United States Patent [
Wada et al.

[S4] DATA PROCESSING APPARATUS FOR
PROCESSING LIST VECTOR
INSTRUCTIONS

Hideo Wada; Shuichi Abe; Tsuyoshi
Watanabe, all of Hadano, Japan

[75] Inventors:

Patent Number:
Date of Patent:

4,812,974
Mar. 14, 1989

[11]
[45]

FOREIGN PATENT DOCUMENTS
2133595A 7/1984 United Kingdom

llllllllllllllll

Primary Examiner—Archie E. Williams, Jr.
Assistant Examiner—Emily Y. Chan

Attorney, Agent, or Firm—Antonelli, Terry & Wands

[73]
[21]
[22]
[30]

Assignee: Hitachi, Ltd., Tokyo, Japan
Appl. No.: 823,531
Filed: Jan, 29, 1986

Foreign Application Priority Data

Jan. 29, 1985 [JP] Japancccmcnmiinnics 60-14768
[S1] Imt. CLé .ooirircirrrecirnreceerinesennncereneeenes GO6F 12/06
(52] US. Cl .o reerrreccnrcccnnnenrresesssnnane 364/200
[S8] Field of Search ... 364/200 MS File, 900 MS File,

364/736

[56] References Cited
U.S. PATENT DOCUMENTS

4,172,287 10/1979 Kawabe et al.ccevvninenn. 364/736
4,293,941 10/1981 Muraoka et al.ccoeneeen 364/200
4,541,046 9/1985 Nagashima et al. 364/200
4,594,682 6/1986 Drimakccconrvvvrnnicnrieenn 364/900
4,617,625 10/1986 Nagashima et al. 364/200
4,651,274 3/1987 Omodaetal.coverrveannn, 364/200
4,760,545 7/1988 Inagami et al.ccennreeen, 364/200

(37} ABSTRACT

List operation on a vector in which the number of an
element of a vector operand is represented by an ele-
ment of another vector operand is to be performed with
a general-purpose computer system having no vector
registers. List vector elements are read out from a mem-
ory by adding at addresses determined sequentially by
adding by adding values of a request vector increment
register to a list vector address. A value resulting from
the bit shift of the element is stored in a second operand
Increment register. A second vector element is read out
from the memory at the address corresponding to a
value resulting from addition of the content of the sec-
ond operand increment register to the second operand
initial address register, the element being then stored at
the memory location of the address given by a value
resuiting from the addition of the value of the first oper-
and vector increment register to the first operand ad-
dress.

1 Claim, 5 Drawing Sheets

FROM INSTRUCTION

CONTROL. UNIT 1

US. Patent Mar. 14, 1989 Sheet 1 of 5 4,812,974
FIG |

FROM INSTRUCTION
CONTROL UNIT 1

FETCH INCRE- | | [FETCH INITIAL ||[INCRE-

ADDRESS | |[MENT ADDRESS! | ADDRESS | [MENT

REGISTER| IREGISTER| | |REGISTER| |REGISTER|} |REGISTER
ADDRESS ADDER |© -\ ADDRESS ADDER

|2
|7 18
3
!
MEMORY CONTROL UNIT
25
1S 20 24
2| 3] 23
FETCH SHIFT STORE
DATA COUNT DATA
I REGISTER! |REGISTER REGISTER
22
FROM INSTHUCTION
SHIFTER CONTROL UNIT L29
— 14 26 27
ADDRESS | |MENT |
REGISTER| | REGISTER

ADDRESS ADDER £ 28

U.S. Patent Mar. 14, 1989 Sheet 2 of 5 4,812,974

FIG 2
A~
PREL IMINARY
PROCESSING
(D)| FETCHING FROM (B)| VALUES OF REGISTERS
MEMORY AT ADDRESS |4 AND 15 ARE ADDED

TOGETHER TO BE
SUBSEQUENTLY PLACED

OF REGISTER 10
| | ADDITION OF { TO

| REGISTER Ri. IN REGISTER 13
VALUE ON DATA LINE
© IS PLACED IN REGISTER é? FETCHING FROM
ADDITION OF VALUE OF MEMORY AT ADDRESS
OF REGISTER 1|3.

REGISTER || TO
REGISTER 10.

DATA IN REGISTER 21 IS
3 LEFT-SHIFTED BY A VALUE | VALUE ON DATA

|OF REGISTER 3] TO Bt LINE 20 1S PLACED

| SUBSEQUENTLY PLACED IN REGISTER 23.
IN REGISTER 30.

DATA OF REGISTER
23 1S STORED IN
MEMORY AT ADDRESS
OF REGISTER 26.

VALUES OF REGISTERS
26 AND 27 ARE

ADDED TOGETHER.

VALUE OF REGISTER Ri=R1{+1

30 1S PLACED IN
REGISTER 15.

R{&= R1+1

POSTERIOR

PROCESSING

4,812,974

934 ~_| 14U INIWITI3 HOLO3IA 1SI
NOI1VH3dO NI G3sn (ONOT) [| C
IN3W313 HO1D03A 1SHI4 ﬁmomuw ANJIWIT3 JOLI3A LS

93y

93y A AN3W313 HOLO3A BD®= M LINIW3ITI HOLDIA LSiT
e 0 T ——
Z IN3IW313 ¥HOL1I3A 2 1IN3IW313 ¥OL193A 1SI7
| I INIW3IT3 HOLD3A b LN3IW33 HOLO3A 1SI1T1 |
v 934" L - o i 93y
S
ot - ofo] 3NTVA LN3WIWONI Y
ANvH3d40 aN C iC 1S
.m SS340Qv ONIQY3T | AR]
9. 93y 5 93d 5
- _ILHUam
l N HLON3IT HOL1D3A
§S34aav . I 1+18 O
181
0 ss3udav I oq—__LNNOD TVILINI
= 1€ . 0 Ic 0
-y | € e Gi O
- 934 —{ONVAROD-ENS|00000000| SS3HAQV AVO | | g3
= IS 8 | O

INIvA 3sva |

€ 914

U.S. Patent

3 8 O

B%HE-H—IEO 934 HISN

O 9l 2iI 8

US. Patent Mar. 14, 1989 Sheet 4 of 5 4,812,974
FI1G 4
INSTRUCTIONH
CONTROL
UNIT
> o)

N—>——
OPERATION | i—
el m—

CONTROL

O 7

8 3
_ ADDRESS OF LEFTMOST
RIGHTMOST VECTOR ELEMENT
FLAG INCREMENT VALUE
40 63

32 -39
FIG 7
INITIAL INITIAL
COUNT "0" [COUNT " -
CoCiCpCa————— Cj—————~ -Cn

Ci - BIT CORRES TO INITIAL COUNT |

n . CONTENT OF GENERAL-PURPOSE
REGISTER (R+1)

U.S. Patent Mar. 14, 1989 Sheet 5 of 5 4,812,974

FIG S

VECTOR INSTRUCTION REG.

"o RiFde] 0 J®10 —

REGISTER| LEADING ADDRESS
R3 OF OAV

REG- | VECTOR LENGTH

(Ri+1)
LEADING ADDRESS
O2Y| oF VDT 2

LEADING ADDRE

-
OF VDT 3

LEADING ADDRESS -
OF VDT 1

ADDRESS OF
CONTROL VECTOR
VDT 2 REG. VECTOR
LEADING ADDRESS ELEMENT _____ e
OF VECTOR ELEMENT - W D
| | INCREMENT VALUE —— A

INTER- ELEMENT
SPACE

®

77

VDT 3 REG.

VDT | REG.

4,812,974

1

DATA PROCESSING APPARATUS FOR
PROCESSING LIST VECTOR INSTRUCTIONS

BACKGROUND OF THE INVENTION

The present invention relates to a general-purpose
computer system having no vector register. More par-
ticularly, the invention concerns a computer system
best suited for speeding up list processings or opera-
tions. ations.

A typical arrangement of the general-purpose com-
puter to which the present invention is directed is sche-
matically shown in FIG. 4 of the accompanying draw-
ings. Referring to this figure, an instruction control unit
1 1s destined for decoding instructions to be performed
In the computer system, issuing operation commands to
an arithmetic operation unit 2 and a memory control
unit 3, controlling the sequence in which the instruc-
tions are executed, and so forth. The memory control
unit 3 performs reading of data (also referred to as data
fetch or fetching) from a main memory 4 and writing of
data (also referred to as data store or storing) in the
main memory 4. The latter is composed of a storing
medium assigned with addresses. The data fetching as
well as data storing operation to the main memory 4 is
under command of the memory control unit 3. In the
following description, the term “address” refers to the
main memory 4 unless otherwise specified. A group of
general-purpose registers generally denoted by a nu-
meral 5 comprises a plurality of registers imparted with
respective identification numbers. The number of the
register to be used is designated by the instruction.

Now, it is assumed that a vector operation is to be
performed with the general-purpose computer system
shown m FIG. 4. In such case, an integrated array pro-
cessor (referred to IAP in abbreviation) is usually added
to the operation unit 2 for performing the vector pro-
cessing or operation at a high speed. For particulars of
the IAP, reference may be made, for example, to *“Man-
ual of HITAC M-180/200 H/280 H Integrated Array
Processor” (Data Number 8080-2-041-20). In this con-
junction, the instruction which requires the use of the
IAP for its execution is referred to as an IAP instruction
(or vector instruction).

A format of the IAP instruction is shown in FIG. 5.
Operation of the instruction is designated by the “value
of the general-purpose register indicated in the field B
plus the value of the field D”. The general-purpose
register indicated in a field R1 stores therein an initial
count indicative of the origin of a vector element to be
processed. A general-purpose register indicated in a
field (R14 1) stores therein a vector length which cor-
responds to the number of times the operation or pro-
cessing 18 to be performed. The general-purpose register
indicated in a field R3 designates the main memory
address for the first byte of an operand address vector
(referred to as OAYV in abbreviation). The QAV is a
table on the main memory which designates the address
of a vector descriptor table (abbreviated to VDT) for
the vector operand. More specifically, the OAV in-
cludes a leading address of VDT 2 (i.e. VDT of the
second operand), a leading address of VDT 3 (i.e. VDT
of the third operand), a leading address of VDT 1 (i.e.
VDT of the first operand), and address of a control
vector, as can be seen in FIG. §.

The VDT has a format illustrated in FIG. 6. As will
be seen, the VDT includes the address of the vector
element at the leftmost or rightmost end (i.e. the address

5

10

15

20

25

30

35

40

45

30

33

65

2

of the vector element to be first processed), a flag and
an increment value (interval or space between vector
elements).

The control vector consists of a bit string of “0s” or
“1s+ and i1s formatted in a manner illustrated in FIG. 7.
Individual bits of the control vector correspond to the
operation units. More specifically, the leftmost bit as
viewed in FIG. 7 corresponds to the initial count “0",
the second leftmost bit corresponds to the count *“1”,
the third leftmost bit to “2”, and so forth. The length (n)
of the control vector corresponds to the number indi-
cated by the general-purpose register which in turn is
designated by “the number in the field R1 plus 17,

The IAP instruction commands the operation on the
second and third operands, the result of which is writ-
ten in the first operand. The type of operation or pro-
cessing is designated by “value of the general-purpose
register indicated in the field B plus the value of the
field D” mentioned hereinbefore, while the address of
each operand vector is given by the aforementioned
VDT. The position of the operand first to be processed
is determined by an algebraic sum of the leading address
of each operand and the product of the initial count
indicated by the aforementioned field R1 and the incre-
ment value contained in the VDT. The content of the
general-purpose register indicated by the field R1 is
incremented by one every time an operation for a set of
vector elements has been completed, wherein the next
operation is performed on the operand located at the
address corresponding to an algebraic sum of the lead-
ing address of esach operand and the product of the
number in the register or field R1 and the increment
value contained in VDT. When the content of the regis-
ter R1 becomes equal to that of the register (R1+41),
execution of the instruction comes to an end. It should
be mentioned that the control vector serves for enabling
execution of the operation.

Now, let’s consider a program which is expressed by
FORTRAN sentences as follows:

DO 101I=1, 100

A(D=B(CD)]

10 CONTINUE

This program represents an operation on an array of
arguments of other arrays, i.e. a so-called list operation
or processing in which the element numbers of a vector
constitute elements of another vector.

In this connection, it is noted that the hitherto known
general-purpose computer system additionally pro-
vided with the IAP is not so arranged as to support the
list operation. Accordingly, in order to execute the
above list operation, the elements must be processed
one by one (i.e. the vector elements must be processed
one by one with the aid of a load instruction, store
instruction and others), requiring a lot of time.

SUMMARY OF THE INVENTION

An object of the present invention is to provide a
computer system capable of executing a list operation as
a vector operation at an increased speed.

In scientific technological calculations, there often
arise such cases in which an argument of an array con-
stitutes an element of another array. As one of such
cases, there may be mentioned the so-called list opera-
tion or processing in which the element number of a

4,812,974

3

vector operand constitutes an element of another vector
operand.

With the present invention, it is contemplated to
allow a general-purpose computer system having no
vector registers to perform operations on such vectors
in which the element number of a vector operand is
represented by an element of another vector operand
(this operation is referred to as a list operation). To this
end, there is provided according to an aspect of the
invention a combination of a register for storing an
increment value of a list vector, a register for storing an
increment value of a second operand vector, a register
for storing an initial address of the second operand
vector, a register for storing an increment value of a
first operand vector, means for adding the value of the
list vector increment register to a fetch data address,
means for adding the value of the second operand vec-
tor increment register to the fetch data address, means
for adding the value of the first operand increment
register to a store data address, and means for storing a
value resulting from bit shift of data read out from a
memory in the second operand increment register,
wherein the list vector elements are read out from the
memory at addresses determined by adding sequentially
the values of the list vector increment register to the
address of the list vector, the value resulting from the
bit shift of the element being stored in the second oper-
and increment register, and the second operand vector
elements being read out from the memory equipment at
addresses determined by values obtained by adding the
contents of the second operand increment register to
the imitial address register for the second operand, the
elements being stored in the memory locations desig-
nated by the addresses determined by adding sequen-
tially values of the first operand vector increment regis-
ter to the first operand address, to thereby enable execu-
tion of the list operation in terms of a vector operation
with the aid of list operation instructions in which vec-
tor operands referred to as the list vector are made use
of.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a block diagram showing schematicaily an
arrangement of an operation system according to an
embodiment of the invention:

FIG. 218 a flow chart for illustrating operation of the
system shown in FIG. 1;

F1G. 3 1s a view showing a format of VMSX instruc-
tion provided according to the teaching of the inven-
tion;

FIG. 4 is a view showing a general arrangement of a
computer system to which the invention is directed;

FIG. § is a view illustrating a format structure of an
IAP instruction:

FIG. 6 is a view illustrating a format structure of a
VDT shown in FIG. §: and

FIG. 7 1s a view illustrating a format structure of a
control vector shown in FIG. §.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

In the first place, description will be made of a list
vector. The list vector serves for functions mentioned
below. When J represents a certain integer, the address
of the J-th element of the vector operand of an IAP
instruction is ordinarily a value equal to the leading
address of the operand which is added to an increment
value multiplied by (J—1). The leading address of the

10

135

20

23

30

35

45

30

35

65

4

operand and the increment value are indicated in the
VDT. In contrast, the address of the J-th element of the
vector operand designated by the list vector has a value
equal to the leading address of the operand added to a
mulitiple which corresponds to data destined to deal
with the J-th element of the list vector.

As the instructions employing the list vector, a
VMSX (an abbreviation of Vector Move Source In-
dexed) instruction and a VMTX (an abbreviation of
Vector Move Target Indexed) instruction are estab-
lished, specifications of these instructions being defined
as follows;

VMSX instruction: The second operand is designated
by the list vector, while no list vector is employed for
the first operand. Individual vector elements of the
second operand are stored at the corresponding posi-
tions of the first operand.

VMTX mstruction: The first operand 1s designated
by the list vector, while no list vector is employed for
the second operand. Individual vector elements of the
second operand are stored at the corresponding posi-
tions of the first operand.

In the following, functions of the list vector will be
described by taking the VMSX instruction as an exam-
ple.

FIG. 3 illustrates operand designation of the VMSX
instruction. The OAYV includes the leading address of
the VDT of the list vector, the leading address of the
VDT of the second operand vector, and the leading
address of the VDT of the first operand vector. The
VDT of the list vector includes the leading address of
the list vector and an increment value.

The address of the first vector element of the list
vector is determined by adding the product of the initial
count indicated in the field R1 and the increment value
in the VDT of the list vector to the leading address of
the list vector indicated in the VDT thereof. With the
address thus derived, the first vector element of the list
vector is obtained.

The address of the vector element of the second oper-
and at the beginning of operation corresponds to a value
determined by adding the first vector element of the
aforementioned list vector multiplied with 4 (in case the
operand is 32-bit data) or multiplied with 8 (in case the
operand is 64-bit data) to the leading address of the
second operand indicated in the VDT of the second
operand. By using the address derived in this manner,
the first vector element of the second operand is deter-
mined.

The manner in which the address of the vector ele-
ment of the first operand is determined is similar to the
case of the ordinary IAP instruction described herein-
before.

The content of the general-purpose register indicated
in the field R1 is incremented by “1” every time the
operation for a set of vector elements (in the instant
case, the processing for storing the second operand
element at the first operand’s address) has been com-
pleted. The second operand element employed in the
subsequent operation is designated by using the list
vector element located at an address determined
through algebraic addition of the product of the up-
dated number in the register R1 and the increment value
in the VDT to the leading address of the list vector. The
designation is realized by adding the aforementioned list
vector element multiplied by 4 or 8 to the leading ad-
dress of the second operand, as described hereinbefore.

4,812,974

d

At the time when the content of the register R1 be-

comes equal to that of the register (R1+ 1), execution of

the instruction comes to an end.

The VMTX instruction is similar to the VMSX in-
struction except that the first operand is designated by
the list vector and that the second operand makes use of
no list vector.

Now, a first exemplary embodiment of the present
invention will be described by referring to FIGS. 1 and
2.

An arrangement shown in FIG. 1 corresponds to that
of the operation unit 2 shown in FIG. 4. Referring to
FIG. 1, reference numerals 10 and 13 denote fetch ad-
dress registers where adrresses for the data to be
fetched are set. The addresses set at the fetch address
registers 10 and 13 are sent to the memory control unit
3 by way of fetch address lines 17 and 18, respectively,
whereby data located at these addresses of the main
memory 4 are read out (i.e. fetched). A fetch data regis-
ter 21 stores therein the data read out from the main
memory 4 through a fetch data line 19. A shifter 22
shifts the data placed in the register 21 to the left or to
the right by the value set at a shaft count register 31. The
shifted data is stored in a register 30. A reference nu-
meral 26 denotes a store address register at which the
address for the data to be stored is set. The stoning
operation is effected in such a manner that the memory
control unit 3 is supplied with data placed in a store data
register 23 through a store data line 24 and stores the
data at the main memory address set at the store address
register 26 through a store address line 29.

A characteristic feature of the present invention re-
sides 1n addition of increment registers 11, 15 and 27, an
initial address register 14, address adders 12, 16 and 28
and a data line 25 to the structure described above.

The increment resister 11 stores therein the increment
value of the list vector (indicated in the VDT of the list
shown m FIG. 3). The initial address register 14 stores
therein the leading address of the second operand (indi-
cated in the VDT of the second operand shown in FIG.
3). The increment register 15 stores therein the value of
the register 30. On the other hand, the increment regis-
ter 27 stores therein the increment value of the first
operand vector (indicated in the VDT of the first oper-
and). The address adder 12 adds the values of the fetch
address register 10 and the increment address register
11 to each other, the resultant sum being stored again in
the fetch address register 10. The address adder 16 adds
together the values of the initial address register 14 and
the increment address register 15, the resultant sum
being stored in the fetch address register 13. The ad-
dress adder 28 adds together the values of the store
address register 26 and the increment register 27, the
sum being stored again in the store address register 26.
Herenafter, operation of the VMSX instruction will be
described, by way of example.

The operation unit 2 according to the invention is
controlled in accordance with a microprogram. A mi-
croprogram for the VMSX instruction is illustrated in
FI1G. 2. In precedence to the execution of the micropro-
gram, the instruction control unit 1 performs the regis-
ter settings or loadings as follows. Namely, the leading
address of the list vector (indicated in VDT of the list
vector shown in FIG. 3) is loaded in the fetch address
register 10. The increment value of the list vector is
loaded in the increment register 11. The leading address
of the second operand is loaded in the initial address
register 14. The leading address of the first operand

J

10

15

20

25

30

35

40

45

53

65

6

(included in VDT of the first operand) is loaded in the
store address register 26. The increment value of the
first operand vector is loaded in the increment register
27. Finally, the shift count register 31 is loaded with “4”
in case the operand data 1s 32-bit data or “8” 1n case the
operand data is 64-bit- data. These loadings are prelimi-
nary processings A.

Now, description will be made by referring to FIG. 2.

At a step of the microprogram, data is read out
(fetched) from the main memory 4 at the address desig-
nated by the value set in the fetch register 10. This data
as read out is the first element of the list vector. At this
time point, the register R1 (containing the initial count)
18 added with “1” (i.e. incremented), because one ele-
ment has been processed.

At a step , data of the first element of the list
vector read out at the step (1) appearing on the fetch
data line 19 is placed in the fetch data register 21. Fur-
ther, the address of the next element of the list vector is
determined by adding the value of the increment regis-
ter 11 to the value of the fetch address register 10.

At a step (@), the first element of the list vector
stored in the fetch data register 21 is shifted to the left
by the number indicated by the shift count register 31 to
be subsequently placed in the register 30.

At a step (@), the value of the register 30, i.e. the
shifted initial value of the list vector, is placed in the
increment register 15.

At a step (8), the result of shifting of the first element
of the list vector as stored in the increment register 1§ is
added to the leading address of the second operand
stored in the initial address register 14, the sum thus
obtained being placed in the fetch address register 13.
The value now set in this register 13 represents the
address of the first element of the second operand.

At a step (6), data is read out from the main memory
at the address designated by the content of the fetch

address register 13,
At a step (9, the first element of the second operand

as read out is placed in the store data register 23.

At a step (8), the first element of the second operand
stored in the store data register 23 is set at the leading
address of the first operand indicated by the store ad-
dress register 26, whereupon the element of VMSX
instruction has been processed. The address of the next
element of the first operand is determined by adding the
leading address of the first operand stored in the store
address register 26 to the increment value of the first
operand stored in the increment register 27, the sum
being stored again in the store address register 26.

If the value of the register R1 (i.e. the number of the
last processed element) equals the value of the (R1+1)
register 23 (the number of the last element), it is decided
that the operation has been completed, and posterior
processings B are executed. Otherwise, the step (T) is
regained to start the processing of the next element. In
the posterior processing, acception of interrupt occur-
ring in succession to the execution of the last step as
well as loading of “0” in the register R1 is performed.

Through the procedure described above, the VMSX
instruction is executed. The VMTX instruction can be
executed through essentially similar procedure.

As will be appreciated from the foregoing descrip-
tion, the present invention makes it possible to execute
the list operation in terms of vector operation in the
general-purpose computer system, whereby the pro-
cessing of a program including list operation in which

4,812,974
7 8
the argument of an array constitutes an element of an- and for storing as a store data address the result of
other array can be performed at an increased speed. addition representative of an address of the first

We claim: operand vector into said sixth register; bit shift
1. A general-purpose computer system having a means for performing bit shifting of an element of
memory, but no vector registers, comprising: 5 the list vector read out from said memory in re-

instruction control means responsive to a list vector sponse to the fetch data address stored in said fifth

instruction for providing an increment value of a
list vector, an initial address of a second operand
vector, an increment value of a first operand vec-

register and for storing a value resulting from the
bit shift into said second register; and memory
control means for (i) reading out elements of the

tor, an initial address of said list vector and an 10 list vector from said memory at addresses deter-
initial address of a first operand vector; a first regis- mined by said first adding means adding sequen-
ter for storing said increment value of a list vector; tially values stored in said first register to the fetch
a second register for storing an increment value of data address stored in said fifth register for storing
a second operand vector; a third register for stor- said read-out elements into said second register
ing said initial address of the second operand vec- 15 after bit shift thereof by said bit shift means, and (ii)
tor; a fourth register for storing said increment reading out elements of the second operand vector
value of a first operand vector; a fifth register for from the memory at addresses determined by a
storing a fetch data address, the initial value of value obtained by adding sequentially values stored
which is said tnitial address of said list vector: a in said second register to the initial address of the
sixth register for storing a store data address, the 20 second operand vector stored in said third register
initial value of which is said initial address of the by said second adding means and for storing said
first operand vector; first adding means for adding second operand vector elements into memory loca-
the value stored in said first register to the fetch tions designated by addresses determined by add-
data address stored in said fifth register and for ing sequentially values stored in said fourth register
storing as a fetch data address the result of addition 25 to an address of the first operand vector stored in
representative of an address of the list vector into saild sixth register by said third adding means;
said fifth register; second adding means for adding whereby a list operation specified by a list vector
the value stored in said second register to a value instruction can be executed in which the number of
stored in said third register; third adding means for an element of the second operand vector is repre-
adding the value stored in said fourth register to 30 sented by an element of the list vector.
the store data address stored in said sixth register * %

35

40

435

30

55

60

63

	Front Page
	Drawings
	Specification
	Claims

