United States Patent 9
Cooper et al.

[S$4] EMULATOR ASSIST UNIT WHICH FORMS
ADDRESSES OF USER INSTRUCTION
OPERANDS IN RESPONSE TO EMULATOR
ASSIST UNIT COMMANDS FROM HOST
PROCESSOR

{75] Inventors: Thayne C, Cooper, West Valley City;
Wayne D. Bell, Bountiful, Norman
J. Rasmussen, Murray, all of Utah

[73] Assignee: Unisys, Blue Bell, Pa.
[21] Appl. No.: 367,271
[22] Filed: Jun. 15, 1989

[51] Int. CLS wooooereereennn, GOGF 9/06; GO6F 12/06:;
GO6F 1/24

152] US.CL e 395/500; 364/238.2;
364/238.5; 364/241; 364/247.2; 364/254.4;

364,/280.2; 364/280.8; 364/281.9; 364/284.4;
364/927.96; 364/929; 364/929.4; 364/941.1;

364/957.2; 364/975.2; 364/DIG. 1; 364/DIG.

2
[58] Field of Search ... 364/200 MS File, 900 MS File
[{56] References Cited
U.S. PATENT DOCUMENTS
3374466 371968 Hanfetal. ...crvveemrienornnen 364/200
3,544,969 12/1970 Rokocziet al. ...cceeervecennneens 3647200
3,646,522 2/1972 Furmanetal.cooomrvueennn.... 364/200
3,997,895 12/1976 Cassonnet et al. ..coueeeennneeen. 364/200
4447876 5/1984 MOOTe ..ooovvrvieeieieneaanns 364/200
4,514,803 4/1985 Agnew etal. ..., 364/200
4,527,234 T/1985 Bellay ..ccoiceveriieerrirnnnrcreerienn, 364/200
4,587,612 5/1986 Fisketal .vivonrriunnveieenrenns 364/200
4591982 5/1986 Buonomoetalcoveeens 364/200
4,638,423 171987 Ballardccovvvimrrvnriiinnnne 364/200

4,695,945 9/1987 Irwinccoivciviivnvncecririnnn 364/200

ADDRESS
DECODE

'°

HOST

PROCESSOR

EMULATOR
ASSIST
UNIT

(11} Patent Number: 5,077,657

[45s] Date of Patent: Dec. 31, 1991
4,729,094 9/1988 Zolnowsky et al. 364/200
4,763,242 8/1988 lLeeetal. ..ccoooveeerrreericeennn... 3647200
4,812,975 3/198% Adachietal.cooorvnvnnne 364/300
4,859,995 B8/1989 Hansen et al.c..coevvrevennnee. 340/710
4 888,680 12/1989 Sander et al.ccccvvevveveeennn. 364/200
4,920,481 4/1990 Binkleyetal.cccovvvvenneeenn. 364/200

Primary Examiner—Thomas C. Lee

Assistant Examiner-——Ken S. Kim

Attorney, Agent, or Firm—Charles J. Fassbender; Mark
T. Starr

[57} ABSTRACT

An emulator is comprised of a host processor, an emula-
tor, assist unit, and a memory which are closely coupled
together over a co-processor bus. Stored in the memory
is a user program which is a sequence of instructions
from a user instruction set that is to be emulated, and a
control program which i1s a mixture of host processor
instructions and emulator assist unit instructions. In
operation, the host processor reads and executes the
hosts instructions, and it reads and passes the emulator
assist unit instructions to the emulator assist unit for
execution in that unit. By this means, the host processor
and the emulator assist unit share the emulation tasks;
and those tasks which are most difficult for the host are
performed by the emulation assist unit. As one example
the emulator assist unit has registers and controls which
respond to the emulator assist unit instructions by exam-
ining the fields of the next user instruction that is to be
emulated and by generating memory addresses of the
operands which that next user instruction operates on;
while the host uses those addresses to read the operands
from memory and perform operations on the operands
as specified by the user instruction. .

10 Claims, 5 Drawing Sheets

slSIm(EISINE

ONTROL

11b

[1

5,077,657

a2
SOl I I I e
. SS3yaav ~—1 ¥0SS3203d
N IR N TN
3 09 LND)
ol v
o ‘__m__g_m—— ,_—ﬁ J_—ﬁ
01
2 ANOW3N LINM
- _ 0/1 LSISSY mumcumzuouna¢ 21
) o9 ¥OLYINKW3
e _ _ o
. 0L I< vi E1 ¢!
S
b\ el
91 WYNO0Nd L1 WYNOONd
y3Sh I091INDT el

[914

U.S. Patent

5,077,657

Sheet 2 of §

U.S. Patent

SUAOA NOISNILX3 UINI430-40SS330ad030 a0 "§0adv 3IAILII443 |_¢ZDH._.n_D
ONVWWOI d0SS330d03

SS3¥AAY 3A1103443 [o JoJo [o1-e3 TJ1 1

0 1 2 € ¥ S 9 L 8 6 0l Il 2t €I

(SQa0A OAL &0 3INO ANV 41
NOISN3ILX3 SS3d0dv JAI133443 NOILVYNILS3A

(STAJOA OAL o0 3NO ANV 4I1)
NOISNILIXd SS3300v 3AI133343 33aN0S

(SA0A OAL &0 3NO ANV 41)
UNVIdO 3IVIAIWWI

(S300OW ANV NOILVAdd0 S3IT4133dS (QoOA LSaId)
Ja0A NOI Lva3dD

0 l c E 14 S 9 L 8 6 01 11 21 E1 +#1 SI

9 9l

de Yl 4

| ! w/4 | Bad |pou 300240 9NDT

I e M T I T O LT T T
01 2EVYS9LO012EYS9L012EYSIL

S 31A€ b 3LAB £ 3LAE 2 31Ad 1 31AE

........... N RN SN B N |

vivC HIIH .m. viva A0 1 osrgtidi t asYEY R hhr_hnr_ﬂoh_;_u, M_nﬁuu.“_l_“_I
.................... T T T T T T T T T 0126 S9.012E6%691¢

9 3LAH S 31A8 ¥ 3LA8 € 31AM 2 3LAM 1 3LAH

Ve 914

5,077,657

311907 37 L
TRER V¥
LRE 31907 -
JIVANILNI SNA vi d| d-3[Jad-d
= — 021 .
- - el
..m o
S = | X
._w - — : S —
7 \ —
300734 10N LNDO €| =
¥ISNI-3 He |

3 ® 1o | TIND LSNI PEIN] v 1] v o3
- 215 INDJ SO -
- — {r | A o
o . O [o
e} e {v] ser v 2 |2
= “ =

.. X X 3

B .

- . n_m:_— ENE
1N

EREEIK

xm xu xm x.q

-n_w n_“—

i

iy te e il - ——

U.S. Patent

] ! !
sl 5[] ol

U.S. Patent Dec. 31, 1991 Sheet 4 of S 5,077,657

CONTROL
PROGRAML 7 HOST 10 EAU 13 MEMORY 15
| E-CODE ADGE OF INTEL
' ADDR INSR
ADDR
INTEL INTSR
INTEL INTSR DIVIDE INSTR INTO
=% PARTS 0O0P—»E-0OP
MOD.RIM—sE-EA
ETC
- —_—
t2 E-0P TO DO oG aF
MEM. ADDR USING 0OP
t3 JUMP JUMP ADDR
JUMP;
—eg~JUMP TO INTEL ADD
ADGR GF FMEM DATA
t4 E~-MDATA TO TEMP ADDR EEEDED BY INTEL
ADDR
DATA
| __Mf‘___.. E-TEMP
tS E-TEMP T0O DO.SRCI1
DO <—EMP TEMP—-SRC2
SELECT REGISTER
DATA NEEDED BY
t6 E-RDATA 70 Dl.SRC2 —»—» INTEL ADD.
D] e REG REL—= SRCZ
t/ ADD DO+Dl—DO0 —
t8 E-DO TO TEMP.RES——*—-—D!—]——P E-TEMP.E-RES
ALCULATE MEM ADDR
t9 EBE-RES TO MEM e [UF RESULT OF INTEL
ADDR ADD
ADDR.RESULT
SET CONDITION
t10 E-SETCC————— = CODES VHICH RESULT
FROM ADD

tl! JuMP —m—mmm

U.S. Patent Sheet 5 of 5

Dec. 31, 1991 5,077,657

A

R/M=000 THEN

FIG.S
IF

EA=(BX 1-(SI)-DISP

IF
IF
1F
IF
IF
IF
IF

R/M=001 THEN
R/M=010 THEN
R/M=011 THEN
R/M=100 THEN
R/M=101 THEN
R/M=110 THEN
R/M=111 THEN

EA=(BX)-(DI)-DISP
EA=(BP)-(SI)-DISP
EA=(BP)-(DI)}-DISP

FA=(SI)-DISP
FA=(DI)-DISP
EA=(BP)-DISP
EA=(BX)-DISP

FIG. 5B

IF MOD=11 THEN R/M IS TREATED AS A REG FIELD
If MOD=00 THEN DISP=0 .DISP-LOV & DISP-HIGH ARE ABSENT

IF MOD=01 THEN DISP=DISP-LOV SIGN EXTENDED TO
16 BITS.DISP-HIGH IS ABSENT

IF MOD=10 THEN DISP=DISP-HIGH:DISP-LOV

FIG.SC
REG
16 BIT(w=1) B BIT(w=0
000 AX 000 AL
001 CX 001 CL
010 DX 010 DL
011 BX 011 BL
100 SP 100 AH
101 BP 101 CH
110 SI 110 DH
111 DI 111 SH
FIG.SD

SEGMENTESEGISTER

CODE(CCS)
STACK(SS)

()t
mZ
0
mir
o [
{0
L
)
z
)
A
Ch
R 4
mm
z
—

N PREFETCH

P>IXPDID
AEMEEL2 A I e
.
MMAIO)
B
M IIMMAOC |
AMMIcoO ML
- A | Z LI L
M| A
O)Z | M) E
M| AP I
-y LZi
—3 1A
- C
X< L 0|
-l
AM C.Ufr—
0 | O
™
N>
2z
3 -<
U

—Alurr| =i

OOD>{ OA0D>
mr
)
—4M{ — D 2>l
A — —] AN X
22| D> | DL D
PO DD DPi—
| MDD [N | r—
—4f{T){
- 0O -
Zg Z DO oM<
-l
D
)
—{[M A){M
A
— < .
2 Al
cYZ M
-
- —0)
U
MmZ
A0 < .
P c
o | .
- I
] m
prd 2

DATA(DS)

EXTRA(CES)

C

5,077,657

1

EMULATOR ASSIST UNIT WHICH FORMS
ADDRESSES OF USER INSTRUCTION
OPERANDS IN RESPONSE TO EMULATOR
ASSIST UNIT COMMANDS FROM HOST
PROCESSOR

BACKGROUND OF THE INVENTION

This invention relates to digital computer emulators;
and more particularly, it relates to the architecture and
operating speed of such emulators,

Currently, there are many different manufacturers of
cagital computers; and, each manufacturer makes its
computers such that they execute their own uniguely
formatted set of instructions. For example, a Motorola
68030 microprocessor is designed to execute a 68030 set
of instructions, whereas an Intel 80 X 86 microprocessor
1s designed to execute an 80X 86 set of instructions (“X”
is 2 or 3). Since each such set of instructions has its own
unique format, user programs which are written with
80 x 86 instructions cannot run directly on the Motorola
68030 microprocessor; and vice versa.

On the other hand, user programs which are written
for the computer of one manufacturer (the target com-
puter) often perform functions which the users of com-
puters of other manufacturers (the host computer)
would also like to perform. But to rewrite a long and
complicated program from one computer’s instruction
set to another computer’s instruction set can be very
time-consuming and expensive. Consequently, com-
puter emulators have been developed.

In one common form, an emulator consists entirely of
a software program called an emulator program which
consists entirely of host computer instructions. This

5

10

15

20

23

30

emulator program sequentially examines all the fields of 35

the target machine instruction that 1s being emulated,
forms the addresses of the operands which those fields
specify, retrieves the operands, performs an operation
on those operands, and stores the result.

However, to perform all of the above tasks for just
one instruction of the target machine takes many host
instructions in the emulator program. For example, to
perform a single target machine instruction can easily
take fifty to one hundred fifty instructions in the emula-
tor program. Thus, the execution time of such an emula-
tor is inherently slow.

Accordingly, a primary object of the invention is to
provide a novel and economical architecture for an
emulator in which emulation speed is substantially in-
creased.

BRIEF SUMMARY OF THE INVENTION

In accordance with the present invention, an emula-
tor is comprised of a host processor, an emulator assist
unit, and a memory which are tightly coupled together
over a co-processor bus. This memory contains a user
program which is a sequence of instructions from a user
(i.e., target) instruction set that is to be emulated, and it
also contains a control program which is a mixture of

host processor mstructions and emulator assist unit 60

instructions. In operation, the host processor reads and
executes the host mstructions, and it reads and passes
the emulator assist unit instructions to the emulator
assist unit for execution in that unit. By this means, the
host processor and the emulator assist unit share the
emulation tasks; and the emulation assist unit performs
those tasks which are the most difficult for the host. As
one example, the emulator assist unit has registers and

45

33

65

2

controls which respond to the emulator assist unit in-
structions by examining the fields of the next user in-
struction that is to be emulated and by generating mem-
ory addresses of the operands which that next user
instruction operates on; while the host uses those ad-
dresses to read the operands from memory and perform
operations on the operands as specified by the user

mstruction.

BRIEF DESCRIPTION OF THE DRAWINGS

Various features and advantages of the invention are
described herein in conjunction with the accompanying
drawings wherein: |

FIG. 1 illustrates a co-processor emulator which is
constructed according to the invention;

FIG. 2A illustrates a format for the user (i.e., target)
instructions which the FIG. 1 system emulates;

FIG. 2B illustrates a format of the instructions which
the F1G. 1 host processor executes;

FIG. 3 illustrates the details of a preferred architec-
ture for the emulator assist unit in the FIG. 1 system;

FIG. 4 illustrates the time sequence by which the
emulator assist unit, host processor, and memory of the
FI1G. 1 emulator interact to perform user instructions;

FIG. S§A-5D together illustrate additional details of
how addresses of use instruction operands are formed
by the FIG. 3 emulator assist unit; and

FI1G. 6 illustrates additional details on how instruc-
tions for the emulator assist unit can be implemented.

DETAILED DESCRIPTION OF THE
INVENTION

Referring now to FIG. 1, a preferred embodiment of
a data processing system which performs emulation in
accordance with the invention will be described. This
system includes a host processor 10, a bus 11, an address
decoder 12, an emulator assist unit 13, an input/output
device 14, and a memory 15. All of these members are
interconnected as FIG. 1 illustrates.

In one preferred embodiment, the host processor 10 is
a Motorola MCé68030 32-bit microprocessor; and the
bus 11 consists of the input/output signals for the
MC68030. Those input/output signals include thirty-
two data lines 11A, thirty-two address lines 11B and

twenty-five control hines 11C. Background information
on the MC68030 microprocessor itself 1s contained in

the Motorola Microprocessor User’s Manual, 2d Edi-
tion, number 0-13-566969-3 which i1s available from
Motorola.

Consider now how all the members 10-15 of the FIG.
1 system operate together to perform emulation during
which a user program 16 that resides 1n memory 15§ is
executed. This user program 16 consists- of a sequence
of instructions 16A, each of which has an entirely differ-
ent format than the instructions of the MC68030 host
processor 10. In one preferred embodiment, the user
instructions are Intel 80X 86 microprocessor instruc-
tions. Background information on the 80X 86 is con-
tained 1n the Intel Microsystem Components Hand-
book, Vol. 1, Order No. 230843001, 1984, which is
available from Intel Corporation of Santa Clara, Calif.

For comparison purposes, FIG. 2A 1illustrates the
format of the Intel instructions, whereas FIG. 2B illus-
trates the format of the Motorola instructions. Inspec-
tion of FIG. 2A shows that the Intel 80 < 86 instructions
have a 2-bit “MOD” field, a 3-bit “REG” field, and a
3-bit “R/M” field which together specify the location

5,077,657

3

of one or two operands. By comparison, F1G. 2B shows
that such fields don,t even exist in the Motorola instruc-
tions. Further, the Intel 80X 86 instructions use the
content of several registers which are called AX, BX,
CX, DX, BP, SP, D1, SI, ES, CS, SS§, DS, FS and GS;
and these registers don’t exist in the Motorola 68030
microprocessor. Also, several of the Intel 80X86 in-
structions cause certain condition codes to be set to
indicate the instruction results, and these same condi-
tion codes are not in the 68030 microprocessor.

Due to the above differences and others between the
Intel 80X 86 instructions and the Motorola 68030 in-
structions, it is very cumbersome to emulate the Intel
instructions by means of a 68030 software program. If
68030 instructions are used to examine all the different
fields of the the Intel 80X 86 instructions, generate the
various operand addresses, fetch the operands and per-
form byte swapping, perform the called-for operation,
and set condition codes, then the resulting overall exe-
cution time is very slow.

But in the FIG. 1 system, this speed problem is over-
come by the emulator assist unit 13 which operates 1n
conjunction with the Motorola host processor 10 and a
control program 17 in memory 15. Using these system
components, the tasks within each Intel 80X 86 instruc-
tion are split up such that the Motorola 68030 processor
performs only those tasks which it can do efficiently,
and the emulator assist unit is tailored to perform the
remaining tasks efficiently. How these tasks are divided
is directed by the control program 17 which is a mixture
of host processor instruction and emulator assist unit
instructions.

Reference numeral 17A in FIG. 1 indicates individual
instructions and emulator assist unit instructions. Those
instructions 17A are sequentially read from memory 13
by the host processor 10. If the read instruction 1s a
Motorola 68030 instruction, then it is executed directly
by the host processor. Conversely, if the read mnstruc-
tion is an emulator assist unit instruction, it is passed by
the host processor to the emulator assist unit 13 for
execution therein.

Turning now to FIG. 3, it shows in greater detail the
structure of the emulator assist unit 13. This unit con-
tains several registers, and their reference letters and use
are as follows.

IP. This register contains the address of the current
or next user instruction in memory 15 that is to be exe-
cuted.

E-PRE. This register holds the prefix field, if any, the
current user instruction that is being executed.

E-OP. This register holds the OP Code of the current
user instruction as being executed. address and SIB
byte, if any, of the current user instruction that is being
executed.

E-REG. This register maintains the TTT bits, if any,
of the effective address register.

E-DISP. This register maintains the displacement, if
any, of the current user instruction that is being exe-
cuted.

E-DATA. This register maintains the immediate 60

data, if any, of the current user instruction that is being
executed.
E-TEMP. This register is used to temporanly hold
data during the execution on a user instruction.
E-MBASE. This register holds the address of the
location in memory 15 where the user program begins.
E-SRC1. This register holds a first source operand
for the current user instruction.

10

15

20

25

30

335

45

35

65

4

E-SRC2. This register holds a second operand for the
current user instruction that is being executed.

E-RES. This register holds the result of the current
user instruction that is being executed.

AX, BX, CX, and DX. These are byte-addressable
registers which the Intel instructions select and use to
hold data or a portion of an address which locates data.

DI, SI and BP. These registers are selected by the
user instructions to be combined with other registers to
form the address of an operand.

SP. This register addresses a portion of memory 13
which is the beginning of a stack for the user instruc-
tions.

ES, CS, SS, and DS. These are segment registers
which are combined with the content of other registers
to form the address in memory of user data and user
instructions.

E-FLAG. This register holds the condition codes
which are set/reset to indicate the results of an Intel
80x 86 instruction. The various bits of this register
indicate the following conditions.

Bi1 Condition

0. Overflow

1 - Not Overflow

Below/Carry/Not Above or Equal
Above or Equal/Not Below/Not Carry
Equal/Zero

- Not Equal/Not Zero

- Below or Equal/Not Above

- Above/Not Below or Equal

- Sign

- Not Sign |

Parity/Parity Even

- Not Parity/Parity Odd

- Less/Not Greater or Equal

- Not Less/Greater or Equal

- Less or Equal/Not Greater

- Not Less or Equal/Greater

MO OmMP> e aonw

Also included in the emulator assist unit 13 are five
adders 13a-13¢, a shifter 13/, effective address control
logic 13g, an instruction decoder 134, and condition
code logic 13i. These components 13¢-13/ are intercon-
nected to the emulator assist unit register as FIG. 3
illustrates.

In operation, the control logic 13g examines the con-
tent of E-PRE, E-OP and E-EA: and based on their
content and an emulator assist unit instruction, it gener-
ates control signals SEGCNTL, ICNTL, DCNTL, and
RCNTL. The SEGCNTL signals pass the contents of
one of the segment registers ES, CS, S8, DS, FS and
GS into the adder 13ag; the ICNTL signals pass the
content of one of the index registers DI and SI into
adder 13b; the DCNTL signals pass the content of the
E-DATA and E-DISP into adder 13d; and the RCNTL
signals pass the content of one of the registers AX, BX,
CX, DX, 1P, BP, and SP into adder 13b and shifter 13/

All of the above selected register contents are com-
bined by components 13a-13f to form a memory ad-
dress, at the output of adder 13e, of Intel 80 X 86 instruc-
tions and their operands. Operand addresses are speci-
fied by the previously described 2-bit MOD field, 3-bit
REG field, and 3-bit R/M field. Such addressing 1s
completely different than the manner in which the Mo-
torola host processor forms its operand memory ad-
dresses; and thus the emulator assist unit 13 provides
more than a simple extension of the Motorola instruc-
tions. Instead, it provides a new computer architecture

5,077,657

S

(i.e., the Intel BOX 86 architecture) which cannot be
effectively emulated by the Motorola 68030 processor.

Instruction decoder 134 receives as an input emulator
assist unit instructions, and 1n response it generates con-
trol signals INSTCNTL, CSCNTL, DCNTL, and
IPCNTL. The INSTCNTL signals load respective
portions of the 80X 86 instruction into the E-PRE,
E-OP, and E-EA registers; and the CSCNTL signals
pass the content of the CS register into adder 13¢; the
DCNTL signals load the displacement and data por-
tions of an 8086 instruction into the E-DISP and
E-DATA registers; and the IPCNTL signal passes the
content of the IP register into the adder 1354. In like
fashion, the condition code logic examines the content
of registers E-RES, E-SRC]1, and E-SRC2; and, in re-
sponse to an emulator assist unit instruction, it generates
control signals CCCNTL which set the condition codes
in the E-FLAG register. Here again, these tasks cannot
be efficiently performed by the host processor.

Further included in the emulator assist 13 unit is bus
interface logic 13;. It consists of various registers and
controls that are needed to send and receive informa-
tion on bus 11 as a co-processor. This bus interface logic
13/ can have any configuration so long as i1t meets the
MC68030 co-processor interface requirements as 1S
given in the MC68030 User Manual which was refer-
enced on page 4. Through this interface logic, the emu-
lator assist unit 13 is tightly coupled to the Motorola
host processor. Specifically, information is sent back
and forth between the host processor 10, the emulator
assist unit 13 and the memory 18 via a single instruction
and without the need for any Interrupt processing by
the host.

Considering now FIG. 4, it shows the time sequence
by which the emulator assist unit 13 interacts with the
host processor 10 and the control program 17 during
the emulation process. Initially, as is indicated at time ti,
the host processor 10 reads an instruction from the
control program 17. Any instruction which is prefixed
with an E indicates that it is for the emulator assist unit;
and so at time t; the host processor 10 passes the E.-
DECODE instruction to the emulator assist. Upon
receipt of the E-DECODE instruction, the emulator
assist unit 13 calculates the memory address of the next
Inte] 80286 1nstruction that 1s to be executed in the user
program 16, and it sends that address to the host proces-
sor. In performing this memory address calculation, the
decode logic 13h passes the content of the IP and CS
registers thru the emulator assist unit adders along with
the content of the E-MBASE register.

Next, the host processor 10 uses the above address to
retrieve an Inte] instruction 162 from memory 15. That
Intel mstruction is then sent by the host processor 10 to
the emulator assist unit 13. Upon receiving the Intel
instruction, the emulator assist unit 13 partitions it as
follows: the OP code portion of the instruction goes to
the E-OP register; the MOD and R/M and SIB fields go
to the E-EA register; the displacement portion of the
instruction, if any, goes to the E-DISP register; the
immediate data portion of the instruction, if any, goes to
the E-DATA register; and the prefix portion of the
instruction, if any, goes to E-PRE.

Next, at time t3, the host processor 10 reads another
instruction from the control program 17. This instruc-
tion also ts prefixed with an E; and so it is passed to the
emulator assist unit. There, the instruction is decoded
by the decode logic 134 as requesting a transfer of the
E-OP register back to the host; and so the INST control

10

15

20

25

30

35

45

35

63

6

signals are generated such that register E-OP is trans-
ferred to the bus interface logic 13/ which in turn trans-
fers register E-OP back to the host.

Next, at time t3, the host processor reads another
control program instruction which is a JUMP. This
JUMP is executed in the host of processor 10; and 1t
causes the host processor to form a memory address
using the content of its register D0 (which now contains
the Intel OP code); read the content of memory 18 at
that address; and jump by changing its program counter
to the location as read from memory. By this means,
each different Intel OP code causes a branch to a corre-
sponding different location in the control program 17.

As one specific example, FIG. 4 shows the branch
which is taken when the OP code is for an Intel ADD
instruction. In that case, the next control program in-
struction, which is executed at time t4, is for the emula-
tor assist unit 13. In response to this instruction, unit 13
calculates the memory address of one operand that is
needed by the Intel ADD instruction. To calculate this
memory address, the effective address control logic 13g
generates the control signals SEGCNTL, ICNTL,
DCNTL., and RCNTL such that the contents of the
appropriate registers are passed through the adders
13a-13e. The resulting address from adder 13e 1s sent to
the host 10 which 1n turmn retrieves the operand from
memory 15 and returns it to the emulator assist unit.
There, the operand is byte-swapped and sign-extended,
and the result is stored in register E-TEMP.

Next, at time ts, another control program instruction
is read by the host processor 10. This instruction is also
passed to the emulator assist unit which performs it by
passing the content of register E-TEMP to the host
processor and by also placing the content of E-TEMP
into register E-SRC1. |

Next, at time tg, another control program instruction
is read from the host 10 which in turn is passed to the
emulator assist unit 13. In response, the decode logic
134 selects the content of one of the registers AX, BX,
CX and DX as is specified by the Intel instruction, and
it sends that register back to the host. Also, the content
of that selected register is placed in register E-SRC2.

Next, at time t7, the host processor 10 reads another
control program instruction which this time is for its
own execution. By this instruction, the host processor
adds the contents of its registers D0 and D1, and it
places the result in D0. By that operation, it performs
the addition which is specified by the current Intel
instruction that is being emulated.

Next, at time tg, the host processor reads another
control program instruction. In response, the host pro-
cessor 10 transfers the content of its register DO to the
emulator assist unit; which, in turn, places that data in
the registers E-TEMP and E-RES.

Next, at time tg, the host processor 10 reads another
control program instruction which it then passes to the
emulator assist unit for execution. In response, the effec-
tive address control logic 13g in the emulator assist unit
generates the control signals SEGCNTL, ICNTL,
DCNTL, and RCNTL such that a memory address is
formed at the output of adder 13e. This address 1s where
the resul of the Intel ADD instruction is to be stored,
and it, as well as the byte-swapped result of the add, are
passed by the emulator assist unit to the host processor
10. In turn, the host stores the byte-swapped result of
the add in memory at the addressed location.

Next, at time tjg, the host processor reads another

control program instruction which it then passes to the

5,077,657

7

emulator assist unit 13. In response, the condition code
logic 13i uses the content of registers E-RES, E-SRC1,
and E-SRC2 to set the indicators in the E-FLAG regis-
ter such that they reflect the result of the Intel ADD
mstruction.

Lastly, the host processor 10 reads another control
program instruction; and this instruction causes the host
processor to jump back to the beginning of the control
program which was executed at time t;. Thereafter, the
above-described sequences of times t;, t3, and t3 are
repeated to retrieve and set up the next Intel mstruction
that is to be emulated; and the jump at time t3 will be to
the portion of the control program 17 which splits up
the tasks between the host and the emulator assist unit
for emulating that next Intel instruction.

By dividing the tasks of emulating an Intel 80X 86
instruction as described above, the complexity of the
emulator assist unit is substantially reduced over that
which would be required if unit 13 performed all of the
emulation tasks. For example, unit 13 does not have to
duplicate the arithmetic-logic circuits which are in the
host processor 10 and which perform the operations
that are specified by the Intel 80X 86 OP codes. Also,
unit 13 does not have to duplicate any of the control
circuitry and registers of the host processor 10 that is
required to interface with the memory 13.

Also, by dividing the emulation tasks as descnibed
above, a substantial increase in execution speed 1s at-
tained over that which is achieved by performing emu-
lation entirely with host software. For example, when
the Inte! 80x 86 ADD instruction is performed as de-
scribed in FIG. 4, a total of just eleven host-emulator
assist unit instructions are required; whereas when that
same Intel 80 x 86 ADD instruction is emulated solely
by Motorola 68030 host software, over two hundred
68030 instructions are required.

Further, for comparison purposes, suppose that the
Intel 80x86 ADD instruction tasks are partitioned
between the host processor 10 and the emulator assist
unit 13 as described in FIG. 4, but that unit 13 is modi-
fied to operate not as a co-processor but as an 1/0 de-
vice which interacts with the host processor 10 through
interrupts. Under those conditions, each time the emula-
tor assist unit 13 transfers information to the host pro-
cessor 10, the host processor would have to execute an
interrupt program which identifies all interrupting de-
vices and then services the interrupts in a sequential
fashion. Each such interrupt service would take about
five Motorola 68030 instructions, and there are nine
such data transfers in the FIG. 4 ADD.

Considering now FIGS. SA thru 5D, they show addi-
tional details of how the effective address control logic
13¢ operates. In particular, FIG. SA shows the various
bit combinations in the R/M field of an Intel 80286
instruction and the corresponding registers which they
select: FIG. 5B shows the various bit combinations of
the MOD field of an Intel 80286 instruction and how
they affect the registers in FIG. SA; FIG. 5C shows the
various bit combinations of the REG field of an Intel
80286 instruction and how they select the Intel regis-
ters;: and FIG. 5D shows how the Intel 80286 segment
registers are implicitly selected. All of these register
selections are made by the effective address control
logic 13g. It uses combinational logic circuits to decode
the R/M field, MOD field, and REG field in registers
E-PRE, E-OP, and E-EA, and in response generates the
proper SEGCNTL, ICNTL, DCNTL, and RCNTL
control signals such that the correct registers are passed

10

15

20

25

30

33

45

50

35

65

8

through the addres 13a-13e. These logic circuits can,
for example, be programmable logic arrays. Similarly,
control circuits 137 and 134 can also consist of program-
mable logic arrays.

A preferred embodiment of the invention has now
been described in detail. In addition, however, many
changes and modifications can be made to these details
without departing from the nature and spirit of the
invention. For example, the computer that is being emu-
lated is not limited to the Intel 80X 86; many other
computers can also be emulated by the FIG. 1 system.
For each new instruction set that is to be emulated, the
details of the registers and controls in the FIG. 3 emula-
tor assist unit will change to match the new instruction
set; but the manner in which tasks are divided remains
the same.

Also, the host processor 10 need not be a 68030; it can
be any processor that has a co-processor interface over
which data is transferable to/from the emulator assist
unit without interrupt processing. In the Motorola
68030, such data transfers are initiated by instructions
that have the format shown in FIG. 6. Bits 15 thru 12 of
the first sixteen-bit word being a 1111 indicates that the
instruction is for the emulator assist unit rather than the
host, and all of the bits of the second sixteen-bit word
specify the actual tasks which the emulator assist unit is
to do. These tasks are specified by the emulator de-
signer, and an optional third sixteen-bit word can be
used to specify additional information that 1s used in
that task. All of this is just one example of how the “E”
prefixed instructions of FIG. 4 can be implemented.

Accordingly, it is to be understood that the invention
is not limited to the above details but is defined by the
appended claims.

What is claimed is:

1. An emulation assist unit for use in performing emu-
lation in conjunction with a host processor and a mem-
ory which are coupled together over a bus; said host
processor performing the operation specified in a user
instruction by utilizing operand memory addresses de-
termined by the emulation assist unit, comprising:

a means for receiving said user instruction from said
host processor over said bus and for storing the
received user instruction;

a plurality of registes which are selectively called for
by various fields in said user instruction;

an emulation assist unit command decoder for receiv-
ing a sequence of emulation assist umt commands
from said host processor over said bus for each of
said user instructions and for decoding said se-
quence of commands; and,

logic means which responds to certain decoded emu-
lation assist unit commands by combining the con-
tent of the registers which said fields of said user
instruction select to generate said memory address
of an operand specified by said user instruction.

2. An emulation assist unit according to claim 1
wherein said logic means includes multiple addres
which generate said memory address by combining the
content of more then two of said registers simulta-
neously.

3. An emulation assist unit according to claim 2
wherein said logic means includes five adders and a
shifter.

4. An emulation assist unit according to claim 3
wherein said logic means further includes means for
forming an address of said user instruction in said mem-
ory.

5,077,657

9

5. An emulation assist unit according to claim 4
wherein said memory includes a control program which
consists of a mixture of said emulation assist unit com-
mands of a mixture of said emulation assist unit com-
mands for said emulation assist unit and host instruc-
tions for said host processor.

6. An emulation assist unit according to claim §
wherein said user instructions and said host instructions
have substantially different formats.

7. An emulation assist unit according to claim 6
wherein said user instructions and said host instructions
specify substantially different registers for generating
operand addresses.

10

15

20

25

30

35

45

50

55

65

10

8. An emulation assist unit according to claim 1
wherein said memory includes a control program which
consists of a mixture of said emulation assist unit com-
mands for said emulation assist unit and host instruc-
tions for said host processor.

9. An emulation assist unit according to claim 8
wherein said user instructions and said host instructions
have substantially different formats.

10. An emulation assist unit according to claim 9
wherein said user instructions and said host instructions
specify substantially different registers for generating

operand addresses.
% & % ¥ *

	Front Page
	Drawings
	Specification
	Claims

