regulating fre- 40 quency (f_{cs}) is determined which is preferably within 5 percent of the fundamental frequency f_c or an odd harmonic frequency f_{ch} of each preselected ion. The odd harmonic frequencies are determined again using the equation $f_{ch}=XBq/2\pi m$, where X is an odd integer 45 greater than one. It will be understood that the equation $f_{ch} = XBq/2\pi m$ can be used to determine the fundamental frequency, f_c , by using a value of 1 for X. While the value of f_{cs} will not typically be available which is common to the fundamental frequencies and/or odd har- 50 monic frequencies for each preselected ion, it has been found that an f_{cs} value which is within about 10 percent and preferably about 5 percent of each fc value or f_{ch} value of the ions to be regulated satisfactorily provides simultaneous transmembrane movement of each prese- 55 lected ion in the field.

It will also be understood that the values of f_{ch} are a function of B. Thus, it may be possible to obtain an f_{cs} value for a particular set of ions which is within the preferred 5 percent deviation at a designated B value, 60 but not a higher B value. For use in the present invention as applied to multiple simultaneous ion tuning, the value of B is preferably between about 1.0 to about $10,000\mu$ Tesla, with a peak-to-peak amplitude of about $20,000\mu$ Tesla. Again, the waveform is not 65 critical.

Accordingly, and referring now to FIG. 1 of the drawings, a magnetic flux density is generated with

coils 10A and 10B along the Z axis which fluctuates at the multiple harmonic tuning value f_{cs} . The same considerations applicable in the previous embodiments with respect to the local component are also applicable to multiple ion tuning.

In order to fully illustrate this embodiment of the present invention, multiple ion tuning will be described in the case of two preferred ions, Ca++ and Mg++. Referring to Table 1 below,

TABLE 1

ION	q/m RATIO	X 3	X 5	X 15
Ca++	76.563	229.689	382.815	1148.445
Mg^{++}	126.178	378.534	630.89	1892.67

the q/m ratios for Ca++ and for Mg++ are set forth along with the values of certain multiples of the q/m ratio, specifically 3, 5 and 15. It will be recognized that f_{ch} is a function of the q/m ratio of each ion. For the Mg++ ion 3q/m is within 1.2% of the value of 5q/m for the calcium ion. Thus, for a given value of B, for example, 20 microTesla, where X is 3 for Mg++ and X is 5 for Ca^{++} , a range of values f_{cs} can be determined which are within 5 percent of each f_{ch} value. More specifically, in this example f_{ch} for Mg⁺⁺ at 20 microTesla where X is 3 75.71 Hertz. Where X is 5, f_{ch} for Ca++ is 76.56 Hertz. It will be recognized that a number of values f_{cs} can be selected which are within 5 percent of both f_{ch} values. In one preferred embodiment, the mean value for the two f_{ch} values is determined for use as the f_{cs} value which is this example is 76.14 Hertz. An f_{ch} value which deviates more than 5 percent from one or all of the f_c or f_{ch} values for the various ions may be suitable in some applications, although this 5 percent standard is preferred.

In another aspect, the multiple ion tuning of the present invention can be described in the case of harmonic overlap of two preselected ions in the following manner. A normalized cyclotron resonance frequency (f_c/B_0) is calculated using the equation:

$$\frac{f_c}{R_0} = \frac{Nq \cdot 10^{-4}}{2\pi m} \tag{I}$$

where B_0 is the magnetic flux density in Gauss along the axis, N is the valence charge number of the preselected ion (for example, N=2 for the Ca^{++} ion and N=1 for the (Cl^{-} ion); q is 1.6×10^{-19} Coulombs; and m is the ionic mass of the preselected ion in kilograms. Since it is known that

$$m = \frac{\text{(atomic weight)kg}}{6.0253 \times 10^{26}}$$
 (II)

then

$$\frac{f_c}{B_0} = \frac{N(1534.33)}{\text{atomic weight of ion}}$$
(III)

By specifying a value for B_0 , equation III above provides the fundamental cyclotron resonance frequency for the preselected ion. To then determine harmonic overlaps for two preselected ions, the following equation may be utilized:

$$\frac{(f_c/B_0)_j (H_j)}{(f_c/B_0)_k (H_k)} \simeq 1$$

where $(f_c/B_0)_j$ is the normalized cyclotron resonance frequency for a preselected ion "j"; $(fc/B_0)_k$ is the normalized cyclotron resonance frequency for a preselected ion "k"; H_j is the harmonic number for ion "j"; and H_k is the harmonic number for ion "k". The values of H_j and H_k may be any non-zero positive odd integer including 1.

To determine whether two preselected ions can be simultaneously regulated in accordance with the present invention, the following equation:

$$H_1 \simeq \frac{(f_c/B_0)_k}{(f_c/B_0)_i} (H_2)$$

is utilized where the value of H_2 is any non-zero positive odd integer. In a preferred embodiment, H_2 is a positive odd integer from three to nineteen. Thus, a set of values for H_1 are defined.

The following table illustrates this method for several important biological ions:

TA	זם	T.		- 4	.:_		ı.
IΑ	ВL	-	ററ	ni	'n	116	a

H ₁ .	H_2	
 8.093	(19)	
 •		

Based on these calculations, it is apparent that the value of H₁ where H₂ is 7 (i.e. 2.983), provides the necessary harmonic overlap conditions. Thus,

 $(f_c/B_0)Ag^{++}$ for the 7th harmonic $(H_2=7)$ is 199.13 $(f_c/B_0)Na^+$ for the 3rd harmonic $(H_2=3)$ is 200.22 Since $B_0=0.2$ Gauss= 20μ Tesla,

7th $f_cAg++=39.826 \text{ Hz}$

 $3rd f_cNa^+ = 40.04 Hz$

(This gives $\Delta f = 0.214 \text{ Hz}$)

It is important to also note that the overlap can be expanded by increasing the value of B_0 . In the previous example, at 1000μ Tesla,

7th $f_c Ag^{++} = 1991.13 Hz$

3rd $f_c Na^+ = 2002.2 Hz$

(This gives $\Delta f = 11.07 \text{ Hz}$)

Using this method for determining harmonic overlap for Zn^{++} and Ca^{++} :

 $H_1 = .61313 H_2$

												
ION	N	AT. WT.	Fc/Bo	3	5	7	9	11	13	15	17	19
Cu	1	63.54	24.147	72.44	120.74	169.03	217.33	265.62	313.92	362.21	410.51	458.80
Ag	2	107.87	28.448	85.34	142.24	199.13	256.03	312.93	369.82	426.72	483.61	540.51
Gđ	3	157.25	29.272	87.82	146.36	204.90	263.45	321.99	380.53	439.08	4 97.62	556.16
K	1	39.102	39.239	117.72	196.20	274.57	353.15	431.63	510.11	588.59	667.07	745.54
Cl	-1	35.453	43.278	129.83	216.39	302.35	389.50	476.06	562.61	649.17	735.72	822.28
Zn	2	65.37	46.943	140.83	234.71	328.60	422.49	516.37	610.26	704.14	798.03	891.92
Co	2	58.93	52.073	156.22	260.36	364.51	468.66	572.80	676.95	781.09	885.24	989.39
Fe	2	55.847	54.948	164.04	274.74	384.63	494.53	604.42	714.32	824.21	934.11	1044.00
Mn	2	54.94	55.855	167.56	279.27	390.98	502.69	614.40	726.11	837.82	949.53	1061.24
Na	1	22.99	66.739	200.22	333.70	467.17	600.65	734.13	867.61	1001.09	1134.56	1268.04
Ca	2	40.08	76.563	229.69	382.82	535.94	689.07	842.20	995.32	1148.45	1301.58	1454.70
Mg	2	24.32	126.178	378.54	630.89	803.25	1135.61	1387.96	1640.32	1892.68	2145.03	2397.39
Li	1	6.94	221.085	663.26	1105.43	1547.60	1989.77	2431.94	2874.11	3316.28	3758.45	4200.62

If two H_2 values exist which are positive odd integers or which have values close to that of positive odd integers, then a harmonic overlap exists at these values. To correspond with the aforementioned overlap range or band of frequencies which produce simultaneous ion movement of the two ionic species (i.e. preferably less than 5% deviation between the actual frequency (f_{cs}) and the f_{ch} values), H_1 should not deviate more than 2.5% from an odd integer. To better illustrate this 50 method, the technique will now be described with reference to Ag^{++} and Na^+ at a B_0 of 0.2 Gauss.

Ion $j=Ag^{++}$ $(f_c/B_0)_j=28.448$

Ion K = Na + +

 $(f_c/B_0)_k = 66.739$

Therefore, $H_1 = 0.42625 H_2$.

At H₂ values of 3, 5, 7, 9, 11, 13, 15, 17 and 19.

TABLE

H ₂	
(1)	
	(
_	
(17)	
	(1) (3) (5) (7) (9) (11) (13) (15)

	H_1	\mathbf{H}_2	
 	0.61313	(1)	
	1.839	(3)	
	3.066	(5)	
5	4.29	(7)	
	5.52	(9)	
	6.74	(11)	
	7.97	(13)	
	9.197	(15)	
	10.42	(17)	
)	11.65	(19)	

It can be seen that the 5 th harmonic of Zn++ overlaps with the 3rd harmonic of Ca++.

In its most preferred embodiment, fluctuations in the local field component which would otherwise alter the predetermined relationship provided by multiple ion tuning are counter-balanced by a microprocessor in association with the magnetic field generating means. Briefly, changes in the composite field due to changes in the local component are preferably measured by magnetic field sensor in association with the magnetic field generator. The microprocessor then adjusts the frequency of the field and/or the field strength to maintain the desired ratio of frequency-to-average magnetic flux density, which is always a non-zero average value. This technique is also suitable for counter-balancing changes in the local component in that embodiment of the present invention in which a single ionic species is regulated

using a higher odd harmonic frequency. The micro-processor may also be programmed to automatically calculate f_{cs} based on an input of the q/m ratios of the ions to be regulated.

The present invention is particularly useful in con- 5 trolling tissue growth using the apparatus shown in FIG. 8 of the drawings for effecting multiple ion tuning and in the treatment and prevention of osteoporosis in this manner and as shown in FIG. 9 of the drawings. More specifically, with respect to FIG. 8 of the draw- 10 ings, treatment apparatus 30 is shown having treatment heads 32 and 34. Each treatment head contains a field coil such that treatment heads 32 and 34 comprise a pair of Helmholtz coils. To bring about a therapeutic treatment of a bone condition such as a fracture, non-union 15 or delayed union, treatment heads 32 and 34 are positioned so that a uniform magnetic field can be generated in space 36, illustrated here as being occupied by fractured ends 40 and 42 of human femur 38. In order to accelerate the rate at which union of the fractured ends 20 occurs, in this embodiment of the present invention, the frequency of the composite magnetic field is maintained at about 76 Hertz which is very close (within 5 percent) to the cyclotron resonance frequency of Ca++ multiplied by a factor of 5 and Mg++ multiplied by a factor 25 of 3, where the non-zero net average value is 20 microTesla (peak-to-peak amplitude 40µ Tesla). Changes in the local component which would otherwise change this relationship are counter-balanced by a magnetic field sensor (not shown) and a microprocessor (not 30 shown) which sense changes in the local component and adjusts the field and/or applied magnetic flux to maintain this precise relationship. Treatment is continued until such time that beneficial results are attained, for example, from about one-half hour to six hours per 35 day for approximately twelve weeks. Treatment within these parameters is effective in stimulating the growth of cartilaginous tissue, non-osseous non-cartilaginous tissue and solid connective tissue, as well as the local treatment or prevention of osteoporosis and the sys- 40 temic treatment or prevention of osteoporosis utilizing the apparatus shown in FIG. 9.

The following examples are provided to more fully illustrate the present invention and are not intended to limit the scope of the invention as defined in the ap- 45 pended claims

EXAMPLE 1

Diatoms were exposed to a fluctuating magnetic field in accordance with the present invention at both the 50 fundamental frequency of 16 Hertz for Ca^{++} and then at odd multiples as provided by the equation $f_{ch}=XBq/2\pi m$ for Ca^{++} . It was noted than in addition to the fundamental frequency, where X was 3, 5 and 15, movement of diatoms (which is known to be brought 55 about by increase in the intracellular concentration of calcium ions) was notably increased. Where X was 7, 9, 11, 13, and 17, increased motility was not produced.

EXAMPLE 2

Isolated in vitro 8-day chick femurs were exposed to a magnetic field harmonically "tuned" simultaneously for calcium and magnesium ions, according to the equation $f_{ch}=XBq/2\pi m$, where X=5 for Ca^{++} and X=3 for Mg^{++} . At a non-zero net average value of B at 20.9 65 microTesla, which was the composite field as previously explained, f_{cs} was set at 80 Hz. Increased bone growth was observed over controls.

In more detail, freshly-laid fertile white leghorn chicken eggs were obtained and which were incubated in a 100% humidified atmosphere at 40° C. for 8 days, and then removed and candled. For each run of the experiments, 26 eggs with normal-appearing embryos were selected. The eggs were opened, and the embryos removed to a sterile Petri dish. Any embryos abnormal in development or staging were discarded. The femurs of the embryos' legs were removed by blunt dissection with forceps and transferred in right-left pairs to sterile gauze squares moistened with Hanks' Balanced Salt Solution (HBSS) in another sterile dish. From this dish, pairs were removed to squares of dry, sterile unbleached muslin, where they were rolled back and forth under a dissecting microscope until adhering tissue was removed, leaving bones stripped of all tissue except the perichondrium/periosteum. Tissue removal was confirmed microscopically. The right leg of each pair was reserved as a control, the left thus became an experimental subject.

The isolated femurs prepared for culture by the above method were placed into the wells of 12-well culture plates (Linbro). A small triangular type 316 stainless steel mesh screen was placed in each well. The corners had been folded under to lift the mesh slightly away from the bottom of the plate and allow for media circulation. A sterile triangle of thoroughly washed ordinary lens paper was placed atop the mesh screen, and the femurs were oriented in orthogonally positioned pairs on the lens paper. Thus, each femur could be identified later, since the wells were also numbered sequentially.

As each well was completed, it was given a 0.5 mil aliquot of sterile BGJ_b medium (Fitton-Jackson modification, GIBCO) containing antibiotics and antimycotics (GIBCO). This amount was just sufficient to saturate the lens tissue and produce a meniscus of medium over the explanted femurs. It was noted that too much medium produced impaired growth, since gas exchange was also impaired if the femurs were beneath the surface of the medium. As soon as each plate was completed, it was covered and placed in either a control or experimental position within a water-jacketed CO₂ incubator containing a 100% humidified atmosphere of 5 percent CO₂ in air at 40° C. Subsequent culture consisted of seven days in the incubator, with fresh medium ever other day.

The dishes containing the left femure were placed between 15 cm diameter Helmholtz-aiding coils according to the method of the present invention. The nonzero average value of the B field strength was set at 20.9 microTesla. A Beckman FG-2 function generator supplied an 80 Hz ac sine wave along the coil axis, whose amplitude was set at 30 microTesla, peak-to-peak. The frequency of the signal was checked with a Beckman UC-10 frequency counter calibrated against an NBSreferrable source. The amplitude of the ac and static magnetic fields was checked with a single-axis fluxgate magnetometer (Schonstedt Instruments Model 2200-60 DS) calibrated against NBS standard. AC ampliltude was read by feeding the analogue output from the magnetometer to a Tektronix 204A oscilloscope which had also been calibrated against NBS-referrable voltage standards. The magnetic fields were passed through the femurs horizontally.

For the simultaneous treatment, with B set at 20.9 microTesla and the ac frequency (f_{cs}) set at 80 Hz, calculation will readily verify that these conditions repre-

sent a frequency within 5 percent of the f_{ch} values for CA^{++} where X is 5 and Mg^{++} where X is 3. Independently, these f_{ch} values had been shown previously to be effective for stimulating diatom movement. By using this combination, a concurrent stimulation for both ions 5 could be achieved.

The control cultures were maintained in the same chamber as the experimentals, but shielded from the magnetic fields. The ac magnetic field strength to which the control femurs were subjected was at least two orders of magnitude less than the experimentals (not greater than 0.3 microTesla, peak-to-peak). The ambient 60 Hz magnetic field in the chambers was less than 0.1 microTesla.

At the end of the experiment, the medium was removed from each well of the dishes, and was replaced with an equal amount of Millonig's Neutral Buffered Formalin. After 24 hours to allow for fixation and shrinkage, the femurs were removed gently from the lens paper and the length and central diaphyseal diameters were measured with a pair of metric vernier calipers. The measurements were made and recorded in a blind manner. The femurs were then returned to the wells, but were separated by a small paper divider to keep them separate and identifiable. They were then decalcified and embedded through alcohols and benzene into 54° Paraplast, then cut longitudinally at 8 microns and stained with Mayer's Haematoxylin and Eosin.

The sections were examined under a light microscope (Olympus CH-2) and measurements of the diaphyseal collar length and thickness were made with an ocular micrometer. An assessment of the degree of maturation was also made, together with notes on the histological 35 appearance of the bones. Detailed morphometric analysis was not undertaken, since the differences were either so striking that a resort to statistics was deemed unnecessary, except with regard to the measurements of length, diameter, collar length, and collar thickness. 40 For those measurements, a Student's T-test of the paired experimentals and controls was performed. The experiment was performed in duplicate, so that there were 96 bones in the ionic group, 48 experimentals and 48 controls. These numbers gave clear statistic infer- 45 ences.

The numerical results of all experiments are presented in Table I below:

TABLE I

	IABLEI		
	Results of Chick Femu	Tests	
Ca	tegory of Measurement	Ca/Mg	
1.	Bone Length (mm)	8.7*	
	S.D.	0.8	
	Controls	7.8	
	S.D.	0.7	
2.	Bone Diameter (mm)	1.03*	
	S.D.	0.12	
	Controls	0.70	
	S.D.	0.08	
3.	Length/Diameter	9.1*	
	S.D.	0.7	
	Controls	11.1	
	S.D.	1.03	
4.	Collar Length (mm)	2.31*	
	S.D.	0.53	
	Controls	1.16	
	S.D.	0.23	
5 .	Collar Thickness (mm)	0.045*	
	S.D.	0.014	
	Controls	0.025	

TABLE I-continued

Results of Chick Femu	r Tests
Category of Measurement	Ca/Mg
S.D.	0.008

*p < .01 compared to paired control value

Controls

There was no statistically significant difference between the values for the two runs. Hence, they were pooled.

The histological appearance of the controls did not vary from run to run. The picture they presented was essentially normal. The ends of the bones were composed of relatively condensed and cellular hyaline cartilage. The diaphyseal collar was quite thin, but well-ossified, while the central diaphyseal region had modestly hypertrophied chondrocytes, with a few pyknotic nuclei, but little or no calcification of the cartilage matrix.

Experimental Treatment

When both calcium and magnesium ions were subjected to CR conditions, the results were essentially a combination of those seen previously for calcium and magnesiium separately. The bones were significantly (p<0.01) lengthened (+12%) and thickened (+47%), and the diaphyseal collar length (+99%) and thickness (+80%) were also increased (p<0.01). Robustness increased by 22%.

Histologically, the bones were, as with calcium ion stimulation, advanced with respect to calcification, the central diaphyseal region showing marked calcification. However, the degree of this effect was slightly less than with calcium stimulation alone. The rest of the bone showed generalized enlargement, as with magnesium ion tuning alone.

EXAMPLE 3

A study of simultaneous multiple ion tuning was performed using fibular ostectomies in skeletally mature rabbits. Twelve skeletally mature (2.5 Kg) New Zealand White rabbits of mixed sex were divided into two groups of six animals each and anaesthetized. After anaesthesia, both legs were shaved laterally and painted with betadyne solution. An incision was made 1 cm caudal to the knee, extending for 2.5 cm. The muscles of the anterior and peroneal compartments were separated to expose the fibula. The periosteum was split and reflected from the bone. On the right, the periosteum was 50 allowed to return to place. These bones served as the sham operations. On the left, a 1 cm piece of the fibula was removed from the bone, beginning approximately 1 cm cranial to the union of fibula and tibia. The periosteum was allowed to return. These bones served as the 55 operated series. The wounds of both sides were then closed in layers, ending with stainless steel sutures. The animals were then returned to their cages for recovery.

Six animals were placed in cages which lay between pairs of Helmholtz-aiding coils., according to the method of the present invention. They were stimulated for ½ hour per day. The six animals then exposed to a fluctuating magnetic field tuned to calcium and magnesium simultaneously, using the method of the present invention. The non-zero average value of the (B) field was 40μ Tesla, 30 microTesla peak-to-peak, and the frequency (f_{cs}) was 153 Hz. This set of conditions, as may be readily seen, provides a value f_{cs} which is within 5 percent of f_{ch} for calcium where X is 5 and for magne-

sium where X is 3. The other six animals received no magnetic field stimulation and served as controls.

After one month of stimulation, the rabbits were removed from the cages and necrotized by CO₂ inhalation. The legs were disarticulated and removed. A-P 5 radiographs were taken of each leg, and the muscle tissue was then stripped from the bones. The diameters of fabellae and callus were measured from the radiographs with a digital micrometer. The fibulas were removed and clamped into a cantilever bending testing 10 jig. Each femur was then bent in the A-P axis by moving the bone with a micrometer screw against the tip of a force transducer positioned 1.5 cm above the tip of the clamp jaws. This length of bone included the ostectomy site. The bones were bent 1 mm, and the force required 15 to produce the bending was recorded by an oscillograph connected to a computer, which produced onscreen graphs of force vs. deflection. The F-D ratios of operated vs. sham-operated sided were compared.

The results of the tests are presented graphically in Table A.

TABLE A

	OSTECTOMY RESULTS		
Condition	Fabellar Diam. (mm)	Callus Diam. (mm)	F-D Ratio
Control	2.73 ± .39	2.81 ± .52	$.57 \pm .26$
Ca/Mg 5/3	3.77 ± .49#	3.99 ± .84#	$1.88 \pm .74 \%$

From these results, it can be seen that the application of fields harmonically tuned to cyclotron resonance conditions for calcium and magnesium simultaneously, according to the method of the present invention, produces the growth and osteogenetic effects of magnesium with the mineralization effects of calcium.

These examples offer evidence as to the efficacy of both odd multiple harmonic tuning and the utility of simultaneous turning to more than one ion. It is to be understood that other simultaneous tunings are possible, using harmonic degeneracies, and that the present examples are not meant to be exclusive of other applications or pairings. Any pairing where a degeneracy can be found at complementary odd harmonics is contemplated by the present invention.

What is claimed is:

1. An apparatus for regulating the movement of a preselected ion across a cell membrane, comprising:

means for generating an applied magnetic field parallel to a predetermined axis projecting through a 50 space in which at least one living cell is positioned in the presence of a preselected ion, said applied magnetic field resulting in a magnetic flux density in said space of a known average value parallel to said predetermined axis;

means associated with said magnetic field generating means for fluctuating said magnetic flux density such that said known average value is a non-zero average value;

means for creating a predetermined relationship be- 60 tween the frequency of said fluctuations and said non-zero average value of said magnetic flux density, wherein said predetermined relationship is determined using the equation $f_{ch}=XBq/2\pi m$, where f_{ch} is the frequency of the fluctuating mag- 65 netic flux density parallel to said predetermined axis in Tesla, q is the charge of said preselected ion in Coulombs, m is the mass of said preselected ion

18

in kilograms, and X is a selected odd integer greater than 1.

- 2. The apparatus recited in claim 1, wherein said space is subject to a local magnetic field having a component vector parallel to said predetermined axis and wherein said non-zero average value of said magnetic flux density is a net average value which includes the magnetic flux density of said component vector of said local magnetic field.
- 3. The apparatus recited in claim 1, wherein said selected odd integer is selected from the group consisting of odd integers from 1 to 19.
- 4. The apparatus recited in claim 1, wherein said means for creating said predetermined relationship includes a magnetic field sensor and a microprocessor.
- 5. A method for regulating the movement of a preselected ion across a cell membrane, comprising:

generating an applied magnetic field parallel to a predetermined axis projecting through a space in which at least one living cell is positioned in the presence of a preselected ion, said applied magnetic field resulting in a magnetic flux density in said space of a known average value parallel to said predetermined axis;

fluctuating said magnetic flux density such that said known average value is a non-zero average value; creating a predetermined relationship between the frequency of said fluctuations and said non-zero average value of said magnetic flux density, wherein said predetermined relationship is determined using the equation $f_{ch}=XBq/2\pi m$, where f_{ch} is the frequency of the fluctuating magnetic flux density in Hertz, B is the non-zero average value of the flux density parallel to said predetermined axis in Tesla, q is the charge of said preselected ion in Coulombs, m is the mass of said preselected ion in kilograms, and X is a selected odd integer greater than 1.

- 6. The method recited in claim 5, wherein said space is subject to a local magnetic field having a component parallel to said predetermined axis and wherein said non-zero average value of said magnetic flux density is a net average value which includes the magnetic flux density of said component of said local magnetic field.
 - 7. The method recited in claim 5, wherein said selected odd integer is selected from the group consisting of odd integers from 1 to 19.
 - 8. The method recited in claim 5, wherein said at least one living cell is a region of living tissue of a biological subject.
 - 9. The method recited in claim 8, wherein said region of living tissue is bone tissue and said biological subject is a human or animal subject.
 - 10. The method recited in claim 9, wherein said predetermined relationship stimulates growth of said bone tissue.
 - 11. The method recited in claim 9, wherein said bone tissue is afflicted with osteoporosis and wherein said method therapeutically treats said bone tissue by reducing the extent of said osteoporosis.
 - 12. The method recited in claim 9, wherein said method prevents osteoporosis.
 - 13. The method recited in claim 5, wherein said at least one living cell is substantially an entire human or animal subject afflicted with osteoporosis and wherein said method systemically therapeutically treats said subject by reducing the extent of said osteoporosis.

- 14. The method recited in claim 5, wherein said at least one living cell is substantially an entire human or animal subject and wherein said method prevents osteoporosis.
- 15. The method recited in claim 8, wherein said living 5 tissue is non-osseous, non-cartilaginous connective tissue, said biological subject is human or animal, and said method stimulates the growth of said non-osseous, non-cartilaginous connective tissue.
- 16. The method recited in claim 8, wherein said living 10 tissue is cartilaginous tissue, said biological subject is human or animal, and said method stimulates the growth of said cartilaginous tissue.
- 17. An apparatus for simultaneously regulating the movement of at least two different ions across a cell 15 membrane, comprising:
 - means for generating an applied magnetic field parallel to a predetermined axis projecting through a space in which at least one living cell is positioned in the presence of at least two different preselected 20 ions, said applied magnetic field resulting in a magnetic flux density in said space of a known average value parallel to said predetermined axis;
 - means associated with said magnetic field generating means for fluctuating said magnetic flux density 25 such that said know average value is a non-zero average value;
 - means for determining a value f_{ch} for each of said preselected ions, where $f_{ch} = XBq/2\pi m$, B is said non-zero average value of said magnetic flux den- 30 sity along said axis, q is the charge of said ion in Coulombs, m is the mass of said ion in kilograms, and X is a selected positive non-zero odd integer;

means for selecting a value f_{cs} in Hertz from which method therapeutically treats said be each value f_{ch} deviates less than a predetermined 35 ing the extent of said osteoporosis. percentage; 29. The method recited in claim

fluctuating said magnetic field parallel to said axis at a rate which is equal to said f_{cs} value; and

maintaining the ratio of said f_{cs} rate of fluctuation to said non-zero average value of said magnetic flux 40 density parallel to said axis.

- 18. The apparatus recited in claim 17, wherein said space is subject to a local magnetic field having a component parallel to said predetermined axis and wherein said non-zero average value of said magnetic flux den-45 sity is a net average value which includes the magnetic flux density of said component of said local magnetic field.
- 19. The apparatus recited in claim 17, wherein said selected odd integer is selected from the group consist- 50 ing of 1, 3, 5, 7, 9, 11, 13, 15, 17, and 19.
- 20. The apparatus recited in claim 17, wherein said apparatus includes a magnetic field sensor and a microprocessor.
- 21. A method for simultaneously regulating the 55 growth of said cartilaginous tissue. movement of at least two different ions across a cell

 34. A method of regulating transmembrane, comprising the steps of:

 membrane, comprising the steps of:

generating a fluctuating applied magnetic field paral-

lel to a predetermined axis projecting through a space in which at least one living cell is positioned 60 in the presence of at least two different preselected ions, said applied magnetic field resulting in a magnetic flux density in said space of a known non-zero average value parallel to said predetermined axis; fluctuating said magnetic flux density such that said 65 known average value is a non-zero average value; determining a value f_{ch} for each of said preselected ions where $f_{ch}=XBq/2\pi m$, where B is said non-

zero average value of said magnetic flux density along said axis, q is the charge of said ion in Coulombs, m is the mass of said ion in kilograms and X is a selected positive non-zero odd integer;

selecting a value f_{cs} in Hertz from which each value f_{ch} deviates less than a predetermined percentage; fluctuating said magnetic field parallel to said axis at a rate which is equal to said f_{cs} value; and

- maintaining the ratio of said f_{cs} rate of fluctuation to said non-zero average value of said magnetic flux density parallel to said axis.
- 22. The method recited in claim 21, wherein said predetermined percentage is less than 5 percent.
- 23. The invention recited in claim 21, wherein said at least two different preselected ions comprises three ions.
- 24. The method recited in claim 21, wherein said selected odd integer is selected form the group consisting of 1, 3, 5, 7, 9, 11, 13, 15, 17 and 19.
- 25. The method recited in claim 21, wherein said at least one living cell is a region of living tissue of a biological subject.
- 26. The method recited in claim 25, wherein said region of living tissue is bone tissue, said biological subject is a human or animal subject, said at least 2 preselected ions are Ca^{++} and Mg^{++} , said value of X is 5 for said f_{ch} value of Ca^{++} and said value of X is 3 for said f_{ch} value of Mg^{++} .
- 27. The method recited in claim 26, wherein said value of f_{cs} is about 75 Hertz and said method stimulates growth of said bone tissue.
- 28. The method recited in claim 26, wherein said bone tissue is afflicted with osteoporosis and wherein said method therapeutically treats said bone tissue by reducing the extent of said osteoporosis.
- 29. The method recited in claim 26, wherein said method prevents osteoporosis.
- 30. The method recited in claim 21, wherein said at least one living cell is substantially an entire human or animal subject afflicted with osteoporosis and wherein said method systemically therapeutically treats said subject by reducing said osteoporosis.
- 31. The method recited in claim 21, wherein said at least one living cell is substantially an entire human or normal subject and wherein said method prevents osteoporosis.
- 32. The method recited in claim 25, wherein said living tissue is non-osseous, non-cartilaginous connective tissue, said biological subject is human or animal, and said method stimulates the growth of said non-osseous, non-cartilaginous connective tissue.
- 33. The method recited in claim 25, wherein said living tissue is cartilaginous tissue, said biological subject is human or animal, and said method stimulates the growth of said cartilaginous tissue.
- 34. A method of regulating transmembrane ion movement of preselected ionic species comprising of steps of exposing at least one living cell to a fluctuating magnetic flux density in the presence of said ionic species and controlling the rate of said fluctuations such that $f_c = Bq/2\pi m$, where f_c is the frequency of the fluctuating magnetic flux density in hertz, B is a non-zero average value of the flux density in Tesla, q is the charge of said preselected ionic species in Coulombs and m is the mass of said preselected ionic species in kilograms.
- 35. The method recited in claim 34, wherein said magnetic flux density is fluctuated at a value determined by multiplying f_c by an odd integer.

36. A method of simultaneously regulating the transmembrane movement of at least two preselected ions in a biological system, said method comprising the steps of identifying the charge-to-mass ratios of said at least two preselected ions, determining a value f_{cs} for said at least 5 two preselected ions, said f_{cs} value being based on the cyclotron resonance frequencies of said at least two preselected ions using said charge-to-mass ratios, expos-

ing a biological system which includes said at least two preselected ions and a biological membrane to a fluctuating magnetic field having a non-zero average flux density and a fluctuating magnetic field at a frequency substantially equal to said fcs value, thereby causing transmembrane movement of said at least two preselected ions across said biological membrane.

* * * *