United States Patent 9
Agrawal et al,

[54] METHOD FOR COMPUTING TRANSITIVE
- CLOSURE

[75] Inventors: Rakesh Agrawal, Chatham;
Hosagrahar V. Jagadish, Berkeley
Heights, both of N.J.

[73] Assignee: AT&T Bell Laboratories, Murray
Hill, N.J.

[21] Appl. No.: 91,236
(22] Filed: Aug. 31, 1987

[51] Imt. CLS ... GO6F 15/40; GO6F 15/31
[52] US. Cl .coorereeeeeerercnnnaene 364/300; 364/200;

| 364/282.1; 364/282.2
[58] Field of Search ... 364/200 MS File, 900 MS File,

364/300
[56] | References Cited
U.S. PATENT DOCUMENTS

4,267,568 5/1981 Dechant et al. .....covveveres. 364/200
4,422,158 1271983 Galie .cvvvreveerrerceererernseecnnnnes 364/900
4,468,732 8/1984 Raver ....ovvrrveercrireennnnnenn. 364/200
4,479,196 10/1984 Ferrer et al. ...ccovveeeivnnnrnnnnen. 364/900
4,484,297 11/1984 Maier et al. ...coovvvevveerecrvrenann 364/900
4,497,036 1/1985 Xitakami et al. ....cccvenvnnveenn 364/900
4,611,298 9/1986 Schuldt ....ccorvvivivreirniirennnn. 364/900
4,627,019 12/1986 NE wcevrreerireieriiecciieeicececnsninan 364/900
4,745,559 5/1988 Williset al. .cooovevennvrrinnnnnn. 364/514
4,797.810 1/1989 McEntee et al. ................... 3647200
4,803,642 2/1988 Muranaga .......ccccccerrenenennnne 364/513
4,809,158 2/1989 McCauley ....cvvvevvrrevennennen. 364/200
4,814,971 3/1989 Thatte .....oeveverrrivrerenersrenens 364/200
4,853,842 8/1989 Thatte et al. ..c.uueeeevvvvnrnrnnnnn. 364/200

OTHER PUBLICATIONS

Alpha: An Extension of Relational Algebra to Express
a Class of Recursive Queries, R. Agrawal, Proc. 3rd
Intl. Conf. on Data Engineering, Los Angeles, Calif.,
2/87. |

Traversal Recursion: A Practical Approach to Support-
ing Recursive Applications, A. Rosenthal, Proc. AC-
M-SIGMOD 1986 Intl. Conf. on Management of Data,
Washington, D.C., 5/86.

Heuristic Search in Data Base Systems, R. Kung et al.,
Proc. 1Ist Intl. Workshop Expert Database Systems,
‘Kiawah Island, S.C., Oct. 1984,

Naive Evaluation of Recursively Defined Relations, A.

(11] Patent Number: 4,930,072
[45] Date of Patent: May 29, 1990

F. Bancillion, Tech. Rept. DB-004-85, MCC, Austin,
Tex.

Evaluation of Recursive Queries Using Joint Indices, P.
Valduriez et al., Proc. 1st Intl. Conf. Expert Database
Systems, Charleston, S.C. 4/86.

On the Computation of the Transitive Closure of Rela-
tional Operators, Y. E. Ioannidis, Proc. 12th Intl. Cont.
Very Large Data Bases, Kyota, Japan, 8/86.

On the Evaluation of Recursion in Deductive Database
Systems by Efficient Differential Fixpoint Iteration, U.
Guntzer et al., Proc. IEEE 3rd Intl. Conf. Data Engi-
neering, Los Angeles, Calif. 2/87.

New Strategies for Computing the Transitive Closure
of a Database Relation, H. Lu, Proc. 13th Intl. Conf.
Very Large Data Bases, Brighton, England 9/87.

A Theorem on Boolean Matrices, S. Warshall, Journal
of ACM, vol. 9, No. 1, 1/62.

A Modification of Warshall’s Algorithm for the Transi-
tive Closure of Binary Relations, H. S. Warren, Com-
munications of ACM, vol. 18, No. 4, 4/75.

An Algorithm for Transitive Closure with Linear Ex-
pected Time, C. P. Schnorr, SIAM Journal of Comput-
ing, vol. 7, No. 2, 5/78.

Primary Examiner—Gareth D. Shaw
Assistant Examiner—Kevin A. Kriess
Attorney, Agent, or Firm—Henry T. Brendzel

(57) ABSTRACT .

A method and apparatus for creating a transitive clo-
sure of a database when the database is stored on a
secondary storage in the form of links connecting
nodes. The method consists of partitioning the database,
transferring one partition at a time from the secondary
storage to the main memory, and processing a partition
In such a way that accesses to the portions of the data-
base not in main memory are minimized. As much of the
unprocessed database as would fit a predetermined frac-
tion of main memory 1is fetched as one partition, and if,
during the processing of this partition, the main mem-
ory becomes full, the size of the partition 1s reduced
dynamically by discarding a portion of the database in
the current partition, and including this portion in the
next partition. The processing of a partition involves,
for each node in the partition, the operation of creating
a direct connection between every pair of nodes that are
indirectly connected through this node.

22 Claims, 7 Drawing Sheets

~100

DATABASE

J

200

]

-

TRANSITIVE
CLOSURE GENERATOR

; 220 p 210
DATABASE i “
AN AGETENT MEMORY L, SORT
SYSTEM 10 |
— 1 240
TUPLE -

- [0[0j0

UERY
MINALS

| ANALYSES &
CONTR
l | CONSTRUCTION | Dij

OPERATIONS
ODWROLS'I&EJRMINALS



US. Patent  May29,19%  Sheetiof7 4,930,072

FIG. 1
Component Part Manufactured Part Number
Fr— e
Number | Name _ . Number - Name Used
I XXXVZY 20pF capacitor YZW104 controller board 8
XXXVZY 20pF capacitor | ZXF235 graphics board 22
32457] l * workstation 100000 office information system 4
74L362 | 16-bit microprocessor | YZW104 controller board 1
YZW104 controller board 32457) workstation 1
KJH895 | display unit 324527) workstation 1
ZXF235 graphics board KJH895 display unit 1
'FIGURE 4
XXXVZY 20pF capacitor YZW104 controller board 8
XXXVZY 20pF capacitor ZXF235 graphics board 22
XXXVZY |  20pF capacitor KJH895 | display unit 22
XXXVZY 20pF capacitor 32457]) I workstation 30
XXXVZY 20pF capacitor 100000 | office information system | 120
741362 16-bit microprocessor | YZW104 controller board 1
74L362 | 16-bit microprocessor | 3245ZJ workstation 1
741362 16-bit microprocessor | 100000 | office information system { 4 |
YZW104 controller board 3245Z3 | workstation 1
| YZW104  controller board 100000 | office information system | 4
ZXF235 graphics board KJH895 display unit 1
ZXF235 graphics board 324577 | workstation 1
ZXF235 - graphics board | 100000 | office information system | 4
KJH895 display unit 32457]) workstation 1
KJTH895 display unit 100000 | office information system 4
32452]) ~ workstation 100000 | office information system | 4




-~ US. Patent ' May 29, 1990 Sheet20f7 4,930,072
- N FIG. 2 ' '

MICROPROC.

CAPACITOR g 1. WORKSTATION g4
INFO. SYSTEM

GRAPHICS DISPLAY

FIG. 3

. MICROPROC.

_ 4
CAPACITOR .8 'WORKSTATION INFO.
CONTROLLER 7 SYSTEM
' 4

DISPLAY
120




U.S. Patent May 29, 1990 Sheet 3 of 7 | 4,930,072

FIG. 5 ' . _ FIG. 6
(ruemmEmEEEREEsEEET- T T T =
i 41 i

|
: CONSIDERED ALL VES |
; NODES NOT IN ;
: CURRENT PARTITION |
CREATE A SUCCESSOR LIST | * |
BY SORTING ON SOURCE NODE | READ THE SUCCESSOR LIST !
: OF NEXT NODE k NOT IN |
| : THE CURRENT PARTITION :
- _ 20 ! !
READ IN THE : - 1
NEXT PARTITION ! 43 |
' T | yEs /~ CONSIDERED ALL ,
_ 30 : SUCCESSORS OF k ;
PROCESS NODES IN THE ! NO !
CURRENT PARTITION | 44 |
‘ - i CONSIDER NEXT .
40 : SUCCESSOR OF k ;
PROCESS NODES NOT IN : EG.,i :
- CURRENT PARTITION | - !
' : 45 |
_ _ | IS i IN THE NO | | !
_ 0 | CURRENT PARTITION :
NO /~ ALL PARTITIONS | 7ES ;
- PROCESSED ; 46 |
- YES : CREATE AND/OR UPDATE a
| LINKS FROM k TO |
m | EVERY SUCCESSOR OF i :
| i
: I B :
: :
| !
T 3
N




US. Patent  May 29, 19% Sheet 4 of 7

FIG. 7 _ FIG. 8
| iantiaadinadbdisidiediei b e e e ittt st asi -
| |
: CONSIDERED ALL  \ygg
| NODES NOT IN !
0 : CURRENT PARTITION ;
CREATE A SUCCESSOR : NO 47 |
LIST BY SORTING : ' '
DOES THE NEXT NODE k NOT |
ON SOURCE NODE |Ng/  INTHE CURRENT PARTITION i
s : BELONG TO THE PREDECESSOR |
. LIST OF SOME NODE IN }
CREATE A PREDECESSOR : THE CURRENT PARTITION :
'LIST BY SORTING i YES 40 |
ON DESTINATION NODE ! - |
. _ ! READ THE SUCCESSOR i
95 | LIST OF NODE k |
, ! ~ _ _ .
READ THE NEXT : e :
- PARTITION AND | ! 3 :
~ CORRES. PORTION ; . ;
OF PREDECESSOR LIST i CONSIDERED ALL ;
| SUCCESSORS OF k |
_ 0 NO :
PROCESS NODES IN THE : CONSIDER :
CURRENT PARTITION i | NEXI l
| SUCCESSOR OF k .
49 _EG,i i

|

PROCESS NODES NOT IN ; - 4 '
~ CURRENT PARTITION ; IS i IN THE O :
" 4 ! CURRENT PARTITION !
a i |
_ UPDATE : T 46
PREDECESSOR LIST : CREATE AND/OR UPDATE i
" ! LINKS FROM k TO !
_ ! EVERY SUCCESSOR OF i |
" ALLPARTITIONS \ : ‘ |
~ PROCESSED : _ :
| f

- YES e e m e g e -
492
Y




US. Patent May20,19  Shestsor7 4,930,072

FIG. 9 METHOD 3

BEGIN FIRST PASS 10

SORT DATABASE
ON SOURCE NODE

N

— - READ THE
NEXT PARTITION

S

PROCESS NODES BELONGING TO
PARTITIONS ALREADY CONSIDERED

I ;30
PROCESS NODES IN THE

CURRENT PARTITION

50

ALL PARTITIONS
CONSIDERED

YES

NO

BEGIN SECOND PASS ~ 20

- READ THE
NEXT PARTITION

u I 60

PROCESS NODES NOT PROCESSED
IN THE FIRST PASS FOR NODES

IN THE CURRENT PARTITION
50

NO/  ALL PARTITIONS
CONSIDERED

YES

DONE



‘ U.S. Patent ' May 29, 1990 Sheet 6 of 7 4,930,072
' FIG. 10

IS THERE A NODE k IN
AN ALREADY PROCESSED

- PARTITION THAT HAS
NOT BEEN CONSIDERED

YES

NO

72

IS THERE A LINK IN THE

CURRENT PARTITION THAT
HAS k AS THE DESTINATION

NO

.73

READ IN SUCCESSOR
LIST OF k

74

| |
| |
! |
! !
l |
| |
| |
] |
i :
| |
| 1
| |
| |
| |
! |
! |
| |
| |
I |
| !
| |
f |
! |
| |
| |
| |
| )
| |
| - i
I |
| | |
I |
| | ;
! | |
} |
L CONSIDER A NODE i IN |
Lo | THE CURRENT PARTITION |
I )
I !
I I
I |
I |
i |
| |
i |
I |
: |
f |
I |
| !
| {
I |
I |
i |
I {
I I
! I
I 1
| !
I |
| |
| |
; |
; |
I |
I {
I I
! I
i :
I |

75

NO IS THERE A LINK
- ~ FROMiTOk

YES
76

CREATE/UPDATE LINKS FROM i TO
EVERY SUCCESSOR MEMORY OF k

77

NO MORE NODES IN THE
CURRENT PARTITION

YES




U.S. Patent | May 29, 1990 Sheet 7 of 7 4,930,072

FIG. 11
| 100
DATABASE ]
300 ~ I - ~200
TRANSITIVE
CLOSURE GENERATOR
S 220 210
R DATABASE | MEMORY SORT
E/" MANAGEMENT| | | SORT
SYSTEM 230 | |
: | { | e 1 240
[ , , TUPLE —
| CONSTRUCTION
]
QUERY
TERMINALS
400

jm

OPERATIONS
CONTROL .%I(')EORMINALS



4,930,072

1

METHOD FOR COMPUTING TRANSITIVE
CLOSURE

BACKGROUND OF THE INVENTION

This invention relates to database management sys-
tems and methods and, more particularly, to intelligent
database systems and methods that can deduce new
information from available data.

Database management systems have been tradition-
ally used in data processing applications such as payroll
processing, financial accounting, and transaction pro-
cessing. Now, database management systems are being
increasingly put to use in new applications such as in
expert database systems, and in response thereto new
database management systems and machines are being
designed.

Commonly, relational databases comprise a large
number of entries and each entry is composed of a num-
ber of fields. The entries are sometimes referred to as
records or tuples. Each tuple in a database generally
consists of the same fields arranged in the same order,
with the difference between the tuples being in the
values of the fields. Information is retrieved from such
databases through a relatively limited number of basic,
or primitive, operations which may be combined to
form very powerful queries.

One such primitive operation, for example, 1s “select”
on a value of a prechosen field. This operation ignores
all fields other than the selected field, searches in the
selected field (through the tuples) for values that meet
the specified condition, and retrieves the tuples that
meet the search criterion (or a chosen portion thereof).

Another primitive operation is “union”, where two
databases which are defined over the same fields are
concatenated to form a larger database. When the cate-
nation 1s effected, some tuples may appear more than
once, so part of the “union” operation deletes the redun-
dant tuples. A “‘difference” primitive operation also
considers two separate databases, but the result of the
difference operation is a database that contains only the
tuples that appear in the first database but no in the
second database. |

Still another primitive operation is known as the
“join” operation. It permits a joinder of those portions
of two databases that meet a chosen criterion. For ex-
ample, when a join is specified on a particular field in
each of two databases under consideration, those tuples
in the two databases that match (in value) in the two
chosen fields are concatenated to form new tuples
which form a new database. Naturally, the two chosen
fields should have values over a common range; other-
wise no matches would be found. |

A careful consideration of the above primitive opera-
tions reveals that much information can be gained by
judiciously querying databases to extract the informa-
tion that was explicitly inserted therein. But, databases
also possess a lot of information that has not been di-
rectly, or explicitly, inserted. That-information can also
~ be extracted with the known primitive operations, but
not very efficiently. For example, given a database with
three fields where two of them represent cities that have
a direct freeway linking them, and a third field giving
the distance between the two cities along this freeway,
-one may wish to find a route to get from one city to
another that is not directly linked to it by a freeway.
Given only the conventional primitives, such a query
can be answered only through a program that contains

>

10

15

20

23

30

35

43

30

33

60

65

2

a large number of the primitive operations. If, however,
a primitive operation were available that was capable of
efficiently manipulating the database so that the query
could be answered directly, many heretofore difficult
tasks could be easily accomplished. The capability
needed for the above example is generally referred to as
“transitive closure”. It is an often needed capability.

Many artisans have recognized the need to extend the
set of primitive operations on databases, and some have
suggested primitives that, in essence, are the transitive
closure operation. Examples of these proposals are the
“alpha” operator proposed by R. Agrawal in “Alpha:
An Extension of Relational Algebra to Express a Class
of Recursive Queries”, Proc. 3rd Int’l Conf. on Data
Engineering, Los Angeles, California, Feb. 1987; the
“traversal recursion” operator proposed by A. Rosen-
thal et al. in “Traversal Recursion: A Practical Ap-
proach to Supporting Recursive Applications”, Proc.
ACM-SIGMOD 1986 Int'l Conf. on Management of
Data, Washington D.C., May 1986; and the “*” opera-
tor proposed by R. Kung et al. in “Heuristic Search in
Data Base Systems”, Proc. 1st Int’l Workshop Expert
Database Systems, Kiawah Island, South Carolina, Oct.
1984,

Before describing the methods and techniques hereto-
fore employed in the art to achieve the transitive clo-
sure operation, it may be useful to present a pictorial
representation of transitive closure.

As stated above, a database relation consists of a set of
tuples, each of which consists of a number of fields. The
values 1n each field are defined over a certain range. A
compound field in a database consists of two or more
fields considered together. Often, two fields (or two
compound fields) in a database relation will be defined
over the same range. When each value present in such
two fields is represented by a node, and each tuple is
represented as a directed link (or an arrow) that con-
nects the two values found in the fields of the tuple, then
the resulting graph (collection of nodes and connecting
links) represents the database. The additional fields
associated with each tuple in the database relation can
be used to label the links 1n the graph. As an aside, the
reason for using directed rather than undirected links is
to distinguish between the two fields participating in the
relation that were used to define the graph.

Turning attention to the graph itself, a “path” in such
a graph consists of a set of consecutive links that can be
followed to reach a selected destination node of the
graph from a chosen source node of the graph. By our
definition, the “transitive closure” of a graph is a new
graph with a hink between every pair of nodes between
which there exists a path. Labels existing on the links of
the original graph are transformed in accordance with a
chosen function to form new labels for the links created
by the transitive closure. Sometimes, even if a link al-
ready exists between a pair of nodes, the discovery of a
different path could cause the label on such a link to be
transformed according to some prescribed function.
The transitive closure of a database relation is the data-
base relation corresponding to the transitive closure of
the graph of the original database relation given.

Much of the success of the past database systems can
be attributed to the discovery of efficient methods for
implementing various primitive operators for databases.
Following the same lead, designers have attempted to
design methods for:computing transitive closure of a



4,930,072

3

database relation. Most of these methods can be classi-
fied as iterative methods.

The semi-naive method, described by A. F. Bancil-
hon in “Naive Evaluation of Recursively Defined Rela-
tions”, Tech. Rept. DB-004-85, MCC, Austin, Texas,
starts with paths of length one and in each iteration
finds paths that are one longer. The logarithmic method
1s described by P. Valduriez et al. in “Evaluation of
Recursive Queries Using Join Indices”, Proc. 1st Int’!]
Conf. Expert Database Systems, Charleston, South Caro-
lina, April 1986, and by Y. E. Ioannidis in “On the
Computation of the Transitive Closure of Relational
Operators”, Proc. 12th Int’l Conf Very Large Data
Bases, Kyoto, Japan, Aug. 1986. This method computes
in each iteration all paths of lenght up to twice the
lenght of paths already known. Variations on the above
methods have been described by Y. E. Ioannidis in “On
the Computation of the Transitive Closure of Relational
Operators™, Proc. 12th Intl Conf. Very Large Data
Bases, Kyoto, Japan, Aug. 1986, U. Guntzer et al. in
“On the Evaluation of Recursion in Deductive Data-
base Systems by Efficient Differential Fixpoint Itera-
tion”, Proc. IEEE 3rd Int’l Conf. Data Engineering, 1.os
Angeles, California, Feb. 1987, and H. Lu “New Strate-
gies for Computing the Transitive Closure of a Data-
base Relation”, Proc. 13th Int’l Conf. Very Large Data
Bases, Brighton, England, Sept. 1987.

There are two major problems with the above prior
art methods. First, the termination of the iterative meth-
ods depends on fhe longest path in the graph, and if the
graph has long paths, many iterations are required be-
fore the results is obtained. Second, the iterative meth-
ods end up creating an enormous number of duplicates
(because, when a path between a pair of nodes is discov-
ered, it is not easy to verify whether a path between this
pair of nodes already exists), particularly if the graph
contains cycles, and incurs a heavy performance pen-
alty in removing them.

Methods have also been devised for computing tran-
sitive closure of boolean matrices (that is, matrices with
only 1 or O as their elements). Some well known meth-
ods of this type are the method described by S. Warshall
in “A Theorem on Boolean Matrices”, Journal of ACM,
Vol. 9, No. 1, Jan. 1962, by H. S. Warren in “A Modifi-
cation of Warshall’s Algorithm for the Transitive Clo-
sure of Binary Relations”, Communications of ACM,
Vol. 18, No. 4, April 1975, and by C. P. Schnorr in “An
Algorithm for Transitive Closure with Linear Expected
Time”, SIAM Journal of Computing, Vol. 7, No. 2, May
1978.

- In accordance with the Warshall algorithm, given an
initial v by v Boolean matrix of elements a; over a v
node graph, with a; being 1 if there is an arc from node

1 to node j and O otherwise, one can obtain the transitive
closure of the given boolean matrix as:

Fork = ltov
Fori= ltov
Forji=1tov
a; = aj U (ajx N ag))

In graph terms, one can understand the algorithm as
follows: |

For every node k
For every predecessor 1 of k
For every successor j of k

J

10

15

20

25

30

35

43

50

33

60

635

4

-continued

Make j a successor of i, and make i a predecessor of j.

If the graph is represented as a relation with each

tuple representing an arc, one has to maintain the rela-

tion sorted two ways, to obtain the effect of having both
predecessor and successor lists. The implementation of
the Warshall algorithm then involves, for each node,
fetching its successor and predecessor lists, and then for
each successor (predecessor) fetching its predecessor
(successor) list for possible update. It is also possible to
keep only one list, say a successor list, and scan through
all the lists each time to determine the predecessor of a
node. |

Warren noted that the Warshall algorithm involved
fetching random bits from the Boolean matrix, and
proposed a modification that would permit direct oper-
ation upon Boolean vectors without the overhead of bit
extraction; but in two passes:

Fori=1tov
Fork = 1 101i-1
Forj= 1ltov

aj = ag U (ajx N agy)
Fort=1tov
Fork=14+1tov
Forj=1tov

aj = aj U (ajx N agy)

The only change in the Warren algorithm is that the
1 and k loops have been interchanged. However, this
interchange could result in some paths being missed out
and so the algorithm now requires two passes before it
completes. The modification in the range of the second
loop index is an optimization that reduces the cost of
two passes. In each pass the computation is essentially:

For every node i

For every successor k of i within some range
For every successor j of k

Make ] a successor of 1.

The problem with these methods is that they cannot
be applied to efficiently compute the transitive closure
of database relations unless the whole database and the
result of the computation of the transitive closure can fit
in the main memory of the computer. Unfortunately, .
most of the real life databases are too big for that.

SUMMARY OF THE INVENTION

In accordance with our invention, transitive closure
of a database can be achieved efficiently even when the
database 1s stored on a secondary storage, such as mag-
netic disk or optical disk or magnetic tape or slower
core memory, by minimizing accesses to the secondary
storage. The method consists of partitioning the data:
base, maintained in the preferred embodiment as a set of
nodes where attached to each node is a list of nodes that
are directly connected to i, transferring one partition at
a time from the secondary storage to the main memory,
and processing a partition in such a way that accesses to
the portions of the database not in main memory are
minimized. The partitions of the database need not be
determined a priori. As much of the unprocessed data-
base as would fit a predetermined fraction of main mem-
ory is fetched as one partition, and if, during the pro-



4,930,072

5

cessing of this partition, the main memory becomes full,
the size of the partition is reduced dynamically by dis-
carding a portion of the database in the current parti-
tion, and including this portion in the next partition.
The processing of a partition involves, for each node in
the partition, the operation of creating a direct connec-
tion between every pair of nodes that are indirectly
connected through this node.

- BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 depicts an illustrative database;

FIG. 2 shows the graph representation of the FIG. 1
database;

FIG. 3 shows the transitive closure of the FIG. 2
graph; |

FIG. 4 presents the database corresponding to the
FIG. 3 graph;

FIG. 5§ presents a flowchart of one method in accor-
dance with the principles of our invention;

FIG. 6 presents a more detailed flowchart of block 40
in FIG. §; |

FIG. 7 presents a flowchart of a second method in
“accordance with the principles of our invention;

FIG. 8 presents a more detailed ﬂowchart of block 49
in FIG. 7;

FIG. 9 presents a flowchart of a third method in
accordance with the principles of our invention;

FIG. 10 presents a more detailed flowchart of block
70 in FIG. 7; and

FIG. 11 depicts one system implementation for em-

ploying the transitive closure generator in accordance

with our invention. -

DETAILED DESCRIPTION

FIG. 1 depicts a simple database relation which 1s
‘used herein to describe our method and apparatus for
efficiently creating the transitive closure of a database

relation. The FIG. 1 database has five fields, with the.

first and the third field being both defined over the
domain of valid part numbers, the second and the fourth
- fields being both defined over the domain of possible

10

15

20

25

30

35

part names, and the fifth field being defined over the

domain of positive integers. The relation basically states
that the part specified by its number in the first field and

name in the second field is used in the manufacture of 45

the part specified in the third and fourth fields, and the
number of units of the former required to produce one
unit of the latter are given in the fifth field.
 As indicated previously, a compound field in a data-
base consists of two or more fields considered together.
In the FIG. 1 example, the first and second fields can be
combined to create a single compound field giving the
number and name of a machine part. Similarly, the third
and fourth fields may be combined. |

FIG. 2 shows a directed graph corresponding to the
FI1G. 1 database, and FIG. 3 shows the transitive clo-
sure of the FIG. 2 graph. FIG. 4 shows the database
relation corresponding to FIG. 3. In FIGS. 3 and 4, the
function used to compose the new labels for the links 1s
a “multiply-and-add” over the links that give rise to this
new link. This function is chosen in this example be-
cause it preserves the original meaning of the database
relation: that is, the labei corresponding to the fifth field
correctly gives the number of units of a certain part that
are required, directly or indirectly, in the manufacture
of a certain other part.

Usually, a database relation 1s too big for it to be
- stored entirely in the main memory of a general purpose

50

53

60

65

6

computer, and must of necessity be stored on a second-
ary storage medium such as a magnetic (or optical) disk.
Only a fraction of the relation can be read into and
retained in the main memory at any one time. Com-
pounding the problem, the transitive closure of a data-
base relation is always larger, and usually considerably
larger, than the original relation. Therefore, 1t is even
less likely that the transitive closure of a database rela-
tion will fit in the main memory of a computer. Because
of the nature of the secondary storage that 1s typically
used in today’s computers, and the interaction with the
comptiter’s control and fast resident memory, there is
considerable time taken in the transfer of data between
a secondary storage medium and the primary resident
storage medium. Our objective is to offer apparatus that
efficiently computes the transitive closure of a database
relation by reducing extent of transfers between resi-
dent memory and secondary memory. That is, the ob-

jective of our apparatus is to efficiently transform a

conventional database to a ‘“‘transitive closure com-

plete” database.

In accordance with our objective, the conventional
database is stored in a secondary storage medium and
the transitive closure apparatus accesses the data on that
medium, performs the transformation, and stores the
resulting ‘““transitive closure complete” database in the
same medium as shown in FIG. §. Processor 200 ac-
cesses database 100, performs the transformation and
places the results back in database 100.

The key to our approach is reducing the number of
accesses to the secondary memory, and to achieve that,
our method for computing the transitive closure in-
volves partitioning the database into convenient seg-
ments that fit within the-memory of processor 200 and
considering every node in the graph in an efficient man-
ner. In connection with such consideration, our method
either (a) construct a link and corresponding label be-
tween every node that has an incoming link to the node
under consideration and every node that has an outgo-
ing link from the node under consideration, if such a
link does not already exist, or (b) updates the label of
such a link, if it already exists.

More specifically, since each tuple 1s a link with two
nodes, our method considers either the destination node
or the source node as the pivot node under consider-
ation. By creating a link between the node(s) having
links arriving at each pivot node and the node(s) having
links exiting each pivot node we construct the entire
transitive closure. |

The known procedures require repeated accesses to
the entire database, but we wish to relieve that require-
ment to the extent possible. In accordance with our
invention, therefore, transitive closure is achieved by:
(a) sorting the initial database 100, primarily on the

source node and secondarily on the destination node;

(b) transferring a partition of the sorted database to
processor 200 (where a partition comprises the entries
of a selected number of pivot nodes) and processing
the information within the partition;

(¢) passing each of the remaining links in database 100
through processor 200 to consider their effects vis-a-
vis the pivot nodes of the transferred partition, and
construct transitive links, as necessary;

(d) returning the partition to database 100;

(e) transferring the next partition from database 100 to
processor 200 and repeating the process.

Sorting database 100 is not difficult even when the
database 1s large. Conventional techniques can be ap-



4,930,072

7

plied, such as hashing into buckets that fit in the pnmary
memory of processor 200, followed by an in-memory
sort of each bucket. When the pivot node 1s the source
node, after such a sort, all links emanating from a node
will be grouped together. In fact, since our objective in
performing the sort is to group together all tuples that
emanate from a node, alternate techniques may also be
used that achieve the same results.

As for step (c) above where accesses to database 100
are still required, the procedure is to select one entry
from the partition and one entry either from the parti-
tion or from the database itself (by accessing database
100). One of the selected entries is considered the head
of the pair and the other 1s considered the tail of the
pair. A determination i1s made as to whether the destina-
tion node of the head entry is the same as the source
node of the tatl entry. If it 1s, then we construct a tuple
from the source node of the head entry to the destina-
tion node of the tail entry. When we construct an entry,
we account for all fields, as described below, including
-an accounting for other links between the two nodes
should they exist. Still, an injudicious procedure for
such examination of nodes could lead to a very large
number of accesses to database 100. In accordance with
our invention, however, a single consideration of each
node pair will suffice.

Assurance that a single consideration of each such
pair of nodes would result in a complete transitive clo-
sure of the graph comes from observing the two follow-
Ing constraints.
constraint 1: For every source node, the destination

nodes must be considered in the same order in choos-

ing the links to which step (c) is applied.

constraint 2: Before step (c) is applied to a link 1j (source
node 1, destination node j), it must have already been
applied to link jk for every node k that appears prior
to j in the sorted order.

We discovered that any order which satlsfies the
above two constraints can be used; and to illustrate, the
following presents three different methods of applica-
tion of step (c) to the pairs of nodes in the graphs.

Method 1—FIG. §

Step 1 (block 10) Create a successor list by interacting
database 100 with processor 200. Specifically, for each
node, i, in database 100, create a list that identifies the
destination nodes for which node i is a source node.
When the field on which the database is first sorted is
the source node field, this step is not necessary because
the sorting process results in all links with a common
source node being stored sequentially in the database.

Step 2 (block 20) Transfer to processor 200 the high-
est partition (in the sorted list) which has not been pro-
cessed. The size of the transferred partition is dependent
on the size of the primary memory in processor 200 and
on the number of links that share a common source
node. Since processor 200 constructs new links and
some will populate the current partition, we generally
populate only about 50% of the available memory. This
figure can be selected at any other level, as desired,
keeping in mind two conflicting goals. On the one hand,
one should not pick a very large initial occupancy level
because if too many links are constructed, substantial
computing overhead will be required to provide the
necessary storage for the constructed links. On the
other hand, one should not pick too small an initial
occupancy level because large partitions reduce the

10

13

20

25

30

35

45

50

53

60

63

8

number of iterations and, consequently, increase the
processing speed.

Step 3 (block 30) For each node 1 within the partition,
consider in order all links in the partition that have this
node j as the destination node. For each such link, con-
struct a link from the source node of the link under
consideration to each of the destination nodes of links
where node j 1s the source node.

Step 4 (block 40) Read the successor list of every
node in database 100 that is not in the current partition,
in turn. For each such node, k, determine whether it is
a source node of a link that is destined to node 1, where
node 1 is a source node in the current partition. If 1t s,
then construct a link between node, k, and every node
that is a successor of node 1. As an aside, when a link 1s
constructed it is also stored in the database. In order to
maintain the sorting, the storing of constructed links
must be in the form of an insertion, which can be ac-
complished in a conventional manner; for example, by
using a technique known as insertion sorting. Rather
than storing each entry as it is created, one may post-
pone storage until a batch of entries have been con-
structed, or the processing of the partition 1s complete.

Step 5 (block 30) Repeat steps 3 and 4 for each of the
partitions.

FIG. 6 describes step 4 with greater specificity. In
accordance with FIG. 6, as long as the process is not
finished, in the sense that all nodes in database 100 have
been considered, block 41 permits the process to con-
tinue by passing control to block 42. Block 42 reads the
successor list from database 100 of a node k that 1s not
in the partition currently residing in processor 200.
Blocks 43 and 44 combine to consider all of the succes-
sor nodes of node k. Block 45 determines whether the
considered successor of node k 1s, 1n fact, a node in the
current partition, say node i; and if it is, block 46 con-
structs and/or updates the necessary links from node k
to the successors of node i. Control returns to block 43
after each successor of node k is considered; and when
all such successors of k have been considered, block 43
returns control to block 41.

Method 2—FI1QG. 7

In processing the data in accordance with Method 1,
the successor list of each node 1s read into processor 200
(Step 4), and only then can one determine whether links
must be constructed. In accordance with our Method 2,
in addition to the successor list that naturally results
from the sorting process, a predecessor list is con-
structed and maintained (in database 100 or in processor
200 if space permits) that identifies the predecessors of
each node (keeping only the source node and destina-
tion node information). The predecessor list can be
constructed by sorting database 100 on the destination
node. The predecessor list obviates the need to access
the successor list of nodes that would result in no links
being constructed and thereby further reduces the num-
ber of accesses to database 100.

It should be noted that both the predecessor list and
the successor list must be maintained as new links are
constructed. With respect to the successor list, when a
succesor list to a node in the current partition is read
into processor 200, as directed by an entry in the prede-
cessor list, the insertion sorting into the successor list
assoclated with the constructed link can be accom-
plished immediately because the successor list is in pro-
cessor 200. The predecessor list, on the other hand,
cannot be updated immediately, because a new prede-



4,930,072

9

cessor list must be read into the memory of processor
200. In general, we update the predecessor list at the
end of step 4. Creating the predecessor list and updating
the list are depicted in FIG. 7 by blocks 15 and 35S.
Although block 49 in FIG. 7 is labeled identically to
‘block 40 in FIG. §, in FIG. 7 the procedure of block 49
is slightly different from that of block 40, as shown in
FI1G. 8.

In FI1G. 8, following block 41 is decision block 47
which utilizes the predecessor list. Control passes to
block 42 only if node k belongs to the predecessor list of
some node in the current partition.

Method 3—FIG. 9

Our Methods 1 and 2 consider the source node as the
pivot node, and the question for each link in the parti-
tion is whether other links exist in the database having a
destination node that 1s also the source node under con-
sideration. In our Method 3, we consider the destination
node as the pivot node and we search the database for
links having a source node that is also the destination
node under consideration.

In accordance with this Method 3, Steps 3 through 5
of Method 1 are replaced with the following steps.

Step 3 (block 79 and FIG. 10) For each node j that
belongs to a previously processed partition, if there is a
link in the current partition from some node i to node j,
read in the successor list of node j and construct all links
between node 1 and the destination nodes in the succes-
sor list of node j. This step can be enhanced when con-
sidering a destination node of one entry in the partition,
by observing that other entries in the partition may have
the same destination node.

Step 4 (block 30) If node j belongs to the current

partition, then construct a link from the source node of
the link under consideration to each of the destination
nodes of links where node j is the source node.
- Step 3 (block 20-60-50) After all partitions have been
processed once, repeat the process, but this time con-
sider all j nodes that have not been eligible for consider-
ation in the first pass (comprising Steps 3 and 4). It may
be noted that the second-pass partitions, in general, will
be different from the first-pass partitions, since the sizes
of the successor lists would have changed.

It may also be noted that whereas in Methods 1 and 2
a 30% memory occupancy by a partition appears rea-
sonable 1n many applications, in Method 3 a lower fig-
ure 1s probably more appropriate because in this method
it 1s only the partition that 1s resident in the processor
200 that grows.

In all three of the above methods, the basic point to
note i1s that the given database is partitioned, and the

-processing is done with as few references to tuples not

in the current partition. In the course of the processing,
‘new links are discovered, and it is to be expected that
the size of the current partition will grow. In some cases
as indicated earlier, it may be that the partition grows
too big to fit in memory. In that case, one can simply
delete the last successor list in the current partition and
include it in the next partition.

While such a filling up of main processor 200 memory
does not result in any catastrophe in our methods, it
does means that the successor lists that had to be deleted
from the main memory were wastefully read in with the
current partition. To minimize such wasteful reads, the
size of a new partition being read in should be such as to
fill up only a fraction of the memory and allow for
growth.

10

15

20

25

30

35

45

50

55

60

65

10

Consider the database of FIG. 1. Applying Method 1
to construct the transitive closure, suppose that only the
first two tuples constitute the first partition. No modifi-
cations would result on account of step 3. Each of the
remaining tuples would be read to determine that there
are no tuple not in the current partition that have “Ca-
pacitor” as their destination, and no modification would
result on account of step 4. Then the next partition is
read in, consisting, say, of the next three tuples. There 1s
a link from “Microprocessor’” to “Controller” and a
link from “Controller” to “Workstation”, both in the
current partition, therefore a new link is created from
“Microprocessor’” to “Workstation”. Now both “Mi-
croprocessor”’ and “Controller” have links to “Work-
station” which has a link to “Info. Syst.”, all these links
in the current. partition, so as part of step 3, links are
created from both these nodes to the “Info. Syst.” node.
Proceeding to step 4, we find a link from “Capacitor” to
“Controller”, and create new links from “Capacitor” to
each of “Controller’”s successors. Continuing in this
fashion, one obtains the transitive-closure complete
database as shown in FIG. 4.

Method 2 works in essentially the same fashion. The
major difference to note is illustrated by the fact that
when the first partition is in primary memory, none of
the tuples in other partitions need be read in to the
primary memory, because one can immediately deter-
mine from the predecessor list of “Capacitor” that no
tuples exist with “Capacitor” as the destination node.

Method 3 works the same way as Method 1 for the
first partition. When the second partition is in memory,
the only links in previously processed partitions have
“Capacitor” as source node, while “Capacitor” 1s not
the destination node of any link 1n the current partition;
therefore step 3 does not result in any modification to
the database. Step 4 1s the same as the Step 3 of Method
1. The third and last partition consists of the last two
tuples in the database of FIG. 1. Applying Step 3, we
discover that there is a tuple with source node “Work-
station’ that has already been processed; the destination
of this tuple, “Info. Syst.”, 1s the destination of a new
tuple with the source being “Display’’, the source node
of the tuple in the current partition with “Workstation™
as the destination node. Applying Step 4, the successors
of “Display” are also made successors of “Graphics”.
This completes the first pass.

In the second pass, the first partition is read into the
main memory again, and this time, all the successors of
“Controller” and of “Graphics’ are made successors of
“Capacttor’”. No changes need be made to the second

and third partitions. The transitive closure complete
database of FIG. 4 has been obtained. |

Treatment of Labels

As stated earlier, each tuple in a database comprises a -
number of fields. The above discussion is centered pri-
marily on the two simple or compound fields that make
up the source node and the destination node in the
graph representing the database. In addition to the
source node and the destination there are other fields.in
each tuple, and they can be segregated intO three
groups: those fields that are uniquely associated with
the source node, those fields that are uniquely associ-
ated with the destination node, and those fields that
characterize the relationship between the source node
and the destination node. For example, in a database
specifying two cities in fields 1 and 2, respectively, the

size of the airport in each of the cities in fields 3 and 4,



4,930,072

11

respectively, and the distance between the cities in field
§, the categories to which the fields belong are quite
obvious.

The question arises in connection with the tuples that
are constructed in the course of transitive closure as to
the treatment of fields other than the source node and
the destination node.

In accordance with our invention, when a new tuple
is constructed, the fields associated with the node that
constructed the source node in the new tuple are repli-
cated in the fields associated with the source node.
Similarly with respect to fields associated with the des-
tination node. The fields that characterize the relation-
ship between the source and the destination could be
derived in many different ways. In general, that field
can be described as some specified function of the tuples
corresponding to the links that participated in creating
this new link. If multiple paths (i.e., a path being a series
of connected links) are found between the same source
and destination nodes, one may wish to construct multi-
ple links between the same source-destination pair, with
appropriate values for these relationship fields, or one
may construct only one link and obtain the value of the
relationship fields as some function of the values of the
fields derived for each of the paths independently. For
example, in the cities exaniple mentioned above, the
distance field for every path might most logically be
computed as the sum of the distance fields in each of the
component links. Sometimes one may wish to keep all
of the possible paths and distances in the resuit relation.
More often, however, one would keep a single tuple for

each pair of cities using the smallest function to choose

the value of the distance field among the values of the
field on each of the possible paths.

Database Compression

It 1s readily realized from the foregoing that the tran-
sitive-closure complete database is larger, and often
much larger, than the original database. In spite of it
being larger, however, it does not contain all of the
information that is known about the relation. For exam-
ple, a link i1s constructed between two nodes to indicate
that a path exists in the origingl database between the
two nodes; but the transitive-closure complete database
does not specify that path or paths. On the other hand,
quite otten one 1s interested only in whether such a path
exists and, in fact, quite often one is not even interested
in the label (e.g. cost) associated with the path. In all
cases, however, there are benefits to be derived from
compressing the resulting database as much as possible,
given the needs of the system to which the transitive
closure is applied.

In applications where the primary need is to know
that a path exists between two nodes, our compression
technique yields a database that is sometimes even
smaller than the original database. This technique can
be viewed as comprising three steps. The first step is to
separate the graph representing the database into a few

- chains as possible, where a chain is a path from some

source node to some other destination node. In achiev-
ing this end, it is permissible for a node to belong to
more than one chain. The second step is to number the
nodes that lie on a chain, in order of their appearance in
the chain. The third and final compression step is to
assoclate with each source node only by the lowest
numbered destination nodes in all chains that are
reached by that source node.

10

15

20.

25

30

35

45

50

55

65

12

Compression is accomplished because only a fraction
of the links associated with the source node need be
stored.

Once the compressed storage structure has been cre-
ated, it is possible to determine whether a given node A
has a link to another given node B in the transitive-clo-
sure complete graph by checking whether node A hasa
link to some node C that appears prior to node B on
some chain, as determined by their position numbers.

For example, using the graph of FIG. 2 (or the graph
of FIG. 3), one can create two chains such that each
node in the graph lies on at least one. The two chains
could be “Microprocessor-Controller-Workstation-
Info.Syst”, as chain one, and “Capacitor-Graphics-Dis-
play”, as chain two. Now consider the “Capacitor”
node. Of five out-going links from it in FI1G. 3, only one
need be explicitly stored: the link to the “Controller”
node. Now, if queried whether capacitors are used in
the manufacture of displays, that is whether there is a
link from the “Capacitor” node to the “Display” node
in FIG. 3, we are able to respond affirmatively, since
the “Display” appears after the ‘“Capacitor” node in
chain two. Similarly, if queried whether capacitors are
used in the manufacture of workstations, we can re-
spond positively, since there is a link from the “Capaci-
tor” node to the “Controller” node, which appears
prior to the “Workstation” node in chain one. How-
ever, if asked whether capacitors are used in the manu-
facture of microprocessors, we are able to respond neg-
atively, because there is no link from the *“‘Capacitor”
node to the “Microprocessor’” or to any node that ap-
pears prior to it in some chain.

Notice that in the example above, while we were able
to successfully determine whether or not there was a
link from some node to some other node, we were not
able to say what the label on such a link would be. In
other words, we were able to confirm that capacitors
are indeed required in the manufacture of workstations,
but were unable to determine how many go into making
each workstation.

In applications where not only the reachability infor-
mation is important but also the path and the label, we
employ a different compression technique. In accor-
dance with this technique, we associate with each
source node a table. Each entry in the table consists of
three fields: (1) destination node, (i1) the node that is to
be used as the first hop on the path from the source node
to this destination node, and (ii1) the label of this path. If
there are multiple paths between a source node and a
destination node, but all these paths go through the
same first hop, there will be only one entry in the table.
On the other hand, if there are multiple paths between
a source node and a destination node and each of these
paths goes through a different first hop, there will be as
many entries as the number of paths in the table.

The structure just described is then compressed fur-
ther (in accord with the above-described three step
method) by storing in the table associated with a source
node only those entires of destination nodes that lie
earliest on a chain. Thus, if two destinations lie on the
same chain, and one is earlier than the other, only the
entry for the first node is present in the table.

System Applications

Our transitive closure method and apparatus can be
employed 1n a myriad applications, such as the transpor-
tation industry, telecommunication industry, construc-
tion industry, manufacturing control, or expert systems.



4,930,072

13

In the airline industry, for example, one may maintain a
basic database of the direct flights between various
cities. The transitive closure operator can then be ap-
plied to develop path information between any two
cities in the database which may or may not have a
direct connecting flight between them. In a telecommu-
nication network, one may have a database that gives
the reliability and capacity of direct trunks between
points. The transitive closure operator can then be ap-
plied to determine the most reliable link between two
switching centers and the total capacity between the
switching centers. In a construction project, one may
have a database of activities, and the transitive closure
operation may be employed to determine the critical
path (in a manner of a PERT chart). In the scheduling
of parts for the manufacture of a complex system, such
as a car, for example, transitive closure can be employed
to develop a list of the materials and the information
needed to assemble the proper components and to at-
tach a proper cost to the manufactured product. In
connection with an expert system implementation, we
note that expert systems often employ inheritance hier-
archies to express relationships between entities. For
example, one entry in an expert system database may
state that a patent attorney is a human being, and an-
other entry in the expert database may state that human
beings breathe. The transitive closure operator can then
be applied to deduce that a patent attorney breathes.
FIG. 11 depicts the structure of a system employing
the principles of our invention. Although FIG. 11 1s
directed to a dispersed data access system, such as the
reservation system of an airline, it 1s reasonable to ex-
pect that our system has use in a number of other appli-
cations. In FIG. 11 there 1s a plurality of query termi-
nals 400 which are connected to a database mangement
systemn 300. In an airline reservation system, terminals
400 are the access points for the reservation clerks at the
airline counter or at the travel agent. The queries posed
by terminals 400 require, reasonably often, information
that demands a transitive closure on two of the fields in
the database. Database manager 300 communicates with
database 100, and database 100 communicates with
transitive closure generator 200. Also connected to
generator 200 are terminals 500. Terminals 500 emanate
from the operations control centers of the airline, and
they provide information that affects the fundamental
information in database 100. This information may be
basic changes in the flights from city to city, changes
concerning canceled flights due to weather and the like,
Or even more transitory information such as overbook-
ings on certain flights, etc. In other words, terminals

500 have the power to cause transitive closure genera~ "~

tor 300 to initiate a processor of converting the-basic
database information in database 100 into a transitive
closure compliete database.

Database management system 300 can be any data-
base manager that satisfies the requirements of the user.
There are a myriad of such managers that are known in
the art, so this disclosure does not delve into the intrica-
cies of database management. As for generator 200, it

should be appreciated from the above descriptions-of

flowcharts 5-10 that the functions required of generator
200 can be effectively accomplished with a conven-
ttonal digital computer. In the FIG. 11 system, it is
anticipated that a transitive closure of the Official Air-
line Guide (North American Edition) would take sub-
stantially less than one hour on a conventional digital
computer. Should higher processing speed be desired,

10

15

20

2

30

35

43

50

55

-!F"'-"

65

14

generator 200 can easily be realized with special pur-
pose hardware, as outlined in FIG. 11.

In connection with the special hardware for realizing
generator 200, block 210 communicates with database
100 and its sole function 1s to sort the data. The sorting
can be accomplished in block in a conventional manner
with the use of two registers, a comparator, some mem-
ory and control circuitry. Also included in generator
200 is memory 220 where each processed partition 1is
stored, and tuple analysis and creation apparatus 230
that is responsive to the data stored in memory 220 and
to control signals of block-240. The tuple analysis por-
tion of apparatus 230 is, most advantageously, a stored
program controlled device, e.g., a microprocessor,
whereas the tuple construction portion of apparatus 230
may be a combinatorial circuit.

The above description and of the three methods em-
bodying the principles of our invention and the appara-
tus for doing same are, of course, merely 1llustrative;
aiming to teach the principles of our invention and to
enable a skilled artisan to make and use the invention.
Of course, there are many variations that may be ap-
plied without departing from the spirit and scope of our
invention, such as reversing the ‘“‘source node” and
“destination node” senses.

We claim: :

1. In a system comprising a secondary memory and a
controller with a primary memory, a method carried
out in said controller for developing and storing in said
second memory at least a portion of the transitive clo-
sure of a database stored in said secondary memory,
where said database contains a plurality of entries and
each entry contains a plurality of fields, whith each of
sald fields being assigned to a preselected attribute of
said database, and the signal value in each of said fields
specifies the value associated with the corresponding
attribute for that entry, and where said transitive clo-
sure is developed with respect to a selected field or
fields of said database designated as a source node and a
selected field or fields of said database designated as a
destination node comprising: '

a step of developing an ordering of said nodes in said
database:

a step of developing a partition ef said database and
retrieving said partition from said secondary mem-
ory and placing 1t in said primary memory, where
said partition contains all entries of said database
that share a chosen set of source nodes;

“a step of an entry by selecting one entry in said parti-
tion and one entry in either said partition or said
database, where one entry 1s a head entry and one
entry 1s a tail entry, and developing an entry for
said transitive closure of said database with a
source node being the source node of said head
entry and a destination node being the destination
node of said tail entry, when the destination node
of said head entry is the same as the source node of
said tail entry; and |

a step of returning to said step of developing and

- retrieving a partition until the entire database has
been partitioned. |

2. The method of claim 1 where at least one of said

partitions comprises a chosen set of more than one

source node.

3. The method of claim 1 where said step of selecting
1s applied only to select head entries with a source node
1 and a destination node j that satisfy the conditions: (a)
that all entries with a source node 1 and a destination



4,930,072

15

node k, where k is less than j in said ordering, have been
previously selected as a head entry, and (b) that all
entries with a source node j and a destination node k,
where k is less than j in said ordering, have been previ-
ously selected as a head entry.

4. The method of claim 1 wherein said step of devel-
oping entries is followed by a step of storing developed
entries in said secondary memory in order.

5. The method of claim 1 wherein the size of said
chosen set of source nodes in each partition is selected
to occupy not more than a preset portion of the memory
size of said primary memory.

6. The method of claim 1, further including a step
responsive to said step of developing an entry, for
changing the size of said chosen set of source nodes in
accordance with the number of entries created.

7. The method of claim 1 further comprising a step of
updating labels when said step of developing an entry
results in two paths in said database between a source
node and a destination node. '

8. The method of claim 1 wherein satd step of devel-
oping an entry coOmprises:

a step of processing nodes within said partition fol-
lowed by a step of processing nodes not in said
partition.

9. The method of claim 8 wherein said step of pro-

cessing nodes within said partition comprises:

a step A of selecting a head entry in said partition
with a source node 1 and a destination node j such
that the product-sum i+ jK 1is the lowest achieved
product-sum from among all entries in said parti-
tion not previously selected, where K is a prese-
lected constant;

a step B of selecting a tail in said partition having a
source node equal to the destination node of the
head entry selected by said step A;

a step C of constructing a new entry having a source
node equal to the source node of the head entry and

10

15

20

23

30

35

a destination node equal to the destination node of 4,

the tail entry;

a step D of repeating steps B and C when another tail
entry 1s found in said partition having a source
node equal to the destination node of the head
entry selected by said step A; and

a step E of repeating steps A through D when an-
other head entry is found in said partition.

10. The method of claim 8 wherein said step of pro-

cessing nodes not in said partition comprises:

a step A of selecting a source node not in said parti-
tion; |

a step B of selecting a head entry having the selected
source node and the earliest destination node in
said ordering, not previously considered, that is
also present as a source node in said partition;

a step C of constructing a new entry having a source
node equal to the source node of the head entry and

a destination node equal to the destination node of

the tail entry;
a step D of repeating step C when another tail entry
1§ found in said partition having a source node

43

30

35

60

equal to the destination node of the head entry

selected by said step B; and

a step E of repeating steps B through D when another
head entry is found in said step B;

a step F of repeating steps A through E until all
source nodes not in said partition have been uti-
lized.

63

16

11. The method of claim 1, further comprising a step
of maintaining a successor list for each node, specifying
all entries for which said node is -a source node, said
successor list being employed in carrying out said step
of selecting one entry in said partition and one entry in
either said partition or said database.

12. The method of claim 1, further comprising:

a step of maintaining a successor list for each node,
specifying all entries for which said node is source
node, and

a step of maintaining a predecessor list for each node,
specifying all entries for which said node is a desti-
nation node,

sald successor list and predecessor list being em-
ployed in carrying out said step of selecting one
entry in said partition and one entry in either said
partition or said database.

13. The method of claim 1 wherein said step of devel-
oping an entry comprises modifying a label of an exist-
ing entry with a source node being the source node of
said head entry and a destination node being the destina-
tion node of said tail entry. .

14. The method of claim 1 further comprising a step
of updating a label of an entry having one source node
and another destination node when another entry hav-
ing the same source node and the same destination node
exists.

15. In a system comprising a secondary storage and a
controller with a primary storage, a method for devel-
oping at least a portion of the transitive closure of a
database stored in said secondary storage, said database
containing entries with signal values attributed to preas-
signed fields of said database, and said transitive closure
being developed with respect to a selected field or a set
of fields of said database, designated as a source node,
and a selected field or a set of fields of said database,
designated as a destination node, comprising:

a step of developing an ordering of said nodes in said

database; |

a step of developing partitions of said database, where
each partition contains all entries of said database
that share a chosen set of source nodes:

a first pass of steps for developing entries for said
database by considering all of said partitions, one at
a time; and in considering each partition, first de-
veloping entries for each destination node in said
partition which associate the source nodes of
entries in said partition having said destination
node to destination nodes of entries in previously
considered partitions having a source node that is
the same node as said destination node, and next
developing entries for each destination node in said
partition which associate the source nodes of
entries in said partition having said destination
node to destination nodes of entries in said partition
having a source node that is the same node as said
destination node;

a second pass of steps for developing entries of said
database by considering all of said partitions, one at

- a time; and in considering each partition, creating
new entries for each destination node in said parti-
tion not considered in said first pass of steps.

16. The method of claim 15 further comprising a step
of updating labels when said step of developing results
in two paths in said database between a source node and
a destination node.

17. The method of claim 15 wherein said step of de-

veloping entries comprises modifying a label of an exist-



4,930,072

17

ing entry with a source node being the source node of
said head entry and a destination node being the destina-
tion node of said tail entry.

18. The method of claim 15 further comprising a step
of updating a label of an entry having one source node
and another destination node when another entry hav-
ing the same source node and the same destination node
exists.

19. A method for developing a compressed store of a
database containing entries with signal values attributed
to preassigned fields of the database, said database being
at least in part transitive-closure complete with respect
to a selected field or a set of fields, designated as a
source node, and a field or a set of fields designated, as
a destination node, comprising:

a step of creating a set of chains, each chain compris-
ing an ordered set of said database entries where
the destination node of every entry in said chain,
other than the last entry, is the same as the source
node of to the next entry in said chain, with said set
of chains being selected so that each node, whether
a destination node or a source node, appears at least
once in said set of chains as a source node or a
destination node of some entry in some chain; and

for each source node in said database, from the set of
entries in said database sharing said source node, a
step of deleting entries in said set for which the
destination node appears later in some chain than
the destination node of some other entry in said set,

~ developing thereby said compressed store.

20. The method of claim 19 further including a step,
interposed between said step of creating and said step of
deleting, for assigning an identifier for each node, to
identify the chain of said node and the position of said
node within the chain. |

21. A system for developing an augmented database
from an original database residing in storage, where

said original database contains a plurality of entries
and each entry contains a plurality of fields, with
each of said fields being assigned to a preselected
attribute of said database, and the signal value in
each of said fields specifies the value associated
with the corresponding attribute for that entry, and
where said augmented database is realized through
a sequence of transitory databases, the first transi-
tory database being the original database and each
subsequent transitory database being realized by a
modification of the previous transitory database
and where .

said augmented database is at least a part of a transi-
tive closure of said original database, said transitive

closure being with respect to a selected field or

10

13

20

23

30

35

40

45

50

33

60

63

18

fields of said database designated as a source node
and a selected field or fields of
said database designated as a destination node, said

system including a controller having an associated

memory, with said controller characterized by:

means for sorting said transitory database within
said storage;

means for forming partitions in said transitory data-
base, where each partition contains entries of the
database being partitioned that share a common
source node;

‘means for retrieving a partition of said transitory
database from said storage and placing it in said
memory;

means for developing entries for said augmented
database in response to consideration of pairs of
entries of said augmented database, with one
member of said pair being an entry in said mem-
ory and the other member of said pair being an
entry of said transitory database in said memory
or in said storage, the developed entries being
the modifications to said transitory database; and
means for placing in said storage entries developed
by said means for developing entries to form the
next transitory database;
where saild means for retrieving retrieves each
partition at most two times, and said means for
developing develops said entries when the desti-
nation node of one member of a considered pair
is also the source node of the other member of
said pair.
22. An mformation-providing system comprising:
storage means for maintaining a database of informa-
tion;
terminals for requesting information contained in said
database;
an enhanced database manager responsive to said
terminals and to said storage means, for developing
at least a portion of a transitive closure of said
database, and for querying said database to retrieve
said information requested by said terminals;

" means for modifying the information stored in said

database; and

means for initiating a development of said portion of
a transitive closure of said database when the infor-
mation stored in said database is modified

wherein said enhanced database manager includes a
controller and memory, and develops said portion
of a transitive closure of said database by partition-
ing said database and loading each partition from
sald database and into said memory at most two

times.
* - x 2 *



	Front Page
	Drawings
	Specification
	Claims

