United States Patent 9
Krings

[S4] FAULT-TOLERANT MULTIPROCESSOR
ARRANGEMENT

Lothar Krings, Baden, Switzerland

BBC Brown, Boveri & Company,
Limited, Baden, Switzerland

[21] Appl. No.: 941,991

[75] Inventor:
(73] Assignee:

[22] Filed: Dec. 15, 1986
{30} Foreign Application Priority Data
Dec. 17, 1985 [CH] Switzerlandcorveeorrevemnn.e.. 5376/85
[S1] Imt. Clt ... rccccrrreecrrrercrsrenecenens GO6F 11/20
[52] US. CL ..eerrerreeveereevcenseanens 371/9; 371/12;
364/200
[58] Field of Search 371/9, 12; 364/200,
364,/900
[56] References Cited
U.S. PATENT DOCUMENTS
4,030,074 6/1977 Giorcelliccccceereceerniane, 364/200
4,443,849 4/1984 Ohwadac.cocconrvieerrennennnne. 364/200
4,700,292 10/1987 Campaninic.ccceereererrocenns 364/200
4,710,926 12/1987 Brown et al.ccuvriivoniivaniianns 371/9

OTHER PUBLICATIONS

Wexler, Checkpoint Updating, IBM Technical Disclo-
sure Bulletin, vol. 13, No. 6, Nov. 1970, pp. 1585-1586.
Dieterich et al.,, A Compatible Airborne Multiproces-
sor, Proc. of Fall Joint Computer Conf., 18-20, Nov.

4,819,232
Apr. 4, 1989

[11] Patent Number:
[45] Date of Patent:

1969, Las Vegas, AFIPS Montvale (U.S.A.), pp.
347-357.

Primary Examiner—Charles E. Atkinson
Attorney, Agent, or Firm—Qblon, Fisher, Spivak,
McClelland & Maier

[57] ABSTRACT

When a fault is detected in a processor, program execu-
tion in this processor is interrupted and taken up again
by a standby processor from an earlier uncorrupted
state, a recovery point. Such recovery points are spe-
cially provided in the program. A save copy of the state
at the recovery points is created in each case in a state
save unit by recording changes compared with the
respective previous state. The data memory existing in
the state save unit has pairs of memory words, in which
arrangement the state at the recovery point last reached
is in each case saved in one of the memory words and
the current changes are in each case recorded in the
respective other memory word. The memory words are
accessed via pointers which are formed by a control
logic from two check bits allocated to each memory
word pair. Processing of the check bits and of the point-
ers i8 very fast. It 1s not necessary to copy data within
the state save unit. The standby processor has direct
access to the saved data.

6 Claims, 4 Drawing Sheets

CONTROL LOGIC

L
| EEE.E; BT
oL, "¢
AN ‘
| aporess R
R
DN
H""«
| g DE
Y .. 10
SREQ
LK
Ta.2 E: AB-,
R,
- odr
doin
\ 08,
[Ely

RECEIVE UNIT

US. Patent Apr. 4,1989 Sheet 1 of 4 4,819,232

TRANSMIT | \

' 1 PROCESSOR
DB1

G RW.
BUFFER MAB, t
ata
; ad
M. :
— MEMORY
i CON/TROL LOGIC
= — By | oL
| CHECK BIT / _1 /
nt : MEMORY CB, LOGIC [--
| | ; | |
i Mc |] L NEW
ADDRESS . A =1 ,
. GENERATOR g —e
| 5 2<

RECEIVE UNIT

FIG. 1

4,819,232

Apr. 4, 1989 Sheet 2 of 4

U.S. Patent

)

¢lld

o

(p (9 Q (D ¢ Ol
(@0} (@10) (@0)
2119 2118 211d
.,H 18 Al Em Al | {18 l o
(Q710)
dY " dy
AL E! |
(® (P (O
(310) (310) e N._._m_
211g N
N.Wm\ T N \\ I \\.
\W ue | 1 \th H \ﬂ. tm Aua 1118
~(Q10) 8._9 . (@710)
'dY "9y Y

U.S. Patent Apr. 4, 1989 Sheet 3 of 4 4,819,232

CONTROL LDGS

r'"' ''''''''''' -],

\ CHECK BIT
~ MEMORY

M MULTI-
X | . PLEXER

& e] [F] - i ——— - e L e—————

. CHECK BIT
l MEMORY

I 0, —E ¢ LT
-t My + 1 PLEXER
LOGICy o2 ‘
i Z'Z l'"l
RPCLKZ] [11 AL,
AB . . I e

FIG.5 MRz RW:

U.S. Patent Apr. 4, 1989 Sheet 4 of 4 4,819,232

TRANSMIT 1 F1>'

| PROCESSOR

DL
———— == — - X
| |
: CL . .3 MEMORY
L—--——- ——I "'""E | r—22
. CONTROL LOGIC TRWo., |
i
R,
RECEIVE
UNIT

oyl

] —
*ﬂ_ S,
FIG. 6 I I . D8
RW2 R, - © IRARSMIT

— o UNIT
PROCESSOR/ g ——F;

4,819,232

1

FAULT-TOLERANT MULTIPROCESSOR
ARRANGEMENT

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates generally to a fault-tolerant
multiprocessor arrangement and more particularly to a
fault-tolerant multiprocessor with a memory for storing
the previous data state.

2. Discussion of Background

Transient or permanent hardware and software faults
in a fault-tolerant multiprocessor arrangement must be
detected and eliminated as quickly as possible. For the
purpose of fault detection, two processors forming one
data processor are frequently operated in parallel with
the same program and their results are monitored for
correspondence. As soon as a fault occurs, program
execution is interrupted (fail-stop function). To ensure
that the program is executed even after a fault, particu-
larly 1n the case of process computer applications, a
back-up task 1s activated on a hot-standby processor
which is provided with the same I/0 channels.

Since it is a very complex task to guarantee the integ-
rity of each individual (atomistic) operation during the
activation of the standby processor and since more time
is frequently required for fault detection than for the
execution of an individual operation, execution of the
program is usually resumed by the standby processor at
one of several earlier points specially provided for in
the program (recovery point). This point has been
reached without fauits by the processor originally exe-
cuting the program (rollback technique). By resuming
at this point, some of the operations will be repeated.

Execution of the program is preferably resumed at
the recovery point last reached without faults. How-
ever, this i1s only possible if the time of occurrence of the
fault and the time of its detection lie within the same
interval between the same recovery points, for example
recovery points RP; and RP;, 1. Otherwise, execution
of the program must be resumed at the recovery point
RP;_1 or an even earlier recovery point (multiple-step
rollback technique).

To resume program execution at a recovery point,
the standby processor needs, in addition to the program,
a copy oi the data state which existed at this recovery
point in the main memory of the processor originally
executing the program. The program, which does not
change with time can be made available to the standby
processor at program start up. In contrast, copies must
be provided of the continuously changing data state at
each recovery must be stored in a manner accessible to
the standby processor at program start up the respec-
tively next recovery point is reached.

The speed with which program execution is resumed
by the standby processor after an error and with which
the state of program execution already achieved when
the error occurred is achieved again obviously depends
on the mechanism of creation of these copies, the mech-
anism by which these copies are accessed by the
standby processor and the amount of code between the
individual recovery points in the program.

The data state copies are created in a so-called state
save unit (SSU). This unit is arranged to be electrically
1solated and spatially separated from the processor exe-
cuting the program so that it will not also be affected by
an error in this processor. As has already been men-
tioned, the standby processor should be able to rapidly

5

10

15

20

25

35

43

30

35

65

2

access the data state save copies which is why the state
save unit 18 usually arranged close to the standby pro-
Cessor,

The simplest way of creating the data state copies at
the recovery points consists of the processor executing
the program transferring the total contents of the mem-
ory allocated to it into the state save unit after each
recovery point has been reached. However, program
execution must be interrupted during the time required
for this operation.

To save time, the amount of data to be transferred
into the state save unit can be reduced by transferring
only the changes D; ;4 1, produced by the write accesses
in the interval which has just elapsed, for example be-
tween recovery points RP;and RP;, 1, to the state save
unit. This is possible because the data state S;; i at the
recovery point RP;, 1 differs from the preceding data
state §; at recovery point RP; only by the changes D;

i+1:
Si+1=8i4+D; , i+1.

If an error occurs during the process of transferring,
the data or changes D; ;1 into the state save unit using
this procedure, the problem is created that the no longer
current “old” data state S;is already partially overwrit-
ten by the data or changes of the more current “new”
data state S;.; but the “new” data state Si41 has not
yet been completely recorded. There is then no valid
data state available in the state save unit.

One possibility of avoiding this problem consists in
duplicating the state save unit. Such a duplication is
already known from Ferridun, A. M,; Shien, K. G, A
fauit tolerant multiprocessor with rollback recovery
capability, Proc. 2nd Intern. Conf. on Distr. Comp.
Systems, pages 283-289, 4/81.

While one half of the duplicated state save unit is in
each case available for receiving the new data state, for
example S;11, the “old” data state Si is stored in the
other half. The function of the two halves of the dupli-
cated state save unit (updating, storing) alternates at
each recovery point.

Since the saved data state, for example S;, in one half
of the duplicated state save unit is not influenced by
filing the new data state S;, 1 in its other half, filing of
the new data state S; | can take place during program
execution in the interval between recovery points RP;
and RP;4 1 so that, as a rule, no further interruption of
program execution is required.

To file the data state S;4 1, it is possible to copy the
data state S; in the :state save unit into its respective
other half in order to be updated and at the same time to
record the current changes D; ;41 in this half. On the
other hand, it is also possible to transfer, instead of the
entire data state S; only the changes D;_ ;carried out
in the preceding interval between recovery points
RP;_1and RP;in the half containing data state S;in the
current interval into the half to be updated in the state
save unit because it holds true that:

Sigp1=8i—t1+Di—, i+ Dy 1.

For this purpose, however, the state save unit memory
words or addresses which have been modified in the
preceding interval must be flagged. This can be done by
allocating a separate bit to each memory word of the
state save unit. Another bit can be used in a known
manner for identifying the memory words of the state

4,819,232

3

save unit half to be updated in which current changes
D; ;41 have already been made in the interval current in
each case. This allows the transfer of changes D;_ ;in
the state save unit and the recording of current changes
D; ;41 to be nested together since overwriting of the
current changes D; ;| with changes D; ;— from the
preceding interval can be avoided by checking the
other bit. The two bits mentioned change meaning at
every recovery point.

The method described can be used for creating the
save copies in the state save unit without any effect on
the running of the program if the transfer of all changes
D;_1, ifrom the preceding interval in the state save unit
can be concluded before the next recovery point in each
case is reached in program execution. However, this
means that the minimum distance between two recov-
ery points is determined by the transfer time.

However, the recovery points cannot easily be pro-
vided at arbitrary points in the program and at arbitrary
distances from one another. Problems which would
arise, for example, during resumption of program exe-
cution by the standby processor due to the repetition of
output operations to the peripherals or the repetition of
inter-process communication can be avoided only by
providing recovery points in each case immediately
following such operations.

However, this requirement establishes an upper limit
for the mutual distance between recovery points. The
mutual distance between recovery points is therefore
primarily determined by the intensity of the I/0 opera-
tions required. In particular applications, it an be
shorter than the time require for data transfer in the
state save unit.

SUMMARY OF THE INVENTION

The primary object of this invention is therefore to
reduce the time requirements within the state save unit.

According to this invention, data do not need to be
transferred within the state save unit which is essen-
tially formed by the second data memory and its associ-
ated control logic. Instead, pointer bits are used which
specify where the data belonging to the *old” and “new
» state are stored in the state save unit. Modification of
the pointer bits, which is all that is required, is mush
more efficient than the known data transfer within the
state save unit and, in addition, is independent of the
memory word width. The pointer bits are formed from
check bits which can be stored in a separate high speed
memory. Only the simplest logic operations are re-
quired for forming the pointer bits and for modifying
them. The bit operations can be carried cut completely
successively, partially parallel or completely in parallel.
Partial or complete parallel execution of the bit opera-
tions advantageously entails further time saving. The
high speed memory preferably used for the check bits
and the logic required for the bit operations can be
integrated in a single VLSI chip. This additionally in-
creases the processing speed of the bits. In addition, this
solution leads to a simple and elegant circuit configura-
tion. The data link is preferably an optical data channel.
This optimally results in electric isolation between the
state save unit and the first processor executing the
program and the first data memory allocated to it as
main memory. As a result, an error in the first processor
or in the first data memory cannot influence the data
saved in the state save unit. By using a buffer memory
on the transmit side of the data link, the data (and ad-
dresses) to be transferred via the data link can be trans-

10

15

20

25

30

35

435

30

35

65

4

ferred with relatively uniform distribution in time. As a
result, the band width required for the data link can be
advantageously reduced.

So that the saved data state of the second processor
used as standby processor is available as directly as
possible after fault of the first processor, the control
logic can be designed in such a manner that it allows the
second processor to have direct access to the second
data memory. In this case, the second data memory is
used directly as main memory by the second processor.

The overall multiprocessor arrangement can be of
symmetrical configuration so that the processors save
one another’s data. Three or even more processors can
also be connected together to a network saving one
another’s data.

BRIEF DESCRIPTION OF THE DRAWINGS

Further developments and advantages of the inven-
tion can be seen in the subsequent explanation of illus-
trative embodiments, reference being made to the ac-
companying drawings in which:

FIG. 1 is a block diagram showing the fault-tolerant
multiprocessor arrangement according to the invention,
comprising a first embodiment of the control logic in
which the bit operations are executed successively,

FIG. 2 is a diagrammatic representation for explain-
ing the bit operations, of FIG. 1,

FIG. 3 1s a diagrammatic representation, correspond-
ing to FIG. 2, for explaining further bit operations,

FIG. 4 is a block diagram of a second embodiment of
the control logic in which the bit operations are exe-
cuted partially in paraliel,

FIG. § is a block diagram of a third embodiment of
the control logic in which the bit operations are exe-
cuted completely in parailel and

FIG. 6 is a block diagram of a fauit-tolerant multipro-
cessor arrangement according to the invention, com-
prising two systems of processor, data memory and
control logic which save one another’s data.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

A more complete appreciation of the invention and
many of the attendant advantages thereof will be
readily obtained as the same becomes better understood
by reference to the following detailed description when
considered in connection with the accompanying draw-
ings, wherein

P; designates a first processor in FIG. 1. This proces-
sor is connected via a data bus DB and an address bus
ABj to a first data memory M;. A control line RW; is
used for controlling the read/write memory operations.
The data bus DB and the address bus AB; are con-
nected to a transmit unit S1. During all write operations
of the processor P; to the first data memory M, this
unit transmits the addresses adr and data appearing on
the multi-core buses DB1and ABjover a data link DL,
if necessary after temporary storage in a buffer memory
B1. The write operations are recognized by the transmit
unit S by the logic state on control line RW; which is
also supplied to it. In addition to processor P; another
processor Py, can be provided which, together with the
processor P\, forms a data processor which is desig-
nated as first processor in the following. The two pro-
cessors P, P; of this data processor are capable of
checking each other and of generating a fault message
and stopping operation when a fault occurs (fail-stop
function).

4,819,232

S

The data and addresses adr transferred by the data
link DL are received in a receive unit R and, if neces-
sary, are output again to a data bus DB ; and an address
bus AB» 1 after temporary storage. The buses DB; { and
AB> are connected to a second data memory Ma.
Among other purposes, this memory is used as a save
memory for the data written by the first processor iato
the first data memory M; and transferred to it via the
data link DL;. Other tasks of the second data memory
M3 are explained below. To exercise its save function,
the second data memory M; has a pair of memory
words at the corresponding address adr in each case at
least for each memory word of the first data memory
M| receiving write inputs from the first processor dur-
ing program execution. One of the two memory words
of each pair is in each case used for storing the contents
of the memory word, corresponding to the respective
pair with respect to address, in the first data memory
M at the last recovery point. The other memory word
of each pair 18 used for storing the current contents,
possibly changed after the last recovery point, of this
memory word.

The addresses adr on address bus AB>.1 only address
pairs of memory words in the second data memory M>
and not individual memory words. Addresses adr are
therefore incomplete for the second data memory M.
To complete them and to form the memory word ad-
dress of the second data memory M3, an additional
address bit Z; is needed which is supplied by a control
logic CL..

The control logic CL; contains a control bit memory
M the address inputs of which are connected to the
address bus AB>,1. The word width of the check bit
memory Mcis three bits. The corresponding three data
outputs of the check bit memory Mcare connected to a
check bit bus CBy which leads to first logic L. The
input of the first logic L is also connected to two con-
trol lines A and B whose meaning will be explained
below. At the output, the first logic L. is connected to

10

15

20

23

35

another check bus CB; which leads back to the check 40

bit memory Mc, to two signal lines OLD and NEW.
The latter lead to a multiplexor My which, depending
on the logic state of a control line C, switches one of
them through to its output. This output supplies the
previously mentioned additional address bit Z> for the
second data memory M.

The control logic CL, also contains second logic L.
This 1s connected to two signal lines SREQ; and
RPCLK which are connected to outputs of the receive
unit R>. At the output, the second logic L2 1s connected
to the previously mentioned control lines A, B and C
and to further control lines D, E;, F2> and RW>,,.

The signal on control line D is applied to a tristate
driver T2 3 by way of which an address generator G is
connected to the address bus AB> ;. The control lines
Ez, F2 and RW3 1 emerge from the control logic CL;.
Control line RW3 1 is used for controlling the read/-
write memory operations in the second data memory
M and is therefore connected to this memory. The
signal on control line E; is applied to tristate drivers
T2.1 and T3.2 in buses AB> 1 and DB» 1.

The fault-tolerant multiprocessor arrangement of
FI1G. 1 is completed by a second processor which, like
the first processor, 1s provided with two processors P;
and P;, which check each other, and by address and
data buses AB2 and DB associated with these proces-
sors. The latter buses are connected via tristate drivers
T24 and Tz5 to buses AB21 and DB, (. The tristate

43

30

335

60

65

6
driver T2 sis designed to be bidirectional. The signal on
control line F31s applied to tristate drivers T2 4and T s.
The address bus AB; is connected to a decoder Dy
which generates from the addresses adr appearing on
this bus a memory request signal MR which is supplied
to an input of the second logic L in the control logic
CL3. Finally, the signal of another control line RW>
which is directly connected to the second processor
consisting of processor P; and P; and which is a read/-
write control line is also applied to the second logic L.

The fault-tolerant multiprocessor arrangement, the
configuration of which is described above, operates in
the following manner. The first processor processes a
program, which program is provided with recovery
points. At each of these recovery points, the data state
of the first data memory M; should be stored as save
copy in the second data memory M3 so that, in a case of
a failure of the first processor, the second processor can
take over and continue execution of the program at the
last recovery point reached without faults by the first
processor. In addition to the data state, the second pro-
cessor naturally also needs the program itself for this
purpose. However, this should be available to it right
from the start.

The text which follows first explains how the save
copies are created in the second data memory M;3. Fol-
lowing this, the manner in which the second processor
accesses the save copies in the event of a failure of the
first processor is explained.

To create the save copies, all data written by the first
processor into the first data memory M| and the means
by which its data state 1s changed are acquired by the
transmit unit S; and are transmitted, together with their
addresses adr, via the data link DL to the receive unit
R2. From this unit, the second data memory M; receives
the data via the data bus DB> ; and the addresses adr via
the address bus AB> 1. As already stated, the transferred
addresses adr are incomplete for the second data mem-
ory M since they are in each case two memory words
in the second data memory M3 which have the address
adr. To complete the addresses adr, the control logic
CL;1in each case generates the additional bit Z;. During
generation of this bit, the control logic must ensure that
no data belonging to the “old” state, that is to say to the
state at the recovery point last reached without faults by
the first processor, are overwritten in the second data
memory Mj3. For this purpose, the control logic CL;
must know in which of the two memory words of the
pairs having the common address adr the data item
belonging to the “old™ state is stored. In addition, the
control logic must remember in each case in which of
the memory words under its control a data item belong-
ing to the “new” state, that is to say a data item written
into the first data memory by the first processor after
the recovery point last reached without faults, has been
stored.

Two check bits BIT1(adr) and BIT2(adr) are pro-
vided for each address adr in the check bit memory M¢
for storing this information. In addition to the check bits
BIT1(adr) and BIT2(adr), the check bit memory Mc
contains for each address adr another check bit BIT3-
(adr) the meaning of which will still be explained.

At the same time that the memory word pairs are
addressed in the second main memory M3, the respec-
tive associated check bits, forming a triplet, in the check
bit memory M are addressed since this is also con-
nected to the address bus AB; 1. The check bits BIT1-
(adr), BIT2(adr) and BIT3(adr) addressed in each case

4,819,232

7

appear at the three data outputs of the check bit mem-
ory Mcand reach the first logic L via the check bit bus
CB;. In this logic, a pointer bit OLD(adr) 18 formed
from the check bits BIT1(adr) and BIT2(adr) and from

a check bit A by means of simple logic gates in accor- §
dance with the rule

OLIXNadr):=A+ BITY(adr).A+ BIT2(adr) . A

In addition, a pointer bit NEW (adr) 1s formed in accor-

10
dance with the rule
NEW (adry.:=OLD (adr)
that is to say be inverting the pointer bit OLD(adr). s

Above, as in the text which follows, the dot means a
logical AND operation, the plug sign means a logical
OR operation and the bar above the symbols means
negation.

As can be easily reconstructed with the aid of the rule
for forming the OLD(adr) pointer bit and by means of 20
the first truth table below, the OLD(adr) pointer bit
alternately corresponds to the BIT1(adr) check bit or to
the BIT2(adr) check bit, depending on the binary state
of control bit A. ’g

First truth table
BIT1(adr) BIT2(adr)

0

OLD(adr)

A
0
0 30
0
0
1
1
1
1

_0 = O O O

0O
1
1
0
0O
1
1 35

Control bit A is generated by the second logic L2 and
passes to the first logic L1 via control line A of the same
name. It changes its binary state at each recovery point.
It is preferably derived from the initial state of a flip flop
FF contained in the second logic L;. That a recovery
point has been reached can be indicated, for example,
by means of a message transferred via data bus DB to
transmit unit S; by the first processor Following this
message, transmit unit S) in each case transmits a corre-
sponding message to receive unit R2. When it receives
this message, this unit generates a recovery point clock
signal which passes via signal line RPCLK to the sec-
ond logic L; which subsequently inverts the binary state
of control bit A and of the flip flop FF.

The OLD(adr) and NEW(adr) pointer bits are output
by the first logic L on control lines OLD and NEW
and pass via these lines to multiplexor My. They are
used alternately, depending on the logic state of control
line C at multiplexor My, as additional address bit Z; for
the second data memory Mj3. The OLD(adr) pointer bit
addresses in each case the memory word of the pairs in
the second data memory M3 which contains the data
item belonging to the “old” state while the NEW(adr)
pointer bit in each case addresses the memory word into
which the new data item (present on data bus DB; 1) is
to be written (or has been written). In the process of
writing the saving data which were transferred via data
link DL, into the second data memory M; the NEW-
(adr) pointer bit must naturally be selected by the multi- 65
plexor My. The OLD{adr) pointer bit is in each case
used for the read access, to be discussed below, to the
“old” data state by the second processor. The fact that

43

50

33

60

8

the NEW(adr) pointer bit is in each case formed with
the inverse binary state from the OLD{(adr) pointer bit
in the first logic L | ensures in a simple manner that data
belonging to the *“o0ld” data state are not overwritten in
the second data memory M.

The binary state of the control line C determining the
selection of the two pointer bits OLD{adr) and NEW-
(adr) is checked by the second logic L. Every time data
and addresses are ready in the recetve unit R, this logic
receives a save request signal on signal line SREQ2 from
the latter. Subsequent to this signal, the binary state of
control line C is set by the second logic L; in such a
manner that the NEW(adr) pointer bit is switched
through at the multiplexor My. The second logic L
informs the second data memory M3 via the read/write
control line RW; ; that the data present on data bus
DB> 1 are to be stored.

As has already been mentioned, the control logic
CL, must remember the write destination for the new
data. For this purpose, check bits BIT1(adr) and BIT2-
(adr) are newly determined from the pointer bit OLD-
(adr) and NEW(adr) and the control bit A in the logic
L{ in accordance with the rules

BIT\(adr):= NEWadr) . A+ OLIXadr) . A and

BIT2(adr): = NEW(adr) . A+ OLDadr) . A

and written via check bit bus CB; into check bit mem-
ory Mc, overwriting the original values of these check
bits. As can again be reconstructed by means of the
specified rules of formation for the BIT1(adr) and
BIT2(adr) check bits and by means of the second truth
table below, however, only the check bit which does
not happen to correspond to the pointer bit OLD{(adr),
in dependence on the logic state of check bit A, 1s effec-
tively newly determined. The check bit corresponding
to pointer bit OLD{adr) remains unchanged in order to
retain the information of which of the pairs of memory
words of the second data memory M3 the data item
belonging to the “old” state 1s stored.

Second truth table

BIT] BIT2

BiTl{adr) BIT2{(adr) OLD NEW {adr) (adr)

A {old) (oid) (adr) (adr) (new) (new)
0 0 0)] 0 1
0 0] 0] 0 1
0] 0 | 0 1 0
0 |] I 0 1 0
1 0 0 0] 1 0
1 0 1 l 0 0 i
1] 0 0 1 1 0
1 1 1] 0 0 I

The recovery points, the arrival the control logic
CL, and the second logic L; contained in it by the re-
covery point clock signal on signal line RPCLK repre-
sent points in time which are of importance to the stor-
age process described. At these points, all data previ-
ously belonging to the “new” state become data belong-
ing to the “old” state in the second data memory M
since the old state refers in each case to the recovery
point last reached. By inverting control bit A at each
recovery point, however, this is taken into account in a
simple manner. This is because, after inversion of the
control bit A, the OLD{(adr) pointer bit is derived from
the other check bit BIT1(adr) or BIT2(adr) as before in

4,819,232

9

each case by the first logic Li. If, for example, the
OLD{adr) pointer bit was denved from the BIT1(adr)
check bit in the interval elapsed between the previously
reached recovery point RP;_.| and the current recovery
point RP;, it is now, in the current interval, derived
from the BIT2(adr) check bit until the next recovery
point RP; 118 reached. But this check bit contains just
the information into which of the memory words of the
memory word pairs of the second data memory M3 the
data item was written as belonging to the “new” but
now to the “old’ state in the interval just elapsed. The
data belonging to the “old” data state are thus directly
available after the inversion of the control bit A which
can be executed very rapidly by simply switching over
the flip flop FF in the logic L.

However, the above discussion left out of consider-
ation the fact that, as a rule, the write accesses take
place only to some of the addresses adr in the intervals
between the recovery points. For the addresses adr into
which nothing was written in the interval elapsed, the
pointer bit OLD(adr) correctly addresses the data item
belonging in each case to the “old” state in the current
interval after inversion of control bit A if the two check
bits BIT1(adr) and BIT2(adr) correspond at least at the
end of the interval elapsed.

This problem is illustrated in FIG. 2. At (a) to (e) in
FIG. 2 a pair of memory words of the second data
memory M3 is diagrammatically shown which is in each
case intended to be the same pair of memory words. On
both sides of the pair of memory words, the logic states
of the check bits BIT1{adr) and BIT2(adr) belonging to
this pair are shown in each case as arrows pointing to
one or the other memory word. FIG. 2(a) shows, for
example, the data state of the memory words at a recov-
ery point RP;_3. The upper one of the two memory
words contains data item I while the lower memory
word contains data item II. Both check bits BIT1{adr)
and BIT2(adr) “point” to the upper memory word hav-
ing data item I which is intended to correspond to the
data item contained in the corresponding memory word
of the first data memory M at recovery point RP;._».
Data item II is intended to be an older data item which
is no longer current. Up to recovery point RP;_i, the
pointer bit OLD(adr) is to be derived from check bit
BIT1(adr). Before this recovery point RP;_ is reached,
a new data item III is then to be stored in the pair of
memory words shown. To retain the more current
“old” data item I, it must be written into the lower
memory word. As has already been explained, this is
automatically achieved due to the fact that the pomnter
bit NEW(adr), which has a logic state which is the
inverse of the pointer bit OLD{adr) and thus, in this
case, of check bit BIT1(adr), is selected as the additional
address bit Z; for the second data memory M; at the
multiplexor My. When the BIT1(adr) and BIT2(adr)
check bits are newly determined, from the pointer bits
OLD(adr) and NEW(adr) and from the control bit A
after the new data item III has been written into this
lower memory word of the pair of memory words
shown, the BIT2(adr) check bit is inverted. It now
“points” to the lower memory word containing the new
data item III after having been written back into the
check bit memory Mc¢. Check bit BIT1{adr) remains
unchanged. This is shown in FIG. 2(b). At recovery
point RP;_1, check bit BIT2(adr) is given the meaning
of the OLD{adr) pointer bit as shown in FIG. 2(1 ¢).
The new “old” data item is now data item III in the
lower memory word. In the interval between recovery

10

13

20

25

30

35

45

30

35

635

10

points RP;_; and RP;, no further new data item is to be
written into the pair of memory words shown. How-
ever, after check bit BIT1{(adr) has retrieved its mean-
ing as OL.D(adr) pointer bit, this bit would now point to
the wrong *““old” data item I in the upper memory word
at recovery point RP;. This is because the more current,
new *old” data item III is now contained in the lower
memory word. This 1s shown in FIG. 2(e¢). However,
this problem can be solved in a simple manner by setting
the check bit which happens not to correspond to the
OLD(adr) pointer bit, in this case the BIT1{(adr) check
bit, to be equal to the check bit corresponding to the
OLD(adr) pointer bit, in this case to the BIT2(adr)
check bit at some time in the interval between recovery
points RP;.1 and RP; as shown in dashes in FIG. 2(d).
Naturally, this setting to equality must take place for all
addresses adr which were not the subject of a write
access in the preceding interval. In addition, the setting
to equality must be terminated for all addresses before
the next recovery point is reached.

This equating operation is carried out in the control
logic CL2 by all addresses adr which are received by the
check memory Mc via the address bus AB>) having
been successively generated by the address generator
G. As in the case of the addressing by addresses adr
which are output to the address bus AB;.1 by the re-
ceive unit R3, the triplet of check bits addressed in each
case is read out of the check bit memory M¢ and sup-
plied to the first logic L.; via the check bit bus CB;. This
logic forms the pointer bit QOLD(adr) from the check
bits BIT1{(adr) and BIT2(adr) in the manner already
described. However, the NEW(adr) pointer bit is now
formed in accordance with the rule

NEW(adr): =0LD{(adr),

that is to say with the same logic state as the OLD{adr)
pointer bit. The BIT1(adr) and BIT2(adr) check bits (or
one of the two) are again newly determined in the man-
ner already specified and written back into the check bit
memory Mc. There is no operation of writing into the
second data memory M during this process. This is
therefore an operation which runs purely within the
control logic CL.;. According to the above discussion,
the first logic L; must be capable of executing two
different operations with respect to forming the pointer
bit NEW({(adr). Control line B is used for informing the
first logic L1 which of the two operations it is to exe-
cute. Whenever the receive unit R; contains no data for
saving in the second data memory M3, which is recog-
nized by the second logic L, for example, by the signal
level on signal line SREQ3, this logic adjusts the logic
state of control line B in such a manner that the equating
operation last described is executed by the first logic L.
At the same time, the second logic L enables, via con-
trol lines D, the address generation at address generator
G and the connection of the tristate driver T3.3 to the
address bus Az.i. Simultaneously, 1t decouples the re-
ceive unit R2 by means of the two tristate drivers T3 |
and T32 from address bus AB;; and from data bus
DB- 1 via control lines E2. As soon as new data are
available again in the receive unit R; for saving in the
second data memory Mj, execution of the equating
operations is interrupted by the second logic L; and the
new data are written into the second data memory M;.

The two different operations can therefore alter-
nately occur within the intervals between the recovery
points. However, this results in a data consistency prob-

4,819,232

11

lem which will be explained with the aid of FIG. 3. The
representation in FIG. 3 corresponds to FIG. 2. In
particular, FIG. 3 (a) corresponds to FIG. 2(6). In FIG.
3(c) a write process is additionally assumed between
recovery points RP;_; and RP;, the data item IV being
written as “new” data item into the upper memory
word. During this process, as in FIG. 2 (b), the check
bit which does not happen to have the meaning of the
OLD(adr) pointer bit, that is to say now the check bit
BIT1(adr) is inverted so that it “points” to the memory
word with the new data item IV. If then the equating
operation, shown in dashes in FIG. 2 (e) were to be
subsequently carried out for the pair of memory words
shown, the check bit BIT1{(adr), which again takes over
the meaning of the OLD(adr) pointer bit, would
“point” to the memory word with the old *“old” data
item IV and not to the memory word with the now
more current new “old” data item IV at the subsequent
recovery point RP;. It is important therefore to prevent
the equating operations from being carried out for ad-
dresses of pairs of memory words into which a new data
item has already been written in the current interval.

This can be achieved in a simple manner by causing
the control logic CL2to remember into which addresses
new data have already been written in the current inter-
val. Check bit BIT3(adr) in the check bit memory Mcis
used for storing this information. The first logic L,
forms from the check bit BIT3(adr) and from the con-
trol bit A an initialization bit INI(adr) in accordance
with the rule

INKadp):= BITYedr).A+ BIT¥adr).A

During each operation in which the data to be saved are
written into the second data memory M, which is
called the data save operation in the text which follows,
the initialization bit INI(adr) is set to a first logic state,
for example to ”’1” by the first logic L. Together with
the new determination of the BIT1(adr) and BIT2(adr)
check bit described, the check bit BIT3(adr) is formed
from the initialization bit INI(adr) and from the control
bit A in accordance with the rule

BIT3(adr): = IN(adr).A + INI(adr).A

and written back, together with the former bits, into the
check bit memory M via the check bit bus CBs.

Before the beginning of program execution of the
first processor, the check bits BIT1(adr), BIT2(adr) and
BIT3(adr) and the control bit A must be set in such a
manner that no pair of memory words is wrongly con-
sidered as being already initialized. For this reason, the
following combinations must not occur:

BITI BIT2
0 i
0 l
] 0
1 0

During each execution of an equating operation by
the first logic L1, the initialization bit INI{adr) is formed
by the logic L; in accordance with the rule specified
above and is checked for its logic state. If, with an
address adr, the logic state of the initialization bit INI-
(adr) corresponds to the said first logic state, that is to
say for example “1”, the equating operation 18 not car-
ried out by the first logic L for the address adr con-

10

13

20

25

30

33

45

50

35

635

12

cerned since this address must already have been the
subject of a write operation in the current interval.

For all addresses adr for which this is not the case,
that is to say for which the equating operation is per-
formed, the initialization bit INI(adr) is set to the first
logic state by the first logic L) after the equating opera-
tion has been executed, then the check bit BIT3 (adr) is
newly determined and written into the check bit mem-
ory. This ensures that, at the next recovery point, all
check bits BIT3(adr) have the same logic state and the
initialization bit INI(adr), formed in accordance with
the rule specified above, has in each case the logic state
which is the inverse of the first logic state, that is to say
for example “0”, after inversion of the control bit A.

Thus far, all essential operations required for creating
the save copies in the second data memory M; have
been described.

, If then the second processor, after a fault of the first
processor, wants to access a data item belonging to the
save copy of the data state of the first data memory M,
at the last recovery point reached by the first processor
in the second data memory M, it simply does this by
applying the address adr of this data item to its address
bus AB>. The decoder D connected to the address bus
AB; subsequently generates the memory request signal
MR which signals to the second logic L2 in the control
logic CL3 that the second processor intends to access
the second data memory Mj. This logic then decouples
the receive unit R; and the address generator G from
the buses AB>.; and DB> | by appropriately controlling
the tristate drivers T2 1, T2.2 and T3 via the control line
E> and D and connects them to the buses AB; and DB»
by appropriately controlling the tristate drivers T2 4and
T2 5 via control lines F,. Via the read/write control line
R W3, the second processor informs the logic L2, which,
via the read/write control line RW> ; informs the sec-
ond data memory M3 that data are to be read from it.

Naturally, the addresses adr for the second data mem-
ory M3 output by the second processor are also incom-
plete. These addresses adr, too, need to be supple-
mented by the additional address bit Z3. This is formed
by the control logic CL2 by using the check bits stored
in the check bit memory M¢ and the control bits A, in
the same manner as described above, only that in this
case the OLDf{adr) pointer bit is selected at the multi-
plexor My via the control line C and is connected there-
through.

Since no further recovery point clock signal, invert-
ing the logic state of the control signal A, 18 generated
after execution has been taken over by the second pro-
cessor, the logic state of the control signal A remains
unchanged. As a result, the OLD(adr) pointer bit is
always derived from the same set of check bits BIT1-
(adr) or BIT2(adr) and it is unimportant during which
of the two possible operations it is formed in the first
logic L.

The second processor is capable of directly accessing
the saved data in the second data memory M3 in the
described manner after a failure of the first processor.

According to a preferred embodiment of the inven-
tion, the second data memory M3 i8 used not only as
save memory but, at the same time, also as main mem-
ory by the second processor. For this purpose, two
memory areas having different addresses, a save mem-
ory area and a main memory area, must be provided in
the second data memory M. By accessing the main
memory area of the second data memory M3, the sec-

4,819,232

13

ond processor is capable of executing its own tasks as
long as the first processor is operating without faults.
Like the save memory area, the main memory area in

the second data memory M; preferably also has pairs of

memory words at all addresses adr belonging to this
area, for reasons to be explamed below. For the second
processor to access the main memory area of the second
data memory M3, however, support by the control logic
CL; is then also required. The main memory area is
preferably accessed in the same manner as the save
memory area is accessed as already described.

So that the control logic CL>» can in each case also
generate the additional address bit Z; for the main mem-
ory area in the second data memory Mj, the check bits
BIT1(adr), BIT2(adr) and BIT3{(adr) must also be pro-
vided in its check bit memory Mc for all addresses adr
of the main memory area. If the logic state of the con-
trol line B is set by the second logic L3 during an access
to the main memory area in the second data memory
M; in such a manner that the equating operation is in
each case executed by the first logic L, the continuous
inverting action of the control bit A does not produce
any problems as long as the program provided with the
recovery points is run by the first processor. This is
because, 1if the logic states of the BIT1(adr) and BIT2-
(adr) check bits correspond to each other, the same
memory word in the pairs of memory words of the
second data memory M2 is always addressed, by the
additional address bit Z; formed from them via the
pointer bit OLD(adr), independently of the logic state
of the control bit A.

Due to the bidirectional, design of the tristate driver
T2 5 data can both be written and read as is required
with main memory operation. The second processor
informs the second logic L3 via read/write control line
RW; whether it is to be a read or a write operation.

In this embodiment of the invention, the save mem-
ory area of the second data memory M3, after a failure
of the first processor and after the second processor has
taken over program execution, can be used directly as
new main memory area by the second processor. This
obviates a time-consuming copying of the saved data.

The system consisting of first processor and first data
memory M is preferably arranged to be spatially and
electrically separated from the system consisting of
second processor, second data memory M> and control
logic CL,. To separate the two systems electrically, the
data link DL is preferably constructed as serial optical
data channel. By this means it can be ensured that a fault
in the first-mentioned of the two systems, for example a
short circuit or a power failure, does not have any influ-
ence on the operational capability of the second-men-
tioned system. The requirements for the band width of
the data link DL can be considerably reduced by tem-
porarily storing the data to be transferred via the data
link DL in the buffer memory Bj of the transmit unit
S and transmitting the data with a relatively uniform
rate.

As explained in detail above, the control logic CL;
must perform the equating operation, or at least check
that its performance is required, in each interval be-
tween two recovery points for all addresses adr of at
least the save memory area of the second data memory
M3 for reasons of data consistency. This can be done
simultaneously with greater time efficiency by execut-
ing the equating operations in parallel for several ad-
dresses adr.

n

10

15

23

30

33

45

50

33

65

14

FIG. 4 shows: an embodiment of the control logic
CL; which does this. The control logic of FIG. 4 essen-
tially has the same configuration as the control logic of
FIG. 1. In particular, all lines and buses leading into it
and leading out of it correspond to one another so that
it could directly replace the control logic shown in
FIG. 1. Corresponding to the parallel processing of, for
example, in each case m of the, for example, total of n
addresses adr, the check bit buses CB; and CB> have
been extended to m X 3 bits in the control logic of FIG.
4. Group addresses formed from a subset of all address
bits of the address bits forming the addresses adr are
now used for addressing the check bit memory Mc.
Correspondingly, only a part of the address lines of the
address bus AB;;, forming an address bus AB; 1.1, are
connected to the check bit memory M. The address
generator G now also only needs to generate the group
addresses and accordingly is therefore connected to the
address bus ABj 1.1. The first logic L) now has m similar
circuits for processing m check bit triplets. Instead of
the only two control lines OLD and NEW in the con-
trol logic according to FIG. 1, the m OLD and m NEW
control lines lead from the first logic L to the multi-
plexor My which form the pointer bit bus ZB in the
control logic according to FIG. 4.

Since it must still be possible to perform the data save
operation and the accesses to the second data memory
M; by the second processor for individual addresses
adr, the address lines of the address bus AB; |, forming
an address bus AB>.1.2 and not needed for forming the
group address are connected to the multiplexor M yand
to a decoder D3. From these address lines, the decoder
D3 forms m control lines B’ for the first logic L; by
means of which it recognizes which of its m parallel
circuits 1s to carry out the data save operation. At the
same time, the equating operation can be performed by
all other circuits, excepting however those in which a
data save operation has already been carried out in the
current interval. In the multiplexor My, one of the m
OLD or m NEW control lines is selected via the said
address lines of the address bus AB> 1.

The control logic CL; can also be constructed for
performing the equating operations completely in paral-
lel instead of performing the equation operations only
partially in parallel for m addresses adr.

FIG. § shows an embodiment of the control logic
CL2 by means of which such a completely parallel exe-
cution of all equating operations is possible.

The configuration of the control logic CL; of FIG. §
essentially corresponds to the control logic CL, of FIG.
4, particularly also with respect to the lines and buses
leading into it and leading out of it. It could also replace
the control logic CL3 in FIG. 1. However, the control
logic shown in FIG. § no longer has an address genera-
tor G because it is superfluous if the equating operations
are carried out completely in parallel for all addresses
adr. In addition, the check bit memory Mcis no longer
connected to the address bus AB> ;. Only a single con-
trol line is still connected to it, for example the control
line D which has now become free and which was
needed for controlling the address generator G in the
control logics of FIG. 1 and FIG. 4. Following an ap-
propriate signal on this control line D, all check bits
contained in check bit memory M are transferred in
parallel to the first logic L. This logic has a number of
parallel circuits which corresponds to the total number
n of possible addresses adr. Compared with the corre-
sponding buses in the control logic of FIG. 1, the check

4,819,232

15
bit buses CB; and CB; and the pointer bit bus Zp are

extended by n times. The multiplexor My and the de-
coder Dj are supplied with all address lines of the ad-
dress bus AB> ;. From these address lines, the decoder
D3 forms n control lines B’ for the first logic L. In turn,
the logic state of these n control lines B’ indicates to the
first logic L1 for which of the n addresses adr the data
save operation has to be carried out. In the multiplexor
My, one of the now n OLD or n NEW control lines is
again selected via the said address lines.

Using the control logic shown in FIG. §, all required
equating operations can be executed in a single step,
that is to say extremely rapidly. In particular, this can be
done immediately after each recovery point has been
reached and before the first required data save opera-
tion is executed. This method of proceeding has the
special advantage that, as a result, the third check bit
BIT3(adr) can be omitted. This is because the latter, as
explained, was needed in the control logics of FIG. 1
and FIG. 4 only to prevent equating operations from
being executed for addresses adr which had already
been accessed for data saving in the respective current
interval. However, care must be taken with this method
to ensure that during a data save operation the equating
operation is not performed again for the parallel ad-
dresses not affected by the data save operation. The
check bit memory Mc in the control logic of FIG. §
therefore needs to be designed only for receiving check
bits BIT1(adr) and BIT2(adr). Correspondingly, the
circuit expenditure within the first logic L is simplified
since there is no longer any need to form and process an
initialization bit INI(adr). The check bit buses CB; and
CB; only need to have a width of n x two bits in the
control logic of FIG. 4.

A particularly elegant solution is obtained by inte-
grating the control logic CL; shown in FIG. 5 in a
VLSI (very-large-scale integration) chip. This measure
results in a further increase in the operating speed of the
control logic CL;. The expenditure for the decoder D3
and multiplexor Myis reduced by arranging n elements
from two storage cells each for BIT1 and BIT2 and
from the logic L; in the form of a matrix.

The previous discussion only assumed that the second
processor takes over the operation of the first processor
in the event of a failure of this processor. Conversely,
however, according to an advantageous development
of the invention, the first processor can also be con-
structed for saving the data of the second processor so
that the two systems save each other’s data. Such an
extended fault-tolerant multiprocessor arrangement is
shown in FIG. 6.

It has a completely symmetrical configuration. The
lower part of FIG. 6 completely corresponds to the
lower part of FIG. 1, even with regard to the reference
symbols. The only difference is that the configuration of
the control logic CL.2 has not been shown in detail here.
The control logics CL; shown in FI1GS. 4 and S could
also be used here. The upper part of FIG. 6 is a mirror
image of the lower part. However, all reference sym-
bols are here given the index 1 for better differentiation.

If one of the two processors of FIG. 6 fails, the re-
spective other one takes over its task. When doing so, it
accesses the saved data contained in the save memory
area of its associated data memory and subsequently
continues to use the save memory area as the new main
memory area. After the failed processor has been re-
stored in the symmetrical multiprocessor system of
FIG. 6, it can be given the task of safeguarding the

10

15

20

25

30

35

45

50

35

65

16

other processor which did not fail. In this arrangement,
the identical configuration of the save memory and
main memory areas in the data memories M, M> with
pairs of memory words in each case now also finds
advantageous application. This is because, as a resuit,
the memory area of the failed processor originally used
as main memory area by the other processor which did
not fail can be made available as new save memory area
after having been restored. It is not necessary to inter-
rupt the program run when bringing the failed proces-
sor back on line.

After reintegration of the failed processor in the man-
ner described, the old status has been restored when the
program originally executed by the first processor is
now processed by the second processor and the pro-
gram originally processed by the second processor is
now executed by the first processor. The main memory
and save memory areas in data memories M and M; are
also interchanged.

Naturally, the fault-tolerant multiprocessor arrange-
ment shown in FIG. 6, comprising two systems which
safeguard each other, can also be extended to three or
even more systems which, for example, safeguard each
other in pairs.

Obviously, numerous modifications and variations of
the present invention are possible in light of the above
teachings. It is therefore to be understood that within
the scope of the appended claims, the invention may be
practiced otherwise than as specifically described
herein.

I claim:

1. In a fault-tolerant multiprocessor arrangement
comprising at least a first and a second processor, a first
data memory for storing memory words, each of which
being stored under an address different from the address
of another of said memory words, a second data mem-
ory for storing a pair of memory words under each of
said addresses, and a control logic with at least a check
bit memory having for each pair of memory words
stored under the same address 1n said second data mem-
ory at least two check bits for completing the address of
each pair of memory words and a one-bit storage cell
containing a control bit, an operating method compris-
ing the steps of:

said first processing during execution of a program

containing recovery points writes a first of said
memory words under a first of said addresses into
said first data memory, transfers said memory word
including said first address from said first to said
second data memory, and writes said transferred
first memory word and its respective address into
said second data memory under control of said
control logic,

said first processor during execution of said program

further transfers a recovery point signal indicating
in each case the arrival of said program at a recov-
ery point, thereby causing the control logic to
invert said control bit of said one-bit storage cell at
each recovery point in response to said transferred
recovery signal,

said control logic during the process of writing of

said first memory word into said second data mem-
ory reads out of said check bit memory a first and
a second check bit discriminated by said first ad-
dress, forms a first pointer bit from said first, said
second and said control bit in accordance with the
rule:

4,819,232
18

3. A method according to claim 1 wherein said con-
trol logic contains an address generator, said method
further comprising the steps of:

said contral logic executes forming of pair addresses

in a loop through groups of addresses having in
each case a common group address, and

said address generator successively generates said

group addresses.

4. A method according to claim 2 or 3 wheremn said
check bit memory has for each first resp. second address
in addition to said first and second resp. third and fourth
check bit a fifth resp. a sixth check bit, said method
further comprising the steps of:

17

OLIX1):= BIT1(1).4+ BITX1).4

and a second pointer bit having a binary state
which is the inverse of said first pointer bit, feeds
said second pointer bit to an address input of said s
second data memory to complete the pair address
for said first address of said first memory word of
said second data memory, first

newly determines the binary states of said and second
control bits in accordance with the rules: 10

BIT(1):=NEW(1).A+OLD(1).A, and

DITA1: = NEW DA+ OLIX1).A,

writes said newly determined first and second bits

said control logic reads said fifth resp. sixth check bit
in each case together with said first and second

into said check bit memory, 15 resp. third or fourth check bit from said check bit
said control logic in said interval between said two memory, aft‘:’f processing anc if peocmary chang-
current recovery points further reads out of said megtilgn::iih a;;i dsat;rs ¢ an ;ﬁ%ﬂﬁz rsc et‘;-nir d'ta:ii
cyecl_g t.'it memory a third and a fourth c:,heck bit ?‘aurth check bit into said check bit mg.mdry,
discriminated by a secon_d addre?s of a pair of sec- 20 forms a first resp. a second initialization bit from said
ondary memory words into which not data have fifth resp. said sixth check and said control bit in
yet been entered within said interval, forms a third accordance with the rules:
and a fourth pointer bit from said third and said
fourth check and said control bit in accordance INK1):BIT3(1).A+ BIT3(1).4, and
with the rules: ’8 INRQ2):=BIT3(2) A+ BIT3()4. |
sets said first initialization bit with each execution
OLD(2): = BIT(2).A+ BIT2(2).4, and of writing into said second data memory to a first
NEW(2):=BITY(2).A+ BIT2(2).4 binary state, for example to 17,
newly determines the binary states of said third and newly determines the binary state of said fifth check
said fourth check bit from said third and said fourth bit in accordance with the rule
pointer and said control bit in accordance with the 30 — e
rules: BITX1): = INK1). A+ INK1).A+ INK1).A,
BIT1(2): = NEW{(2).A+ OLD(2).4, and writes said ﬂﬂle determined fifth check bit into
BIT2(2):= NEW(2).A+OLD(2).4, said check bit memory,
35 uses said first initialization bit with each execution of

and writes said newly determined third and fourth
check bit into said check bit memory,

said second processor in response to a fault signal of
said first processor takes over and continues the
execution of said program at a recovery point last
reached by said first processor during execution of
said program by use of the data states at this recov-
ery point transferred into said second data mem-

ory,

40

reading from said second data memory in a loop for
recognizing addresses of pairs of memory values
into which data have already been written in the
respective current interval, sets said second initial-
ization bit with each forming of address pairs in a
loop to a first binary state,

newly determines the binary state of said sixth check
bit as described, and

writes the newly determined sixth check bit into the
check bit memory,

said control logic during the process of each reading 45 wherein
of said second processor from said second data BIT3(1) resp. BIT3(2) means said fifth resp. sixth
memory forms in the case of said first or said sec- check bit, and
ond address said first or said third pointer bit, and INI(1) and INI(2) means said first and said second
feeds said formed first or third pointer bit to said initialization bit.
address input of said second data memory for com- 50 5. A method claim according to claim 1, in which:

pleting the pair addresses for said first or second
address of said first or second memory word of said
second data memory, wherein

A means said control bat,

the control logic executes the forming of pair ad-
dresses in parallel for all addresses immediately
after arrival at each recovery point, and

only afterwords writes into said second data memory.

6. A method as claimed in claim 1, wherein said sec-

BIT(1), BIT2(1), BIT1(2) and BIT2(2) mean said 55

first, second, third and fourth check bit,

OLD(1), NEW(1), OLD(2) and NEW(2) mean said

first, second, third and fourth pointer bit,

the dot means a logical AND operation,

the plus sign means a logical OR operation, and

the bar above the symbols means negation.

2. A method according to claim 1 wherein said con-
trol logic contains an address generator, said method
further comprising the steps of:

said control logic executes forming of pair addresses 65

in a loop through all addresses, and

said address generator successively generates all ad-

dresses.

ond data memory has two memory areas having in each
case pairs of memory words, in which one of the mem-
ory areas in used as a save memory area for saving the
data state of said first data memory at the recovery
points and the other memory area is used as main mem-
ory area by said second processor, said method further
comprising the steps of:
said control unit in each case supplies a point bit,
which does not change in time, to the said address
input of said second data memory for completing
the pair of address for the memory word address
during all memory accesses to the main memory

arcas.
®* % % =% &

	Front Page
	Drawings
	Specification
	Claims

