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1

STRUCTURED DESIGN METHOD FOR HIGH
DENSITY STANDARD CELL AND MACROCELL
LAYOUT OF VLSI CHIPS

BACKGROUND OF THE INVENTION

This invention relates to a method for laying out an
integrated circuit chip including intermixed fixed size
and shape rectangular macrocells together with amor-
phous clusters of standard cells.

Modern integrated circuit technology is widely used
for communications and control. Because of the advan-
tages of reliability and operating speed, the complexity
of integrated circuit chips has increased with time, not-

withstanding the disadvantages of lower yields occa-:

sioned by such complex chips. At the current state of
technology, up to one million transistors may be used
on a single large-scale integrated circuit.

While such large integrated circuits are advanta-
geous, the initial layout of such complex devices, and of
the interconnections between the transistors presents
problems in the length of time required to accomplish
the layout of the interconnections, the total man-hours
required, and in the high skill required of the layout
personnel. Furthermore, human layout is subject to the
problem of errors, and also is undesirably dependent
~ upon human intuition, rather than upon rote evaluation
of all possible permutations of the layout. Thus, layout
by humans may not be optimum in terms of the chip size
and operating speed of the resulting integrated circuit.
The larger chip size resulting from human layout, in
turn, results in lower yields during the manufacture of
the integrated circuit, which increases the cost.

As a result of the limitations of human layout, it has
become common to lay out the integrated circuits in-
cluding the transistors and their interconnections by
means of computer-aided design. These computerized
layout systems accept as inputs an interconnection list
between the logic elements. In this context, logic ele-
ments are relatively primitive electrical circuit such as
AND gates, OR gates, and the like. Such logic elements
are often standard cells having a fixed dimension and a
variable dimension to aid in their placement. Other
inputs to the computer layout program include the
physical sizes associated with the standard cells, and the
locations of the connection points (pins) around the
peripheries of the standard cells. |

Various methods have been devised for operating on
this information to produce the desired layout. One

method is described in U.S. Pat. No. 4,593,363 issued

June 3, 1986 to Burstein et al. This method operates
only with standard cells. This has the disadvantage that
LSI layouts including macrocells cannot be conve-
niently handled except by the intervention of human
layout experts. Macrocells, on the other hand, are rela-
tively sophisticated circuits such as memories or multi-
pliers, digital filters and the like, which have fixed di-
mensions, often because they were laid out by hand. In
general, the structure of macrocells is regular. Further-

more, Burstein et al. optimizes the layout for operating

speed and not for chip area. Another system is de-
scribed in U.S. Pat. No. 4,577,276 issued March 18, 1986
to Dunlop et al.,, which has the same disadvantages as
Burstein et al. Copending U.S. allowed application Ser.
No. 886,936, filed July 21, 1986, by Noto et al., entitled

“Logic Cell Placement Method in Computer-Aided-
Customization of Universal Arrays and Resulting Inte-
grated Circuit,” i1s a logic cell placement method for
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2

gate arrays, which are fixed structures. These logic
arrays are fixed-size chips laid out with an inflexible
array of logic elements, which are interconnected in
various ways by variations of the last masking level.

The circuits normally found in the form of macrocells
are used in many systems, and it is very desirable to be
able to include them in a large scale integrated (L.SI)
circuit. It would be advantageous to have an automated
chip layout system which simultaneously optimizes chip
speed and minimizes area, and which handles inter-
mixed standard cells and macrocells.

SUMMARY OF THE INVENTION

- A method for laying out an assemblage of intermixed
fixed size and shape macrocells and amorphous clusters
of standard cells include the steps of determining the

affinity factors for all possible pairings of logic ele-

ments, and of generating low-order standard cell (de-
fined supra) subdomains (defined below in conjunction
with the description of FIG. 4) consisting of logic ele-
ment pairs having the largest or most positive affinity
factors (defined below, also in conjunction with FIG.
4). A second affinity evaluation is performed for deter-
mining the affinity factors of all possible combinations
of standard cell subdomains and logic elements. Higher-
order standard cell subdomains are generated by pair-
ings having the next most positive affinity factors, con-
sisting of pairings of standard cell subdomains with
other standard cell subdomains, standard cell sub-
domains with logic elements, or logic elements with
other logic elements, which pairings are only of ele-
ments having identical affinities. The second affinity
evaluating and higher-order generating steps are itera-
tively repeated for pairs, the elements of which have
values of affinity factor which are progressively lower
and lower (progressively less positive), resulting in
higher and higher-order subdomains, until combining
any pair results in an affinity factor equal to or more
negative than zero. The remaining subdomains are des-
ignated as domains. A third affinity evaluation is per-
formed for all possible pairs of domains and macrocelis.
Those pairs having the smallest negative affinity values
are paired to form low-order superdomains. A fourth
affinity evaluation is performed for evaluating all possi-
ble pairs of superdomains, standard cell domains and
macrocells, and higher-order superdomains are formed
by forming into pairs the remaining superdomains, stan-
dard cell domains and macrocells. The fourth affinity

‘evaluating and forming steps are iteratively repeated for

progressively larger negative values of affinity factor
until only one superdomain remains. This forms a bi-
nary tree structure including leaf nodes, with the one
remaining superdomain as its root. The size and shape of
the target are are established. The binary tree structure
1s evaluated to identify as B subtrees those structures in
which the number of domains and macrocells is less
than a predetermined number. In one embodiment, the
predetermined number is seven. The B root super-
domains of each B subtree are identified. The binary
tree structure is further evaluated to identify A subtrees
in which the number of B root superdomains is less than
a second predetermined number.

In a particular embodiment, the second predeter-
mined number is nine. The A root superdomains of each
A subtree are tagged. The steps of identification of A
subtrees and tagging of A root superdomains are itera-
tively repeated to form subtrees of successively higher
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level until the entirety of the binary tree has been classt-
fied and only a single A root superdomain remains.
Beginning with the A subtree of highest order, and
proceeding to subtrees of lower order only when all
higher order subtrees have been processed, all permuta-
tions are successively formed, within the target area, of
right-left, top-bottom topological configurations of
those superdomains which form the leaves of each A
subtree, while retaining a rectangular form having an

aspect ratio selected to accept any macrocells contained
therein. For each of the A subtrees for which all possi-

ble right-left, top-bottom topological configurations are
formed, the sum of the distances between the closest
portions of interconnected superdomains of each con-
figuration is evaluated. A quality criterion 1s formed
including the sum of the distances as a factor. That one
topological configuration for which the quality crite-
rion is optimized is selected for further processing. The
steps of evaluating the sums of the distances and form-
ing all topological configurations are iteratively re-
- peated for all A subtrees, whereupon only B subtrees
remain. All possible permutations of the form of each B
subtree are formed, and for each possible permutation
of each B subtree, all possible right-left, top-bottom
topological permutations are evaluated to optimize a
second quality criterion which includes at least one of
(2) minimizing area, (b) aspect ratio match, and (c) the
- sum of the lengths of the nets between the intercon-
nected standard cell domains and macrocells. For each
of the B subtrees, that one permutation is selected for
which the second quality criterion is optimized. When
the optimization of the placement of the regions consti-
tuting the leaves of the binary tree has been accom-
plished, the binary tree is pruned of the lowest-level
subtrees, the next higher-level subtrees are designated
as B trees, and the optimization continues iteratively.

DESCRIPTION OF THE DRAWING

FIG. 1 is a general block diagram of a chip layout
system including the invention;

FIG. 2 is a general flowchart describing the operation
of a chip artwork generation program included in the
arrangement of FIG. 1;

FIGS. 3a and 3b are depictions of interconnections
between elements useful in understanding the invention;

FI1G. 4 1s a more detailed flowchart of a portion of the
flowchart of FIG. 2, relating to grouping of pairs of
interconnected subdomains into subdomains of higher
and higher order, based upon optimization of an affinity
factor, until each subdomain becomes a domain:

FIG. § 1s a more detailed flowchart of another por-
tion of the flowchart of FIG. 2, relating to the grouping
of pairs of interconnected domains and macrocells into
superdomains of higher and higher order;

FIG. 6 1s a depiction of a binary tree arising out of the
operation of the flowchart of FIG. §; |

FIG. 7 is a more detailed flowchart which is a portion
of the more general flowchart of FIG. 2, relating to
subdivision of the binary tree of FIG. 6 into subtrees;

FIG. 8 illustrates the subdivision of the binary tree of
FIG. 6 into type A and type B subtrees by the logic
flow of FIG. 7;

F1G. 9 1s a more detailed flowchart of a portion of the
flowchart of FIG. 2 which relates to placement on the
chip surface of leaf nodes of the subtrees of the binary
tree; |
FIG. 10 is a detailed flowchart depicting a portion of
the flowchart of FIG. 9 relating to type A subtrees;
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4. |

FIG. 11a represents a type A subtree with three
leaves:;

FIGS. 115-11g, referred to jointly as FIG. 11, repre-
sent the right-left, top-bottom physical layouts which
are evaluated by the flowchart of FIG. 10 for a particu-
lar tree branching structure illustrated in FIG. 11a;

FIG. 12 is a more detailed flowchart of a portion of
the flowchart of FIG. 9, relating to type B subtrees;

FIGS. 13a-13r, referred to jointly as FIG. 13, illus-

trate the type B binary subtree configurations which are
evaluated by the flowchart of FIG. 12 when the subtree

has four leaves:

FIGS. 14a-11c illustrates a chip surface and certain
dimensions useful in understanding the aspect ratio
match (ARM) criterion used in the evaluation per-
formed by the flowchart of FIG. 12;

FIG. 15 is a more detailed flowchart which 1s a por-
tion of the flowchart of FIG. 12 for selecting aspect
ratios of standard cell domains and for selecting mac-
rocell orientations for minimum area;

FIG. 16 is a more detailed flowchart which is a por-
tion of the flowchart of FIG. 2, relating to pruning of
the binary tree;

FIG. 17 illustrates a pruned binary tree which results
from the operation described in conjunction with the
flowchart of FIG. 16;

FIG. 18 is a more detailed flowchart of the flow
diagram of FI1G. 2, relating to optimizing the placement
of macrocells in mirror-image or rotated positions;

FIG. 19 illustrates a macrocell and adjacent wires to
illustrate dimensions used for calculation of wire area;
and

FI1G. 20 illustrates the mirror and rotated images
considered in the logic of FIG. 18;

DESCRIPTION OF THE INVENTION

FIG. 1 is a general block diagram of an arrangement
for laying out integrated circuits in accordance with the
invention. In FIG. 1, a block 10 represents a CRT or
display terminal at which the user supplies inputs relat-
ing to the chip which is to be laid out. The terminal,
under user control, provides control information for
controlling the operation of the program described
below, and also provides parameter information, which
1s detailed control information relating to the particular
chip being laid out (such as the type of technology to be
used, i.e., CMOS, NMOS, bipolar, SOS, etc.), and inter-
connection information, which is essentially a sche-
matic diagram of the integrated circuit chip beimng laid
out. The user input information 1s applied to a computer
in which a VLSI chip artwork generation program
resides, which 1s described below. A plotter 14 1s cou-
pled to computer 12 for plotting the artwork produced
as a result of the program, if desired. A mass storage
disc is coupled to computer 12. Disc 18 includes tech-
nology information which includes predetermined de-
sign rule information relating to specific technologies,
such as CMOS, SOS, or bulk, and geometry informa-
tion for the standard cells and for the macrocells which
are used in the layout. This technology and geometry
information is made available to computer 12 when the
information is required by the resident artwork genera-
tion program. A graphics terminal 16 for interactive
placement and routing modification is coupled to com-
puter 12. Graphics terminal 16 displays the layout gen-
erated by the program in an user-interactive manner to
aid in viewing and monitoring the layout process.
Graphics terminal 16 i1s shown as separate from user
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input CRT terminal 10 because it requires substantial
graphics display capability. An interactive graphics
editing terminal 20 is coupled with computer 12 for
receiving the optimized chip circuit layout for control-
- Iing the final layout. Terminal 20 provides user control
for the layout of chip-related details including the use of
test transistors, various mask layers, and the like. Termi-
nal 20 1s connected to a mask artwork generator 22
which receives information from terminal 20 and gener-
ates commands for operating a photoetcher 24, which
prepares the complete wafer including multiple chips
and their various mask levels. Generator 22 may also
produce a conventional hard copy artwork. Following
the photoetching, the photoetcher also includes an ar-
rangement for performing the etching, diffusion, and
other processes required to generate the final finished
water, ilustrated as 26. The arrangement of FIG. 1
illustrates all the operations as interconnected, but those
skilled in the art recognize that the information devel-
oped at any step or apparatus may be stored for later use
in the next step. |

FIG. 2 illustrates an overall logic flowchart or dia-
gram 212 which describes, in general terms, the opera-
tion of the artwork layout program contained or resi-
dent in computer 12 of FIG. 1. In general, the flowchart
of FIG. 2 accepts geometry information relating to
macrocells and standard cells contained in the chip to
be laid out, and interconnection information, and gener-
ates an artwork in which overall physical area of the
chip i1s minimized, and in which the total interconnec-
tion distance between the various standard cells and
macrocells of the circuit are minimized for highest oper-
ating speed.

In FIG. 2, the process is begun with a start command
214, followed by an initialization step 216 which in-
cludes the reading of the user information, after which
the logic flows to a block 218, in which domains are
generated by higher-and-higher-order pairings of sub-
domains. These domains are groups of interconnected
logic elements of the standard cell type. The domain
generatiton step is detailed below in conjunction with
FIG. 4. From the domain generation step, the logic
flows to a block 220, which represents generation of a
binary tree of domains, macrocells, and superdomains.
As mentioned, domains are groupings of interconnected
- standard cells. Macrocells are predesigned groupings of
logic elements which have a fixed size and aspect ratio
as a result of the previous design. Most often, these are
regular arrays of elements produced by human design-
ers, such as memories, multipliers, ROMs, and the like.
Standard cells, on the other hand, are more primitive or
basic logic elements such as AND gates, OR gates, and
the like, which are so small that they may almost be
considered to be points from the point of view of layout,
and which may be readily manipulated by the com-
puter. The term superdomains, for this purpose, in-
cludes groupings of macrocells and standard cell do-
mains, or groupings of lower-order superdomains with
either macrocells or standard cell domains. Details of
the logic of block 220 are described in conjunction with
FIG. 5.

From block 220, the logic proceeds to a further biock
222, in which estimation of the size and shape of the
chip surface is performed based upon the size of the
macrocells involved, and on the total area of the stan-
dard cell domains, plus an estimate of the interconnec-
tion conductor routing requirements. Steps 218, 220,
and 222 taken together, group the standard cells into

J
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domains, and group domains and macrocells into super-
domains, conceptually forming binary tree arrange-
ments with leaves or nodes of higher and higher order.

The logic flows from block 222 to a block 224, in
which the binary trees are subdivided into type A and
type B subtrees. Type A subtrees are subtrees which
have no more than a predetermined number of leaves.
The predetermined number is based upon consider-
ations relating to the amount of computer time required
to consider all possible configurations or topological
permutations of elements. In type A subtrees, the leaf
nodes (nodes) are superdomains which have not yet
been assigned actual X and Y dimensions. Type B sub-
trees are the lowest level of subtree, which have no
more than a second predetermined number of leaf

- nodes. Each leaf node in a type B subtree has been
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assigned discrete X and Y dimensions, as described
below in conjunction with FIG. 7. From logic block
224, the logic proceeds to a further block 226, which
represents the placement on the chip target area or
surface of leaf nodes of the binary tree. This step is
described 1n greater detail below (FIG. 9). From block
226, the logic proceeds to a further block 228, which
represents the pruning of the binary tree, also described
below (FIG. 16). The logic then arrives at a decision
block 230, in which the pruned binary tree is examined
to determine the number of remaining nodes. If the
number of remaining nodes exceeds unity, the logic
returns by a path 232 to logic block 224. The logic
iteratively traverses blocks 224-228, reducing the num-
ber of nodes in the primed binary tree at each traversal.
When processing has proceeded to the point at which
only one node remains, the logic proceeds by the YES
output of decision block 230 to a further block 234, in
which the orientation of the macrocells is established
(FIG. 18). From block 234, the logic proceeds to a
further block 236, which represents standard cell place-
ment in the standard cell domains, as known in the prior
art, for example, from a paper entitled “Linear Ordering
and Application to Placement,” by S. Kang, published
in the Proceedings of the ACM IEEE, 20th Design Auto-
mation Conference, June 27-29, 1983, at Miami Beach,
Fla. From block 236, the logic flows to a further block
238, which represents completion of the detailed rout-
ing. This routing is accomplished by any of a number of
programs such as are known in the prior art, including
“A New Gridless Channel Router: Yet Another Chan-
nel Router the Second (YACR-II),” by A. Sangiovanni-
Vincentelli et al., published in the Digest of Technical
Papers of the IEEE International Conference on Com-
puter Aided Design, Nov. 12-15, 1984 at Santa Clara,
Calif.

In FI1G. 3a, a plurality of standard cell logic elements
310, 312, 314, and 316 are interconnected by a net 318.
As mentioned, a standard cell logic element is a primi-
tive logic element such as an AND gate, OR gate, or the
like, which has at least one adjustable dimension. Net
318 is a single conductor. Net 318 is segmented into
three “connection” portions (connections). Net 318
includes a first connection portion 318q, a second con-
nection portion 3185, and a third connection portion
318¢, which together interconnect the four elements
310-316. Thus, the number of connections is three one
less than the number of logic elements which are inter-
connected. If there are only two logic elements inter-
connected by a net, the number of connections is there-
fore one. In general, if there are N logic elements, there
are N—1 connections.
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FIG. 3b illustrates the difference between intercon-
nections and intraconnections. In FIG. 35, logic ele-
ments 330 and 332 are grouped into a domain 336, and
are interconnected by a net 340. Net 340 is termed an
“intraconnection” because it is within domain 336.
Logic element 332 is interconnected with further logic
elements 334, 336, and 338 by a net designated generally
as 342. Logic elements 334 and 336 are grouped into a
domain 346. Net 342 includes a first portion 342a which
extends from logic element 332 in domain 336 to logic
element 334 in domain 346, and which 1s termed an
“interconnection” because it interconnects domains.
Net 342 includes a further connection 3426 which ex-
tends from logic element 334 to logic element 336, both
wholly within domain 346, and which 1s therefore an
intraconnection. Net 342 includes a further connection
portion 342¢ which interconnects logic element 336
with logic element 338, which is without domain 346,
and connection 342¢ therefore constitutes an intercon-
nection. Similarly, net 344 interconnects logic elements
334, 336, and 338. That portion 344g interconnecting
logic elements 334 and 336, both lying within domain
346, constitutes an intraconnection, whereas that por-
tion 344b interconnecting logic element 336 within do-
main 346 with logic element 338 without domain 346 is
an interconnection.

FIG. 4 is a detailed flowchart illustrating the opera-
tion of block 218 of FIG. 2. In FIG. 4, completed infor-
mation arrives at block 410 from initialization block 216.
Block 410 represents initialization for the steps of FIG.
4. Step 410 includes the step of setting a running vari-
able N equal to the number (#) of primitive logic ele-
ments {0 be placed in the layout. The number of logic
elements N includes the number of standard cells but
does not include the macrocells. Also in logic block 410,
the variable INTER is set equal to the sum of the num-
ber of connections, including both interconnections and
intraconnections, of all nets. A further variable IN-
TRA, is set to zero for all value of p ranging from 1 to
N. For ease of explanation, the logic elements (and the
groupings of logic elements in additional steps de-
scribed below) will be termed ‘““subdomains” in order to
distinguish them from domains and superdomains de-
scribed in later stages of the process. A list is prepared
of the areas of each of the subdomains currently existing
(which at this first stage includes the areas of all stan-
dard cell elements) under the heading SIZEp, which
represents the area of the p*” subdomain for all p ranging
from p=1to p=N. The logic then proceeds to a further
block 412. Block 412 represents the calculation of affin-
ity factors for every possible pair of connected sub-
domains. The calculation of affinity factor for every
possible pair of connected subdomains is based upon the
number of interconnections, the number of intraconnec-
tions, and the size of the individual subdomains which
make up the pair of connected subdomains. The affinity
factor 1s also known as the cost function (CF), and is
expressed by Equation 1:

i

p
(INTRA, X SIZEp) +

CF=(INTER -~ C) +° 3

p=1

p={—1

=N
3 | (NTRA, X SIZE) + 73

o>  INTRA, X SIZEp) +

(INTRA; + INTRA; + C) X (SIZE; + SIZE))

where:
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N is the number of remaining elements, and equals the
number of primitive logic elements at the first itera-
tion;

INTER is equal to the sum of the number of connec-
tions including inter and intraconnections of all nets;

SIZE is the sum of the areas of all subdomains derived
from SIZE, information;

C equals the number of intraconnections between the
pair i, j of subdomains under consideration;

INTRA, is the number of intraconnections in the p®
subdomain;

SIZE, is the size of the p# subdomain;

INTRA,;is the number of interconnections in the i*, j
subdomain under consideration; and

SIZE,; ;is the size of the i*4, j** subdomains under consid-
eration.

Note that during the first iteration, when the intra-
connections of the individual subdomains (i.e. the primi-
tive logic elements) are zero, Equation 1 degenerates to
Equation 2:

CF=(INTER —C)XSIZE +(SIZE;+SIZE) X C

The affinity factor CF may have positive or negative
values, and represents the advantage to be gained in
overall size and path length by a combination of the
elements into a pair. Once the affinity factor for each
possible pair of connected subdomains has been pre-
pared, the logic proceeds from block 412 to a further
logic block 414, in which AFL (Affinity Factor Larg-
est) is set equal to the largest (most positive) of the
affinity factors found in the calculations in block 412.
The logic then proceeds to a decision block 416 in
which the value of the largest affinity factor is com-
pared with zero. On initial iterations through the logic,
all values of AFL will be positive. So long as the value
of the largest affinity factor AFL remains positive, the
logic remains within FIG. 4 and, as illustrated in FIG. 4,
iteratively proceeds through a loop, reducing the posi-
tive value of the affinity factor with each pairing itera-
tion. Decision block 416 compares AFL (the largest
current value of the affinity factor) with zero, and so
long as AFL is greater than zero, maintains the logic
flow within the loop by directing the logic flow by the
NO output to a further logic block 418.

Logic block 418 represents the selection of all inde-
pendent pairs of subdomains having affinity factors
equal to AFL. Pairs of subdomains having affinity fac-
tors equal to AFL which include a common logic ele-
ment or subdomain are not independent. The logic must
arbitrarily choose one of the two possible nonindepend-
ent pairs for further processing. A variable M is set
equal to the number of pairs of independent subdomains
having affinity factors equal to the current value of
AFL. The logic proceeds from block 418 to a further
block 420. |

Loogic block 420 is the first block of a logic loop
which iteratively runs through all values from one to M,
combining in pairs those interconnected logic elements
and/or subdomain pairs having affinity factors equal to
the current value AFL. Thus, block 420 represents,
during the first iteration, the assignment of the first
among the M possible pairs, and on the nexi following
iteration represents the selection of the second among
the M possible pairs, and so forth. To aid in describing
further operation, the two logic elements or subdomains
which are members of the M pair are designated I and
J. The logic proceeds to a further block 422, which
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represents the combination of the M# I and J sub-
domains or logic elements into a larger subdomain 1.
The logic proceeds to a further block 424 in which the
variable INTER is updated to a value of INTER minus
the number of connections between subdomains I and J.
The variable INTER is used in Equation 1.

From block 424, the logic proceeds to a block 426, in
which a variable INTRA is set equal to the sum of
INTRA plus INTRA/ plus the number of connections

between subdomains I and J. The values of INTRA; 10

and INTRA were initially set to zero in block 410,
together with the other INTRA,. Thus, two lowest-
level logic elements I and J are grouped into a sub-
domain L and are treated by the logic as being intercon-
nected by a single net, meaning that they are thereafter
treated as having a single intraconnection between
them. In logic block 428, the variable SIZE is set equal
to SIZE ;4 SIZE;. This means that the size of the sub-
domain L is made equal to the size of the logic element
pair I, J (or lower-level subdomain pair I, J, depending
upon the iteration) which make it up. The logic pro-
ceeds to a block 430, which represents deletion of sub-
domains I and J from further calculation, because they
have been grouped into subdomain L. Logic block 432
represents the decrementing of the current number of
subdomains N by one, because of the grouping of I and
J into L. Block 434 represents decreasing the number M
of pairs being considered by one in the pairing loop.
The logic then arrives at a decision block 436 in which
the value of M is compared to zero. So long as any pairs
remain unprocessed which have the affinity value AFL,
the logic returns to block 420 by the NO path. Eventu-
ally, all of the pairs of logic elements or subdomains
having affinity factor AFL will have been grouped into
larger or higher-level subdomains, and the logic then
leaves decision biock 436 by a path 438 and returns to
logic block 412. In block 412, all remaining pairs of
connected subdomains once again have their affinity
factor calculated, and biock 414 selects the next largest
or most positive value of affinity factor from among the

calculated values. So long as the affinity factors remain
greater than zero, decision block 416 causes the logic

flow to continue in the processing as so far described in
conjunction with FIG. 4. Eventually the affinity factor
will become zero or slightly negative in value, at which
time decision block 416 causes the logic to exit from
decision block 416 by the YES output to a further block

At this point in the processing, with the affinity factor
having decreased to zero, there is no further advantage
to grouping together of the subdomains because group-
ing results in a combination which is of larger size and
increased interconnection length than if the subdomains
were treated individually. However, up to this point in
the processing, the macrocells have not been taken into
account. As an aid in explanation, the standard cell
domains remaining at this stage of the process are re-
named as standard cell domains. Block 440 represents
the identification of the remaining subdomains as do-
mains. Each macrocell existing (all macrocells, until
further combining occurs) is aiso defined as a domain.
The logic leaves block 440 and flows to logic block 220
(FIG. 2).

Logic block 220 of FIG. 2 is illustrated in detail in
FIG. 5. In general, FIG. 5 represents the logic required
for grouping of domains and macrocells into super-
domains, and for the further grouping together of super-
domains until only a single superdomain remains. This
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w=j-—1
| i ﬁ (INTRA'F X SIZE'p) -+
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generates a binary tree structure, in which the lowest
level leaves are standard cell domains and macrocells,
and in which the root is the single remaining super-
domain after all processing is completed.

In FIG. 5, logic block 510 represents generally the
initialization of the variables to be used in the process-
ing, and includes blocks 510’ to 510""". In block 510/, a
variable N’ 1s set equal to the sum of the number of
standard cell domains and macrocells to be processed.
In block 5107, a variable INTER' is set equal to the sum
of the number of connections of nets which connect any
one of the standard cell domains with any other stan-
dard cell domain, any macrocell with a standard cell
domain, or a macrocell with another macrocell. The
variable INTRA'j, representing the number of intra-
connections for the p? domain or macrocell, is set equal
to zero 1n block 510" for all values of p ranging from 1
to N’, that is, for all standard cell domains and mac-
rocells. The variable SIZE'; i1s set equal to the area of
the p* standard cell domain or macrocell in block 510"
for values of p ranging from 1 to N, that 1s to say, for
all remaining standard cell domains and macrocells.
The logic flows from logic block 510 to a further logic
block 512.

In logic block 312, the affinity factor is calculated, on
the first iterative pass, for every possible pair of inter-
connected standard cell domains, macrocells, combina-
tions of macrocells and domains, and on subsequent
iterative passes, for every one of the above possibie
pairs, and also for pairings of superdomains with each
other and with either a macrocell or a standard cell
domain. For this purpose, a superdomain is the combi-
nation of two or more standard cell domains, the combi-
nation of one or more standard cell domains with one or
more macrocells, or the combination of two or more
macrocells. The affinity factor CF 1s given by Equation
3:

=i—1
CF = (INTER' — C') + £ 2

o2, UNTRA) X SIZEY) +

PV
2 _(INTRA', x SIZE')) +

p=i+] p=j+1

(INTRA'; + INTRA'; + C) X (SIZE'; + SIZE’)

where:

N’ is the number of cell domains and macrocells to be
processed;

INTER' 1s total number of interconnections between all
elements;

C' equals the number of interconnections between the
pair 1,j of standard cell domains, macrocells and/or
superdomains under consideration;

INTRA', is the number of intraconnections in the p#
standard cell domain, macrocell or superdomain:;

'SIZE'pis the area of the p# standard cell domain, mac-

rocell or superdomain;

INTRA';; is the number of intraconnections in the i,
j*h standard cell domain, macrocell or superdomain
under consideration; and |

SIZE,; is the area of the i, j* standard cell domain,
macrocell or superdomain under consideration.

At the completion of the processing in block 512, the
affinity factors of all possible combinations of standard
cell domains, macrocells, and superdomains have been
evaluated. The affinity factors, in practice, are always
negative at this stage of processing. Block 514 repre-
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sents the selection of the most positive value among the
calculated values. If there are no actual positive values,
the most positive value is the smallest or lowest nega-
tive value of affinity factor among all of the affinity
factors calculated in block 512. 5

Logic block 516 differs from the corresponding logic
block described in conjunction with FIG. 4, in that only
one of the pairs having the lowest negative value of
affinity factor is selected for further evaluation during
the remainder of the iteration. The elements of the se- 10
lected pair are designated I' and J'.

The logic them reaches block 518, which represents
the combining (in the first pass) of domains or mac-
rocells I' and J' into a superdomain L'. During subse-
quent passes, the elements being combined in pairs may 15
include superdomains as well as domains and mac-
rocells. In block 520, the value of variable INTER' is set
equal to INTER' minus the number of interconnections
between elements I' and I’ of the pair under consider-
ation. In block 522, variable INTRA'; is set equal to 20
INTRA'r4-INTRA'y plus the number of interconnec-
tions existing between I’ and J'.

In logic block 524, variable SIZE';’ is set equal to
SIZE'r+SIZE'y. The values of variables developed in
blocks 522, 524, and 526 are used in logic block 512 25
during the next iteration of calculations.

In block 526, the binary tree is updated by making L'
the root or father node of domains, macrocells, or
superdomains I' and J'. The binary tree is further ex-
plained in conjunction with FIG. 6, which illustrates an 30
example of a binary tree. The running variable N'is
decremented in block 528 of FI1G. 5, and the logic flows
to decision block 530, in which the current value of
variable N’ is compared with unity. If N’ is greater than
one, not all elements have been processed by pairing, 35
and the logic flows from decision block 330 by way of
the NO output and a logic path 532 back to block 512 to
begin another iteration. Eventually, all elements are
combined into one superdomain, and N’ becomes unity.
Decision block 530 then allows the logic flow to leave 40
FI1G. 5 by the YES output and proceed to block 222 of
FIG. 2.

FIG. 6 illustrates a binary tree which may be con-
structed by the logic described in conjuction with the
flowchart of FIG. 5. In FIG. 6, the lowest level of 45
elements 601 to 614 are leaves or leaf nodes which are
either domains of standard cell elements produced by
operation of the logic circuit described in conjunction
with FIG. 4, or macrocells. The next-to-the-lowest

- level of the binary tree of FIG. 6 (elements 615 to 620) 50

represents superdomains formed from paired combina-
tions of (a) macrocells, (b) standard cell domains, or (c)
macrocells with standard cell domains. All elements of
the binary tree of FIG. 6 above the lowest level are
termed “superdomains.” The tree of FIG. 6 is binary, 55
because each element is composed of only two elements
from the next lower level. Superdomain 627 is the root
of the binary tree illustrated in FIG. 6. It is also the root
or parent of leaves 625 and 626 of a subtree which in-
cludes elements 625, 626 and 627. Similarly, super- 60
domain 625 is the root of a subtree which includes
daughter superdomains 621 and 622.

Logic block 222 of FIG. 2 represents the estimation
of the size and shape of the target surface or chip sur-
face (strictly speaking, the layout proceeds with a target 65
surface rather than a chip surface, which is represented
by last block 26 of FIG. 1. The estimate of size or area
1s based upon summing together the areas of the mac-

12

rocells and an estimated wire area for each macrocell to
form a macrocell summed area, and summing together
the areas of the standard cell domains and multiplying
by a factor to take into account the estimated wire areas

for each of the standard cell domains to form summed

standard cell domain areas, and then adding together
both the summed areas to form the estimate of the size
of the target area. For this discussion, the inter and
intraconnecting conductors are termed “wires,” for
ease of description, but those skilled in the art will un-
derstand that they may be formed as conductive paths
formed on the surface of the integrated circuit chip.
Referring now to FIG. 19, 1910 represents a rectangu-
lar macrocell on the target area. From the initial data,
the number of wires associated with each side of the
macrocell is known. As illustrated in FIG. 19, four
wires 1912-1918 are associated with the right side of
macrocell 1910. The assumption is made in forming the
estimate of the requisite wire area that half of the total
number of wires are routed in an upward direction and
the remaining half are routed downward, as illustrated
by the upward routing of wires 1912 and 1914, and the
downward routing of wires 1916 and 1918. Conse-
quently, the total area occupied by the wires on the
right side of macrocell 1910 is the product of the height
H of the macrocell multiplied by the width W of the
wire channel. The width of the wire channel associated
with the right side of macrocell 1910 is the product of
the inter-wire pitch multiplied by the number of wires
in the wiring channel. Naturally, wires entering the
macrocell along the top or bottom of macrocell 1910
are assumed to be routed half to the left and half to the
right. The wiring channel area is determined for all
sides of the macrocell.

In the case of standard cells, the estimate of the wir-
ing area is based upon historical estimates. A method
which has been found to be effective uses two values,
depending upon the total number of standard cell logic
elements in the standard cell domain. For a number of
standard cell elements in the domain less than 300, the
area of the standard cells is caiculated, and multiplied
by 2.1 to get the total area of the standard cells plus the
wiring area. For numbers of standard cells in excess of
300, the area is multiplied by 2.5 to get the total area.

Logic block 222 of FIG. 2 also represents estimation
of the shape of the chip surface. The shape of the chip
surface is accomplished by taking the square root of a
quotient. The particular quotient is the quotient of the
target area, calculated as described above, divided by
the aspect ratio. The aspect ratio is the quotient of the
target region height divided by the target region width,
and is predetermined by the user information. It is desir-
able to provide a default value of 1.0 for the aspect ratio,
if no aspect ratio is specified by the user. The height of
the target region is simply the target area divided by the
width of the target region. |

From block 222 of FIG. 2, the logic proceeds to a
block 224 in which the binary tree is subdivided into
type A and type B subtrees. FIG. 7 is a more detailed
flowchart representing block 224. In general, the logic
of FIG. 7 associates a digital word with each node of
the binary tree. The word is divided into four fields
designated A, B, C, and D. The A field identifies the
node as a leaf node of the subtree (the lowest level node
of any subtree). The A field of the digital word is as-
signed a logic zero level to indicate that it is not a leaf
node, thus indicating that it has daughter nodes within
the subtree, and the A field assumes a logic one level to
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indicate that it 1s a leaf node. The B field of the identifi-
cation word includes a root flag indicative of the status
of a node as a root of a subtree. A logic zero indicates
that 1t is not a root, and a logic 1 indicates that it is a
root. The C field identifies the subtree as a A or B sub-
tree. The D field includes information relating to the
number of leaves of the subtree.

In FIG. 7, blocks 710-716 identify the root nodes of
type B subtrees. Block 710 initializes all nodes of the
binary tree by setting the A, B, and D fields of the
digital word equal to zero. Logic block 712 represents
initialization for all leaf nodes of the binary tree by
setting the A field equal to one. In effect, this takes the
lowest-level leaves of the binary tree (601-614 of FIG.
6) and assigns them a leaf status. In block 714, field D is
set, for every node X in the binary tree, equal to the
number of nodes under node X which have field A set
to one (thereby indicating its status as a leaf node). The
logic flows from block 714 to a further block 716, which
represents a scanning of the binary tree in a “breadth-
first” manner, starting with the root node (627 of FIG.
6). The “breadth-first” processing requires that all sub-
trees at the same level of descent from the root are
processed before any of the next lower-level subtrees
are evaluated. During the breadth-first scanning start-
1ng with root node 627, block 716 also represents setting
the field B flag (root-not root) equal to one and the field
C flag (type A, B subtree) equal to B for all nodes in

which the D field is less than or equal to the previously
mentioned second predetermined number selected for B
subtrees. In one embodiment of the invention, the sec-

ond predetermined number is six. Once a particular
node has been identified as the root node (field B=1) of
a B subtree (field C=B), further scanning for root nodes
in that particular subtree can be ended, which means
that no lower-level nodes in that subtree are evaluated.

From block 716, the logic flows to a decision block
718. Block 718 is the beginning of a logic loop which

10

14

counted, and for each node X" in the binary tree, field
D (number of leaves) is set equal to the number of nodes
of which it is the parent or source, and which have field
A (leaf node ID) set to one. Block 726 represents a
scanning of the binary tree in a breadth-first manner and
the setting of field B (root) to a value of logic one, and
the setting of field C equal to A for those nodes in
which the field D is less than or equal to the first prede-
termined number, which in the above-mentioned em-
bodiment is eight. This makes a root node for a type A
subtree out of those nodes having less than the predeter-

- mined number of leaves thereunder (nine in the example
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completes its activity when the one root node of the °

binary tree (node 627 of FIG. 6) has its field B set equal
to one, thereby indicating that it has been selected as the
root node of a subtree. Decision block 718 examines the
B field of the root node on each iteration, and directs
the logic by the NO output to logic block 720 so long as
- root node 627 has not been so designated by setting field
B equal to logic 1.

As mentioned, blocks 710-716 of FIG. 7 identify the
root nodes of the type B subtrees. The iterative loop
beginning at logic block 718 starts anew to identify the
root nodes of the A subtrees. For this purpose, block
720, for every node in the binary tree set, sets fields A
(leaf node ID) and D (number of subtree leaves) to logic
zero. This eliminates identification of the leaf nodes and
of the number of leaves under each node.

In block 722, the binary tree is again scanned in a
breadth-first manner, and for every node which has a
field B equal to one (that is, for each previously identi-
fied root of a B subtree on the first iteration or for iden-
tified roots of A or B subtrees on subsequent iterations),
field A (leaf node ID) is set equal to one. Thus, the roots
of a subtree of a particular level are made equal to
leaves of subtrees of the next higher level. In block 722,
scanning of the binary tree is stopped for all nodes
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which are the daughters of a node in which the field A

has been set to one. This results in higher and higher
level evaluations on subsequent iterations.

The logic flows from block 722 to logic block 724, in
which the number of leaf nodes under each node X" is

65

given above). Scanning of nodes below those nodes
identified as roots of the A subtree ends, so that other
daughter nodes are not incorrectly identified as root
nodes. From logic block 726, the logic flow loops back
to decision block 718 and iteratively traverses blocks
720-726. Eventually, when all root nodes have been
identified, the logic leaves decision block 718 by the
YES output and flows to block 226 of FIG. 2.

FIG. 8 illustrates a binary tree similar to that of FIG.
6, subdivided into subtrees by the process described in
conjunction with FIG. 7. Type A subtrees were re-
quired to have no more than eight leaf nodes, and type
B subtrees were required to have no more than six leaf
nodes in the processing. In FIG. 8, there is a single type
A subtree, subtree 830. Also, there are three type B
subtrees, 832, 834, and 836. Type B subtree 832 includes
domains 601-604. These domains are combined into
superdomains 615 and 616, and into higher level super-
domain 621. If one were to attempt to extend subtree
832 to include any of domains 605-608, the subtree
would have to include superdomain 625. However, if
superdomain 625 were to be included in type B subtree
832, there would be a total of eight domains in the sub-
tree (1.e., domains 601-608), which exceeds the allow-
able number, which is six. Type B subtree 836 includes
domains 609-611, and if an attempt is made to extend
subtree 836 to include domains 612-614, the subtree can
be extended, thereby including superdomain 626, with-
out exceeding the allowable number of six leaf nodes.
Thus, superdomain 626 is the root of B subtree 836.

In the example of FIG. 8, only one type A subtree
exists with leaf nodes 621, 622, and 626. Leaf nodes 621,
622, and 626 of the A subtree are root nodes of B sub-
trees 832, 834, and 836. Illustration of eight or more B
subtrees, 1n order to illustrate more than one A subtree,
would be difficult. Even if there were additional type B
subtrees in FIG. 8, type A subtree 830 could be ex-
tended to include the root nodes of the additional type
B subtrees, until a total of eight such root nodes were
included. Further expansion would require an addi-
tional type A subtree of similar level and at least one
higher-order subtree, to group the two lowest-level A
subtrees.

From logic block 224 of FIG. 2, the logic proceeds to
logic block 226 of FIG. 2, which represents the place-
ment on the target surface of the leaf nodes of the binary
tree. F1G. 9 illustrates details of the logic flow of block
226. Generally speaking, the logic of FIG. 9 starts at the
root of the binary tree of FIG. 8 (node 627) and pro-
cesses the highest level type A subtree first (subtree
830). The arrangement of FIG. 9 selects a subtree for
evaluation, determines the type of subtree, and then
directs the logic to the appropriate processing for that
type of subtree. In FIG. 9, block 910 represents the
selection of the next subtree in a “breadth first” manner,
as defined above in conjunction with FIG. 7.



4,815,003

15

From block 910, the logic proceeds to a decision

block 912 in which the type of subtree is evaluated.
Type A subtrees are directed by the YES output to a
further logic block 914, and the type B subtrees by

default are directed to a logic block 916. The different
logic processes for the type A and type B subtrees are
described below. Once the processing is completed, the
logic proceeds to a further decision block 918 to deter-
mine whether any subtrees remain to be processed. If
subtrees remain to be processed, the logic leaves deci-
sion block 918 by the YES output and loops back to
block 210, and the procedure is repeated. If all subtrees
have been evaluated, the logic leaves block 918 by the
NO output and proceeds to logic block 228 of FIG. 2.

FIG. 10 represents the processing required to process
type A subtrees in block 914 of FIG. 9. The logic de-
scribed in conjunction with FIG. 10 establishes relative
physical locations for the elements of the superdomains
which correspond to the leaf nodes of the A subtree by
irying all possible placements of the various elements
making up each leaf of the subtree.

In FIG. 10, initializing block 1010 initializes the value
of N” by setting it equal to 4(—1), The variable P is the
number of leaf nodes of the type A subtree currently
being processed. The number 4, which is the base of the
exponent, represents the four possible permutation of
right-left, top-bottom positionings of the two elements
constituting each node. This is further described in
conjunction with FIG. 11. The logic proceeds to a
block 1012 in which the variable BDIST is set equal to
an arbitrarily large number. Variable BDIST represents
the best distance or length of the connecting net so far
located, and the large number is a reference against
which the number will be compared on a successive
iterations. The logic then proceeds to block 1014. Block
1014 represents the generation of the N"# placement
configuration for the leaf nodes of the type A subtree.
That is, the N right-left, top-bottom permutation is
generated. In block 1016, the value of a variable Q is set
equal to unity. Q 1s a running variable, and 1s the desig-
nation applied to one of the P leaf nodes currently being
evaluated.

Logic blocks 1016 through 1026 represent the logic
required to evaluate the placement configuration cur-
rently being reviewed in order to determine if the calcu-
lated width and calculated height are sufficiently large
to accommodate any macrocells (which as mentioned
have fixed, invariant dimensions) contained therein. In
block 1018, the width of the Q' node is compared with
the minimum width of all macrocells included in super-
domains corresponding to the Q¥ node. If the width of
the Q* node is less than the width of any macrocell,
then the configuration is invalid, and the logic flows by
the YES output and a logic path 1019 to a logic block
1036, and by way of the NO output of a further decision
block 1038 and a logic path 1040 to block 1014, to begin
evaluation of another configuration. If, on the other
hand, the width of the Q" node is greater than the width
of any of the macrocells contained therein, decision
block 1018 directs the logic by way of the NO output to
a further decision block 1020. Decision block 1020 per-
forms the same function for the height of the Q** node
relative to the heights of the macrocells contained
therein as block 1018 does for the widths. If the height
of the Q? node is insufficient to accomodate the heights
of the macrocells contained therein, the logic returns to

consider another configuration by way of the YES
output of block 1020, path 1019, blocks 1036 and 1038,
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and path 1040. If the configuration is valid as to both
height and width, the logic proceeds from block 1020
by the NO output to a block 1022, in which Q is incre-
mented to the value Q+ 1. The value Q41 represents
proceeding to the evaluation of a further node of the
subtree. From logic block 1022, the logic proceeds to a
decision block 1024, which compares Q with P. When
Q=P, all the leaves of the subtree have been evaluated.
So long as all of the leaves have not been evaluated, the
logic returns by way of the NO output of decision block
1024 and a path 1025 to block 1018, in which the valid-
ity of a further node is evaluated.

Eventually, the validity of all the leaf nodes of the
particular placement have been evaluated and the logic
proceeds by way of the YES output of decision block
1024 to a further decision block 1026. Decision block
1026 attempts to reduce the number of situations in
which the aspect ratio of any particular element in a
placement configuration of the subtree has an aspect
ratio which is undesirably large. This is done not by
expressly prohibiting aspect ratios having a value ex-
ceeding a predetermined amount, but rather by averag-
ing the aspect ratios of all leaf nodes of the subtree as
placed, and comparing the average with a value of
aspect ratio which is judged to be undesirably large. A
value which has been found to be a satisfactory limit in
this regard 1s an average aspect ratio greater than or
equal to 5, but other values may be satisfactory for
various purposes. If the average aspect ratio exceeds 3,
the logic returns by way of the YES output of block
1026, and path 1019 to perform further evaluations. If
the aspect ratio is less than 5, the NO output of decision
block 1026 directs the logic to a further block 1028. In
block 1028, the total current lengths or distances of the
connections of nets connecting the leaf nodes of the
type A subtrees being evaluated in the particular place-
ment configuration are calculated and made equal to the
variable CDIST. The logic proceeds to a decision block
1030, in which CDIST is compared with BDIST, the
current best distance or length. If the newly calculated
CDIST is greater than or equal to BDIST, the particu-
lar configuration being evaluated is less desirable than a
previously calculated placement, and the YES output of
decision block 1030 directs the logic by way of block
1036 and decision block 1038 back to block 1014 to
evaluate another configuration. If CDIST is not greater
than or equal to BDIST, the logic proceeds to a further
block 1032, in which the desirable N"'* placement con-
figuraton is saved as being the best current configura-
tion. The logic then flows to a further block 1034, in
which variable BDIST 1s set equal to CDIST. The logic
then flows to block 1036, in which the variable N”
representing the number of remaining unevaluated
placement configurations of the type A subtree is re-
duced by one. The logic proceeds therefrom to decision
block 1038, which comprares N with zero, and if con-
figurations remain unevaluated, returns the logic to
block 1014. Eventually, all the possible placement con-
figurations of the type A subtree will have been evalu-
ated, and the logic leaves FI1G. 10 by the YES output of
decision block 1038, and proceeds to block 918 of FIG.
9. |

FIG. 11a represents a type A subtree with three leaf
nodes numbered 1, 2 and 3. FIGS. 115 through 114
represent all possible variations or permutations of
right-left, top-bottom placements of the three leaf
nodes. As illustrated in FIGS. 115-g, the aspect ratio of
the target area of the root of the subtree happens to be
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square, but other aspect ratios are possible. Within the
square target area, leaves 1, 2 and 3 can be placed side-
by-side in that order, as illustrated by FIG. 115, with
their widths determined by their relative areas. FIG.
11c illustrates a permutation of the arrangement of FIG.
1156, with the positions of leaves 1 and 2 interchanged.
FIG. 11f represents yet another permutation of right-
left placement, and 11¢g represents the arrangement of
11/ with the position of leaves 1 and 2 interchanged. A
configuration in which leaf element 3 1s interposed be-
tween leaf elements 1 and 2 cannot occur for the binary
tree illustrated in FIG. 11a, because of the arrangement
of the binary tree. That is, leaf nodes 1 and 2 are always
combined right-left or top-bottom, relative to each
other to form parent node 1104, and their combination
as represented by node 1104 itself 1s arranged left-right
or top-bottom relative to leaf node 3 to form the root
node 1105.

F1G. 114 illustrates a top-bottom placement of nodes
1 and 2 to form a left grouping, and the combination of
the 1-2 grouping with node 3 on the right. FIG. 11e 1s
the same as FIG. 11d with the positions of nodes 1 and
2 interchanged. FIG. 114 1s similar to FIG. 11d, but
- with node 3 on the left rather than on the right. F1G. 11;
1s similar to F1G. 11e, but with node 3 on the left rather
than on the right. FIG. 11; illustrates a left-right config-
uration of leaves 1 and 2, both placed above or on top of
node 3, and FIG. 11k is the same as 11j but with the
positions of nodes 1 and 2 interchanged right-left. FIG.
- 11/ illustrates a vertical placement of leaves 1, 2 and 3,
in that order, and FIG. 11m is similar but with the posi-
tions of leaves 1 and 2 reversed. FIG. 11» illustrates a
placement similar to 11j, but with 3 at the top rather
than at the bottom of the group 1-2 combination. FIG.
110 1s a similar permutation of FIG. 11k FIG. 11pis a
1, 2, 3 bottom-to-top placement of the leaves, and 11g is
simnilar, but with 1 and 2 interchanged. As so far de-
scribed, the various right-left, top-bottom layout per-
mutations illustrated in FIG. 11 were generated by
branch 914 of FIG. 9.

The leaves of the A subtree as so far described have
relative positions, but do not have dimensions associ-
ated with their target areas. When all the leaves of the
A subtrees have been placed and evaluated, the proce-
dure continues to include the next lower level of the
binary tree, which includes the lowermost leaves,
which are the domains. This step applies actual dimen-
sions to the leaf nodes of the A subtree, which are the
root nodes of the B subtrees. This is done by placing the
leaf nodes of the B subtrees (elements 601-614 of FIG.
8) within the roots of the B subtrees (601-604 within
622, 605-608 within 623, etc.). This is accomplished in
block 916 of FIG. 9.

FIG. 12 is a detailed flow diagram of the logic repre-
sented by logic biock 916 of FIG. 9. In block 1210, the
vanable R is set to equal the number of possible subtree
configurations for the type B subtree. This done accord-
ing to Equation 4:

R=(1)3) ... ((A—1][A—21/2)[ANA —1]/2)

where A is the number of leaves of the B subtree under
consideration.

FIG. 13 illlustrates all possible subtree configurations
(as opposed to placement configurations) for type B
subtrees with four leaf nodes. The leaf nodes are num-
bered 1, 2, 3 and 4 and are placed in rectangles, and
parent nodes are illustrated as circles. There are 18 such
possible trees, even with only four nodes. There are
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many right-left, top-bottom placement configurations
for each of the illustrated possible subtrees. No further
explanation of FIG. 13 is believed necessary.

From block 1210 of FIG. 12, the logic proceeds to a

block 1212. The variable BAREA, representing the best

or least area so far found, is set equal to a large number.
In logic block 1214, BARM, representing the best as-
pect ratio match factor, 1s set equal to a large number.
The logic then flows to a block 1216, in which BDIST"
1s set equal to a large number. The logic then flows to a
block 1218 in which a variable S is set equal to unity. S
1S a running variable used to keep track of how many
configurations of B subtrees have been evaluated by the
loop. |

In block 1220, the St subtree configuration is gener-
ated. As mentioned, FIG. 13 illustrates all possible sub-
tree configurations for a type B subtree with four leaf
nodes. Generally speaking, the logic associated with
FI1G. 12 generates all possible forms of subtree which
can be generated with the given number of leaf nodes,
and then for each of the possible configurations per-
forms an evaluation of placement such as that described
in conjunction with FIG. 11. Thus, the amount of com-
putation required in the flowchart of FIG. 12 to per-
form the evaluations of FIGS. 13 and 11 greatly exceeds

- that which was required in the flow chart of FIG. 10 in
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order to perform the evaluation described in conjunc-
tion with FIG. 11. It is for this reason that the number
of leaf nodes in a B subtree is maintained below the
number of leaf nodes of the A subtrees. By controlling
the number of leaf nodes in this fashion, the amount of
computation for each type of subtree 1s comparable.
In block 1222, the variable T is set to the value
T=4U~1 written as 4**(U ~1), where U is the number-
of leaf nodes of the type B subtree. This equation 1s
similar to the equation evaluated in block 1010 of FIG.
10, but with different variable names to avoid confu-
sion. From block 1222, the logic enters a loop which
evaluates all possible placement configurations for one
of the binary subtree configurations. This loop begins
with block 1224, which generates the T placement
configuration for the leaf nodes of the S* subtree con-
figuration of the the B subtree being evaluated. Block
1226 calculates variable CAREA, which is the area of
the minimum sized rectangle which encloses the assem-

~ bly of leaf nodes currently being evaluated. The calcu-

lation of CAREA is further detailed in conjunction
with FIG. 15. From block 1226, the logic flows to a
decision block 1228 in which CAREA 1s compared
with variable BAREA. If the current area CAREA is
greater than the best previous area, as measured by
variable BAREA, the placement configuration 1s not
satisfactory and is not considered further. In that event,
the logic leaves decision block 1228 by the YES output
and flows by a path 1230 to a block 1256 near the end of

the loop for selection of another configuration and an-

other attempt. However, if the current area CAREA is
less than the previous best area, the logic leaves decision
block 1228 by the NO output and flows to a further
decision block 1232, in which CAREA i1s compared
with BAREA. If CAREA is not equal to BAREA, this
indicates the currently evaluated configuration is the
best possible configuration among those tested, and this
configuration is saved by taking logic path 1234 from
the NO output of decision block 1232 to logic block
1242. On the other hand, if CAREA equals BAREA,
further evaluation is performed in a block 1236. In block
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1236, a variable CARM is set equal to the aspect ratio
match factor for the assembly of leaf nodes of the type
B subtree. Aspect ratio match is calculated according to

~ Equation 5:

5
ARM=2—~(Ry+ Ry
where
Ry=Y1/Yq0r Y /YT, and Ry=X 4/ X70r X1/ X4
10

selected so that (Rxy}(Ry)=1,

where:

X 4and Y 4 are the X and Y dimensions, respectively, of
the target area of the root node of the type B subtree,
and

Xrand Y7are the actual X and Y dimensions, respec-
tively, of the root nodes in the particular placement
being evaluated, as illustrated in FIG. 14.

If the target area dimensions and actual dimension
correspond, Y7/Y4=1, and X4/Xr=1, whereupon
ARM=2~—(14+1)=0. This is the perfect aspect ratio
match. Therefore, best aspect ratio match corresponds
to the lowest value of ARM.

FIG. 14aq illustrates the A subtree which is being
evaluated, and FIG. 14b illustrates an example of a _
possible placement of the A, B and C leaf nodes of the 23
A subtree. FIG. 14c¢ illustrates one possible current
configuration of the placement of the leaf nodes of the
B subtree associated with the A leaf node of the A
subtree. In FIG. 14¢c, domains 1401, 1402, 1403 and 1404
are being placed in target area 1410, corresponding to
the A leaf node of the type A subtree of FIG. 14a. In the
particular placement configuration here illustrated,
1401 is a standard cell domain to the left of macrocell
domain 1402, and macrocell domain 1403 is to the left of
macrocell domain 1404. The combination of 1403 and 3>
1404 is at the top of the combination of 1401 and 1402.
Since the areas and aspect ratios of the domains are
already known, the aspect ratio of their combination in
relationship to the aspect ratio of target area 1410 can be
determined according to Equation 3.

After the evaluation of aspect ratio in logic block
1236 of F1G. 12, the logic flows to a decision block 1238
in which the current aspect ratio match CARM is com-
pared with the previous best aspect ratio match BARM.
If CARM is greater than BARM, the present configura- 45
tion is not as good as a previously evalauted one, and
the logic flows by the YES output of decision block
1238 and by path 1230 to begin another iteration. If
CARM is not greater than BARM, the logic flows from
decision block 1238 by the NO output to a further deci-
sion block 1240, in which CARM is again compared
with BARM. If CARM is not equal to BARM, then it
must be less than BARM and consequently the configu-
ration is better than any previously evaluated configura-
tion. In this event, the logic flow from decision block 55
1240 by the NO output to path 1234, bypassing blocks
1244 and 1246. If the current aspect ratio match equals
the previous best aspect ratio match, the best configura-
tion cannot be determined without further processing,
in which case the logic leaves decision block 1240 by
the YES output to a further block 1244, which com-
putes the length CDIST’ of nets connecting the leaf
nodes of the type B subtree in the particular placement
configuration, and the logic flows to a further decision
block 1246. In block 1246, the current length CDIST' is 65
compared with the previous best distance BDIST'. If
CDIST is greater than or equal to BDIST", the config-
~ uration 1s less satisfactory than one previously evalu-
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ated, the logic flows by the YES output and path 1230
to the end of the iteration loop. If CDIST" 1s not greater
than or equal to BDIST’, the NO output of decision
block 1246 directs the logic to block 1242.

As mentioned, block 1242 represents the saving of the
St subtree configuration as the best one so far evalu-
ated. Block 1248 saves the T placement configuration
of the §* subtree configuration as the best.

From logic block 1248, the logic flows by a path 1249
to a further block 1250, representing the setting of the
current value of BAREA to equal the newly found
CAREA. Block 1252 represents the setting of variable
BARM equal to CARM, and block 1254 represents the
setting of HDIST' equal to CDIST'. Block 1256 re-
duces the value of variable T by unity, representing the
reduction by one of the number of remaining placement
configurations within a subtree configuration. Decision
block 1258 compares the current value of T with zero to
determine whether or not all the placement configura-
tions (variations of T) of a particular subtree configura-
tion have been evaluated. If not, the logic returns by a
path 1264 to block 1224. Once all the placement config-
urations for a particular subtree have been evaluated, T
becomes zero, and decision block 1258 directs the logic
to a further block 1260, in which the value of S is incre-
mented, and decision block 1262 compares the current
value of S with R, the maximum possible number of
subtree configurations. If S has not reached R, the logic
flows by the line 1266 back to block 1220 to begin eval-
nation of another subtree. Eventually, all subtrees are
evaluated and the logic flows from decision block 1262
to block 918 of FIG. 9.

FIG. 15 illustrates details of the logic flow within
block 1226 of FIG. 12. Block 1510 represents a setting
of a variable SC to equal the number of standard cell
domains in each leaf node of the type B subtree being
evaluated, and also the setting of a variable MC equal to
the number of macrocells which are leaves of the B
subtree. The logic then flows to a decision block 1512,
which is part of a logic loop. This iterative loop, for
each standard cell domain, determines the number of
rows of standard cells contained therein, which ulti-
mately establishes the aspect ratio of the standard cell
domain being placed. Decision biock 1512 compares the
value of variable SC with zero, to determine when
processing has been completed. So long as processing
remains to be done, the logic flows to block 1514 by
way of the NO output of decision block 1512. In block
1514, a variable TARGETX is set equal to the target
width of standard cell domain SC on the placement
surface. .

Referring to FIG. 14¢, standard cell domain 1401 is
illustrated as including three rows of standard cells
1414, 1416, and 1418, and as having a width TAR-
GETX. While three rows of standard cells are illus-
trated in standard cell domain 1401, it should be empha-
sized that the logic loop of FIG. 15 is intended to estab-
lish the number of rows required for the target aspect
ratio by beginning with all standard cells in one row,
and progressively increasing the number of rows until
the actual width of the standard cell domain is equal to
or less than the width of the target area. |

Block 1514 also sets a variable TARGETAREA
equal to the area of standard cell domain SC (1401 of
FIG. 14¢) on the placement surface. From block 1514,
the logic flows to a block 1516. In block 1516, a variable
LINEARWIDTH is set equal to the sum of the widths
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of all standard cells in domain SC. From block 1516, the
logic flows to a block 1518, which sets a variable ROW
equal to one. The logic then enters a loop beginning
with the block 1520, in which the number of rows is
progressively increased and the resuiting width is evalu-
ated. From logic block 1518, the logic flows to a block
1520, 1n which a variable ACTUALX is set equal to the
quotient of the variable LINEARWIDTH divided by
variable ROW. In decision block 1522, variable AC-
TUALX 1s compared with TARGETX, and so long as
ACTUALX exceeds TARGETX, the logic flows by
way of the NO output of block 1522 to a further block
1524, in which variable ROW is incremented, and the
logic return to block 1520. The iterations of the loop
including blocks 1520, 1522, and 1524 continually incre-
ments the number of rows until the actual width of the
standard cells decreases below the available width of
the TARGETAREA. Once the number of rows has
been established, the logic leaves block 1522 by way of
the YES output to a further block 1526, which sets a
variable ACTUALY equal to the quotient of variable
TARGETAREA divided by wvariable ACTUALX.
This block simply determines the actual height of the
standard cell domain, knowing the area and the width.
Block 1528 sets the width of domain SC equal to AC-
TUALX, and sets the height of domain SC to ACTU-
ALY. The logic them flows to a further block 1530, in
which variable SC is decremented, and the loop returns
to decision block 1512. This loop continues until all
standard cell domains which are leaves of the B subtree
are evaluated. Once the dimensions of all of the stan-
dard cell domains have been determined, the logic
leaves decision block 1512 by the YES output and flows
to a further block 1532.

The portion of the logic of FIG. 15 extending from
logic block 1532 to logic block 1564 is intended to select
the appropriate rotational position of the macrocells.
Prior logic has determined the actual dimensions of the
standard cell domains, and the fixed dimensions of the
macrocells are also known. However, the rotational
positioning of the macrocells can be selected. There are
two allowable rotational positions of each macrocell,
zero degrees and 90 degrees. For each possible position
of each macrocell, each of the other macrocells may
take one of two positions. The total number of possible
permutations of the zero degree, 90 degree positions of
the macrocells equals 2MC, Generally speaking, the
logic extending from blocks 1532 to 1564 tries each
possible rotational permutation and calculates the over-
all area. The overall area may change with changes in
the rotation of a macrocell, because the dimensions of
the standard cell domains change accordingly. That one
positioning arrangement of the macrocells which mini-
mizes the area is selected.

In Block 1532, a variable MINAREA is set equal to a
large number, and in block 1534 a further variable PER-
Mutation 18 set equal to 2MC, The logic flows to a fur-
ther block 1536 which generates the next permutation
of the zero degree, 90 degree rotation of the macrocelis.
- Block 1538 initially sets the width and height of all
non-leaf nodes of the type B subtree equal to zero. The
widths and heights of these non-leaf nodes will be up-
dated further on in the loop. From block 1538, the logic
flows to a block 1540.

In block 1540, the area of each non-leaf node NL,
which is the parent of two daughter nodes, is evaluated
by setting the width and height of NL. The width of a
node NL is equal to the sum of the widths of the daugh-
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ter nodes if the daughter nodes are placed left-right. If
the daughter nodes are placed top-bottom, the width of
parent node NL is the width of that daughter node
which has the greatest width. Also in block 1540, the
height of parent node NL is established. The height of
parent node NL is the sum of the heights of the two
daughter nodes, if the daughter nodes are in a top-bot-
tom configuration. If the daughter nodes are in a side-
by-side configuration, the height of the parent node
equals the greater of the heights of the daughter nodes.
From block 1540, the logic flows to a further block
1542, in which the current width is set by setting a
variable CURWIDTH equal to the widths of the root
nodes of the type B subtree, as determined by repeated
iterations through block 1540. Block 1544 sets the cur-
rent height by setting a variable CURHEIGHT equal to
the height of the root nodes of the type B subtree. A
decision block 1546 forces iterative passes through
blocks 15440, 1542 and 1544 by way of path 1547 so long
as the root node dimensions are not greater than zero,
indicating that the root node of the B subtree has not yet
been calculated. Eventually, the root node area will be
established and the logic exits block 1546 by the YES
output path.

Block 1548 establishes the current area by setting
variables CURAREA equal to the product of the vari-
ables CURWIDTH multiplied by CURHEIGHT. De-
ciston block 1550 compares current area with the
MINAREA, and if the currently calculated area is less
than the previously calculated MINAREA, the logic
flows by the YES output to block 1552. If the currently
calculated area is greater than MINAREA, there is not
need to save the current permutation, and the logic
flows by the NO output of decision block 1550 and by
way of a path 1551 to block 1562.

In block 1552, the value of MINAREA is updated to
equal CURAREA. In block 1554, variable WIDTH is
set equal to CURWIDTH, and variable HEIGHT is set
equal to CURHEIGHT in block 1556. In block 1558,
variable CAREA is set equal to CURAREA. Variable

CAREA is used in FIG. 12. The logic flows to a block

1560, which represents the saving of the current permu-
tation of the orientation of the macrocells. The number
of permutations is decremented by one in block 1562,
and the variable PERM is compared with zero in a
decision block 1564. So long as variable PERM is
greater than zero, the logic loops by the NO output and
path 1565 back to block 1536. When all permutations
have been evaluated, the logic flows from decision
block 1564 to block 1226 of FIG. 12.

As so far described, all the leaf nodes of the A and B
subtrees of the binary tree have been placed, together
with dimensions assigned to the root nodes of the type
subtrees. The next step, accomplished in block 228 of
the logic flow of FIG. 2, prunes the type B subtrees,
except for their root nodes, from the remainder of the
biary tree structure. The logic flow contained within
block 228 of FIG. 2 is detailed in FIG. 16. In FIG. 16,
block 1610 represents the sequential selection of sub-
trees beginning with the highest order subtrees and
proceeding in a breadth-first manner, as described
above, to lower-order subtrees. In decision block 1612,
the type of subtree is identified. If it is not a type A
subtree (i.e., if it is a B subtree), the logic proceeds to
block 1614 in which every node of the type B subtree
except for the root node is deleted. The logic then flows
to decision block 1616. On the other handd, if the sub-
tree 1s 1dentified in decision block 1612 as being a type
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A subtree, the logic flows directly to decision block
1616. In decision block 1616, the need to process further
subtrees is established, and when further subtrees are to
be processed, the logic loops by way of the YES output
back to block 1610. When all of the subtrees have been
evaluated and pruned as required, the logic flows from
the NO output of decision block 1616 to decision block
230 of FIG. 2.

The process described in conjunction with FIG. 16
‘deletes the lowest level subtrees, leaving only their

roots. FIG. 17 illustrates a binary tree similar to that of

FIG. 6, in which the portions pruned during the first
pass are illustrated in phantom. The roots of the B sub-
trees (621, 622, 626 of FIG. 17) then become leaves of
the remaining binary tree. The next higher-level sub-
trees then become the B subtrees. In this case, with only
one A subtree, it becomes the sole B subtree.

Decision block 230 of FIG. 2 determines whether
there is only one node left in the pruned binary tree. If
there is only one node remaining, the pruning process is
finished. If more than one node remains, as in the case of
FIG. 17, the logic proceeds by way of the NO output of
block 230 and a logic path 232 back to block 224, to
once again begin the process of placing the leaves of the
pruned binary tree for optimum area and net lengths,
followed by further pruning. Eventually, all the ascend-
ing levels of placement and pruning have been accom-
plished, whereby only a single node remains. At that
time, decision block 230 routes the logic by the YES
output to a further logic block 234, which establishes
the orientation of macrocells, as detailed in conjunction
with FIG. 18. The types of orientation evaluated and
selected by the logic of FIG. 18 are illustrated in FIG.
20.

In FIG. 20, an X axis 2106 and a Y axis 2108 are
illustrated, together with the reference letter R illus-
trated as 2110 in a normal or reference position. A mir-
ror image about the Y axis of normal position 2110 is
illustrated as 2112 and is designated “mirror-Y”. A
mirror image of normal position 2110 about the X axis is
illustrated as 2114 and designated “mirror-X”, and a
180° rotation is illustrated as 2160.

In FIG. 18, block 1810 sets a variable V equal to the

total number of macrocells. The logic flows from block
1810 to a further block 1812, which initializes the orien-
tations of all macrocells to an arbitrary “normal” orien-
tation. The logic then flows to a decision block 1814,
which compares the value of variable V with zero to
determine whether any macrocell orientations remain
to be tested. If V=0, the logic flows by the YES output
of decision block 1814 and a path 1816 to the output of
FI1G. 18, which is the output of block 234 of FIG. 2. If
macrocell orientations are available to be tested, the
logic flows by the NO output of decision block 1814 to
a further block 1817. Block 1817 represents the assign-
ment or setting of the best length (variable BLEN) to
equal the total lengths of all nets connecting standard
cell domains and macrocells. The logic then flows to a
further block 1818, in which a variable FLAG is set
equal to zero. The variable FLAG represents by a logic
zero condition that the orientation of a macrocell has
not changed as a result of the iteration, and a logic one
indicates that the orientation has changed. A running
variable W 1s set equal to one in a further block 1820.
Variable W represents the number of macrocells which
have been processed. Logic flows from block 1820 to a
further block 1822 which assigns the current length
CLLEN to equal the total lengths of nets connecting
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standard cell domains and macrocells, with the W
macrocell in the mirror-X orientation relative to the
current orientation. The logic then flows to a decision
block 1824, in which the current length CLEN 1s com-
pared with the previous best length BLEN. If CLEN is
less than BLEN, the logic leaves decision block 1824 by
the YES output and arrives at a block 1826, in which
the current orientation of the W macrocell is set to the
mirror-X orientation, and the logic then flows by a logic
path 1828 to a further block 1830, which sets the
FI.AG=1.

If the current length as evaluated in decision block
1824 is greater than the previous best length, the NO
output of decision block 1824 directs the logic to block
1832, in which the current length CLEN is set equal to
the total length of nets connecting standard cell do-
mains and macrocells with the W macrocell oriented
in the mirror-Y orientation relative to the previously
current orientation. Decision block 1834 compares
CLEN with BLEN. If CLEN is less, the logic then
flows by the YES outset of block 1834 to block 1836.
Block 1836 sets the current orientation of the W mac-
rocell to the mirror-Y orientation, and directs the logic
by path 1828 to block 1830.

If decision block 1834 finds that the current length is
ereater than the previous best length, its NO output
directs the logic to a block 1838. In block 1838, the
value of CLEN is determined with the W macrocell in
a 180° rotation relative to the current orientation of the
macrocell. Decision block 1840 compares the net
lengths as described above, and if the current orienta-
tion of the macrocell is the best (CLEN <BLEN), the
YES output of decision block 1840 directs the logic to
block 1842, in which the 180° rotation 1s established as
the current orientation. The logic then flows to block
1830, in which FLAG is set to 1, as mentioned. From
block 1830, the logic flows to block 1844, in which the
value of best-length variable BLEN is set equal to the
value of CLEN. The logic one, logic O state of FLAG
is evaluated in block 1846. As mentioned, A FLAG
condition of logic one represents reorientation of any
one macrocell during the iteration. So long as a mac-
rocell has changed orientation as a result of the itera-
tion, further iterations are called for, and decision block
1846 directs the logic back to block 1818 to begin an-
other iteration. If the iteration has resulted in no change
in the position of any macrocell, then the orientation
optimization procedure is finished, whereby the logic
exits by the YES output of block 1846, and returns to
block 238 of FIG. 2.

If CLLEN is greater than or equal to BLEN as evalu-
ated in decision block 1840 of FIG. 18, the NO output
directs the logic to block 1848, which represents reten-
tion of the original orientation of the W macrocell at
the beginning of the iteration of that macrocell. The
logic then flows to block 1850, representing the updat-
ing of variable W to W41, which in turn represents
selection of the next macrocell for orientation evalua-
tion. Decision block 1852 compares the value of W with
V, the total number of macrocells, to determine if all the
macrocells have been evaluated. If macrocells remain to
be evaluated, the logic loops by way of the NO output
of decision block 1852 back to block 1822, whereas if all
the macrocells have been evaluated for orientation, the
logic flows to decision block 1846.

From block 234 of FIG. 2, the logic flows to a further
block 236, which represents standard cell placement in
the domains, and to a block 238, which represents de-
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tailed wire routing between the standard cells and mac-
rocells as placed on the target surface. Such placement
and wire routing i1s well known in the art, as mentioned
above.

What is claimed is:

1. A method for laying out an assemblage of inter-
mixed fixed size and shape rectangular macrocells and
amorphous clusters of standard cell logic elements in a
target region, comprising the steps of:

performing a first affinity factor evaluation of first

affinity factors of all possible pairs of logic ele-
ments;

generating low-order standard cell subdomains con-

sisting of logic element pairs having the most posi-
tive first affinity factors;
performing a second affinity factor evaluation of the
affinity factors of all possible pair combinations of

~ standard cell subdomains and logic elements;

generating higher-order standard cell subdomains,
consisting of pairings of one of (a) standard cell
subdomains with other standard cell subdomains,
(b) standard cell subdomains with logic elements,
and (c¢) logic elements with other logic elements,
which pairings include only sets having identical
second affinity factors;

iteratively repeating said performing a second affinity

factor evaluation and generating higher-order steps
to generate standard ceil domains until combining
any pair results in a second affinity factor more
negative than zero;

performing a third affinity factor evaluation of the

affinity factors of all possible pairs of macrocells
and standard cell domains;

pairing those of said macrocells and standard cell

domains having the most positive value of said
third affinity factor to form superdomains;
performing a fourth affinity factor evaluation of the
affimty factors of all possible pairs of superdomains,
standard cell domains and macrocells;
forming higher-order superdomains by pairing those
of said remaining superdomains, standard cell do-
mains and macrocells having the most positive
values of said fourth affinity factor:
iteratively repeating said forming and performing a
fourth affinity evaluation steps until only one
superdomain remains to form a binary tree struc-
ture having plural subtrees of different levels, each
subtree including a root node and plural leaf nodes
remote from said root node.
2. A method according to claim 1 further comprising
the steps of:
estimating the size and shape of the target reglon to
establish a target area;

1dentifying as B subtrees those subtrees in said binary
tree structure in which the number of said standard
cell domains and macrocells is less than a first pre-
determined number;

tagging as B root superdomains those superdomains
at the root of each of said B subtrees;

identifying as A subtrees those subtrees in said binary
tree structure in which the number of said B root super-
domains 1s less than a second predetermined number;

tagging as A root superdomains those superdomams

at the root of each of said A subtrees;

iteratively repeating said steps of 1dent1fy1ng those A
subtrees and tagging as A root superdomains to form
subtrees of successively higher level until the entirety of
said binary tree has been classified and only a single
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superdomain remains, whereby the root of each subtree
becomes a leaf of the next higher level subtree;
beginming with the A subtree of highest level and
proceeding in descending order level, successively
forming all permutations, within said target area, of
right-left, top-bottom configurations of those
superdomains which form the leaves of said A
subtree of highest order of said binary tree struc-
ture, while retaining a rectangular superdomain
form with an aspect ratio selected to accept any
macrocells contained therein:
for each subtree for which all right-left, top-bottom
permutations are formed, evaluating the sum of the
lengths of the connections between the interconnected
superdomains of each permutation, and selecting for
further evaluation that one permutation for which a
quality criterion is optimized, said quality criterion in-
cluding the consideration that said sum of the lengths of
the connections should be minimized:
iteratively repeating said successively forming all
permutations and evaluating the sum of the lengths
of the connections steps for all A subtrees until all
A subtrees have been processed and only B sub-
trees remain;
forming all possible permutations of each B subtree,
and for each of said possible permutation of each B
subtree, forming all possible domain right-left, top-
bottom topological permutations, and for each of
satd topological permutations, calculating a quality
criterion including at least one of (a) minimum
area, (b) aspect ratio match, and (¢) minimum the
sum of the lengths of the connections between the
interconnected domains; and
selecting, from all of said possible permutations of
each of said B subtrees and from all of said topolog-
ical permutations of said B subtrees, that one per-
mutation for which said quality criterion is opti-
mized.
3. A method according to claim 2 further comprising
the steps of:
pruning all but the root nodes of said B subtrees from
said binary tree for said one permutation for which
sald quality criterion i1s optimized,;
counting the number of remaining nodes, and if the
number exceeds one, designating said root nodes of
said pruned B subtrees as leaf nodes of the remain-
ing binary tree; and
repeatmg, until only one root node remains, the steps
of (a) identifying as B subtrees, (b) tagging as B
root superdomains, (c) identifying as A subtrees,
(d) tagging as A root superdomains, (e) iteratively
repeating said steps of identifying those A subtrees,
(f) successively forming all permutations, (g) evalu-
ating the sum of the length of the connections, (h)
iteratively repeating said successively forming all
permutations, (1) forming all possible permutations
of each B subtree, (j) selecting that one permuta-
tion for which said quality criterion is optimized,
(k) pruning, (1) and counting.
4. A method according to claim 3, further comprising

the steps of:

for each macrocell, placing said macrocell in a mir-
ror-X position, relative to its current position, and eval-
uating the total lengths of the interconnecting nets;
comparing, a first time, said total lengths of the inter-
connecting nets with a standard, and if better than
“said standard, setting the current position of said
macrocell to equal said mirror-X position;
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for each macrocell, placing said macrocell in a mir-
ror-Y position relative to said current position, and
evaluating the total lengths of said interconnecting nets;
comparing a second time, said total lengths of said
interconnecting nets with said standard, and if bet-
ter than said standard, setting said current position
of said macrocell to equal said mirror-Y position;
for each macrocell, placing said macrocell in a 180°
rotation position relative to said current position,
and evaluating the total lengths of said intercon-
necting nets;
comparing, a third time, said total lengths of said
interconnecting nets with said standard, and if bet-
ter than said standard, setting said current position
of said macrocell to said 180° rotation position; and
repeating said (a) placing said macrocell in a mirror-X
position, (b) comparing a first time, (c) placing said

macrocell in a mirror-Y position, (d) comparing a.

second time, (e) placing said macrocell in a 180°
rotation position, and (f) comparing, a third time
steps until all macrocells remain in said current
position throughout an iteration.

5. A method according to claim 4 wherein said stan-
dard is updated to equal the current value of said total
lengths of said interconnecting nets whenever said cur-
rent value of said total lengths is better than the current
value of said standard.

6. A method according to claim 2 wherein said esti-
mating step comprises the steps of:

summing together the areas of said macrocells and an

estimated wire area for each macrocell to form an
estimated total macrocell area;
summing together the areas of said standard cell do-
mains and multiplying by one or more predeter-
mined numbers to form a summed standard cell
domain area including an estimated wire area;

summing together said estimated total macrocell sum
area and said summed standard cell domain area to
form said target area.

7. A method according to claim 6 further comprising
the steps of:

estimating the width of said target region to form an

estimated width by taking the square root of a
quotient, wherein said quotient is the quotient of
said target area divided by a desired aspect ratio
fraction, wherein said aspeci ratio fraction is the
quotient of target region height divided by target
region width; and

estimating the height of said target region by dividing

said target area by said estimated width of said
target region.

8. A method according to claim 2 further comprising
the steps of:

identifying the highest order type A subtree;

iteratively forming each of the possible topological

layout variations of the lowest hierarchical level
superdomains in said highest order type A subtree,
and selecting that one layout variation for which a
second quality criterion is optimized;

for that one topological layout vanation of the lowest

hierarchical level superdomains in said highest
order type A subtree for which said second guality
criterion is optimized, determining the size and
aspect ratio of each superdomain at the lowest
hierarchical level:

for all type A subtrees at the next lower hierarchical

level from said highest hierarchical level, itera-
tively forming each of the possible topological
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layout variations of the lowest level superdomains
contained therein, and selecting that one layout
variation for which said second quality criterion is
optimized, and determining the size and aspect
ratio of each superdomain at the lowest hierarchi-
cal level;

repeating said second iteratively forming step until all

type A subtrees have been evaluated,;

for all type B subtrees of said one layout variation for
which said second quality criterion is optimized, gener-
ating all possible permutations of the form of said B
subtree; |

for each of said permutations of the form of said B

subtree, generating all possible topological varia-
tions of the leaf nodes, and selecting that one topo-
logical variation of the leaf nodes of that one per-
mutation of the form of said B subtree for which a
third quality criterion is optimized.

9. A method according to claim 2 wherein said first
predetermined number is seven, and said second prede-
termined number is nine.

10. A method according to claim 2 wherein said as-

pect ratio match ARM is determined by:
=|2—Ryx-+Ry|

where Ry is the ratio of actual X dimension to target X
dimension, and Ryis the ratio of actual Y dimension to
target Y dimension, selected such that (Ry)(Ry)=1; and
minimum ARM is best.

11. A method according to claim 2 wherem said qual-
ity criterion includes factors relating to said minimum
area and factors relating to said interconnection length.

12. A method according to claim 1 wherein said first
affinity factor evaluation step includes the further steps,
for each pair of logic elements 1 and j, of:

counting the total number INTER of interconnec-

tions between all logic elements;

determining the total area SIZE of all logic elements;

counting the number C of interconnections between

said pair of said logic elements having mutual inter-
connections;

determining the area SIZE; and SIZE; of each mem-

ber of said pair of elements;

determining the affinity factor CF for each said pair

of elements by the equation:

CF=(INTER —C)X SIZE +(SIZE;+SIZE) X C.

13. A method according to claim 1 wherein each of
said affinity factor evaluation steps other than said first
affinity factor evaluation step includes for each pair of
logic elements, subdomains, domains, macrocells or
superdomains having mutual interconnections, the fur-
ther steps of:

determining the total number INTER of interconnec-

tions between all N elements:;

counting the number C of interconnections between

said pair of said elements;

determiming the number INTRA', of intraconnec-

tions in the p* element;

determining the area SIZE, of each of the N ele-

ments;

determining the number INTRA';of intraconnections

in the i*? and j** elements under consideration;
determining the area SIZE;and SIZE; of each mem-
ber 1,) of said pair of elements;

determining the affinity factor CF for each said pair

of elements by the equation:
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-continued
P~ INTRA, x SIZE,) + *5" (INTRA, X SIZE,) +
p=i+1 P P p=j+1 P 4
=j—] " ‘ -
CF = INTER — ©) + 75 aNTER, x s1zE,) + 5 (INTRA; + INTRA; + C) X (SIZE; + SIZE))

p=1
where N is the current total number of elements.
* x - 4 * -
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