United States Patent [
Kikuc}li

(54] COMPILE METHOD USING COPY
PROPAGATION OF A VARIABLE

Sumio Kikuchi, Machida, Japan
[73] Assignee: Hitachi, Ltd., Tokyo, Japan
(21] Appl. No.: 72,966

[75] Inventor:

{22] Filed: Jul. 14, 1987
[30] Foreign Application Priority Data
Jul. 18, 1986 [JP] JBpAD ..o, 61-16791%
[S51] Int. CLf ...t s GO6F 9/44
[§2] US.ClL i 364/300; 164/280.4
[58] Fileld of Searchcovnnn. 3647200, 300, 900
[56] References Cited
U.S. PATENT DOCUMENTS
4649480 3/1987 Ohkietalccoiiiviiniiinnnn, 364/300

FOREIOGN PATENT DOCUMENTS

0171392 2/1985 European Pat. Off. .
0171631 2/1986 European Pat. Off. .
1367741 9/1974 United Kingdom .

OTHER PUBLICATIONS

Addison Waesley, “Principles of Compiler De-
sign”*, 1977, pp. 487-489.

INTERMEDIATE CODE
GENERATION

ANALYSIE
. . & \)
PACCEIN NG
COMY PROPAOAT ION OF

4,843,545
Jun, 27, 1989

(11} Patent Number:
45] Date of Patent:

British Search Report for British Application Ser. No.
B/16946-dated Aug. 20, 1987

Primary Examiner—Raulfe B. Zache
Attorney, Agent, or Firm~-Fay, Sharpe, Beall, Fagan,
Minnich & McKee

[57) ABSTRACT

A compile method to be executed in a digital computer
includes the step for detecting among statements In
source program codes a first statemnent defining a first
variable and including a polynomial of a plurality of
other variables to define the first variable and a second
statement including the first variable defined by the first
statement 30 as to use the first variable. The method aiso
inciudes the steps of judging whether or not the de-
tected second statement satisfies a predetermined copy
propagation condition and of replacing the {irst variable
included in the second statement, when a result of the
judgement indicates the condition to be satisfied by the
second statement, with the polynomial and for eliminat-
ing the first statement, with the polynomial anbd for
eliminating the first statement. Finally, the method in-
cludes the step of generating from a source code after
the replacing step object program codes corresponding
to the source code.

6 Claimas, § Drawing Sheets

US. Patent Jjun. 27, 1989 Sheet 1 of 5 4,843,545

FIG. |
SOURCE |
PROGRAM
INTERMEDIATE CODE >
GENERATION P
20
CONTROL FLOW BITE oI CONTROL FLOW
ANALYSIS = |NFORMAT ION '1|
|
4 : r{_._.._._.__l | 3 I
DATA FLOW b DATA FLOW l
ANALYSIS — INFORMAT |ON i
||
S || : N | |
PRIMARY OPTIMIZATION -1 | | | | I
PROCESSING B Rt I | I
S
COPY PROPAGATION OF - o :
POLYNOMIAL EXPRESSION [~~~ 7"7777 _ |
7 I
SECONDARY OPTIMIZATION [——————————"—— |
PROCESSING [T o]
STORAGE ALLOCATION 8
REGISTER ASSIGNMENT S/
OBJECT PROGRAM 10

QUTPUT

OBJECT ¥
PROGRAM

U.S. Patent Jun. 27, 1989

FIG. 2A

PRIOR ART

DO 100 [= 1,100
Al=8B(1)+C(])

A2 =B(I+1) + C (I+]) -----

A3 =B(]+2)+C(]+2)
Z([)=A1+A2+A3

OO0 CONTINUE

FIG 2C
PRIOR ART

AE 0O, C(I)
STE O, AT

LE O.B([+!)

AE O, C(I+1)
STE O, A2

LE O,B(1+2) }

LE 0.B(])
(1)

(2)

AE O, C (I+2)
STE
LE
AE

AE
STE

(3)

OPOOO

‘Z{I}

wih Al = =

== (1)

(2)
(3)
(4)

Sheet 2 of 5 4,843,545

FIG. 2B

DO 100 1= 1,00

Z(1)=8B(I)+C(])
+B(I+I}+C(I+])

+B([+2)+Cl1+2)
- (4)

00 CONTINUE

FIG. 2D

LE
AE

, B(IL)
. C(I)

AE B+ 1)

AE C(L+1)

AE O, B([+2)
AE O, C(I+2])

STE O, Z(])

O O OO0

US. Patent Jun. 27, 1989 Sheet 3 of § 4,843,545

FIG. 3A FIG. 38
A=8+C
><=ﬂ:*Y X=(B+C) XY
Y =A% 2 Y=(B+C)*Z
FIG. 4A FIG. 48
COMMION P
A= B+C+ f(Q) «---- (1)
..... e e kP eeeen (2] ceemm o 4 P e (2)
e e, FQ oo (3) ceeem ek Qe (3)
X= AXY ceem= (4) X=(B+C+f(Q)xY - (4)
END
FUNCTION f {Q)
COMMON P
P come-s
Q= wee-

U.S. Patent

Jun. 27, 1989 Sheet 4 of 5 4,843,545

FIG. S

CHECK A COUNT OF USE FOINT OF A VARIABLE WHICH IS
ON A LEFT SIDE OF A STATEMENT WITH A POLYNOMIAL
ON A RIGHT SIDE , BY REFERENCING DATA FLOW INFORMATION.

1S 14

ONE USE POINT ? NO

YES 5

FOR THE VARIABLE, CHECK TO DETERMINE WHETHER OR NOT

NONE OF THE FOLLOWING STATEMENTS EXISTS IN A PASS
l;ﬁ%MA'BTtIE STATEMENT UP TO THE USE POINT OF THE

A STATEMENT DEFINING THE VARIABLE OR A VARIABLE

FOR WHICH 'EQUIVALENCE' 1S DECLAREDIN CONNECTION |
WITH THE VARIABLE.

(2 A STATEMENT INCLUDING AN EXTERNAL PROCEDURE
HAVING AS AN ARGUMENT THE VARIABLE OR A VARIABLE |

FOR WHICH 'EQUIVALENCE' 1S DECLARED IN CONNECTION
WITH THE VARIABLE.

A STATEMENT INCLUDING AN EXTERNAL PROCEDURE IN
WHICH COMMON IS DECLAREQ FOR THE VARIABLE OR

FOR A VARIABLE FOR WHICH EQUIVALENCE DECLARED
IN CONNECTION WITH THE VARIABLE AND WHICH

CHANGES ONE OF THESE VARIABLES.

| @

CHECK WHETHER CONDITIONS ARE SATISFIED OR NOT THAT
THE STATEMENT INCLUDING THE POLYNOMIAL HAS AN
EXTERNAL PROCEDURE AND THAT BETWEEN THE STATE-
MENT AND A STATEMENT INCLUDING THE USE POINT, THERE
EXISTS A STATEMENT USING AN ARGUMENT OF THE EXTER-
NAL PROCEDURE OR USING A VARIABLE FOR WHICH 'COMMON
IS DECLARED IN CONNECTION WITH THE VARIABLE.

* e

|7
19

YES

REP THE VARI BtE AT THE USE POINT WITH THE POLYNOMI -
AL AND ELIM E THE STATEMENT INCLUDING THE VARIABLE
ON ITS LEFT SIDE AND THE POLYNOMIAL ON ITS RIGHT SIDE.

20
NO

ALL STATEMENT
PROCESSED 7

YES

US. Patent Jun. 27, 1989 Sheet 5 of 5 4,843,545

FIG. 6

MAIN STORAGE (MS) 2 |

24

26

4,843,545

1

COMPILE METHOD USING COPY
PROPAGATION OF A VARIABLE

BACKGROUND OF THE INVENTION

The present invention relates to a compile method for
generating object program codes from source program
codes in a compulter.

Conventionally, in order to increase the execution
speed at which an object program is executed in a com-
puter, it has been known to be suitable that the object
program code includes a reduced number of variables.
- To this end, a technology called a copy propagation has
been developed as a compiler technology. For details
about the copy propagation, refer to, for example, the
“Principles of Compiler Design”, Addison Wesley, pp.
487-489,

According to the copy propagation, when there exist
a first statement and a second statement containing a
first variable defined by the first statement to be used by
the second statement, the first variable in the second
statement is replaced with the right side of the first
statement and the first statement is eliminated, thereby
deleting the first variable from the source program.
According to the paper above, the copy propagation
technique is used to eliminate a variable A which is
defined only by a single term of a variable B, for exam-
ple, in A =B presented as the first statement, When the
characteristic of the cupy propagation technique s
taken into consideration, it is desirable to use an expres-
sion A=B+C 30 as to apply the cCopy propagation
technique to the elimination of a variable defined by a
polynomial expression of a plurality of variables B and
C. Results of study made by the present inventor have
shown that when the copy propagation technique is
unconditionally used to eliminate a variables defined by
a polynomial expression, the execution speed of the
object codes generated thereafler in a computer is low-

10

13

20

23

30

35

ered or the correct result cannot be obtained by the €

object codes in some cases.

SUMMARY OF THE INVENTION

[t is therefore an object of the present invention to
provide a compile method in which a variable defined
by a polynomial expression including a plurality of
vanables can be eliminated, thereby generating object
program codes of which the execution speed-in an ac-
tual computer is not lowered.

Another object of the present invention is to provide
a compile method in which a variable defined by a
polynomial expression including a plurality of variables
can be eliminated, thereby generating object program
codes of which the execution results in an actual com-
puter are correct.

To this end, according to the present invention, there
is provided a predetermined condition determining
whether or not the deletion of the variable can be ef-
fected and the elimination of the variable is achieved
after it is judged whether a variable as an object of the
deletion satisfies the condition or not. More concretely,
the first condition is that the first variable defined by a
polynomial expression in the first statement is used only
once by the second statement. The second condition Ia
that there does not exist a statement changing the value
of the variable between the first statement and the sec-
ond statement.

43

30

33

63

2

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be apparent from the fol-
lowing detailed description taken in conjunction with
the accompanying drawings in which:

FIG. 1is a flowchart of the compile method accord-
ing to the present invention:

FIG. 2A is a schematic diagram showing an example
of a conventional source program:

FIG. 2B is a diagram illustrating an example of a
source program obtained by modifying the source pro-
gram of FIG. 2A according to the compile method of
the present invention:

FIG. 2C is a schematic diagram showing object pro-
gram codes generated from the source program accord-
ing to the conventional compile method:

FIG. 2D is a diagram illustrating object program
codes generated from the source program of FIG. 2B:

FIG. 3A is a schematic diagram showing an example
of another source program:

FIG. 3B is a diagram illustrating a source program
attained by executing a copy propagation processing on
the source program of FIG. 3A:

FIQ. 4A is a schematic diagram showing an example
of still another source program:

F1G. 4B is a diagram illustrating a source program
obtained by effecting a copy propagation processing on
the source program of FI1G. 4A.:

FIG. 3 is a flowchart showing in detail the copy
propagation processing of a polynomial expression in
the processing flowchart of FIG. 1 according to the
present invention; and

FIG. 6 is a schematic block diagram illustrating a
digital computer in which an object program generated
according to the present invention is executed.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Referring to the accompanying drawings, description
will be given of embodiments according to the present

invention.

The compiler according to the present invention is
executed to generate an object program in a computer,
for example, the general-purpose computer M680 put to
the market by the assignee of the present invention
which has registers such as a general register and a
floating-point register to keep data to be subjected to an
operation and a temporary result of an operation and in
which for an execution of an operation, data is read
from a memory to be kept in a register and the pperation
is effected between the memory and the register or
between the register and another register; moreover,
the object program thus generated is suitable for an
execution in the computer described above.

FIG. 6 is a schematic configuration diagram of a
digital computer in which an object program generated
by the compiler is executed. In the configuration, a main
storage 21 is used to store machine instructions and
data, which are accessed from an instruction control
unit 22 and execution units 25-26. The instruction con-
trol unit 22 effects preparation for an execution of an
instruction, for example, a preread of an instruction and
a prefetch of an operand to increase the speed of the
instruction execution. The fixed-point execution unit 25
and the floating-point execution unit 26 control a fixed-
point register 24 and a floating-polnt register 23, respec-
tively 30 as to execute operations at a high speed.

3 -

In FIG. 1, an intermediate code generation 2 inter-
prets statements of a source program 1 to generate inter-
mediate codes. A control flow analysis 3 processes the
intermediate codes to obtain therefrom sets called basic
blocks each including successive codes not having a
branch nor an entry of a jump thereto, analyzes the flow

of control in the basic blocks, and outputs the results as’

control flow information 12. A data flow analysis 4
gathers information related to definitions and uses of
variables. A primary optimization processing 5, a sec-

10

ondary optimization processing 7, and a copy propaga- -

tion of polynomial expression 6 effect an optimization of
the intermediate codes based on above-mentioned con-
trol flow information 12 and data flow information 1J.
The optimization includes, for example, a common ex-
pression eliminate processing in which when a plurality
of the same operations are to be executed, only the first
operation is effected and the subsequent operations are
replaced with the result of the first operation and a dead
code eliminate processing to climinate unnecessary
statements. In a storage allocation 8, main storage ad-
dresses are allocated to data appearing in the intermedi-
ate codes. A register assignment 9 determines {or data
appearing in the intermediate codes registers to keep the
value of the data. An object program output 10 gener-
ates machine instructions, achieves an optimization on
the machine instructions, and then outputs the results.
Referring now to FIG. 8, the processing of the copy
propagation of polynomial expression 6 will be de-
scribed in conjunction \ ith the source program of FIG.
2A as an example. For a variable in the left side of a
statement, e.g. like a statement (1) of FIG. 2A, of which
the right side includes a polynomial of a plurality of
variables (including a case where only array elements
are included) (the variable is to be referred to herebe-
low as a variable defined by the statement or the poly-
nomial; for example, a variable A1l in the case of FIQ.
2A), a usage count check part 14 references data flow
information 13 to check for the number of use points of

the variable defined by the polynomial. A use point 40

indicates, when a subsequent statement includes a vari-
able identical to the variable associated with the use
point so as to use the value of the variable, a position of
the statement and a position of the variable in the state-
ment. Data flow information 13 includes information of
the statements defining or using the variables appearing
in the intermediate codes, use positions in the respective
statements, and definition-use relationships; namely,
information indicating which one of the itatements uses

which one of the variables. In a judgement part 18, 50

based on this information, if the number of use points of
the variable (¢.g. Al) defined by the pclynomial expres-
sion is one, & variable definition check part 16 is ef;
fected. If a plurality of uses are detected, the variable is
assumed not to be subjected to the copy propagation of
polynomial expression 6 and hence the similar process-
ing is executed for the subsequent statement because of
the following reason. If the copy propagation is effected
when there exist a plurality of use points, the execution
speed of an object program to be generated thereafter is
lowered. For example, in the case of the source pro-
gram of 3A, the variable A defined by the polynomial
expression is used for the definitions of other variables
X and Y. If the copy propagation is achieved for the
source program of FIG. 3A, a source program of FI1G.
3B is oblained. As a result, an addition B 4+ C is required
to be effected twice, namely, the number of additions
required is increased as compared with the case of FIG.

13

20

25

30

35

43

33

635

4,843,545

4

JA. Consequently, in this embodiment, the copy propa-
gation is not effected unless the number of uses is one.

The variable definition check part 16 executes pro-
cessing as follows. First, a check is made to determine
that between a first statement in which a vanable 1s
defined by a polynomial expression and a second state-
ment using the variable, there does not exist a statement
which changes the value of the variable. For example,
in F1G. 2, the statements in a pass f[rom a statement (1)
to a statement (3) are checked with reference to data
flow information 13 to determine whether or not there
exists a statement which changes the value of the vari-
able (e.g. Al). For the statements between the first
statement and the second statement, it is checked
whether or not the following conditions are not satisfied
(part 16). (1) There exists a statement defining the vari-
able or a variable for which an EQUIVALENCE dec-
laration is specified with respect to the varnable. (2)
There exists a statement including an external proce-
dure having any one of the variables as an argument. (3)
There exists an external procedure including a state-
ment in which a COMMON declaration is specified for
any one of the variable is included and the value of the
variable is changed. Furthermore, for both of the first
and second statements, it is checked whether or not the
following condition is satisfied (part 17). (4) There exists
an external procedure in the first statement; moreover,
between the statement and the second statement, there
exists a statement using an argument of the function or
a statement using a variable for which a COMMON
declaration is specified.

In a judgement part 18, if any one of the conditions is
satisfied, the variable defined by the polynomial is as-
sumed not to be subjected to the copy propagation;
whereas, if neither conditions are satisfied, the propaga-
tion is effected. As described above, since the copy
propagation is achieved after the variable definition
check is finished, the copy propagation can be sup-
pressed in a case where the execution results of a pro-
gram obtained by the copy propagation differs from
that of a program for which the copy propagation is not
effected. For example, in the case of a source program
of FIG. 4A, 1 COMMON declaration is specified for a
variable P, the variable P is updated during an execution
of a function f in a statement (1), and the value obtained
by the update is used by a sentence (2). In addition, a
variable Q is used as an argument of the function f, the
variable Q is updated by an execution of the function
of the statement (1), and the updated value is used by a
statement (3). In such a case, if the copy propagation is
effected on the variable A of the statement (1) so as to
propagate the variable A to a statement (4), a source
program of FIG, 4B is obtained. In this case, however,
for the variables P and Q respectively of the statements
(2) and (3), the values determined before an execution of
the function f are used, which leads to a wrong result.

In a propagation/elimination part 19, the variable
defined by the polynomial in the second statement is
replaced with the polynomial above and then the first
statement is eliminated. In a judgement part 20, thc
processing described above is executed for all state-
ments. As a result, the source program of FIG. 2A 1s
converted into the source program of F1G. 2B.

According to the present embodiment, since the vari-
able defined by an assignment is eliminated, the value
obtained as a result of an execution of the assignment
need not be kept in the memory or a register so as to be
used later. At the propagation destination, an operation

: 4,843,545

S

of a polynomial is executed and hence when the result
of cach binomial operation is accumulated in a register,
an operation between the memory and the register is
enabled, which leads to an effect that the number of
registers to be used can be reduced. Moreover, in gen-
eral, when the definitions and uses of a value exist in a
plurality of statements, a value obtained is kept in a
register for the use thereafter to increase the execution
speed; consequently, a scheme is used to keep in regis-
ters as many variables as possible. However, since the
number of registers is finite, the registers become to be
insufficient in this case during the operation. When the
registers become insufficient, a value kept in a register is
saved into the memory to use the register for another
purpose. In a case where the saved value is to be used
later, if an operation with the memory cannot be ef-
fected, the value is loaded in a register again. As de-
scribed above, by reducing the number of values to be
kept in registers, the instructions to save the values to
the memory and to load the values from the memory
into registers can be minimized; consequently, the num-
ber of instructions to be executed is reduced, which also
leads to an effect that the execution efficiency is im-
proved. F1GS. 2C-2D respectively show a sequence of
instructions in an object program obtained from a
source program shown in FIG. 2ZA when the present
invention is not applied thereto, and a sequence of in-
structions obtained from the source program when the
present invention is applied thereto, that is from the
source program shown in FIG. 2B. In FIGS. 2C and
2D, LE, AE and STE shows mnemonics of instructions
called LOAD instructions, ADD Normalized instruc-
tions and STORE instructions. For example, in the
instruction series (1), the first instruction LE 0, B(I)
shows a LOAD instruction which requires loading of
an operand B(I) from a main storage into one of float-
ing-point registers of a serial number of zero. The sec-
ond instruction AE 0, C(I) shows an ADD instruction
which requires addition of a first operand held by the
floating point register of a serial number of zero and a
second operand C(I) held in the main storage so as to
write the result of the addition into the same register.
The third instruction STE 0, Al is a STORE instruction
which requires storing of an operand held in the same
register into the main storage as an operand Al. Ac-
cording to FI1G. 2C, since Al, A2, and A3 are used by
instruction series (4), the values of A1, A2, and AJ are
saved in the memory when the instruction series (1)-(3)
are executed, Al is loaded in a floating-point register
No. 0 by the instruction series (4), and then the opera-
tion is executed between the register No. 0 and the
memory in which A2 and A3 are beforchand saved. In
case of FIQ. 2D, after B(I) is once loaded from the
memory into the floating-point register No. 0, the oper-
ation between the register No. 0 and the memory s
enabled. As a result, the 13 instructions required in the
former can be reduced to 7 instructions in the latter to
which the present invention is applied.

According to the present invention, since the variable
defined by an assignment is eliminated, the value ob-
tained as a result of an execution of the assignment need
not be kept in the memory or a register 3o as to be used
later, At the propagation destination, an operation of a
polynomial is executed and hence when the result of
cach binomial operation is accumulated in a register, an
operation between the memory and the register is en-
abled, which leads to an effect that the number of regis-
ters t0 be used can be reduced. In addition, the state-

3

10

13

20

235

30

33

43

30

33

63

6

ment to be subjected to the copy propagation is elimi-
nated, which leads to an effect that the items to be kep!
in registers are minimized and hence the registers are
not likely to become insufficient.

While the presént invention has been described with
reference to the particular illustrative embodiments, it is
not restricted by those embodiments but only by the
appended claims. It is to be appreciated that those
skilled in the art can change or modify the embodiments
without departing from the scope and spirit of the in-
vention,

We claim:

1. A compile method to be effected in a digital com-
puter comprising the following steps of:

(a) detecting among statements in source program
codes to be compiled a first statement defining a
first variable by a polynomial of a plurality of other
variables and a second statement including the first
variable so as to use the first variable defined by the
first statement:

(b) judging whether or not the detected second state-
ment satisfies a predetermined copy propagation
condition;

(c) replacing the first variable included in the second
statement by the polynomial and eliminating the
first statement, when a result of the judgement
indicates the condition is satisfied by the second
statement; and |

(d) generating object program codes from source
program codes after said step (c).

2. A compile method according to claim 1 wherein
said copy propagation condition is that the first variable
defined by the first statement is used only once by the
second statement and not by another statement.

J. A compile method according to claim 1 wherein
said copy propagation condition is that statements to be
executed between the first statement and the second
statement do not include a statement changing a value
of the first variable.

4. A compile method according to claim 1 further
including

a step for converting the source program codes to be
compiled into intermediate codes corresponding
thereto,

said steps (a)—(d) using the intermediate codes in
place of the source program codes to be compiled.

$. A compile method according the claim 1, wherein
said copy propagation condition is that statements to be
executed between the first statement and the second
statement do not include a statement changing any
value of vartables included in the polynomial.

6. A compile system to be effected in a digital com-
puter comprising:

(a) means for detecting among statements in source
program codes a first statement defining a first
variable and including a polynomial of a plurality
of other variables to define the first variable and a
second statement including the first variable de-
fined by the first statement in order to use the first
variable defined by the first statement;

(b) means for judging whether or not the detected
second statement satisfies a predetermined condi-
tion, said means for judging being connected to
said means for detecting;

(¢) means for replacing the first variable included in
the second statement, when a result of the judge-
ment indicates the condition to be satisfied by the
second statement, with the polynomial and elimi-

4,843,545 ~

nating the first statement, wherein said means for corresponding to the source code wherein said
r:ﬂlacing is connected to said means for judging; means for generating is connected to said means for
an :

(d) means for generating from a source code, after the replacing. e e e
elimination has taken place, object program codes 5

10

s

20

25

30

35

45

33

63

	Front Page
	Drawings
	Specification
	Claims

