United States Patent ps

[54]

[75]

[73]

[21]
[22]

[51]
[52]

Morris, Jr. et al.

METHOD FOR REGENERATING
IN-CIRCUIT TEST SEQUENCES FOR
CIRCUIT BOARD COMPONENTS

Inventors: Carroll E. Morris, Jr., Fort Collins;
Robert E. Balliew, Loveland; Mark
A, Mathieu, Loveland; Darrell B.
Johnsrud, Loveland, all of Colo.

Assignee: Hewlett-Packard Company, Palo
Alto, Calif.

Appl. No.: 501,991

Filed: Mar, 29, 1990
Int. CL.5 oooeeeeeeeeeeeenereessnscnnsossensens GO1R 31/28
US.CL ...oeeieceerienenennns 324/158 R; 324/73.1;

324/537; 371/27

32,32 |

| 1 [inTERFACE/
A

|\DEPENDENCIES
OBJECT

HO

111] Patent Number: 5,004,978
451 Date of Patent: Apr. 2, 1991

[58] Field of Search 324/158 R, 73.1, 537;
371/21.1, 22.1, 22.6, 27
[56] References Cited
U.S. PATENT DOCUMENTS
3,655,959 4/1972 Chernow et al.covvevvinrene 371/21.1
4.045,736 8/1977 Carpenter et al. 324/158 R
4.638,481 1/1987 Craneetal. .c.cooevrvemnvircvennenne 371/27

Primary Examiner—Ernest F. Karlsen

[57) ABSTRACT

A method for use in an in-circuit tester automatically
determines which test sequences must be regenerated as
a result of a board modification, and automatically re-
generates only the test sequences affected by the modifi-
cation.

15 Claims, 5 Drawing Sheets

e W4

U.S. Patent

Apr. 2, 1991 Sheet 1 of S 5,004,978

30 F/lG. / 10
' READ BOARD
BOARD OBJECT oy
34 /4
| resTFiE GENERATE
TEST

AND

DETERMINE

SUPPORTING
DEVIGES

3 /6
DEPENDENCIES WRITE DEPENDENCIES
OBJECT OBJECT

3c' /8

CHANGE TO
BOARD OBJECT

P

- BOARD OBJECT AN

DETERMINE WHAT
DEVICES -ON WHICH
TO RUN /PG

10}

LIST OF DEVICES FOR h

\ wwicn 10 RUN 1PG '

e h
TEST FILE

22

GENERATE NEW
TESTS

AND -
DETERMINE

SUPPORTING
DEVICES

__ 2
DEPENDENCGIES UPDATE DEPENDENCIES
OBJECT OBJECT
' }

3z,

U.S. Patent Apr. 2, 1991 Sheet 2 of 5 5,004,978

. | 40
| MARK DEVICE AS HAVING F / G 2
ITS TEST GENERATED
' 42
INITIALIZE SUPPORTING /4
DEVICES LIST TO NIL | /

GENERATE TEST 43

ADD EACH SUPPORTING | %6
DEVICE TO LIST

h

IF
"MUST-GENERATE

(DEVICE)"

FALSE

GET SUPPORTING
DEVICES LIST FROM OLD
DEPENDENCIES OBJECT

1S
DEVICE MARKED ™
AS HAVING ITS TEST

GENERATED

COPY SUPPORTING
DEVICE LIST TO

. DEPENDENCGIES OBJECT

WRITE NEW
DEPENDENCIES OBJECT
TO MEMORY

U.S. Patent

Apr. 2, 1991 Sheet 3 of S 5,004,978

FlG. 4

60 74
DOES N .
DEPENDENCIES @
OBJECT EXIST
4
4

/S

SUPPORTING
DEVICES LIST FOR

DEVIGE NIL

’6
(52)

FOR EACH SUPPORTING DEVICE
ON LIST OF SUPPORTING DEVICES

DO FOLLOWING STEPS 50
' 66 7~
LOOK UP SUPPORTING
DEVICE IN BOARD OBJECT
. /S
SUPPORTING N _ g
DEVICE IN BOARD RETURN TRUE @
< OBJECT
?
g0,
COMPARE INFO ABOUT SUPPORTING
DEVICE IN DEPENDENCIES OBJECT
W/ INFO IN _BOARD OBJECT
&0

RETURN TRUE @

U.S. Patent Apr. 2, 1991 Sheet 4 of 5 5,004,978

' €0
90 [
4 96

| COMPARE TIME STAMFP OF BOARD
OBJECT WITH TIME-STAMP OF
TEST FILE FOR DEVICE

/S
BOARD
OBJECT NEWER THAN
TEST FILE
?

IF
“‘MUST-GENERATE

(DEVICE)"

TRUE
/02
PUT DEVICE ON LIST OF DEVICES
FOR WHICH TO RUN IPG

. FIG. 5

N

N

U.S. Patent

Apr. 2, 1991 ~ Sheet 5 of 5 5,004,978

Fl6. 6

30, 30"
BOARD
OB/ECT
32,32
DEPENDENCIES
OBJECT

34,34’

/10 /12 /4
INTERFACE /
o a7 |

TEST
FILE

5,004,978

1

METHOD FOR REGENERATING IN-CIRCUIT
TEST SEQUENCES FOR CIRCUIT BOARD
COMPONENTS

FIELD OF THE INVENTION

The present invention relates generally to in-circuit
testing of electronic components. More particularly, the
present invention relates to a method for automatlcally
determining the set of test sequences that need to be |
regenerated after a change has been made to a circuit
board and then regenerating those test sequences.

BACKGROUND OF THE INVENTION

In-circuit testing apparatus are known in the art. See,
for example, copending application Ser. No. 173,713,
filed Mar. 31, 1988, now U.S. Pat. No. 4,888,548, enti-
tled “Programmatically Generated In-Circuit Test of
Digital to Analog Converters” and copending applica-
tion Ser. No. 175,874 filed Mar. 31, 1988, now U.S. Pat.
- No. 4,947,106, entitled “Programmatically Generated
In-Circuit Test of Analog to Digital Converters.” See
also U.S. Pat. Nos. 4,797,627, 4,853,928, 4,799,023,
4,785,235, 4,779,041, 4,652,814, 4,642,561 and 4,598,245.
As is known, in-circuit testing involves electrically
isolating the device or component under test (“DUT”)
from the remainder of the devices on the circuit board
under test (“BUT”), then performing functionality tests
on the DUT. Thus, in-circuit testing is a technique for
testing devices on a BUT as if the DUT were discon-
nected from its surrounding circuitry, i.e., as if the DUT
were a stand-alone device.

In prior art in-circuit testers, it is known to supply a
software (or firmware) based automatic test sequence
generator that analyzes a description of the BUT pro-
vided by the user, usually stored in a file called a “board
object” (or “board file””), and then generates a test se-
quence for each component. The test sequences are then
stored in “test files” for later recall. Two examples of
in-circuit testers that employ automatic test sequence
generators, board objects and test files as described
herein are the Model HP 3065 and Model HP 3070
programmable in-circuit testers, both of which are man-
ufactured by Hewlett-Packard Company, Palo Alto,
Calif. In respect to the Model HP 3065, see, for exam-
ple, “HP 3065 X/L Board Test System, Users’ Manual
Volume 1, System Reference”, Hewlett-Packard Com-
pany Part No. 03065-90090, pp. 13-1 through 13-57
(1985). In respect to the Model HP 3070, see, for exam-
ple, “HP 3070 Board Test System, Users’ Manual,
Board Test Fundamentals’’, Hewlett-Packard Company
Part No. 44930A, pp. 2-33 through 2-48, 5-1 through
5-54 and 10-2 through 10-10 (1988). Both of these publ-
cations are incorporated herein by reference.

In the prior art, a major portion of the test sequence
generation process for each component consists of auto-
matically determining how to electrically isolate the
component so that it can be tested as if it were a stand-
alone device. In many cases, however, the DUT cannot
be completely isolated, and therefore the test sequence
for that DUT must compensate for, or take into consid-
eration, the effect of surrounding devices on the board
that affect the test sequence for the DUT. For example,
a test sequence for a particular DUT must take into
account any devices connected in parallel with the
DUT in order to obtain accurate results. Thus, each test
sequence must take into account information about both
the particular DUT and surrounding components and

15

20

235

30

35

40

45

50

33

635

2

how they are connected. This information is called
“dependency” information. In the prior art, the depen-
dencies are automatically determined and taken into
account during the test sequence generation process.

A particular shortcoming of the prior art is that every
time even a single board component is changed, or the
board topology is slightly modified, the entire test se-
quence for the BUT must be regenerated, and therefore
the test sequence generation process must be repeated
for every device on the board. This is so because there
is no efficient way, according to the prior art, for the
test sequence generation program to determine just
which surrounding components would be affected and
which surrounding components would not be affected
by the change. Moreover, it is also often difficult for the
board test programmer to make this determination. It is
therefore desirable to provide a method for use in an
in-circuit tester that will automatically determine which
particular test sequences must be regenerated when the
circuit board is modified without regenerating the en-
tire test sequence (i.e., for the entire BUT), then regen-
erate the test sequence for the modification. The present
invention achieves this goal.

SUMMARY OF THE INVENTION

A method of operating an in-circuit tester comprises
first providing, in the in-circuit tester, information de-
fining details of a circuit board, including data indica-
tive of devices to be tested on the board. Test sequences
for the devices to be tested are then generated accord-
ing to the information provided to the in-circuit tester.
According to the invention, the method automatically
determines, for each device for which a test sequence
was generated, whether other devices on the board
affect the test sequence for the device to be tested, and
the method automatically identifies those other devices.
The identity of the other devices determined to affect
the test sequence are then stored in a memory of a com-
puter associated with the in-circuit tester. Thus, in the
event of a modification to the board, the computer has
stored in its memory, data indicative of the other de-
vices that should be considered in deciding whether to
generate new test sequence(s) for each device.

The method of the present invention also detects
when a board has been modified, and in response to
detecting a board modification, first automatically iden-
tifies the devices for which new test sequences should
be generated, then generates new test sequences for
only the devices that were identified as requiring new
test sequences.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flowchart for an improved automatic test
sequence generation method according to the present
invention. .

FIG. 2 is an expanded flowchart for the “Generate
Test and Determine supporting Devices” block of FIG.
1.

FIG. 3 is an expanded flowchart for the “Write De-
pendencies Object (IPG)” block of FIG. 1.

FIG. 4 is an expanded flowchart for the “If Must-
Generate (Device)” block of FIG. 3.

FIG. 5 is an expanded flowchart for the “Determine
What Devices On Which To Run IPG” block of FIG.
1.

5,004,978

3

FIG. 6 depicts exemplary apparatus for performing
the automatic test generation process according to the

present invention.

FIG. 7 is an exemplary circuit board provided for
describing the format of a dependency object according
to the present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Referring now to the drawings, wherein like numer-
als represent like elements, there is illustrated in FIG. 1
a flowchart setting forth a method according to the
present invention for automatically determining which
test sequence(s) must be regenerated as a result of a
modification to the circuit description of the board to be
tested, and automatically regenerating the test sequen-
ce(s) affected by a specific modification. The method
illustrated in FIG. 1 may be employed in any in-circuit
tester of the type previously discussed in the back-
ground section hereof, such as the aforementioned com-
mercially available Hewlett-Packard Company Model
HP 3065 or Model HP 3070 programmable in-circuit
testers, but the invention is by no means limited thereto.

In FIG. 1, blocks 10, 14 and 22 (except clements 40,
42 and 46 of FIG. 2), 30, 30', 34, 34’ and 36 represent
steps performed, and input received and output pro-
vided, by the aforementioned Model HP 3065 or Model
HP 3070, as well as other prior art in-Circuit testers.
Blocks 16, 18, 20, 14 and 22 (elements 40, 42 and 46 of

FIG. 2), 26, 32 and 32’ represent additional steps per- 30

formed, and additional output provided, when the mod-
ification of the present invention is implemented. As
illustrated in FIG. 1, a user provided file, referred to
herein as a “board object” 30, is first read into a com-
puter or control system associated with the in-circuit
tester, as shown at block 10. As discussed above, and as
well known in the art, the board object 30 is a file con-
taining an electrical description of a particular board,
including what devices are mounted on the board and
how they are interconnected. Next, as in the prior art, a
preprogrammed test generation routine 43 (FIG. 2) s
executed and a test file 34 is written to a memory, such
as a disk. The test generation routine 43 is a program
that automatically determines how to tsolate the devices
to be tested from their surrounding circuitry, and then
automatically generates test sequences for the individ-
ual devices. (Note that in a preferred embodiment, the
test generation routine 43 is actually not a separate
program, but is part of a larger program that generates
test sequences and determines supporting devices for
the devices to be tested.) The test file 34 for a given
board contains the test sequences for all the devices on
the BUT, and therefore provides a program to operate
the in-circuit tester. The test generation routine 43
(FIG. 2) may be one employed in any prior art in-circuit
tester. For simplicity, the test generation routine 43 is
also referred to herein as IPG (Integrated Program
Generator), which is the name of the particular test
generation routine employed by the aforementioned
Model HP 3065 and Model HP 3070, but the use of this
term herein is intended to cover any test generation
routine of any in-circuit tester. According to the inven-
tion, however, the IPG also produces a ‘“supporting
devices list”, as shown at block 14. The supporting
devices list for a particular DUT 1s a list of all the de-
vices (referred to herein as “supporting devices”) on the
- board which affect the testing of that DUT, as will
become evident hereinafter. Also according to the in-

10

15

20

25

35

43

33

65

4

vention, a file called a “dependencies object” 32 is also
compiled by merging the supporting devices list to a
copy of the existing board object 30, and the dependen-
cies object is then written to disk, as shown at block 16.
Thus, at this point, there will preferably be created a
board object 30, a dependencies object 32, and a set of
one or more test sequences for the devices on the board.

The test sequences can either be stored in a single test
file 34 representing a given board, or in separate test

files each representing a particular device. Further-
more, according to the invention, the dependencies
object 32 comprises a supporting devices list for each
device on the board. It should be clear at this point that
the terms “object” (as 1n “board object’”), and “file” (as
in ‘“test file’’) are interchangeable. The particular usage
herein is simply a matter of convention.

Assume now that a board is modified in some way,
e.g. a component is changed after its test file 34 has been
generated, and, as in the prior art, this is reflected in a
modified board object provided by the user, as repre-
sented by 30'. According to the invention, the modified
board object 30’ is read into the in-circuit tester and a
determination is made whether changes to the board
definition are present in the modified board object 30’ as
indicated at 18. This determination is made by compar-
ing the dependencies object 32 (which includes the
board description from the old board object 30) to the
modified board object 30'. The remainder of the flow-
chart illustrates the events that occur when a modifica-
tion is detected. The events that occur when no modifi-
cations are detected are not illustrated since they do not
form a part of the present invention.

Upon detecting a board modification at 18, a routine
20 (described herein) is executed for the purpose of
identifying the devices for which IPG needs to be re-
run for the purpose of generating new test sequences for
those devices. Although steps 18 and 20 are shown in
the drawing as occurring sequentially, for all practical
purposes the differences and the devices affected by the
differences may be determined at the same time. The
result of executing the routine 20 is a list of devices for
which IPG needs to be re-run, as shown at block 36.
The list 36 is employed by the next routine 22 which
employs IPG to generate test sequences for the new,
changed or otherwise affected devices. The result of
executing routine 22 is a modified test file 34’ containing
test sequences for the modified board. Next, steps 22
and 26 are performed in the same manner as steps 14 and
16 described above (and below) to arnive at a modified
dependencies object 32' for the modified board.

At this point, some important differences between the
prior art and the invention should be noted. In the prior
art, the original, or old, board object 30 i1s not used by
the system after the modified board object 30’ is read in.
However, in the invention, important information from
the original board object 30 is retained in the dependen-
cies object 32 and is employed to determine what board
change(s) took place and what test sequences werc
affected by the change(s). Briefly, the nature of the
changes, or modifications, are determined by compar-
ing the modified board object 30’ to the dependencies
object 32. This routine will be described in more detail
hereinafter, but for now, it is represented simply as
block 18. Also, it should be appreciated that, according
to the invention, a comparison is made between the
dependencies object 32 and the modified board object
30', as shown at block 20, and a predefined set of in-
structions (to be described herein) is utilized to deter-

S
mine the board components for which new tests need to
be generated. As mentioned above, blocks 18 and 20 are
actually part of the same routine but are shown as two
distinct steps in the drawing to emphasis the distinct
functions (i.e., detecting whether the board description
has changed, and determining the effects of the change)
performed. The generation of new tests and determina-
tion of supporting devices at block 22 is essentially the
same routine as performed at block 14, but importantly,
new test sequences are not generated for every compo-
nent on the board. Rather the list of devices 36, as deter-
mined by the previous step 20, is utilized by IPG along
with the modified board object 30° to generate test
sequences only for the new, changed, or otherwise
affected devices that require them.

Referring now to FIG. 2, block 14 (and block 22) of
FIG. 1 entitled “Generate Test and Determine Support-
ing Devices”, will be explained in greater detail.

The routine illustrated in FIG. 2 is cyclic and is re-
peated for each device on the board to write a test
sequence for the device and determine its supporting
devices. First, the device under consideration 1is
“marked”, as shown at block 40. The mark is used by
the “Write Dependencies Object” blocks 16, 26, and 1s
discussed below with reference to FIG. 3. The mark is
internal to IPG and has no effect on the board object.
After initializing the supporting devices list (if 1t 1sn’t
already initialized), a test is written for each device or
component, block 43. As mentioned, the IPG program
determines all of the devices that affect the test se-
quence generation for the device under consideration.
These devices are the “supporting devices” for the
device under consideration. Next, each supporting de-
vice is added to the supporting devices list for the de-
vice under consideration, as shown at block 46. Prefera-
bly, the device itself is included in the supporting de-
vices list for the device under consideration. After the
steps shown in FIG. 2 are performed for each device on
the board, the program flow continues at block 16 of
FIG. 1. Thus, the routine 14 provides a test sequence
and a list of supporting devices for each device under
consideration on the board. It should be appreciated
that when this routine is again executed at step 22 of
FIG. 1, it will be run only for those devices indicated by
the preceding step 20.

‘Referring now to FIG. 3, the “Write Dependencies
Object” routine of block 16 (and block 26) of FIG. 1
will be described in greater detail. In sum, the “Write
Dependencies Object” routine saves the board object
30, together with all of the supporting devices lists
provided by routine 14 (or routine 22), to memory such
as disk, as the dependencies object 32 (or 32'). Thus, the
dependencies object 32 will contain the original, or old,
board file 30, as well as all of the supporting devices
lists, i.e., the supporting devices for all of the devices
under consideration on the board. With respect to block
26, the “Update Dependencies Object” routine also
performs a check to determine whether existing test
sequences, if any, for devices that did not have test
sequences regenerated are valid. If the existing test
sequence for a particular device is found to be valid, the
supporting devices list for that device is simply copied
from the dependencies object 32. If found invalid, the
supporting devices list for the device is set to a prede-
fined state, e.g. NIL, that the system will recognize.
When performed as routine 26 of FIG. 1, the “Write
Dependencies Object” copies the valid supporting de-
vices lists from the old dependencies object 32 to the

5,004,978

10

15

20

25

30

33

40

45

33

65

6

modified dependencies object 32'. It will be apparent to
those skilled in the art that there is very little difference
between the “Write Dependencies Object” block and
the “Update Dependencies Object” block.

For each device under consideration a “Must-Gener-
ate (Device)” routine is executed, as shown at block 50.
This routine is described in further detail below. The
“Must-Generate (Device)” routine returns either a
TRUE or FALSE indication depending upon the out-
come of certain tests which are described below. If a
TRUE indication is returned, a determination is made as
to whether the device under consideration has been
marked as having its tests generated, as shown at block
52. (Recall that each device to which IPG was applied
was “marked”’. See block 40, FIG. 2.) If the outcome of
the determination is negative (or FALSE), the support-
ing devices list for the device under consideration is set
to a predefined state such as NIL, as shown at block 56.
If the outcome of the determination is positive (or
TRUE), the process proceeds to block 54 where the
supporting devices list created at block 46 for the de-
vice under consideration is copied to the dependencies
object 32 (or 32'). As indicated in the figure, block 54 is
also executed upon a FALSE indication by the “Must-
Generate (Device)” routine, block 80, however the
source of the supporting devices list is the old depen-
dencies object. Next, after the steps indicated by block
54 or block 56 are performed, the dependencies object
32 or 32’ is written to memory, such as disk, as shown at
block 58. It will be appreciated that the routine illus-
trated in FIG. 3 is also cyclic and is repeated for each
device on the board.

The “Must-Generate (Device)” routine illustrated at
block 50 of FIG. 3 will now be explained in greater
detail. The “Must-Generate (Device)’ routine 50 uses
the dependencies object 32 and the board object 30’ to
determine whether a test sequence for a given device
needs to be generated. As mentioned, the dependencies
object 32 contains the original (i.e., unmodified) board
description (as represented in the board file 30) which
was employed to generate the most previously gener-
ated test sequences, as well as the supporting devices list
for each device. The supporting devices list identifies
the specific information in the board object that is ger-
mane to the test sequences for the devices on the board.
The “Must-Generate (Device)”’ routine 50 traverses the
supporting devices lists and compares the supporting
devices information for the given devices with the cor-
responding information in the board object 30. If a
difference is found, a new test sequence for the device
must be generated. Note that a dependencies object 32
will not always exist at this time; for example, the first
time a test sequence is developed for the devices on the
board there will have been no prior run of IPG, and
therefore no dependencies object 32. Note also that, in
the “Write-Dependencies-Object” routine, the support-
ing devices list for each device that should have had a
test generated but didn’t is set to a predefined state such-
as NIL. Thus, when the Must-Generate (Device) rou-
tine encounters a supporting devices list that is set to the
predefined state or NIL, it ascertains that the test for
that device needs to be generated.

Referring now to FIG. 4, the “Must-Generate (De-
vice)”’ routine is illustrated in detail. At block 60, a
determination is made as t0 whether a dependencies
object 32 exists for this device and, if so, whether the
device is in the dependencies object. If either check
fails, a TRUE indication is returned, as shown at block

5,004,978

7

74. Next, a determination is made as to whether the
supporting devices list for this device is set to the prede-
fined state or NIL, as illustrated at block 62. If it is, then
a TRUE indication is returned as shown at block 76.
Next, for each supporting device on the supporting
devices list, the following steps are performed. A deter-
mination is made as to whether each supporting device
is identified in the modified board object 30', as shown
at block 68. If a supporting device is not identified in the
board object 30’, then a TRUE indication is returned, as
illustrated at block 78. If the supporting device is identi-
fied in the board object 30', then a comparison between
the information respecting the supporting device in the
dependencies object 32 with corresponding information
in the board object 30’ is made, as shown at block 70. A
determination is then made as to whether there 1s a
difference, as shown at block 72. If there is a difference,
then a TRUE indication is returned, as shown at block
80. If there is no difference, steps 60-80 are repeated
with the next supporting device. A FALSE is returned
after going through all the supporting devices on the hist
and finding no difference.

Referring now to FIG. 5, the “Determine What De-
vices On Which To Run IPG” routine of FIG. 1, block
20, will be explained. First, at block 90, a “test-it” flag 1s
checked to determine whether this device is to be
tested. If the flag is not set, no further action is taken. If
the flag is set, a time stamp in the board file 1s compared
with a time stamp of the test file for the device, as
shown at block 96. (Note that the “test-it” flag is main-
tained in the board object 30 for each device. This flag
may be turned on and off by the user. The “test-it” flag,
or its equivalent, is known in the prior art.) If the board

10

15

20

25

30

object is newer than the test file, the “Must-Generate ¢

(Device)” routine 50 is called, as shown at block 100. If
a TRUE indication is returned, then the device is placed
on a list of devices on which to run IPG, as shown at
block 102. The program flow then continues at block
22. FIG. 1. Note that the “Must-Generate (Device)”
routine is the same routine used in the “Write Depen-
dencies Object” routine. This has been discussed above
in connection with block 16.

An exemplary in-circuit test generation apparatus
embodying the invention will now be described. Refer-
ring to FIG. 6, an apparatus according to the present
invention comprises processing means 110, coupled to
interface/tester means 112 coupled to a board under
test, or BUT, 114. Also coupled to the processing means
110 are means for storing board objects 30, 30, means
for storing dependencies objects 32, 32, and means for
storing test files 34, 34'. Preferably, the objects 30, 30/,
32, and 32’ and the files 34, 34’ are stored in a memory
such as magnetic disk or tape, but the invention is not so
limited. Bubble memory, optical disk, etc., devices may
also be employed.

A preferred format for the dependencies file will now
be described. As discussed above, the dependencies
object 32 and modified dependencies object 32’ are each
an augmented version of an existing board object 30 or
modified board object 30'. The board object 30 or 30’
contains an electrical description of the board, includ-
ing the following information:

what devices are on the board,

component values,

part numbers,

connectivity, and,

node accessibility.

45

55

65

8

The dependencies object 32 or 32" appends to the
board object 30 or 30', for each device, a list of the
devices on the board that IPG considered when it was
writing the test for the device. This list is the previously
described supporting devices list.

FIG. 7 illustrates an exemplary BUT 114" and is pro-
vided for the purpose of further explaining the opera-
tion of the method of the present invention and the

format of the dependencies object. The exemplary BUT
114’ comprises a 5K ohm resistor R1, coupled between

nodes A and B, with pin 1 on node A and pin 2 on node
B. Node A is connected to R1, pin 1, and node B 1s
connected to R1, pin 2 and Ul, pin 1. According to the
invention, R1 may be represented in the dependencies
object as follows:

R1 is a resistor having a value of 5K ohm;

pin 1 of R1 is connected to node A;

pin 2 of R1 is connected to node B

node A contains R1.1 (i.e., pin 1 of R1)

node B contains R1.2, Ul1.1 (i.e,, pin 2 of R1 and pin

1 of Ul) -

BUT 114’ also comprises digital device U1 of type X.
Pin 1 of U1 is connected to node B, pin 2 of Ul is con-
nected to node ENABLE, and pin 3 of U1 s connected
to node BUS. BUT 114’ further comprises digital device
U2 of type Y. Pin 1 of U2 is connected to node EN-
ABLE, pin 2 of U2 is connected to node BUS, and pin
3 of U2 is connected to node C. As indicated in the
figure, node C is further coupled to pin 1 of a capacitor
C1 and pin 1 of a resistor R2. Thus, the following addi-
tional information may be recorded in the dependencies
file for Ul:

U1 is a digital device of type X

pin 1 of Ul is connected to node B

pin 2 of Ul is connected to node ENABLE

pin 3 of Ul is connected to node BUS

U2 is digital device of type Y

pin 1 of U2 is connected to node ENABLE

pin 2 of U2 is connected to node BUS

pin 3 of U2 is connected to node C

node B contains R1.2, U1.1 (i.e., pin 2 of R1 and pin

1 of U1)

node ENABLE contains Ul1.2, U2.1 (i.e., pin 2 of U1l

and pin 1 of U2)

node BUS contains U1.3, U2.2 (i.e,, pin 3 of Ul and

pin 2 of U2)

node C contains U2.3, C1.1, R2.1 (i.e., pin 3 of U2, pin

1 of C2 and pin 1 of R2)

The remaining components on the board are repre-
sented in the dependencies file with similar information;
i.e., information identifying each component and de-
scribing how it is connected in the circuit, and identify-
ing its supporting devices. For the above example, the
supporting devices lists could be in the following form:

device: f1st

RI; R1

Ul: U1,U2

U2: Ul,U2

Cl: Cl1,L2,R2,C2
L2: C1,L2,R2,C2
R2: C1,L2,R2,C2
C2: Ci,L2,R2,C2.

In summary, there has been described a method for
automatically generating in-circuit test sequences for
individual devices on a circuit board under test. The

5,004,978

9

invention improves upon the prior art by providing

modifications to prior art in-circuit tester software,

whereby the program for generating test sequences for
individual devices saves information concerning the

devices upon which the test sequences depend. This 5

information can then be utilized to determine which

particular test sequences must be regenerated as a result
of a modification to the BUT.

The foregoing description of the preferred embodi-
ment is for the purpose of illustration only, and 1s not
intended to be exhaustive or to limit the scope of the
invention in any respect. Rather, reference should be
made to the appended claims for the purpose of constru-
ing the true scope of the invention described herein.

What is claimed 1s:

1. Method of operating an in-circuit-tester comprising
the steps of:

(a) providing in the in-circuit tester information defin-
ing details of a circuit board, including data indica-
tive of devices to be tested on the board;

(b) generating, according to at least the information
provided in step (a), test sequences for the devices
to be tested on the board;

(c) automatically determining, for each device for
which a test sequence was generated in step (b),
whether other devices on the board affect the test
sequence for the device to be tested and identifying
the other devices; and,

(d) storing data indicative of the results of step (¢) in
a memory associated with the in-circuit tester;

the in-circuit tester thereby having stored in the
memory, data indicative of the other devices that
should be considered in deciding whether to gener-
ate new test sequence(s) for each device.

2. Method according to claim 1 further comprising
the step of detecting when the board has been modified
and performing the following steps in response thereto:

(e) automatically identifying, based at least the data
stored in step (d), the devices for which new test
sequences should be generated; and,

(f) generating new test sequences for only the devices
identified in step (e).

3. Method according to claim 2 wherein the step of
determining whether a board has been modified com-
prises the steps of comparing at least a portion of the 45
information provided in step (a) with subsequent infor-
mation regarding the board provided by a user.

4. Method according to claim 2 wherein steps (e) and
(f) comprise:

(i) identifying devices on the board that have been 50
added, removed or changed as a result of the board
modification;

- (ii) determining which devices require generation of
new test sequences as a result of the devices identi-
fied in step (i); and,

(iii) regenerating new test sequences for the devices
identified in step (11).

5. Method according to claim 3 wherein a first record
comprising data indicative of both (i) the information
provided in step (a) before the subsequent information 60
was provided by the user and (ii) the other devices
identified in step (c) is maintained in the memory, and a
separate second record comprising data indicative of
the subsequent information provided by the user and
defining the details of the modified board is also stored 65
in the memory.

6. Method according to claim § wherein the data
indicative of other devices in the first record is com-

10

15

20

25

30

35

35

10

pared to data in the second record to determine
whether, for a particular device to be tested, the test
sequence for the particular device needs to be regener-
ated.

7. Method according to claim 2 wherein data indica-
tive of the test sequences for the devices to be tested are
stored in at least one test file that includes an indication
of the time of a most previous modification of the test
file, and data indicative of the information provided in
step (a) is stored in a board object that includes an indi-
cation of the time of a most previous modification of the
board object, and step (e) includes the step of compar-
ing the time indications in the test file and board object.

8. Method according to claim 1 wherein the other
devices identified in step (c) define supporting devices,
and step (c) further comprises the step of generating a
supporting devices list for each device for which a test
sequence was generated in step (b).

9. Method according to claim 8 wherein the informa-
tion provided in step (a) defines a board object, and step
(d) further comprises the steps of combining the board
object and the supporting devices lists to define a de-
pendencies object, and storing the dependencies object.

10. Method of operating an in-circuit tester compris-
ing the steps of:

(a) providing in the in-circuit tester information defin-
ing details of a circuit board, including data indica-
tive of devices to be tested on the board;

(b) generating, according to at least the information
provided in step (a), test sequences for the devices
to be tested on the board;

(c) automatically determining, for each device for
which a test sequence was generated in step (b),
whether other devices on the board affect the test
sequence for the device to be tested and identifying
the other devices;

(d) automatically identifying, based at least upon the
determination of step (c), the devices for which
new test sequences should be generated when the
board has been modified;

(e) generating new test sequences for only the devices
identified in step (d); and,

(f) storing data indicative of the results of step (¢) in
a memory associated with the in-circuit tester.

11. Method according to claim 10 wherein steps (d)

and (e) comprise:

(i) identifying devices on the board that have been
added, removed or changed as a result of the board
modification;

(ii) determining which devices require generation of
new test sequences as a result of the devices identi-
fied in step (i); and,

(iii) regenerating new test sequences for the devices
identified in step (ii).

12. Method according to claim 10 wherein data indic-
ative of the test sequences for the devices to be tested
are stored in at least one test file that includes an indica--
tion of the time of a most previous modification of the
test file, and data indicative of the information provided
in step (a) is stored in a board object that includes an
indication of the time of a most previous modification of
the board object, and step (d) includes the step of com-
paring the time indications in the test file and board
object. |

13. Method according to claim 10 wherein the other
devices identified in step (c) define supporting devices,
and step (c) further comprises the step of generating a

5,004,978

11

supporting devices list for each device for which a test
sequence was generated in step (b).

14. Method according to claim 13 wherein the infor-
mation provided in step (a) defines a board object, and
step (f) further comprises the steps of combining the
board object and the supporting devices lists to define a
dependencies object, and storing the dependencies ob-
ject.

15. In an in-circuit tester, a method of generating
in-circuit test sequences for evaluating circuit board
devices comprising the steps of:

(a) reading into the in-circuit tester a first file contain-
ing data indicative of details of a board to be tested,
including devices to be tested on the board;

(b) automatically generating, according to at least a
portion of the first file, a sequence of test steps to be
performed on the devices to be tested;

(c) automatically identifying, according to at least the
results of step (b), supporting devices for each

10

15

20

25

30

35

45

50

25

65

12

device for which a test sequence was generated in
step (b), the supporting devices for a device being
other devices on the board upon which the test
sequence for a device to be tested is determined to
depend;

(d) automatically generating a second file comprising
the supporting devices identified in step (c);

(e) reading into the in-circuit tester a third file con-
taining data indicative of details of a modified
board to be tested, including devices to be tested on
the modified board;

(f) automatically identifying, according to at least
portions of the second and third files, only any
devices for which new test sequences should be
generated as a result of the board modification;
and,

(g) automatically generating new test sequences for

only the devices identified in step (f).
L * x = X

	Front Page
	Drawings
	Specification
	Claims

