Umted States Patent [19]

4,935,880

[11] Patent Number:
Kelleher et al. 5] Date of Patent: Jun. 19, 1990
(54| METHOD OF TILING A FIGURE IN | [57] ABSTRACT -

GRAPHICS RENDERING SYSTEM

[75] Inventors: Brian Kelleher, Mountain View;
| Thomas C. Furlong, Half Moon Bay,
~ both of Calif.
[73] Assignee: Digital Equipment Corporatien; |
.. Maynard, Mass. .
[21]_ Appl. No.: 137,752
[22] Filed: Dec. 24, 1987 | -
[S1] Int. CLS ot ieeeeeecrcnereneereesenens GO6F 15/20
[52] US. Cl ...uevriirirecrniceeneennnes 364/522; 340/750;
| 340/799; 364/521
[58] Fleld of Search 364/518, 521, 522;
| | 340/721, 750, 798-800; 382/44—48
- {56] References Cited '

U.S. PATENT DOCUMENTS '
4,590,465 S/1080 FUCKS .ooveieenenreenresnesecsesesenens

FOREIGN PATENT DOCUMENTS

0201754 11/1986 European Pat. Off, .
0231780 8/1987 European Pat. Off. .
8500679 2/1985 World Int. Prop. O. .

Primary Examiner—Gary V. Harkcom
Assistant Examiner—H. R. Herndon

Attorney, Agent, or Firm—Flehr, Hohbach, Test
Albntton & Herbert

PROCESSOR

o2

20

A method for drawing a convex geometric figure to

framebuffer storage uses a plurality of update arrays
which tile the framebuffer, each having a determined
origin with respect to the framebuffer. Each update
array has a multiplicity of concurrently updatable pixel
storage sites, each specified by an offset from array
origin. A figure is specified by a set of directed segments
which form its perimeter. To access only those update
arrays which tile the figure, the following methodology
1s used. A first update array which is known to be part
of the figure is accessed. Tests are then performed to
find whether the figure extends to arrays above or

- below the accessed array. If so, the array address is

340/723 :

stored and marked for either or both extensions. In one -
embodiment, a test is performed for left extension, and
the steps are repeated until no further left extension is
found. Returning to the initial array, the steps are re-
peated for right extension to complete the horizontal
subset. The array marked for either up or down exten-
sion of the figure is next accessed and the steps are
repeated with respect to the indicated vertically adja-
cent array until no further extension is found in that
vertical direction; the steps are then repeated for the
other vertical direction. Using this method, the figure is
efficiently tiled without duplicating access to any up-
date arrays and without accessing any update arrays
that do not tile the figure.

9 Clmms, 7 Drawing Sheets

14
! . |
{ TIMING, CONTROL
! -
INTERFACEE N
/1? - DUTPUT |
| ~ DIS-
1 . CIRCUITRY}
MODULE PLAY
ADDRESSING 55
MEANS | T |le3
—:—-——-——-— L—T-l.
BUS ADDRESS| =~ LOCATION
16 - . REQUEST ADDRESS. 150~ |
94 e 27~ 1
Y ¥
1
a4 g, [MEMORY CHIP| |
) | L} s
e~ e CONTROLLER —
(K CHIPS) |
READ/WRITE 88
Y
GRAPHICS SUBSYSTEM 10

. US Patent Jun. 19,1950 Sheet 1 of 7 . o 4,935,880

PROCESSOR
' 50

i

52

14

— TIMING, CONTROL -
| INTERFACE TIIMING _ o
_ I le |— . QUTPUT

17 |
| CIRCUITRY Pl AY

P

MODULE |
- | ABDRESSING f—— 22

| MEaNs | | o | 23
BUS | ADDRESS| = LOCATION| 1
t6~] REQUEST| ADDRESS 150~
] 94~ 27 .

\MEMORY CHIP|
| BANK
| (K CHIPS)

84>] B - - _ 86

CONTROLLER

.18 20

l . it . e

- l ' '~ READ/WRITE 88
- GRAPHICS SUBSYSTEM 10

- FIG-1

| US.Patent smmom see2orr 4935880

' (TO/FROM BUS 160

18

MEM 17| |MEM 18 MEM 19

© MEMORY CHIP 20

US. Patent Jun.19,19 Sheet 3 of 7 4,935,380 1

e

 ,xy=PIXEL LOCATION

N\
\

7

- FRAME BUFFER

o 200
cle _—206

| REGISTER

Nepg

204

FROM

J—

S Puent wmmow sweir 4935580

F1G.—4

10x10 FRAMEBUFFER

 UPDATE ARRAY,
JORIGINS

20—~k
IxS CHIP ARRAY

26
“\
K=

CHIP [RIGIN

03 WoWd/OL - G-9I 1 :

4,935,880

_ / — N\
88 _ _ . - _
AAM/aYIS | o — 98
~ 8T ¥ITIONLNOD
-, |
S
\
-
e .
— — e) — _
i U _ N . 0T o z%wﬁ_u._
JIgYNT _ _ L SAOSSIN0Nd
ENReCT, U - e ~aTwavd el 7 01
_ COT SNOSSIIONd € _
N _ SIANIHOYW 3ILYLS
B
. 6 R .
o LSINOIN _ .08
__ m Ss3daay _ . ONIWIL
Q [10L _ 2T WOy
5
- U

- US.Patent Jun.19,1990 Sheet6of7 4,935,330

FF I 5 F x + ¢ s o * mm\
+ 4+ F 4+ . F F T 0 0 ® A F F F+ F + + +
P R 3 3 5 T e e of+ 3+ 3+ 3+ + F 4
" T FIFF A [0 F >
¥+ 4 4+ + 3 e e e - R S Y LR R A A e
++ 3+ 3+ 3 00 F 3+ F+ 3+ epFF+3 333
+ 3+ 26 0 0 S F A+ F+F A+ +H eF +FrFFFF
.+ 3+ 0 0o 0 @ 4+ F+ S+ ++H [0 FFF T+]
+.® ® o o + + 4+ + 3+ S+ S+ + S + + 4+ 4+ 4+ + + +
"o o s o o + 4+ + + + + + 4+ + + + 4+ + + + + + |

e & & & & ¢ & o
® 0 0 ¢ 0 o\+/e o @

-+
+
+
+
+
®
&

e o oN\+ 4+ + + +

U.S. Patent Jun.19,1990 Sheet7of7

I

s F:I
' H4]5ye]
FE9 10 11 [PR3[14

3 IE!"EG

543 Tss
.n'*lg' -

N B’E‘-ﬁ

(0,07

i

JE hu.@ :

4935380

/’ -
e T

1

'METHOD OF TILING A FIGURE IN GRAPHICS
~ RENDERING SYSTEM

‘This invention relates to single-instruction multiple-

data (SIMD) graphics systems, and in particular to a
method and means of performing graphics rendenng
operations in such a system.

- BACKGROUND OF THE INVENTION

Ina data processing system with graphics capability,
a system processor executing a graphics application

program outputs signals representing matter to be dis-
played; this representation is generally abstract and

concise in form. Such form is not suitable for the direct
control of a display monitor; it is necessary to transform
the relatively abstract representation into a representa-
tion which can be used to control the display. Such
transformation is referred to as graphics rendering; in a
system using a raster display monitor, the information
comprising the transformed representation is referred to
as a framebuffer. Signals specifying the framebuffer
information are stored in framebuffer storage. |
The framebuffer representation must be frequently
updated, by rewriting its stored specification in part or
completely, either to reflect dynamic aspects of the
display, or to provide for the display of images gener-
ated from a different application program. Each updat-
Ing operation requires access to the memory in which
the specification of the framebuffer is stored; generally
a large number of locations in the framebuffer storage

must be accessed for each updating operation. The

speed of rendering the display is limited by the require-
ment for graphics memory access; the greater the num-
ber of bits in the graphics memory (framebuffer storage)
| that can be read or written in a given time period (the

10

15

4 935 880

2
an addressed plxel array those pixels to which is
mapped a geometnc ﬁgure to be drawn to the frame-

buffer.

' - BRIEF DESCRIPTION OF THE INVENTION

The present invention is employed in a graphics sub-
system having framebuffer storage organized for stor-
ing signals specifying the pixels (x,y) of a X XY raster
framebuffer. The storage is sequentially addressable as a
plurality of framebuffer pixel update arrays, the set of
update arrays tiling the framebuffer. |

Each update array has a determined origin with re-
spect to the framebuffer and comprises storage sites for
specifications of a plurality of contiguously positioned
framebuffer pixels. Each storage site is specifiable by an
offset with respect to the update array origin, the pixel
specifications of an update array being concurrently

- updatable in a parallel memory transaction.

20

25

30

335

“memory bandWIdth”) the better the graphxcs perfor-

mance.
Graphics memory bandwidth depends on the number
of memory packages (chips) comprising the graphics
memory, multiplied by the number of i/0 pins per pack-
age; the product is the maximum possible number of bits
that can be accessed in one memory transaction. Band-
with is then a function of this maximum number and of
the time required for a memory transaction. |
Many conventional graphics rendering operations are

carried out by a series of steps that are highly incremen-
tal in nature; that is, the value of a particular frame- -
‘buffer pixel cannot be updated (and the framebuffer

~ storage rewritten) until the updated value of an adjacent
framebuffer pixel is known. Framebuffer updating car-
ried out by means of such incremental operations re-
quires frequent memory transactions, each involving a
relatively small number of bits. The rendering perfor-
mance of such a graphics system can be improved by
decreasing the time required for a memory transaction,
but will not be much improved by increasing the num-

ber of bits which can be addressed in a transaction. If

increased memory bandwidth is to improve the graph-
ics performance, means must be provided for making
efficient use of the bandw1dth during graph1es render-
ing operations.

It is'an object of the present invention to provide, for

framebuffer storage that is accessed as framebuffer pixel
arrays, a graphics rendering operation that makes effi-
cient use of the increased bandwidth provided by such
framebuffer memory architecture. In particular, it is an

object to provide means and method for selecting from

45

>0

33

60

65

According to the invention, a method is provided for
accessing from among the update arrays a horizontal
subset to which 1s mapped a geometric figure to be
drawn to the framebuffer. The method comprises the
steps:

1. accessing a ﬁrst update array, and storing a specifi-
cation of the array address marked as initial,

2. testing whether the geometric figure is mapped to
the update array positioned vertically above the ac-
cessed array with respect to the framebuffer, and if so,
and if no previous array in the present horizontal row
has been marked for up, storing a specification of the
array address if not previously stored, and marking the
stored array address specification for up, |

3. testing whether the geometric figure is mapped to
the update array positioned vertically below the ac-
cessed array with respect to the framebuffer, and if so,
and if no previous array in the present horizontal row
has been marked for down, storing a specification of the
array address if not previously stored, and marking the

stored array address specification for down,
- 4, testing whether the geometric figure is mapped to

the update array positioned horizontally next to the left

of the accessed array with respect to the framebuffer,

and if so, accessing the next left array,

5. repeating steps 2-4 with respect to the array ac-
cessed in step 4 until the geometric figure is found not to
be mapped to the next left array,

6. popping to the stored array address marked as
initial, testing whether the geometric figure is mapped
to the update array positioned horizontally next to the
right of the accessed array with respect to the frame-

buffer, and if so, accessing the next right array,

7. repeating steps 2-4 with respect to the array ac-
cessed 1n step 6 until the geometric figure is found not to

- be mapped to the next right array.

The entire geometric figure to be drawn is tiled by
performing the above steps until in a first horizontal
subset of arrays, all arrays to which the geometric fig-
ure is mapped have been accessed; popping to the
stored array address marked for up, accessing the up-
date array vertically above the specified array, storing a
specification of the address of the array marked as 1ini-
tial, and repeating steps 2-7 above with respect to the
currently accessed array until a next horizontal subset
of arrays to which the geometric figure is mapped has
been accessed; repeating the previous step for further
horizontal subsets until no further stored addresses
marked for up are found; popping to the stored array
address marked for down of the first horizontal subset,

4,935,880

3

accessing the update array vertically below the speci-
fied array, storing a specification of the address of the
array marked as initial, and repeating steps 2-7 above
with respect to the currently accessed array until a next
horizontal subset of arrays to which the geometric fig-
ure 1s mapped has been accessed; repeating the previous
step for further horizontal subsets until no further ad-
dresses marked for down are found.

‘The 1mtial array may be the array to which a first
vertex of the geometric figure is mapped, or the array to

which the left-most point of the figure is mapped. A

further constraint, that the array must be mapped to a
bounding box which contains the figure, is imposed to
prevent drawing the figure to arrays beyond such box.

A method of deciding whether a geometric figure is
mapped to a next adjacent update array is provided.

Other objects, features and advantages will appear
from the following description of a preferred embodi-
ment, together with the drawing, in which:

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1is a block diagram of a data processing system
in which the invention is employed; |

FIG. 2 is a block diagram of the memory chip bank of
the data processing system of FIG. 1:

FIG. 3 1s a conceptual showing of a framebuffer spec-

ified in the memory chip bank of FIG. 2, and a pixel
thereof:

FIG. 4 is an illustrative showing of the mapping be-
tween the locations of a memory chip bank and a con-
ceptual framebuffer;

FIG. S is a block diagram of a memory controller
according to the invention;

FIG. 6 illustrates a concept employed in the address-
ing means and method of the invention:

FIG. 7 shows a geometric figure represented in terms
of the concept illustrated in FIG. 6;

FIG. 8 shows a geometric figure tiled by a plurality
of sequentially addressed framebuffer pixel arrays;

FIG. 9 shows a geometric figure mapped to a particu-
lar framebuffer pixel array for generating an address for
a next array;

F1G. 10 shows a geometric figure mapped to a partic-
ular pixel array with an additional addressing condition
imposed;

FIG. 11 is a block diagram of an element of FIG. 5.

DETAILED DESCRIPTION OF THE
INVENTION

Referring now to the drawing, and in particular to
FIG. 1, a graphics subsystem 10 (memory module) is
connected by processor bus 14 to port 52 of a processor
S0. Bus 14 carries signals (specifying data or address)
between processor 50 and subsystem 10, and is con-
nected to subsystem 10 through a bus interface 12. A
subsystem data bus 16 (module bus) is connected to
interface 12. Graphics subsystem 10 provides a memory
comprising a bank 20 of K conventional two-port video
random access memory chips 24 desirably arranged in a
chip array 4 X B=K. Each chip 24 (memory element)
provides an equal plurality of storage locations, each
location being addressable relative to the chip origin.
The random access ports of the chips of bank 20 are
connected through a controller 18 to subsystem bus 16.
The serial output ports of the chips of bank 20 are con-
nected by connector 150 to graphics output circuitry
22, which 1s of conventional design and need not be
described; signals output from circuitry 22 are con-

10

13

20

25

30

35

40

45

50

55

65

4
nected to a conventional raster color display monitor
23.

Processor 30 executes a graphics application pro-
gram, details of which are not pertinent to the present
invention, which results in the specification of matter,
such as geometric figures, to be displayed. The images
to be displayed are specified by processor 50 in a rela-
tively abstract and concise form, which cannot be di-
rectly used to control the display monitor. The specifi-
cation must be converted to a suitable form, which for
a raster display monitor is referred to as a framebuffer
comprising an ordered array of framebuffer pixels, each
corresponding to a display pixel of the display screen.
Such conversion is referred to as rendering. In the sys-
tem of FIG. 1, the rendering operations are carried out
by graphics subsystem 10.

Still referring to FIG. 1, interface 12 comprises means
for performing the usual functions of a bus interface,
such as bus monitoring and support, and bus protocol.
For the particular function of interfacing between bus
14 and the graphics subsystem 10, interface 12 addition-
ally provides timing means for controller 18, for output
circuitry 22, for memory bank 20, and for the display
monitor; means for controlling subsystem bus 16; and
certain computational means whose purpose will be-
come clear in what follows.

Memory module addressing means 17, responsive to
signals from controller 18, provides location address
signals 27 to bank 20. It should be understood that al-
though for clarity of description memory module ad-
dressing means is shown in FIG. 1 as separate from
interface 12 and controller 18, this arrangement is not
significant. The necessary addressing functions may be
provided by circuitry otherwise distributed, for exam-
ple, distributed between interface 12 and controller 18.

The video RAM chips of bank 20 are disposed as a
AXB=K chip array, for example, referring now to
FIG. 2, a (A=35)X(B=4) array of K=20 chips 24, each
chip 24 (identified by its chip array position as (a,b))
having an 8-bit parallel i/o path to controller 18. Other
chip array dimensions may also be employed, for exam-
ple, (A=4)X(B=4) with an 8-bit parallel i/o path, or
(A=20)X(B=1). Controller 18 has the capability of
accessing in parallel (path width) X A X B bits, or for the
embodiment of FIG. 2, (8 X5X4)=160 bits.

The set of corresponding locations in the K chips
(a,b) specified by a location address from module ad-
dressing means 17 comprises an addressed location ar-
ray.

In a system using a raster display, the framebuffer
storage (and the corresponding framebuffer, which is
conceptual rather than physical) of a graphics subsys-
tem is mapped to the display screen in terms of pixels
(picture elements). The raster display screen comprises
a rectangular array of X XY display pixels (x,y). At any
particular time, each display pixel displays a color speci-
fied by a color value; signals specifying the color value
are stored in the framebuffer storage at the (x,y) posi-
tion of the framebuffer pixel corresponding to the dis-
play pixel. The display is refreshed by output circuitry
such as circuitry 22 in FIG. 1, which cyclically reads
signals from the framebuffer storage, interprets the sig-
nals, and controls display monitor 23 appropriately to
display corresponding colors in the display pixels, all in
a manner well understood in the art. Changes in the
display are made by updating the specifications of color
values in framebuffer storage; on the next refresh cycle

5

these changes are represented by eerrespending_

changes on the display screen.
Conceptually, the bits comprising a framebuffer plXEl
X,y (specifying the color value of the display pixel x,y)
are regarded as being all stored at the pixel position in
the framebuffer, which is regarded as a three dimen-

sional construct. Referring now to the conceptual

4,935,880

>

showing of FIG. 3, a framebuffer 26 comprises an array,

X framebuffer pixels across and Y framebuffer pixels

vertically, corresponding to the X XY display pixels of 10
the display; at the specific framebuffer position (x,y) the

framebuffer has n bits comprising a framebuffer pixel.
The framebuffer pixel is said to have depth n.

Module addressing means 17 and controller 18 con-
‘trol the storage of signals in the A X B video RAM chips
24 of bank 20 in addressed array locations such that
signals specifying certain adjacent framebuffer pixels
can be accessed in bank 20 in parallel through controller
18 responsive to a single location address relative to
chip origin, supplied in parallel to all chips from module
addressing means 17. In particular, the framebuffer
pixel signals are so stored that an update array of W xXH
pixels can be accessed in parallel, the update array being
so specified that the entire X XY framebuffer (and dis-
play) can be tiled by a plurahty of such WX H update
arrays having determined origins. Each update array
can be identified by an array origin identifier. The di-
mensions W, H of the update array need not be equal to

15

6

dress from addressing means 17. In an actual graphics
system of interest, many more than four update arrays
are required to tile the display. The framebuffer pixels
are stored in a set of contiguous storage locations within
chips 24-E. -

Referring to FIG. §, controller 18 provides state
machines 100 for controlling the state of the controller;

state machines 100 receive timing signals from interface

12 on lines 80. Controller 18 further provides read/-
write enable generating means 102, which outputs to
each of chips 24 of bank 20 read/write enable signals on
lines 88, in the course of a controller graphics rendering
operation. In the embodiment having a (A =5)X(B=4)
chip bank 20 with 8-bit parallel paths, data is transmit-
ted on 40-bit parallel path 84 between controller 18 and

“subsystem bus 16; data is transmitted on 160-bit parallel

path 86 between controller 18 and memory bank 20.

20

For each memory chip of bank 20, controller 18 pro-
vides at 104 an internal logical processor for the execu- .
tion of graphics operations, the processors of 104 oper-
ating in parallel (concurrently). Such graphics opera-

- tions include, for example, writing a geometrical figure

25

to the framebuffer, moving a figure from one part of the
framebuffer to another part (which requires both por-
tions of the framebuffer to be redrawn), drawing a line,

~ and the like. In addition, three further logical processors

the dimensions A, B of the chip array, but in the sim-

plest case W=A and H=B. |
The connections 150 between the serial output ports

of chips 24 and video output circuitry 22 determine the

mapping between chips 24 and the display screen; that

is, the framebuffer pixels in memory 20, as located by
the mapping between controller 18 and chips 24, must

be senally accessed in raster order ef (X,y) to refresh the
display.

Refermig now to FIG. 4, by way of illustration the.

30

105 are provided, which operate in parallel with proces-
sors 104, as will be described.

The framebuffer is tiled by a number of update arrays
having determined origins. A figure to be written to the
framebuffer storage in general is mapped to only a sub-

set of the update arrays.

‘The operation of writing a line of geometric figure to

 the framebuffer comprises two basic steps. First, it is

35

mapping is shown between a conceptual three-dimen-

sional framebuffer and a corresponding physical chip
bank laid out on a plane. (The particular numbers em-
ployed are not those of a real graphics subsystem but
have been chosen to provide a simple illustrative exam-
ple.) An exemplary framebuffer 26-E has 100 frame-
buffer pixels (X=10)X(Y=10) as shown, each pixel
having an exemplary depth of n=4 bits. The signals
representing the framebuffer are stored physically in
chip bank 20-E comprising a (A=5) X (B=>5) chip array

45

necessary to determine which update arrays should be
addressed to tile the figure, and to address each such
array in turn; second, it is necessary to determine which
pixel specifications within an addressed update array
must be written and to write such pixel specifications.

Means and methods for carrying out each of these steps

will now be described.

The basis of the described operations is the use of a
half-space representation. As seen in FIG. 6, a directed
line divides a plane into left and right half-spaces. A
half-space evaluation decides on which side of a di-

- rected line any point (in a plane) lies. In F1G. 6 all points

(K =23 chips), controlled by a controller (not shown)to

provide 4 bit parallel access from the controller to each
chip (a,b) in chip array 20-E. It is assumed that four 4-bit
pixels can be stored in each chip. Thus chip (a=1, b=1)

of bank 20-E stores the four bits of pixel (x=1, y=1)in

30

shown as “-+” are in the left half-space, all points shown
as “—" are in the right haif-space, with respect to the
dn'ected line. The line has infinite length.

For a gwen poimnt, evaluation of its sidedness with

- respect to a given line is based on the general equation

its first location; pixel (x=2, y=1) is stored in the corre-

sponding first location of chip (a==2, b=1). These two
pixels are in the first update array, and can be accessed
in parallel because they are in different chips in the chip

23

array and are in corresponding locations in the respec-

tive chips However framebuffer pixel (x=1, y=96) is
stored in the third location of chip (a—-l b=1) of bank
20-E, so that it cannot be accessed in parallel with pixel
(x=1, y=1). It is thus seen that framebuffer 26-E is tiled
by four 3 X35 update arrays of framebuffer pixels having

array origins at (1,1), (6,1, (1,6) and (6,6), and that the

signals representing all the framebuffer pixels of an

update array, stored in the graphics subsystem memory,

65

will be concurrently accessed in parallel in a single

memory transaction, specified by a single location ad-

of a line,

y=mx+b (1)

where m is the slope of the line and b is the y-intercept.
Equation (1) is true for values of x and y on the line;

~y>mx-+b for points on one side of the line; and

y<mx-+b for points on the other side of the line. For a
line passing through two specified points (x1, y;) and
(x2, y2), the constants for the line equation are
m=dy/dx, and b=(y1—(dy/dx)x1), where dy=y)—y1,
and dx=x3—x). Therefore, to evaluate a half space
defined by two points specifying the line, equation (2)
must be evaluated

 y=(y/deyx -y~ /e @

4,935,880

7

The order in which the points (x1, y1) and (x3, y2) are
given specifies the direction of the line.

Equation (2) 1s represented in the real number system.
In the present operation, the equation must be evaluated
for the discrete locations of the framebuffer pixels, to
decide whether each array pixel is inside or outside a
figure to be drawn, the figure being composed of a
plurality of directed lines. From equation (2) is derived
equation (3):

dx.y—dy.x—dx.y1+dy.x1=0, (3)
a form which advantageously avoids divide operations.
The left side of equation (3) is 0 for (x,y) on the line,

10

positive for (x,y) on one side of the line, and negative 15

for (x,y) on the other side of the line. For the purpose of

providing circuitry (processors 104, 105) comprising
relatively few components but capable of performing
the evaluation rapidly, equation (3) is further modified
by representing the locations of the pixels within the
“update array in terms of array origin (originy, originy)
and pixel offset (site offset) within the array (offset,,
offsety; x=originx+-offsety y=origin,+ offsety), to ar-
rive at equation (4):

dx X offsety — dy - offsety = (4a)
—dx - originy + dy - originy + (4b)
dx - y1 ~ dy - x1. (4¢)

The form of equation (4) is advantageous because it
minimizes computation and therefore minimizes both
circuitry and computation time. Most of its terms can be
calculated either once per half-space evaluation (that is,
once for each directed line of a geometric figure to be
written to the framebuffer) or once per array access. Of
the terms in equation (4), dx, dy, x; and y; are constant
for any particular half space, and therefore (4¢c) need
only be evaluated once per half space. The value of this
expression is unaffected by pixel position within the
update array, or by change to another update array.
The expression (4b) must be calculated once for each
update array access.

Expression (4a) must be evaluated for all sites of the
array. However, the expressions offsetyx and offset, are
positive integers specifying the site position within the
array; as this 1s determined by hardware design, these
values are built in to controller 18. The value of (4a) can
then be easily found in terms of dx and dy; the resuit
(the “site value”) is calculated by controller 18 for each
half-space (ie for each directed line) and stored for each
array site. The site values do not depend upon the par-
ticular accessed array, but are constant for the particu-
lar Iines comprising the figure being drawn. The values
of dx, dy are provided by interface 12.

The sum of (4b) and (4¢) is called the ‘“half space
constant.” A new half space constant must be specified
for each accessed update array because the value de-
pends on the origin of the array (originy, originy). The
same value of the half space constant is specified to
every logical processor of 104. The sign of the sum of
the stored site value and the half-space constant func-
tions as a discriminant which gives the sidedness of the
pixel with respect to the line; since the sign bit is the
only bit of interest, a comparator can be used instead of
an adder. Therefore, referring to FIG. 11, each logical
processor of 104 comprises a register 204 to store the
site value, input at the commencement of a tiling opera-

20

25

30

35

40

45

50

23

60

65

8

tion; a magnitude comparator 200, to which the site
value from register 204 is a first input; and a second
mmput 202, on which the half-space constant for the
array is input to comparator 200. The discriminant sig-
nal is output on line 206.

The half-space evaluation must be made for each line
bounding the figure to be drawn to the framebuifer.
Referring next to FIG. 7, it is seen that the interior area
of a triangle, for example, can be represented as the
intersection of three half spaces with respect to the
sides, represented as directed lines. The segments of the
lines between their mutual intersections comprise a
closed boundary of a convex geometric figure. The
directions of the lines must be such that the segments
perambulate the boundary in a single sense; that is, the
line segments must all be “nose to tail”. Ascertaining
whether a pixel is inside the triangle is accomplished by
concurrently evaluating its sidedness with respect to
three directed lines. Thus, for each pixel, a processor of
the kind shown in FIG. 11 must be provided at 104 for
each half-space evaluation to be made.

A logical AND of the discriminants for all the bound-
Ing lines gives the final result discriminant; that is, the
pixel must be inside with respect to all the directed lines
to be inside the triangle. (Pixels on a line are assigned to
one or the other half space, based on considerations not
pertinent to this invention.)

The output of the AND is used to condition the write
enable 88 to the memory chip 24 on which the specifica-
tion of the pixel is stored. A first value of the result
discriminant specifies insidedness of the pixel; the sec-
ond value specifies outsidedness. A write enable to the
pixel site cannot be provided in the presence of a result
discriminant of the second value. Other conditions may
be imposed on the write enable, for example, as a result
of windowing, clipping and other operations. The
method can be generalized to n-sided convex polygons;
more complex figures can be represented as composed
of convex polygons. Line segments on a raster display
can be modeled as the intersection of four half-spaces.

Data signals specifying the geometric figure to be
drawn (as by giving the (x,y) positions of the vertices on
the display) are transmitted by processor 50 to interface
12, which transmits the necessary data to controller 18.
Such specification must include, whether explicitly or
implicitly in terms of the order of specifying the line
segment end points, direction of each the line segments,
such that a closed figure is specified by the line seg-
ments between mutual intersections and the figure
boundary is perambulated by the segments in a single
sense. The rendering operation can begin with any arbi-
trary location in the figure to be drawn; for example, a
first vertex can be selected and the update array to
which it is mapped first accessed. Alternatively, a pre-
liminary evaluation can be made to find the left-most (or
right-most) point in the figure to be drawn, after which
the update array to which that point is mapped is first
accessed. This latter method offers certain economies of
operation.

As controlled by state machines 100, controller 18
begins operation by accessing the initial update array.
Controller 18 outputs an appropriate address request at
94 to interface 17, which provides corresponding loca-
tion address signals to memory bank 20. By concur-
rently performing half space evaluations for the pixels
of the first update array with respect to the correspond-
ing portion of the figure to be drawn, processors 104 of

_ 9
controller 18 control write enable means 102 to output

signals on 88 so as to permit the writing of the corre-
sponding pixels to which the figure is mapped.

A next update array must then be addressed, accessed

and written, and so on until the geometric figure has
been tiled. A tllmg operation 18 illustrated in FIG. 8 in

which a triangle is shown tiled by 53 update arrays. The

numbers In each box indicate the order in which the

update arrays are accessed. Array 1 is first accessed. In

the method illustrated in FIG. 8, the initially accessed
array is the one with the first vertex. In the alternative
method, array 53 would be first accessed, as having the
left-most element of the figure mapped to it.
Controller 18 stores the address of the initially ac-
cessed update array in storage 115. The pixels of the
initial array are written as described. A test (to be de-
scribed) 1s performed to decide whether the figure con-
tinues to the array below the initially accessed array; if

it does, the stored array address is so marked (for exam- -

ple, by a flag). Similarly, the test is performed to decide
whether the figure continues to the array above the
initial array; if so, the stored array address is so marked.
If the figure to be drawn was not initially evaluated to
find the left-most point in it, the test is performed to
decide whether the figure continues to the array to the
left of the initial array. If it does, controller 18 outputs
address request signal 94, specifying the next array; in
response, addressing means 17 outputs location address

signal 27 to memory bank 20, addressing the specified

next update array. The pixels of this next array are
written as a result of half-space evaluation operations as

previously described. The tests (down, up and left) are

performed again. However, if the address of any array
in this row has previously been stored and flagged for
down continuation of the figure, the address of this
array will not be so flagged; similarly for up continua-
tion. The operation is repeated until the result of the test
indicates that the figure is not mapped to the next left
array. For example, in FIG. 8, after writing array 1, it is
found from the test that the array to the left of 11: 1S not

mapped to the figure.

Controller 18 then (using the specification of the

initial array stored at 115) performs the tests with re-
spect to the array next on the right of the initial array.
Again, if the figure is mapped to this array, it is accessed
and the pixels are written by means of parallel half-
space evaluation operations as previously described. As
the Spemﬁcatlon of the starting point has been saved no
array is accessed or written twice.

At the end of the operation with respect to a horizon-
tal row of arrays, every array in that row to which the
figure is mapped has been accessed and written, and at
most one array address has been flagged for up continu-
ation and one for down continuation.

When no further arrays in the row are found to be

10

- 4,935,880

10

To test whether a figure i1s mapped to an adjacent
array, referring now to FIG. 9, a border set of pixels is
defined as the row or column of pixels in the previously
addressed 4 X 4 array lying closest to the array in ques-
tion. (The dimensions 44 are exemplary only.) The
pertinent half-space evaluations are performed by sam- -
pling each of the two pixels which bound the border set.
However, as will be noted in FIG. 9, one (0,0) of the
sampled pixels (considered to be located at its origin
corner) 1s within the currently accessed update array,
while the other (0,4) is outside it. The (0,0) pixel evalua-
tion is performed by the corresponding logical proces-

- sor of 104 in the course of writing the figure to the

15

update array; the additional three logical processors 105 -
are provided to perform the parallel evaluation of the
three pixel locations (4,0), (0,4) and (4,4) which are all
outside the currently accessed array. As these locations

~ cannot be accessed concurrently with the locations of

20

25

30

the currently accessed array, the three additional pro-
cessors 105 do not control the write enable means. The
processors 108 are otherwise similar to those of 104, as
shown in FIG. 11. The outputs of these processors 105
are used only for the purpose of tiling the figure by

- selecting further update arrays for access.

A triangle composed of three line segments I, I1 and
III 1s shown mapped to a first array. The test is per-
formed with respect to the decision whether to address
the next array to the left. Each of the pixels (0,0) and
(0,4) 1s evaluated with respect to each of the three line
segments.

The criterion for left access is that every half-space

~ defined by the figure has one of the sample pixels of the

left border set inside. The inside sample pixel need not

- be the same for any of the half-spaces; but no one of the

35

40

45

50

55

'mapped to the figure, controller 18 operates with re-

spect to the flagged array addresses, to access a down-
wardly adjacent array. This becomes the initial array of
the next horizontal procedure. When no further arrays
downwardly are found to be mapped to the figure, the
process pops to the first stored array which has been

60

flagged for upward continuation of the figure. Whenno

further upward flags are found, the process has been
completed. It will be understood that the upward flags
could be first exhausted before moving to the down-
ward flags; the requirement 1s simply that all arrays to
which the figure is mapped should be accessed and
written, without repeating any operation.

65

line segments can exclude both pixels. For line segment

I, the sample pixel (0,4) i1s found to be in the inside

half-space; for line segment II, the sample pixel (0,0) is

- found to be in the inside half-space; for line segment 111,

both sample pixels are found to be in the inside half-
space. Since for each half-space at least one sample pixel
1s inside, the figure is considered to be mapped to the
next left update array. Controller 18 therefore issues an -
address request signal 94 specifying such array to ad-
dressing means 17, which provides the corresponding
location address signal to memory bank 20.

A final constraint is imposed. As shown in FIG. 10, a
triangle composed of directed line segments I, IT and IIT
terminates at a vertex mapped to pixel (1,1) of the array.
However, upon applying the test described above for
deciding whether to address the array lying horizon-
tally to the left of the illustrated array, it is found that
the test is met, although in fact the figure ought not to
be drawn into the next array. To prevent erroneous

addressing, a specificatton of a “bounding box” which

encloses the figure being drawn (derived from the ver-
tex information initially transmitted from processor 50)
is stored in 115. Before requesting addressing of the next
array, controller 18 compares the (x,y) position of the
array with the bounding box position. When the result
shows that the next array lies outside the bounding box, -
the test result is overridden.

The described operation of selecting a next update
array is particularly advantageous in that the half-space
evaluation for one of the sample pixels is made in the
operation of writing selected pixels within the accessed
framebuffer update array, while the other is easily made
concurrently with such writing operation. This permits

- the test to be made quickly and simply.

4,935,880

11

In addition, the described operations are equally use-
ful in the drawing of both lines and polygons to the
framebuffer. This provides economy of design of the
controller, as circuitry need only be provided for a
single mode of operation. In contrast, incremental oper-
ations used in the prior art for drawing lines generally
are quite different from incremental 0peratmns for
drawing polygons, necessitating the provision of addi-
tional circuitry in such incremental rendering systems.

What is claimed is:

1. In a graphics subsystem having framebuffer storage
organized for storing signals specifying pixels (x,y) of an
X XY raster framebuffer, said storage being sequentially
addressable as a plurality of framebuffer pixel update
arrays which tile the framebuffer, including a plurality
of horizontal rows of update arrays forming an array of
said update arrays,

each said update array having a determined ongm

with respect to said framebuffer and comprising
storage sites for specifications of a plurality of con-
tiguously positioned framebuffer pixels, each said
storage site being specifiable by an offset with re-
spect to said update array origin, pixel specifica-
tions for all the storage sites of a said update array
being concurrently updatable in a parallel memory
transaction,

a method of accessing from among said update arrays

a horizontal subset to which is mapped a geometric

figure to be drawn to said framebuffer, comprising

the steps:

(1-1) accessing a first said update array, and storing
a specification of said array address denoting it as
the first accessed update array,

(1-2) testing whether said geometric figure is
mapped to an update array positioned vertically
above said accessed array with respect to the
framebuffer, and if so, and if no previous array in
the present horizontal row has been marked for
upward continuation of said figure, storing a
spectfication of said array address if not previ-
ously stored, and marking said stored array ad-

dress specification for upward continuation of
said figure,

10

15

20

25

30

35

(1-3) testing whether said geometric figure is 4

mapped to the update array positioned vertically
below said accessed array with respect to the
framebuffer, and if so, and if no previous array in
the present horizontal row has been marked for
downward continuation of said figure, storing a
specification of said array address if not previ-
ously stored, and marking said stored array ad-
dress specification for downward continuation
of said figure,

(1-4) testing whether the geometric figure is
mapped to an update array positioned horizon-
tally next to the left of said accessed array with
respect to the framebuffer, and if so, accessing
said next left array,

(1-3) repeating steps (1-2)-(1-4) with respect to the
array accessed 1n step (1-4) until the geometric
figure is found not to be mapped to the next left
array,

(1-6) reading said stored array address denoted in
step (1-1) as the first accessed update array and
denoting the update array corresponding to said

stored array address as the last accessed update
array,

50

55

60

65

12

(1-7) testing whether said geometric figure is
mapped to an update array positioned horizon-
tally next to the right of the last accessed update
array with respect to the framebuffer, and if so,
accessing said next right array, and

(1-8) repeating steps (1-2), (1-3) and (1-7) until said
geometric figure is found not to be mapped to
the next right array.

2. In a graphics subsystem having framebuffer storage
organized for storing signals specifying the pixels (x,y)
of an X XY raster framebuffer, said storage being se-
quentially addressable as a plurality of framebuffer pixel
update arrays which tile the framebuffer, including a
plurality of horizontal rows of update arrays forming an
array of said update arrays,

each said update array having a determined ongm

with respect to said framebuffer and comprising
storage sites for specifications of a plurality of con-
tiguously positioned framebuffer pixels, each said
storage site being specifiable by an offset with re-
spect to said update array origin, pixel specifica-
tions for all the storage sites of a said update array
being concurrently updatable in a parallel memory
transaction,

a method of accessing from among said update arrays

a subset which tiles a geometric figure to be drawn

to said framebuffer, comprising the steps:

(2-1) performing the steps of claim 1 until, in a first
horizontal row of said update arrays, all update
arrays to which said geometric figure is mapped
have been accessed,

(2-2) reading said stored array address marked for
upward continuation of said figure, accessing the
update array vertically above the update array
corresponding to said stored array address, stor-
ing a specification of the address of said array
denoting it as the first accessed update array, and
repeating steps (1-2)-(18) of claim 1 with respect
to the current accessed array until a next hori-
zontal subset of arrays to which the geometric
figure is mapped has been accessed,

(2-3) repeating step (2-2) for further horizontal
subsets until there are no further stored addresses
marked for upward continuation of said figure,

(2-4) reading said stored array address marked for
downward continuation of said figure, accessing
the update array vertically below the update
array corresponding to said stored array address,
storing a specification of the address of said array
denoting it as the first accessed update array, and
repeating steps (1-2)-(1-8) of claim 1 with re-
spect to the current accessed array until a next
horizontal subset of arrays to which the geomet-
ric figure is mapped has been accessed, and

(2-5) repeating step (2-4) for further horizontal
subsets until there are no further addresses
marked for downward continuation of said fig-
ure.

3. The method of claim 2, further comprising the
steps:

(8-1) deriving and storing a specification with re-
spect to said framebuffer of a box bounding said
geometric figure to be drawn;

(8-2) before accessing each update array after said
initial array, comparing the position of said up-
date array with respect to the framebuffer with
said stored specification of said bounding box;
and

13
(8- 3) accessing said update array only if said array
is mapped to the area of said bounding box.

‘4. The method of claim 1, wherein the update array to-

which a first vertex of said geometric figure is mapped
is accessed in step (1-1).

5. In a graphics subsystem having framebuffer storage
organized for storing signals specifying the pixels (x,y)
of an XXY raster framebuffer, said storage being se-
quentially addressable as a plurality of framebuffer pixel

update arrays, the set of smd update arrays tiling the

framebuffer,

each said update array havmg a determined ongm'

with respect to said framebuffer and comprising

storage sites for specifications of a plurality of con-

tiguously positioned framebuffer pixels, each said
storage site being specifiable by an offset with re-
spect to said update array origin, pixel specifica-
tions for all the storage sites of a said update array
being concurrently updatable in a parallel memory
transaction, |

a method of accessing from among said update arrays

a subset which tiles a geometric figure to be drawn

to said framebuffer, comprising the steps:

(7-1) performing the steps of claim 1 until in a first
‘horizontal subset of arrays, all arrays to which
the geometric ﬁgure 15 mapped have been ac-

- cessed,

(7-2) reading said stored array address marked for
downward continuation of said figure of the first
horizontal subset, accessing the update array

vertically below the update array specified by
said read array address, storing a specification of

the address of said accessed array denoting it as
the first update array accessed, and repeating

steps (1-2)-(1-8) of claim 1 with respect to the

4,935,880

J

10

15

20

25

30

35

current accessed array until a next horizontal

subset of arrays to which the geometric figure is
mapped has been accessed,

(7-3) repeating step (7-2) for further horizontal

subsets until there are no further addresses

marked for downward continuation of said fig-

ure,
(7-4) reading said stored array address marked for
upward continuation of said figure, accessing the
- update array vertically above the update array
specified by said read array address, storing a
-specification of the address of said array denot-
Ing it as the first update array accessed, and re-
peating steps (1-2)-(1-8) of claim 1 with respect
to the current accessed array until a next hori-
zontal subset of arrays to which the geometric
figure is mapped has been accessed, and |
(7-5) repeating step (7-2) for further horizontal
_subsets until there are no further stored addresses
marked for upward continuation of said figure.
6. In a graphics subsystem having framebuffer storage

45

20

55

organized for storing signals specifying the pixels (x,y)

of an X XY raster framebuffer, said storage being se-
~ quentially addressable as a plurality of framebuffer pixel
update arrays which tile the framebuffer, including a

60

plurality of horizontal rows of update arrays forming an

array of said update arrays,

each said update array having a determined origin

with respect to said framebuffer and comprising
storage sites for specifications of a plurality of con-

65

tiguously positioned framebuffer pixels, each said

storage site being specifiable by an offset with re-

spect to said update array origin, pixel specifica-

14

tions for all the storage sites of a said update array

being concurrently updatable in a parallel memory

~ transaction,
a method of accessing from among said update arrays

a subset which tiles a geometric figure to be drawn

- to said framebuffer, comprising the steps:

- (4-1) accessing an update array to which a first
vertex of said geometric figure is mapped, and
storing a specification of said array address de-
noting it as the first accessed update array,

(4-2) performing the steps of claim 1 until, in a first
horizontal subset of said update arrays, all update
arrays to which the geometric figure is mapped
have been accessed,

(4-3) reading said stored array address marked for
upward continuation of said figure, accessing the
update array vertically above the update array
specified by said read array address, storing a
specification of the address of said array denot-
ing it as the first accessed update array, and re-
peating steps (1-2)-(1-8) of claim 1 with respect
to the current accessed array until a next hori-

- zontal subset of arrays to which the geometric
figure is mapped has been accessed,

(4-4) repeating step (4-3) for further horizontal
subsets until no further stored addresses marked
for up are found,

(4-5) reading said stored array address marked for
downward continuation of said figure, accessing
the update array vertically below the update
array specified by said read array address, stor-
ing a specification of the address of said array
denoting it as the first accessed update array, and
repeating steps (1-2)-(1-8) of claim 1 with re-
spect to the current accessed array until a next
horizontal subset of arrays to which the geomet-
ric figure 1s mapped has been accessed, and

(4-6) repeating step (4-5) for further horizontal
subsets until there are no further addresses
marked for downward continuation of said fig-
ure. |

7. In a graphics subsystem having framebuffer storage

organized for storing signals specifying the pixels (x,y)
of an X XY raster framebuffer, said storage being se-
quentially addressable as a plurality of framebuffer pixel
update arrays which tile the framebuffer, including a
plurality of horizontal rows of update arrays forming an
array of said update arrays,

~ each said update array having a determined origin
with respect to said framebuffer and comprising
storage sites for specifications of a plurality of con-
tiguously positioned framebuffer pixels, each said
storage site being specifiable by an offset with re-
spect to said update array origin, pixel specifica-
tions for all the storage sites of a said update array
being concurrently updatable in a parallel memory
transaction,

- a method of accessing from among said update arrays
a horizontal subset to which is mapped a geometric
figure to be drawn to said framebuffer, c omprlsmg-
the steps: |
(5-1) finding the left-most element of said geomet-

ric figure with respect to said framebuffer, -

(3-2) accessing an update array to which said left-
most element is mapped,

(5-3) testing whether said geometric figure is
mapped to an update array positioned vertically
above said accessed array with respect to the

4,935,880

15

framebuffer, and if so, and if no previous array in
the present horizontal row has been marked for

up, storing a specification of said array address if

not previously stored, and marking said stored
array address specification for upward continua-
tion of said figure,

(5-4) testing whether said geometric figure is
mapped to an update array positioned vertically
below said accessed array with respect to the
framebuffer, and if so, and if no previous array in
the present horizontal row has been marked for
downward continuation of said figure, storing a
specification of said array address if not previ-
ously stored, and marking said stored array ad-
dress specification for downward continuation
of said figure,

(5-5) testing whether said geometric figure is
mapped to the update array positioned horizon-
tally next to the right of said accessed array with
respect to the framebuffer, and if so, accessing
said next right array, and

(5-6) repeating steps (5-3)-(5-5) with respect to the
array accessed in step (5-5) until the geometric
figure is found not to be mapped to the next right
array.

8. In a graphics subsystem having framebuffer storage
organized for storing signals specifying the pixels (x,y)
of an XX Y raster framebuffer, said storage being se-
quentially addressable as a plurality of framebuffer pixel

10

15

20

16

(6-3) repeating step (6-2) for further horizontal
subsets until there are no further stored addresses
marked for upward continuation of said figure,
(6-4) popping to the stored array address marked
for downward continuation of said figure of the
first horizontal subset, accessing the update array
vertically below the specified array, storing a
specification of the address of said array marked
as initial, and repeating steps (5-2)-(5-7) of claim
S with respect to the current accessed array until
a next horizontal subset of arrays to which the
geometric figure is mapped has been accessed,

and
(6-5) repeating step (6-3) for further horizontal
subsets until there are no further addresses
marked for downward’ continuation of said fig-

ure.
9. In a graphics subsystem having framebuffer storage
organized for storing signals specifying the pixels (x,y)
of an X XY raster framebuffer, said storage being se-

 quentially addressable as a plurality of framebuffer pixel

23

update arrays which tile the framebuffer, including a 30

plurality of horizontal rows of update arrays forming an
array of said update arrays,

each said update array having a determined origin
with respect to said framebuffer and comprising
storage sites for specifications of a plurality of con-
tiguously positioned framebuffer pixels, each said
storage site being specifiable by an offset with re-
spect to said update array origin, pixel specifica-
tions for all the storage sites of a said update array
being concurrently updatable in a parallel memory
transaction,

a method of accessing from among said update arrays
a subset which tiles a geometric figure to be drawn
to said framebuffer, comprising the steps:

(6-1) performing the steps of claim 5 until in a first
horizontal subset of arrays, all arrays to which
the geometric figure is mapped have been ac-
cessed, |

(6-2) reading said stored array address marked for
upward continuation of said figure, accessing the
update array vertically above the specified array,
storing a specification of the address of said array
marked as initial, and repeating steps (5-2)-(5-7)
of claim 5 with respect to the current accessed
array until a next horizontal subset of arrays to
which the geometric figure is mapped has been
accessed,

35

45

50

33

65

update arrays which tile the framebuffer, including a
plurality of horizontal rows of update arrays forming an
array of said update arrays,

each said update array having a determined origin
with respect to said framebuffer and comprising
storage sites for specifications of a plurality of con-
tiguously positioned framebuffer pixels, each said
storage site being specifiable by an offset with re-
spect to said update array origin, pixel specifica-
tions for all the storage sites of a said update array
being concurrently updatable in a parallel memory
transaction,

a method of testing whether a geometric figure to be
drawn to the framebuffer, mapped to a first said
update array, is mapped to a neighboring update
array adjacent to said first array with respect to the
framebuffer, comprising:

specifying said geometric figure by specifying with
respect to said framebuffer a set of directed lines
such that the segments of said lines between their
mutual intersections comprise the boundary of said
figure,

specifying for said first update array with respect to
said adjacent array, a pair of sample framebuffer
pixels, comprising a corner pixel of said first update
array which 1s adjacent said neighboring update
array, and a second sample pixel which is adjacent
said neitghboring update array and adjacent said
first update array,

evaluating, for each specified directed line, the sided-
ness of said sample pixels with respect to said di-
rected line, and

when at least one of said sample pixels is inside with
respect to each said directed line, accessing said

adjacent update array.
* * * * *x

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :4,935,880 Page 1 of 1
DATED : June 19, 1990
INVENTOR(S) : Brian Kelleher et al.

It is certified that error appears in the above-identified patent and that said Letters Patent Is
hereby corrected as shown below:

Column 12,
Line 38, delete “(18)” and insert therefor -- (1 - 8) --

Signed and Sealed this

Twenty-tirst Day of June, 2005

o WD

JON W. DUDAS
Direcror of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

