United States Patent)
Zuger

[54] SEARCH SYSTEM FOR LOCATING VALUES
IN A TABLE USING ADDRESS COMPARE

CIRCUIT
[75] Inventor: Stefan Ziiger, Baden, Switzerland
[73] Assignee: BBC Brown, Boveri & Company,

Limited, Baden, Switzerland
[21] Appl. No.: 208,819
[22] Filed: Jun, 17, 1988

Related U.S. Application Data
[(62] Division of Ser. No. 774,482, Sep. 10, 1985, abandoned.

[30] Foreign Application Priority Data
Sep. 12, 1984 [CH] Switzerlandc...cco...c.... 4349/84

*

[51] Int. CL* v, GO6F 12/04; GO6F 15/40
(52] U.S. CL coooeeeeeeeeseereeeeeeeeensesee 364,/200; 364/253:
364/252.4

[58] Field of Search ... 364,200 MS File, 900 MS File,
364,300, 419

[56] References Cited
U.S. PATENT DOCUMENTS

3,699,533 1071972 Huntercceviccnraerrecnnaes 364,200
4,215,402 7/1980 Mitchellccvcerivinnananne 364/200
4,525,780 6/1985 Brattetal.cc.oeiriieiriense 364/200
4,611,272 9/1986 Lometcoccorirerreennrinnanas 364/200
4,648,069 3/1987 Funk et al.cevveicarnnen, 364/900

FOREIGN PATENT DOCUMENTS
632365 9/1982 Switzerland .

OTHER PUBLICATIONS

“Reciprocal Hashing: A Method for Generating Mini-
mal Perfect Hashing Functions,” Communications of the
ACM, 12/81, vol. 24, No. 12, pp. 829-834.

V. Y. Lum et al., “Key-to-Address Transform Tech-
niques: A Fundamental Performance Study on Large
Existing Formatted Files”, Communications of the
ACM, vol. 14, No. 4, Apr. 1971, pp. 228-2309.

W. D. Maurer, “An Improved Hash Code for Scutter

18

4,897,785
Jan, 30, 1990

[11] Patent Number:
[45] Date of Patent:

Storage”, Communications of the ACM, vol. 11, No. 1,
Jan. 1968, pp. 35-38.

G. Jaeschke, “Reciprocal Hashing: A Method for Gen-
erating Minimal Perfect Hashing Functions”, Commu-
nications of the ACM, 12/81, vol. 24, pp. 829-833.

J. D. Peterson, “Hashing for Disk File Storage”, IBM
Technical Disclosure Bulletin, vol. 21, No. 4, Sep. 1978,
pp. 1669-1670.

M. Davio, “Read-Only Memory Implementation of
Discrete Functions”, IEEE Transactions on Comput-

ers, vol. C-29, No. 10, Oct. 1980, pp. 931-934.

Primary Examiner—Lawrence E. Anderson
Attorney, Agent, or Firm—Burns, Doane, Swecker &

Mathis

[57] ABSTRACT

The retrieval of stored data by means of a search word
or search key by using, a hashing method. For this
purpose, the search key is resolved into a polynomial
having the form of

K :
W = _20 wipwithl = wippZm
I=

where i =control variable, k =its maximum value, w;=-
polynomial coefficient, p=a power of 2, m=number of
search keys in an address table stored in the memory (7).
The search process occurs by means of a recursive
hashing function having the form of

A(w) = hdw) = hit(w) + ho(hi—-1(w)) (mod p)

A(w) = h11(w1} + hio(wo)

using hashing function tables and address sub-tables
stored in the memory. The address compared circuit,
having three temporary memories for the polynomial
coefficients w;, a multiplexer, the memory, an adder
registers, a comparator, an edge-triggered JK-type flip-
flop with an AND gate connected to its output, and a
control unit makes it possible to achieve an inexpensive
hardware implementation of the search method.

10 Claims, 4 Drawing Sheets

O

Wo St

U.S. Patent
18

Jan. 30, 1990 Sheet 1 of 4 4,897,785

20
3 Ilill 21

2047
FIG. 3

U.S. Patent Jan. 30, 1990 Sheet 2 of 4 4,897,785

| 50
Provision of W, m, k, p 40\
im0
402 502

::%:r::gation ot (FIG.5))

403

Sorting of wh1, wh0, so that

whi(j)-p+whOQ(j) = whi(j-1)p+whO(j-1)

404 '
Determination of
hip (FIG.6) | m
5

40

Determination of

I'l.|4| (FIG.7)
406
407 506

U.S. Patent Jan. 30, 1990 Sheet 3 of 4 4,897,785
60l

' n 6l

a.:=trye, bisztrue

whl s whi(l)

FIG. 6
608

a:za and{whO(D#j)

b:2b and(hjowhO(L)) + hO)
SEIRS

No

No (l>m)
ornot (g orb)

610

Yes

U.S. Patent
701 | 709
-
h; o (WhO(j))<min
702
) © <0 pomen ae
o min : = h;, (whO(j)) .
711

Jan. 30, 1990 Sheet 4 of 4 4,897,785

Ij¢1.

703 "
0 - hjo WhOX(j))> max

No 704

712

h1 .2 Q
whl.= whi(o)
min .2 hio(whO(O))

max. s min FIG. 7
j .20

max 1 =h; . (whO(j))

hjq (whi) . = h1-min
N .ahi-min+»max +1

whl.= whi(j)
min := hjq (whO(j))

707
12

708
5

his (whi) .= h1- min

4,897,785

1

SEARCH SYSTEM FOR LOCATING VALUES IN A
TABLE USING ADDRESS COMPARE CIRCUIT

This application is a divisional, of application Ser.
No. 774,482, filed Sept. 10, 1985, now abandoned.

BACKGROUND OF THE INVENTION

The present invention relates to a search method for
values or keys or memory addresses stored in an address
table, and to an address compare circuit for carrying out
the search method.

The recovery of stored data by means of a search
word relating to these data is an important objective of
information processing. A system providing the possi-
bility of such content-related access is called associative
or content addressble memory (CAM).

Conventional (semiconductor) memories are ac-
cessed on the basis of an address statement, that is to say
by specifying the position of the desired data item in
memory. Hitherto, only a few associative memories
(CAM’s) have been available as components on the
market. Their memory capacity is quite small so that
their use is restricted to special fields.

Larger associative memories are built up from con-
ventional memory elements and an additional retrieval
unit which implements the associative access function.
The retrieval unit searches the memory contents for the
predetermined key (search word). In this context, many
different search strategies are conceivable which differ
in implementation effort and access time. Specialized
hardware or an appropriately programmed computer
can be used as the retrieval umit.

The most widely used search strategies for retrieval
units according to the key transformation method are
the so-called variance or hashing methods. The hashing
methods offer very good efficiency with low implemen-
tation expenditure. The usual hashing methods have the
characteristic that the average search effort is small but
that the search time exceeds the average by a multiple in
the worst case. This effect makes the use of hashing
methods in real-time systems considerably more diffi-
cult since the strict maintenance of time conditions must
be ensured in such systems.

However, there is a class of hashing functions which
do not have the above-mentioned disadvantages, which
are the so-called perfect hashing functions which guar-
antee a uniform, very low access effort for all cases, see
Communications of the ACM, Vol. 24, Dec. 1981,
pages 829-833. Perfect hashing function guarantee that
a key will be retrieved with a single probing, that is to
say with a single access.

If W is a set of elements from interval X=[0...n], n
being the largest element of internal X, a perfect key
transformation function or hashing function h will un-
ambiguously map the set W in a map interval I=[0...
m] of integers, m being the largest element of interval 1.
Using h as element-to-address transformation, the ele-
ments w of the set W are stored in an address table T
with a firmly predetermined number of elements m. The
following applies to all elements w from the set W:

TUI(W}}: W,

That is to say, an element w is contained in the set W
exactly when the value w is found at the position or at
the table index h(w) of the address table T. Searching

5

10

15

20

25

30

35

45

30

33

65

2

for an element w in the address-table T thus requires a
calculation of the function h and a compare operation.

Calculating the hashing function h(w) 1s carried out
by means of hashing function tables. With an unre-
solved, direct arrangement of the function h(w) in a
memory as a hashing function table, a memory having a
size of

Ca=nx[logz m]

bits is needed with binary coding. {log2 m] denotes the
smallest integer greater than or equal to logx m. With
today’s technology, this direct arrangement requires
very elaborate memories for n > 105, In addition, stor-
age utilization is low since in typical applications of
associative memories the assumption is that n> >m.

The present inyention relates to search methods as
described in Communications of the ACM, Vol. 24
(1981), pages 829-833. In this document, two algo-
rithms for calculating perfect hashing functions are
specified which have been primarily designed for imple-
mentation in software on a high-performance computer.
These functions are only conditionally suitable for im-
plementation in hardware since their calculation re-
quires, among other things, multiplying and dividing
operations.

The implementation of discrete functions (hashing
functions belong to this class) in hardware can be car-
ried out simply and efficiently by means of function
tables, see IEEE Transactions on Computers, Vol. 27
(1980), pages 931-934. These tables can be stored in
large-scale integrated, inexpensive semiconductor
memores.

Such search methods for memory addresses and ad-
dress compare circuits can be used, for example, in a
text editor where a line with a certain identifier is re-
quired, that is to say where not only the presence of an
element but also its position 1s of interest. In distributed
control and monitoring or process control systems op-
erating in accordance with the principal of source ad-
dressing, associative receiver circuits are also needed,
see, for example, Swiss Patent Specification 632,365. In
this document, a data exchange method between several
subscribers or partners and their processors is specified
in which for useful messages to be transmitted, apart
from these messages, a sender address but no receiver
address is transmitted. The sender address and the data
type are used by all active subscribers to decide
whether the useful message is of interest to them. For
this purpose, they have to compare this sender address
with at least one address stored in a table,

In future high speed transmission systems, associative
receiver circuits of correspondingly high performance
must be used. With transmission rates of 10 MHz-100
MHz, associative memories of the order of magnitude
of 10024 bits to 5000 24 bits with an access time in
the range of 1 us to 10 us are needed in the receivers.

SUMMARY OF THE INVENTION

The objective of specifying a search method for
memory addresses and an address compare circuit
which supply a faster result and provide the possibility
of a more inexpensive implementation in hardware is
achieved by the present invention.

One advantage of the invention consists in the fact
that the operating speed of a source-addressed system
can be raised by a factor of from 20 to 100. The address
compare circuit can be implemented by means of a few

4,897,785

3

commercially available components. The size of the
hashing function table h can be reduced by splitting it
into several subfunctions h; so that less storage space is

needed.

BRIEF DESCRIPTION OF THE DRAWINGS

The objects, advantages, and features of the present
invention will become fully apparent from the follow-
ing detailed description of an illustrative embodiment,
when read in light of the accompanying drawings, in
which:

FIG. 1 illustrates an address compare circuit includ-
ing an associative memory,

FI1G. 2 shows the bit allocation of the associative
memory according to FIG. 1,

FIG. 3 shows a bit representation of an address in the
associative memory according to FIG. 1, and

FIGS. 4 to 7 are a flowchart of an algonthm for
detemining a hashing function table and the address
table which, together with the hashing function table,
are stored in the associative memory according to FIG.
1. '

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

In the search method according to the invention, a
key element or a search key w to be checked for the
presence in an address table T, is reduced to a polyno-
mial having the form

K :
f =

where i=control variable, k=largest value of 1, w;=-
polynomial coefficient, p=free variable. The reduction
of w can be very simply implemented in digital circuits
if p is selected as a power of 2.

The function h resolved into subfunctions h; is de-
fined by the recursion

h(w) = hi(w)=hxAwr) + Arolhk — 1(w)mod p),
hy(w)=h11{w1)+ A1o(wo)mod p).

For this reformulated definition of h, the condition
p>must also be met.

Each subfunction h; can be calculated by means of a
hashing function table having a size of

Cij=px[logz m]
All tables h; together thus have a size of
Cz=2xkXpXx[log 3 m].

After the resolution of h, the expenditure Cz1is much
less compared with the storage requirement Cy for the

direct implementation. For k=2, n=16777215=224 -1
and p=256=23%, for example,

Cg=16777215 X [logs m]
and

Cz=4x256 [logz m]=1024 [logs m]}.

The recursively defined function h is calculated by
the iterative algorithm

10

15

20

23

30

35

45

50

33

65

4

h:=(h11(w1)+ A1o{wg))mod p,

for i:=2 to k do A:=(hi{w))+ ho(h))mod p.

In a second step, the comparison w=T{k(w)) is car-
ried out. To reduce the implementation effort, the com-
parison is carried out sequentially in accordance with

the algorithm

r=tirue,

for i:=0 to k do r:=r and (w;=T{h)).

If after execution the value r is true, w is contained in
the address table T at position h. If r=false, w 1s not
contained in T.

FIG. 1 shows a circuit diagram for a hardware imple-
mentation of these algorithms. For this circuit, the pa-
rameters p=28=256, n=224=2563 and m<256 have
been selected. All circuit elements (including the signal
lines or buses) have a size of 8 bits with these parame-
ters. The circuit can be adapted without problems if
other parameters are selected.

The search key w, having a length of 24 bits, is split
into three parts Wo, w1 and w2 of equal length in accor-
dance with FIG. 2. Bit posittons 0 to 7 of the search key
w are supplied as polynominal coefficient signal wo to
the input of a temporary memory or latch 1. Bit posi-
tions 8 to 15 of w are supplied as polynomial coefficient
signal w to the input of a temporary memory or latch
2. Bit positions 16 to 23 of w are supplied as polynomial
coefficient signal w7 to the input of a temporary mem-
ory of latch 3. The outputs of temporary memories 1, 2
and 3 are connected via a polynomial coefficient bus 4
to a “0"” input of a multiplexer §. The temporary mem-
ory outputs are also connected, and, on the other hand
to a first input 12 of a comparator 17. The temporary
memories 1, 2 and 3 are controlled by output enable
signals Ws0, Wsl, Ws2 which are supplied by a control
unit 22. A ““1” input of the multiplexer S is connected
via a bus 16 to the output of a sum regisier 15.

The output of the multiplexer § is connected via a
multiplexer output bus 6, at which the hashing function
h(w) can be picked up at the end of the search method,
to address A0 ... A7 of a memory 7. The multiplexer §
can be switched over at its input via a select input M
which is connected to the control unit 22.

The associative memory 7 can be controlled by the
control unit 22 via control inputs A8, A9 and A10. The
memory 7 1s connected via address outputs DO . . . D7
and a memory output bus 8 to the input of an addend
register 9, a first input 10 of an adder 13 and a second
input 12’ of the comparator 17. A memory in NMOS
technology as described in the Intel Component Data
Catalog, 1982, pages 2-1 to 2-8 can be used as memory
7.

The output of the addend register 9 is connected to a
second input 11 of the adder 13. The output of the adder
13 is connected via an adder cutput bus 14 to the input
of the sum register 15. The addend register 9 can be
controlled by the control unit 22 via a clock input R1
and the sum register 15 can be controlled by the control
unit 22 via a clock input R2. When a clock pulse arrives
at the clock input R1 and R2, the signal present at the
input of the addend register 9 and at the sum register 15
is stored in the respective register and 1s simultaneously
available to be picked up at the output of the respective
register.

The output of the comparator 17 is connected to a J
input of an edge-triggered JK-type flip-flop 19 with

4,897,785

S

negated clear input C1. The clear input C1 and a clock
signal input C of the JK-type flip-flop 19 are connected
to the control unit 22. A suitable JK-type flip-flop from
the TTL family of components is known by the type
designation 74 LS 109 from the book “The TTL Data
Book for Design Engineers”, 1976, pages 5-33 by the
firm of Texas Instruments. Only half of the known chip
is needed. The unneeded preset input PR must be set to
a logical “1” to achieve the desired behavior. One input
of an AND Gate 20 is connected to the Q output of the
JK-type flip-flop 19, and the other input is connected to
an end signal output E of the control unit 22. At the
AND Gate output 21, a “1” signal is present only if the
comparator 17 determines at the end of the compare
process that its input signals are equal, that is when the
search key w is stored in memory 7.

The operation of the control unit is illustrated in
Table 1. Implementation is non-critical and can be car-
ried out, for example, by means of a binary counter and
a subsequent decoder for generating the individual con-
trol signals. “St” designates a start signal input of the
control unit 22,

TABLE 1
Wo... Ag... FF-Clear Clock End
Step RI R2 M W0 Ag Cl C E
1 g 0 0O 001 000 X X 0
2 1 0 O 0i0 oM X X 0
3 0 1 O 100 010 X X 0
4 1 0 1 XXX 011 X X 0
3 0 1 1 001 100 0 X 0
6 0O 0 1 010 101 i 0
7 0 0 1 100 110 1 0
8 0 0 1 XXX XXX i 1

In Table 1, X is an irrelevant condition, FF-clear is
the clear input signal C1 of 22, clock is the clock signal
C of 22 and end is the end signal E of 22. For the sake
of simplicity, the same designations are used for signal
and signal input or output.

The arrows in the clock column indicate that the
clock signal C changes from 0 to 1 immediately at the
beginning of the respective step. The storage areas in
which the hashing subfunctions hig, hy1, hzy, hypand the
sub-tables Ty, T, and T3 are stored in memory 7 are
successively addressed by the values 000 to 110 1n col-
umn Ajo. .. Asg.

The memory organization 18 shown in FIG. 3. The
memory is used simultaneously for the hashing function
tables hxyand the address table T. Given the parameters
selected, the memory must have a capacity of at least
1,792 X 8 bits; in practice a memory of 2,048 (8 bits 1s
selected.

After the search key w has been applied to the tempo-
rary memories 1 to 3 and the “start comparison” com-
mand has been applied to the start signal input St of 22,
the control unit 22 executes steps 1 to 8 in accordance
with Table 1. During step 8, a *“1” signal at the AND
gate output 21 indicates that w is contained in address
table T. At the multiplexer output bus 6, the result of the
calculation of the hashing function h(w), corresponding
to the memory location of the address table T at which
a data item identical to search key w is stored, can be
picked up.

The maximum operating speed of the address com-
pare circuit is essentially determined by the access time
of the memory chip used, if standard components are
used. If the multiplexer 5, the adder 13, the registers 9
and 15, the comparator 17 and the JK-type flip-flop 19
are built up of low-power Schottky TTL chips and a

6

" memory having an access time of 200 ns is used, about

S

10

15

20

O]
LM

35

45

30

33

65

2 ms are needed for an associative access. If fast compo-
nents, such as advanced Schottky TTL circuits, and a
memory having an access time of 50 ns are used, the
time needed for an associative access can be reduced to
600 ns.

The search method of the perfect hashing and the
operation of the associated address compare circuit will
be explained with the following example. In table 2, a
selected key set W is specified which is the starting base
for calculating the tables h and T.

The hashing function table hig, hi1, h20, h?) associated
with the key set W according to Table 2 1s reproduced
in Table 3 and the address table T with address subta-
bles To, T1, T2 in Table 4. For reasons of simpler repre-
sentation, the number of entries in the key table has been
restricted to 12 (T(0) to T(11)). The remaining elements
T(12) to T(255) are not used and are set to zero. Also for
reasons of simpler representation, the key set has been
selected in such a manner that the entry i1s non-zero only
for elements within a range from 0O to 24 of Tables hy,.

FIGS. 4-7 are flowcharts of a possible algorithm for
determining the Tables hyy and Tx. The algorithm has
the aim of determining the contents of Tables T, and
hyy so that the condition

TA(wW()))=wi)

which characterizes the perfect hashing method, is sat-
isfied for all m elements of the predetermined key set W,

TABLE 2
Key set W

W

851877
1114124
1572876

857097

726025

398336

66565

132099

984082
1117952
1245710
1379853

it m

— D WD OO0 ~d O U e W b e O

[T

TABLE 4

Address table T and reduction
to sub-tables Tg, Ty, T>

i T To T T3
0 66565 5 4 |
| 132099 3 4 2
2 198336 0 20 6
3 726025 9 20 i1
4 851977 9 0 i3
5 857007 9 20 13
6 984082 18 4 {5
7 1114124 12 0 17
8 1117952 0 15 17
9 1245710 14 2 19
10 1379853 13 14 21
i1 1572876 12 0 24
{2 0 0 0 0

Elements 13 . . . 255 of address table T are = {

4,897,785

7
TABLE 3
Hashing function table hjg, hyy, hag hyy
i hio hii h20 ha1
0 0 0 0 0
] 0 0 0 0
2 0 2 0]
3 0 0 0 0
4 0 3 0 0
5 i 0 0 D
6 0 0 0 2
7 0 0 1 D
8) 0 0 0
9 1 0] 0
10 0 0 0 0
1] 0 O 0 2
12 0 0 0 0
13 0 0 0 4
14 0 6 0 0
15 0O 7 0 6
i6 0 0 0 0
17 0 D) 7
i8 2 D 0 0
19 0 O) 9
20 0 8) 0
21 0 0 0 10
22 0 0 0 0
23 0 0 0 0
24 0 0 0 l

B pon

Elements 25 . . . 233 of all function tables hy, are = @

FIG. 4 gives an overview of the sequence of a calcu-
lation. The key set W with sections or polynomial coef-
ficients wg, wi and w2 according to FIG. 2, the number
of elements m of the set W and the parameters p and k
of the hardware circuit used are predetermined (block
401). The program iteratively calculates Table h;; and
hp for 1 from 1 to k (blocks 403-407). For the calcula-
tion, auxiliary tables whl and whO are set up which
contain the corresponding section of W in a suitable
form (FIG. 5).

F1G. § shows the calculation of wh0 and whi (blocks
501-506). The values of wh0 are calculated from the
previously determined section of hashing function h{w)
(blocks 503-504); w;is copied in Wh1 (block 505). Re-
ferring again to FIG. 4, in a next step (block 403), the
auxiliary tables whl and whO are sorted so that the
following applies:

whi()) X p+ whl{H) = whil(j—) X p+wh0 (- 1),

1=)=m.

The sorting process is not shown in detail; reference
is made to the appropriate literature (for example, N.
Wirth, Algorithmen und Datenstrukturen, (Algorithms
and Data Structures), Teubner 1979).

Quantities h0, hl, wh0 and whl are only used as
auxiliary functions in calculating the tables h,y; they do
not occur at other places and particularly not in the
hardware circuit.

FIG. 6 shows the calculation of Table hyp (blocks
601-6185). Initially, all table values are initialized with p
beginning with the first entry (Position 0) (blocks
601-603), the individual values are sequentially deter-
mined. For determining each table value hy(j), the pos-
sible values, starting from 0, (the current value in each
case 1s represented by h0) are sequentially examined for
conflicts with the previously established table values of
(ho(0...j—1)) (blocks 604-610). A conflict occurs if
the inequation

(ho(whO(x})==ho(whi(y)))

3

10

or

(whl(x)7=whl(y)), xs£y

is not satisfied. For the test for conflicts, the order of
Tables whl and who0 is utilized and it can be assumed
that all elements having the same value whl(j) are di-
rectly behind each other. In the case of a conflict, hQ is
incremented by one (block 612) and again tested for all
m entries of whl and wh0. If no conflict occurs, the
value found is entered in Table hyp at position j (block
614).

Tables hy; are determined in accordance with the
flow chart of FIG. 7. First the Table is initialized with

15 0 (blocks 701-704). The individual values hi; (whi(j))

20

25

30

35

45

50

335

65

are sequentially determined for the individual elements.
For this purpose, the ordered structure of whil, who is
utilized. For all wh1(x) having the same value in each
case, which directly follow each other due to the order,
the minimum and maximum of the corresponding val-
ues hjo(whi(x)) is determined (variables min and max,
respectively) (blocks 705-712). The corresponding Ta-
ble entry is calculated (block 713) in accordance with

hi1(whl(j))== A1 —mun.

h1=0 for j=0 and for other cases h1l is set to

h1=h;(wh1(j)) —min <+ max 1

according to the allocation of the Table value.
The Tables T, are calculated 1n accordance with the
initial equation for the perfect hashing method:

T{A(wW(i)) =w().

The individual sub-tables T, are determined in accor-
dance with the lower part of the flow chart of FIG. 4
from j:=0. The equation

TR D) =)w(i)

is evaluated for j=0. .. k for all m elements.

EXAMPLE 1

Input of search key w: 851977

resolving w into wg. . . w2: wo=9, wi=0, wy=13

Calculating the hashing function h(w):

Step 1, see Table 1: as WsO =1, the polynomial coeffi-
cient signal wo=9 passes from the temporary memory 1
via the polynomial coefficient bus 4 via the multiplexor
§ in the “0” position and the multiplexor output bus 6 to
the address inputs A0 ... AT of memory 7. Due to the
000 signal at the control inputs A8, A9 and A10, the
signal hio(wo)=h10(9)=1, see Table 3, appears at the
address outputs DO . . . D7 of the memory 7.

Step 2: At the clock input R1 of the addend register
9 a “1” signal is present which causes the signal
h1g®=1 present at its input to be stored. h;g(®=1 is
now aiso present at the second input 11 of 13. As
Wsl1=1, the polynomial coefficient signal wi=0 passes
from the temporary memory 2 via the bus 4, the multi-
plexor 3 and the bus 6 to the address inputs AQ ... A7
of the memory 7. Due to the 001 control signal at A8 .
. . A10, the signal hyi(w()=h;1{®=0 appears at the
address outputs DO . . . D7 of 7. At the output of the
adder 13, the signal hi(w)=h1i(wi1)+hio(wo)=0+1=1
appears.

4,897,783

9
Step 3: At the clock input R2 of the sum register 15,

a “1” signal 1s present which causes the signal hj(w)=1
present at its input to be stored which causes this signal
to be available at the output at 15. As Ws2=1, the poly-
nomial coefficient signal w; =13 passes from the tempo-
rary memory via the bus 4, the multiplexor 5§ and the bus
6 to the address inputs AQ ... A7 of the memory 7. Due
to the 010 control signal at A8, A9, Al0, the signal
ha1(w2)=h321(13)=4, see Table 3, appears at the address
outputs DO ... D7 of 7.

Step 4: As R1=%1", hz1(w2)=4 is stored in the Ad-
dend register 9 which causes its value to be present at
the second input 11 of the Adder 13. As M=*1", the
output signal hj{(w)=1 of the sum register 15 passes via
the bus 16, the multiplexor S and the bus 6 to the address
inputs AQ . . . A7 of the memory 7. Due to the 010
control signal at A8, A9, A10, the signal hao (h1)=hao
(hit=h10)=hz0 (1)=0, see Table 3, appears at the ad-
dress outputs D0 ... D7 of 7. At the output of the adder
13, the quantity h(w)=hz1 (w2)4hao (hy) =4+1=4
appears.

Comparing T (h(w))=w:

Step 5: The JK-type flip-flop 19 1s cleared or reset
with the C1=*"0" signal. As R2="1", h(w)=4 is stored
in the sum register 15 and made available at the output
at 15. As M="1", h(w)=4 appears at the address inputs
A0 ... A7 of the memory 7. Due to the 100 control
signal at A8, A9, A10, the signal To{4)=9 is present at
the address outputs D0 . . . D7 of 7, at the bus 8 and at
the second input 12’ of the comparator 17. Since
Ws0="*1", the polynomial coefficient signal wg=9 is
present via the temporary memory 1 and the bus 4 at the
first input 12 of the comparator 17 and a “0” signal,
corresponding to “equality” of the signals to be com-
pared is present at the negated output of 17, at the com-
parator output signal line 18 and at the J input of the
JK-type flip-flop 19.

Step 6: With the clock signal C at a high level at the
JK-type flip flop 19, the Q output of 19 is set to “1” due
to the “0” signal at its J input. As R2=*0" and M=“1",
the signal h(w)=4 is still present at the output of the
multiplexer S. Due to the 101 control signal at A8 . . .
A10, the signal T(4)=0, see Table 3, appears at the
address outputs D@ . . . D7 of the memory 7 and at the
second input 12° of the comparator 17. Since Wsl="1",
the polynomial coefficient signal wi=0 is present via
the temporary memory 2 and the bus 4 at the first input
12 of the comparator 17 and a “0” signal, corresponding
to “equality” of the signals to be compared, is present at
the output of 17.

Step 7: With Cl=*“1" and C=*“1", the Q output
signal of the JK-type flip-flop 19 remains unchanged at
“1”. As R2=“0” and M=*1", the signal h(w)=4 is
present unchanged at the address input A0... A7 of the
memory 7. Due to the 110 control signal at A8 ... A10,
the signal T2 (4)=13, see Table 3, appears at the address
outputs DO . . . D7 of the memory 7 and at the second
mput 12’ of the comparator 17. Since Ws2=%1", the
polynomial coefficient signal w2=13 is present via the
temporary memory 3 and the bus 4 at the first input 12
of the comparator 17 and a “0” signal, corresponding to
“equality”, 1s present at the output of 17.

Result: |

Step 8: With Cl=*“1"” and C=*1%1", the Q output
signal of the JK-type flip-flop 19 remains unchanged at
“1”. Due to the end signal E=*1", a valid signal “1”,
having the significance that the search key 2 is present
in the address table T of the memory 7, appears at out-

3

10

13

20

25

30

33

45

50

53

65

put 21 of the AND gate 20. As R2="0" and M=*"1",
the signal h(w)=4, which marks the position in the
address table T, is present unchanged at the multiplexer
output bus 6. The address table T is represented by the
address sub-tables Ty, Ty and T3 in the memory 7. Ad-
dress table T is formed by To, T1 and T3 in the same
manner as the search key w is represented by wo, wi and
w3, see FIG. 2.

EXAMPLE 2

Input of search key w: 398336
Resolving w into wg. .. w: wp=0, W1=20, wr=6
Calculating the hashing function h(w):

hip{wo) = hig(0) = 0
hii(wy) = hy1(20) = 8
h1(w2) = hy1(6) = 2
haolhyy + hig) = hao(8) = 0
h{w) = hz1 + hyo = 2
Comparnison of T(h{w)) = w:
To(2) = 0 T(2) = 20 T2) = 6
== T(hiw)) = 398336
Result:

== 398336 is located at position 2 in address table 4.

EXAMPLE 3

Input of search key w: 398345 _
Resolving w into wg. .. w2 wo=9, wi=20, wr=6
Calculating the hashing function h(w):

hig(wo) = hig(9) = |
hiy(wy) = h11(20) = 8
hai(wi) = h21(6) = 2
hakh11 + hjo) = hao(9) = |
h(w) = h31 + hyo = 3
Comparison of T(h(w)) = w:
To(3) = 9, Ti(3) = 20. TH(3) = 6
== T(h{w)) = 398345
Result:

== 3JOR345 its not in address table 4.

What is claimed 1s: -

1. An address compare circuit for determining
whether a search key (w) is present in a memory, com-
prising:

(a) a memory;

(b) a control unit coupled with an input to said mem-

ory;

(c) a multiplexer coupled with address inputs of said
memory;

(d) a sum register having an output coupled with a
first multiplexer input;

(e) at least one temporary memory for a search key
(w) having an output coupled with a second multi-
plexer input;

(f) an addend register having an input coupled with
an output of said memory;

(g) an adder having a first input coupled with said
memory output and a second input coupled with
said addend register, an output of said adder being
coupled with said sum register;

(h) a comparator having a first input coupled with
said memory output and a second input coupled
with said temporary memory output; and

4,897,785

11

(i) a bistable memory unit having an input coupled

with an output from said comparator.

2. The circuit of claim 1 wherein the bistable memory
element is an edge-triggered JK-type flip-flop with
clear input, the J input of which is effectively connected
to the output of the comparator.

3. The circuit of claim 1 wherein an AND gate 1s
provided which is effectively connected at its input to
an output of the bistable memory element, and to an end

signal output of the control unit and at the output of 1¢

which AND gate a valid signal or an invalid signal can
be picked up as function of the input signals, having the
meaning that the search key (w) is present or not pres-
ent, respectively, in an address table stored in the asso-
ciative memory.

4. The circuit of claim 3 wherein

(a) the at least one temporary memory, the addend
register, the sum register, the bistable memory
element and the multiplexer are controlled by the
control element as a function of predeterminable
control steps, and

(b) at the output of the multiplexer, a table index
signal h(w)) can be picked up which specifies at
which position in the address table a data item
equal to the search key (w) is stored.

5. The circuit of claim 1 wherein

(a) a memory having an access time of = 50 ns is used,
and

(b) the address compare circuit includes fast AS-TTL
components.

6. An address compare circuit for determining
whether a search key (w) is present in a memory, com-
prising:

(a) a memory;

(b) a control unit coupled with an input to said mem-

ory;

(c) a multiplexer coupled with address inputs of said
memory;

(d) a sum register having an output coupled with a
first multilexer input;

(e) at least one temporary memory for a search key
(w) having an output coupled with a second multi-
plexer input;

(f) an addend register having an input coupled with
an output of said memory;

(g) an adder having a first input coupled with said
memory output and a second input coupled with
said addend register, an output of said adder being
coupled with said sum register; |

(h) a comparator having a first input coupled with
said memory output and a second input coupled
with said temporary meory output; and

3

15

20

25

30

33

45

50

535

63

12

(i) a bistable memory unit having an input coupled
with an output from said comparator;

said memory comprising data items or keys in an
address table (T), said address table (T) including
subtables (To, T1, T2), each of said sub-tables con-
taining polynomial coefficients having a control
variable i, in accordance with

X :
T =u .20 T‘DIU = T;"‘-’-:F;
f=

said memory storing a hashing function table with sub-
functions (h;) of a recursive hashing function of the
form

h(w) = A w) = hjj(wi)+ hplh;— 1(w)mod p),
A(w)=hy1(w1) =hyo(wo);

wherein a hashing function h(w) for each search key w
is calculated with the use of said hashing function table
in accordance with:

h: = hy11(w1) = hio{wo)(mod p),

for i:=2 to k, do h:=(h;1{(w))=hp(h)) (mod p);

k .
w=_20wﬁp’0§w'f<p.p§m
=

wherein i1 is a control variable, k is the maximum value
of the control variable i, w;is a polynomial coeffictent,
p is a free variable, and m is the number of keys in the
address table; said search key being compared with a
data item having the table index h(w) of said address
table.

7. The circuit of claim 6, wherein said free varnable p
is a power of 2.

8. The circuit of claim 7, wherein in comparing said
search key with a data item having the table index h(w)
of said address table, a boolean variable r is initially set
to true and, i=1 to k, setting r=(r and (w;=T{(h))), so
that the final value of the boolean value r 1s true if the
search key w is stored at position h in the address table
T, and the search key w does not appear at another
location in said address table.

9. The circuit of claim 8, wherein said address table
and said hashing function table are stored in a common
memory.

10. The circuit of claim 7, wherein said address table
and said hashing function table are stored in a common

memory.
% | * ¥* .

	Front Page
	Drawings
	Specification
	Claims

