United States Patent 9

Myers et al.

(54]

[73]

(73]
[21]
[22]

[51]
[52]
[58]

[36]

STACK FRAME CACHE ON A
MICROPROCESSOR CHIP

Inventors: Glenford J. Myers; Konrad Lai, both

of Aloha; Michael T. Imel,
Beaverton; Glenn Hinton, Portland;
Robert Riches, Hillsboro, all of Oreg.

Assignee: Intel Corporation, Santa Clara, Calif.

Appl. No.: 863,878

Filed: May 16, 1986

Int. CLYoeeeerreereervenessvnncrsnancses GO6F 12/08

US. Cl .rcrrircrireneenrneccnnseessnscnsreses 364/200

Field of Search ... 364/200 MS File, 900 MS File

References Cited
U.S. PATENT DOCUMENTS

4,268,903 5/198]1 Mikiet al. ..cccovveeerivemrrceennene. 364/200
4,445,173 4/1984 Pilatet al.ccoovevvrrivernnnenn. 364/200
4,516,203 5/1985 Farberetal. ...ccoorvcoinnnees 364/200
4,530,049 T/1985 Zee .rcerrierrccrrrcennrccnnrecens 364/200
4,652,996 3/1987 Bowdenniccniicinninee 364/200

FOREIGN PATENT DOCUMENTS
0075632 of 0000 European Pat. Off. .

0075633

4/1983 European Pat. Off. .

Primary Examiner—Raulfe B. Zache
Assistant Examiner—Emily Y. Chan

4,811,208
Mar. 7, 1989

Patent Number:
Date of Patent:

[11]
[45]

Attorney, Agent, or Firm—Owen L. Lamb
[57] ABSTRACT
A plurality of global registers are provided on the mi-

- croprocessor chip. One of a global registers i1s a frame

pointer register containing the current frame pointer,
and the remainder of the global registers are available to
a current process as general registers. A plurality of
floating point registers are also provided for use by the
current process in execution of floating point arithmetic
operations. A register set pool made up of a plurality of
register sets 1s provided, each register set being com-
prised of a number of local registers. When a call in-
struction is decoded, a register set of local registers
from the register set pool is allocated to the called pro-
cedure, and the frame pointer register is initialized.
When a return instruction is decoded, the register set is
freed for allocation to another procedure called by a
subsequent call instruction. If the register set pool is
depleted a register set associated with a previous proce-
dure i1s saved in the main memory, and that register set
18 allocated to the current procedure. The local registers
in a register set associated with a procedure contain
linkage information including a pointer to the previous
frame and an instruction pointer, thus enabling most call
and return mstructions to execute without needing any
references to off-chip memory.

3 Claims, 3 Drawing Sheets

2 LOCAL 8US I

LOCAL BUS SEQUENCER

INSTRUCTION

]O_FETCH UNIT --- BE;?JIT
I 22
INSTRUCTION
CACKE €1
| FP
8 (1 RECISTERS
INSTRUCTION -
DECODER (€M
GLOBAL
MICRO-
INSTRUCTION REGISTERS
14~ SEQUENCER
> t REGISTER
| MICRO- (?m‘nﬂ
msanou'%nouﬁ... e
IE\:—:—-_
TRANSLATION
LOOK ASIDE 1-BIT
BUFFER L

[. Y

US. Patent Mar. 7, 1989 Sheet 1 of 3 4,811,208

FIG. |

0 LOCAL BUS I
I S - -

LOCAL BUS SEQUENGER

=

20"

INSTRUCTION
CACHE
F P
s REGISTERS
INSTRUCTION
DECODER N
GLOBAL
MICRO-

INSTRUCTION REGISTERS
|4~ SEQUENCER - _ |
26

— . REEISTER
(STACK
MICRO -
FRAME)

INSTRUCTION

8
\{TRANSLATION
LOOK ASIDE . 39— BT
BUFFER (EU

US. Patent Mar. 7, 1989 Sheet20f3 4,811,208
FIG. 2

b lGLOBAL REGISTERS
30~ 61D 32
F PO FLOATING POINT
!REGISTERS
FP3 34
—_— | J IABRB[THMETIC CONTROLS
LINEAR ADDRESS SPACE | ||Ig58TRUCT|ON POINTER

FIG. 3 v

OLD SP //’////’/;'//z"/////.-’//z’/f.-’//////’f/’/

80 ——1/777/7/PADDING AREA 777777777

L1707/ 2777 77777727777 77777777

4L & {PREVIOUS FRAME PTR(PFP) [PIRRRIT| 0

44,_L1,15TACK POINTER (SP) 4 —
" IL. § [RETURN INSTRUCTION POINTER (RIP) | |82
14| 16
= - —l
L15 | 60

}r

'y |
- STACK
a_— ﬂ: ~ GROWTH
{EEK«' U |
(POINTER) |
p E\H US | (PREVIOUS)

:

R
CURRENT T R (FRAME)
pOINTER L PREVIOUS | (cuRew)
CURRENT (POINTER)_[(FRAME)
STACK -
BOINTER

US. Patent Mar. 7, 1989 Sheet 3 of 3

FIG. S

RO

GLOBAL -
REGISTER '
RIS]

RI6. ,/——J

FRAME |
REGISTER FRAME

R3|_S_EI_5_____:_ N
RI6[FRAME |

RECISTER FRAME

SFT
R3| N
RIG| FRAME |

REGISTER

R3|£I_l____

4,811,208

1

STACK FRAME CACHE ON A MICROPROCESSOR
CHIP

TECHNICAL FIELD

The present invention relates to data pmcessmg SYyS-
tems, and more particularly to apparatus for mmumzlng
main memory references initiated during execution of

call/return mstructions.

BACKGROUND ART

Rapid advances in VLSI technology and design tech-
niques have enabled microcomputers-to approach the
performance and sophistication of a super minicom-
puter. As processors become faster, the traffic between
the processor and off-chip main memory increases caus-
ing a performance bottleneck. In prior systems this
bottleneck has been lessened by using a local on-chip
memory (called a cache) to store frequently used mem-
ory data. If data required by the processor is in the
cache, an off-chip memory reference is avoided since
the data can be fetched directly from the cache. Further
reductions in memory traffic could be achieved if the
cache design were expanded to include instruction fet-
ches. For example if information relating to call and
return instructions were available locally on the chip,
call and return instructions could execute without refer-
ences to the off-chip memory. The resulting decreased
memory bus traffic would also reduce the probability
that a load or store instruction will have to wait for the
memory bus.

It 18 therefore an object of the present invention to
provide an apparatus for mmmuzmg main memory
references occurring during execution of call/return
instructions.

SUMMARY OF THE INVENTION

Briefly, the above object is accomplished in accor-
dance with the invention by providing a plurality of

10

15

20

25

30

35

global registers on the microprocessor chip. One of the 40

global registers is a frame pointer register containing the
current frame pointer, and the remainder of the global
registers are available to a current process as general
registers. A stack frame cache mechanism is provided
comprised of a register set pool made up of a plurality of
register sets, each register set being comprised of a
number of local registers on the chip. When a call in-
struction i1s decoded, a register set from the register set
pool is allocated to the called procedure, and the frame
pointer register is initialized. When a return instruction
is decoded, the register set is freed for allocation to
another procedure called by a subsequent call instruc-
tion. If the register set pool is depleted, the contents of
a register set associated with a previous procedure are
saved in the main memory, and that register set is allo-
cated to the current procedure.

In accordance with an aspect of the invention, the
local registers of a register set associated with a proce-
dure contain linkage information including a pointer to
the previous frame and an instruction pointer, thus en-
abling most call and return instructions to execute with-
out needing any references to off-chip memory.

The invention has the advantage that it significantly
reduces the saving and restoring of registers that must
be done when crossing subroutine boundaries.

The invention also has the advantage that since the
local register sets are mapped into the stack frames, the
linkage information that normally appears in stack

43

50

35

65

2

frames (e.g., pointer to previous frame, saved instruc-
tion pointer) is contained in the local registers. This
means that most call and return instructions execute
without causing any references to off-chip memory.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features, and advan-
tages of the invention will be apparent from the follow-
ing more particular description of the preferred embodi-
ments of the invention as illustrated in the accompany-
ing drawings, wherein:

FIG. 1 1s a functional block diagram illustrating each
of the major components of the microprocessor in
which the invention is embodied;

FIG. 2 1s a block diagram of an execution environ-
ment when executing an instruction on the system
shown 1n FIG. 1;

FIG. 3 is a diagram of the stack frame structure
within the current linear address space of the execution
environment shown in FIG. 2;

FIG. 4 15 a diagram of the call stack structure within
the current linear address space of the execution envi-
ronment shown in FI1G. 2; and,

FIG. 5 illustrates the mapping of the microproces-
SOr’s register sets into the program’s stack in memory.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

Referring now to FIG. 1, the microprocessor is logi-
cally subdivided into seven major units: the Instruction
Fetch Unit (10), the Instruction Decoder (12), the Mi-
croinstruction Sequencer (14), Translation Lookaside
Buffer (18), the Floating Point Unit (22), the Local Bus
Sequencer (20), and the Integer Execution Unit (24).

Communication paths between all of these units in-
clude a 32-bit data bus, a 29-bit microinstruction bus
(26), and a microinstruction-valid signal (28). The mi-
croinstruction bus controls and synchronizes the activi-
ties of the autonomous units. Each of the units is de-
scribed briefly below.

The Instruction Decoder (ID) decodes and controls
instruction (macrocode) execution. The ID decodes
instructions, performs operand addressing and fetching,
handles branch instructions (i.e., instruction pointer
manipulation), and either emits execution microinsiruc-
tions (for simple instructions) or starts microprogram
flows (for complex instructions).

The Instruction Fetch Unit (IFU) fetches, prefetches,
and caches instructions from memory for use by the ID.
The IFU also maintains six instruction pointers that
track instructions through the pipeline. The IFU caches
the most-recently used blocks of instructions and keeps
the instruction decoder supplied with a stream of in-
structions. It also contains the instruction pointers and
operand reduction logic controlled by the ID.

The Micromnstruction Sequencer (MIS) sequences
microcode flows to handle chip initialization, macroin-
structions that are too complex to handle directly, and
exception and interrupt conditions.

The MIS contains a 3K by 42.bit microcode ROM
and sequencing logic for microcode flows. The func-
tions that the MIS perform include: fetch the next mi-
croinstruction, microprogram branching, handle excep-
tion conditions, maintain a scoreboard on the register
file, and in conjunction with the ID, detect macroin-
struction-boundary and trace events.

4,811,208

3

The Integer Execution Unit (IEU) executes most of
the microinstructions issued by the ID and the MIS. It
contains the registers visible to the programmer, the
scratch registers used by microcode, the ALU, barrel
shifter, and the logic needed to execute its instructions.
The IEU contains one-hundred twelve 32-bit registers,
a 32-bit ALU, and a 32-bit barrel shifter. It features an
ALU bypass path that allows ALU operations to be
executed at the rate of one per cycle. It also contains a
single-port register file that can be accessed twice in one
cycle such that the result from the previous operation
can be stored in the same cycle as a new operand is
being fetched for the current operation.

The Floating Point Unit (FPU) contains the logic
needed to perform floating point operations, and integer
multiply and divide. The FPU contains four floating
point registers, several temporary registers, a 68-bit
shifter that can shift up to 16 bits in either direction, a
69-bit mantissa adder, a significant bit finder, a mantissa
ROM, two internal 68-bit data paths, and a separate
exponent data path that includes its own 16-bit adder
and registers. It executes integer multiply and divide,
and all floating point operations, including the cordic
algonthms for the transcendental instructions.

The Translation Lookaside Buffer (TLB) performs
the address translation needed to implement virtual
memory mechanisms. The TLB performs address trans-
lation and memory protection using an associative table
of storage descriptors and page table entries. It contains
a 48-entry address cache, a six-bit address adder, and
memory protection checking hardware. Each entry in
the address cache contains 27 CAM bits and 38 RAM
bits. The TLB supports several address translation
mechanisms to allow the user to choose the type of
memory protection from a vanety of conventional
mechanisms (paging or segmentation).

The Local Bus Sequencer pipelines and sequences
external bus accesses. The local bus sequencer contains
the interface hardware to the external local bus, man-
ages the bus protocol, and recognizes external events
(e.g., interrupts, initialization). It contains an outgoing
33-bit wide address and data FIFO, an incoming 33-bit
data FIFQ, and a sequencer. The outbound FIFO al-
lows up to 3 requests to be queued in the local bus
sequencer so that the rest of the processor can proceed
with execution, independent of the memory access la-
tency. The inbound FIFO buffers read data returning
from external memory until a free cycle is available to
transfer the data to its destination.

A plurality of global registers (21) are provided. One
of the global registers is a frame pointer register con-
taining the current frame pointer, and the remainder of
the global registers are available to a current process as
general registers. A register (stack frame) cache (23) is
provided comprised of a register set pool made up of a
plurality of register sets, each register set being com-
prised of a number of local registers. When a call in-
struction is decoded, a register set from the register set
pool 1s allocated to the called procedure, and the frame
pointer register s initialized. When a return instruction
15 decoded, the register set if freed for allocation to
another procedure called by a subsequent call instruc-
tion. If the register set pool is depleted, the contents of
a register set associated with a previous procedure ae
saved in the main memory, and that register set is allo-
cated to the current procedure. The local registers of a
register set associated with a procedure contain linkage
information including a pointer to the previous frame

10

15

20

25

30

35

43

50

35

60

63

4

and an instruction pointer, thus enabling most call and
return instructions to execute without needing any ref-
erences to off-chip memory.

Instruction Set

A process sees a flat linear address space, addressed
with 32-bit ordinals, out of which it allocates data, in-
struction, and stack space. A call instruction creates a
new stack frame (activation record) on a sequentially
allocated stack.

The instruction set of the microprocessor is similar in
design to those of RISC (reduced instruction-set com-
puter) machines. All instructions are 32-bits in length
and must be aligned on word boundaries, and only load,
store, and branching instructions reference memory (all
others reference registers).

Refer to FIG. 2 which shows the environment when
executing. The execution environment consists of a
2**32 byte linear address space (30) and thirty six regis-
ters. Of the thirty six registers, 16 are 32-bit global regis-
ters (32), sixteen are 32-bit local registers (34), and the
remaining four are 80-bit floating-point registers (36).
The local registers are associated with a mechanism
known as the stack-frame cache. When a procedure is
called, a new set of local registers are allocated from a
pool of registers on-chip, and are freed by a procedure
return. The present embodiment of the invention pro-
vides four sets (64) of local registers on-chip, but this
number is transparent to the programmer.

The register model consists of 16 global registers and
4 floating-point registers that are preserved across pro-
cedure boundaries, and multiple sets of 16 local (or
frame) registers that are associatively mapped into each
stack frame.

At any instant, an instruction can address thirty six of
these registers as follows:

Register Type Register Name
Global Register GG. .. GIS
Floating-Point Register FPO...FP3
(floating-point operand)

Local Register LO...LIS

At any point in time, one can address thirty-two 32-
bit registers, and four 80-bit floating-point registers (the
32 registers can also be used to hold floating-point val-
ues). On the 32 registers, 16 are global registers and 16
are local registers. The difference is that the 16 global
registers are unaffected when crossing procedure
boundaries (i.e., they behave like “normal” registers in
other processors local registers are affected by the call
and return instructions.

When a call instruction is executed, the processor
allocates to the called procedure a new set of 16 local
registers from an on-chip pool of four register sets. If
the processor’s four-set pool is depleted, the processor
automatically reallocates a register set by taking one
register set associated with an earlier procedure and
saving the contents of that register set in memory. The
contents of the earlier procedure’s register set are saved
in the first 16 words of that procedure’s stack frame in
memory. Because of this, the mechanism 1s named the
stack frame cache. The return instruction causes the
current local register set to be freed (for use by a subse-
quent call).

There are sixteen global registers (32) associated with
a process; they are saved in the process control block

4,811,208

S

when the process is not executing. Global registers are
not associatively mapped into the process control block.
Of the sixteen 32-bit registers, G15 contains the cur-
rent frame pointer (FP) and GO0. .. G14 are general-pur-
pose registers. The FP contains the linear address
(pointer) into the current execution environment for the
current (topmost) stack frame. Since stack frames are
aligned to 64-byte boundaries, the low-order 6 bits of
FP are ignored and aiways interpreted to be zero. This
register 1s initialized on calls and restored on returns.
A reference to a register as an operand that is bigger
than 32 bits uses the registers with consecutive higher

register numbers.

Floating-Point Registers

There are four floating-point registers (34) associated
with a process; they are saved in the process control
block when the process is not executing. Floating-point
registers are not associatively mapped into the process
contrl block.

Floating-point numbers are stored in extended real
format in the floating-point registers. Floating-point
registers are accessed only as operands of floating-point
instructions (but such instructions may also use the
32-bit local and global registers).

Arithmetic Controls

The Arithmetic Controls (36) are used to control the
arithmetic and faulting properties of the numeric in-
structions as well as for storing the condition codes.
When a process is suspended, the arithmetic controls
information is saved in the process control block.

Instruction Pointer

The Instruction Pointer (38) is a linear address (poin-
ter)into the current linear address space to the first byte
of the current instruction. Since instructions must begin
on word (4-byte) boundaries, the two low-order bits of
IP are ignored and assumed to be 0.

Local (or Frame) Registers

Refer to FIG. 3. Registers LO . . . L15, the local
registers, do not denote registers of the conventional
variety; they denote the first 16 words of the current
frame. Thus, register 1.0 is mapped into linear address
FP+4+0 to FP+3, register Li is mapped into linear ad-
dress FP+4i to FP+4i4-3, and so on.

A cache of multiple stack frames is provided. There
are multiple banks of high-speed registers, one bank per
procedure activation. The program does not have to
save and restore registers explicitly.

Stack Frame

The stack frame, shown in FIG. 3, is a contiguous
portion of current linear address space, containing data
in a stack-like fashion. There is one stack frame per
activated procedure, which contains local variables,
parameters, and linkage information. A call operation
acquires a new stack frame; a return operation releases
it. When a new frame is acquired, it is aligned on a
64-byte boundary.

The fields in the stack frame of FIG. 3 are defined as
follows:

Padding Area

This area (42) is used to align the FP to the next

64-byte boundary. The size of this area varies from 0 to
63 bytes. When a call operation is performed, a padding

10

15

20

25

30

35

40

43

50

55

65

y 6
area is added to round the caller’s SP to the next 64-byte
boundary to form the FP for this frame. If the caller’s
SP is already aligned, the padding area is absent.

Frame Status (L0)

The frame status (42) records the information associ-
ated with the frame, after a call, to be used on a return
from the frame. The fields of a frame status are defined
as follows:

Trace Enable, T (Bit 0)

In a supervisor call, this bit records the trace-enabie
bit at the time of the call. On return, this bit is used to
restore the caller’s trace-enable bit in the process if the
execution mode of the returning frame is supervisor.

Return Status, RRR (bits 1-3)

This 3-bit field records the call mechanism used in the
creation of this frame and is used to select the return
mechanism to be used on return. The encodings of this
field are as follows:

000 Local

001 Supervisor

G110 Interrupt

01t Nonsubsystem fault
100 Subsystem

101 reserved

110 [dle/stopped interrupt
111 reserved

Prereturn Trace, P (bit 4)

On a return from a frame when the prereturn trace bit
1s 1, a prereturn trace event (if enabled) occurs before
any actions association with the return operation is
performed. This bit is initialized to zero on a call.

Previous Frame Pointer, PFP (bit 6-31)

A linear address (42) to the first byte of the previous
frame. Since frames are aligned to 64-byte boundaries,
only the most-significant 26 bits of the FP are saved. If
the return status indicates subsystem transfer, this field
contains the most-significant 26 bits of the linear address
of the top-most (last) frame in this call stack before the
call. Otherwise, the top-most frame is the calling frame.

During a call, the lower five bits of the frame status
are initialized as follows:

0 000- Local call, or supervisor call from
supervisor state

0 00IT Supervisor call from user mode

0 010 Interrupt call

0 01l- Nonsubsystem fault call

0 100- Subsystem call

0 110- Interrupt call from idle or stopped state

T 1s the value of the trace bit defined above. ‘- indi-
cates a reserved bit, while “x’’ indicates a don’t-care bit.
On all returns, the bits are interpreted as follows:

1 xxxx Generate a prereturn trace
0 000x Perform a local return
O 00T In supervisor mode, perform a supervisor

return. The T bit 1s assigned to the trace-
enable bit 1n the process controls, and the
execution-mode bit 15 set to user. Other-
wise, perform a local return.

0 010x Perform an interrupt return

4,811,208

7
~continued
0 Olix Perform a fault return
0 100x Perform a subsystem return
0 10lx OPERATION.RETURN fault
0 110x Perform an idie/stopped-interrupt return
0 1lix OPERATION.RETURN fault

Stack Pointer, SP (L1)

A linear address (44) to the first free byte of the stack,
that is, the address of the last byte in the stack plus one.
SP is initialized by the call operation to point to FP plus
64.

Return Instruction Pointer, RIP (L.2)

When a call operation is performed to a new frame,
the return IP (46) is saved here. When the process is
suspended, the instruction pointer of the next instruc-
tion is stored here. It contains a 32-bit linear address to
which control is returned after a return to this frame.

A procedure call saves the [P in a register of the
current frame. Since implicit procedure calls can occur
(due to faults and interrupts), programs do not use this
register for other purposes.

The stack grows (FIG. 4) from low addresses to high
addresses.

FIG. § illustrates the mapping of the microproces-
sOr’s register sets into the program’s stack in memory.

The page, or simple object, into which the first 64
bytes of a frame are mapped must be of local lifetime.
The lifetime of the page or simple object is checked
during a call. This restriction is necessary to ensure
efficient manipulation of ADs in the local registers.

Linear Address Space Structure

As shown in FIG. 2, each execution environment
defines a 32-bit linear address space. The linear address
space is partitioned into four regions. The first three
regions of an execution environment are specific to the
current process (i.e., defined by the process control
block). The composition of the process specific regions
can be changed by a subsystem call/return. The fourth
region of an execution environment is shared by all
processes (1.e., defined by the processor control biock).

There are no restrictions on where instructions, stack
frames, or data are located in the linear address space.

Local Procedure Mechanism

A procedure begins at any arbitrary word address in
a linear-address space. Procedure calls and return use a
stack in the linear address space.

Instructions

CALL

CALL_EXTENDED

CALL and CALL_EXTENDED invoke the proce-
dure at the address specified. CALL specifies the proce-
dure as IP plus a 24-bit signed displacement. CALL _.
EXTENDED specifies the procedure using a general
memory effective address. CALL_EXTENDED also
contains an operand which becomes AP in the new
frame.

10

15

20

25

30

335

45

50

33

A new stack frame is allocated during the call opera- 65

tion and the control flow 1s transferred to the specified
procedures. The execution environment remains un-
changed.

8

RETURN

The RETURN instruction transfers control back to
the calloing procedure’s addressing environment and
releases the called procedure’s stack frame. Instruction
execution i1s continued at the instruction pointed to by
the RIP in the calling procedure’s frame.

MODIFY__AC

CONVERT _ADDRESS

MODIFY_AC is used to read or modify the current
arithmetic controls. Because the region ADs are not
directly accessible, the CONVERT _ADDRESS in-
struction can be used to convert a linear address into a

virtual address.

Process Management

A software process or task, is represented by a pro-
cess control block. Two means are provided for the
control of process switching. One is via two instructions
(save_process and resume__process), which allow an
operating system to switch processes explicitly. An-
other is a priority-based process scheduling and dis-
patching function that is built into the processor. Using
the latter mechanism, the processor will automatically
dispatch processes from a queue in memory.

The processor keeps track of the cumulative execu-
tion time of each process, and also provides optional
time-slice management. For the latter, whenever a pro-
cess executes for longer than a prescribed amount of
time, the processor will generate a fault, or enqueue the
process on the queue of available processes and dispatch
another process.

When automatic process dispatching 1s used, a set of
interprocess communication instructions are provided,
which are similar to services normally provided in soft-
ware operating-system kernels. They provide support
for the communication of messages among processes.

Tracing and ICE Support

Software debugging and tracing 1s provided by
means of a trace-controls register that is part of each
process. The trace controls allow detection of any com-
bination of the following events:

Instruction execution (i.e., single step)

Execution of a taken branch instruction

Execution of a call instruction

Execution of a return instruction

Detection that the next instruction is a return instruc-

tion

Execution of a supervisor or subsystem call

Breakpoint (hardware breakpoint or execution of a

breakpoint instruction)

When a trace event is detected, the processor gener-
ates a trace fault to give control to a software debugger
or monitor. The processor contains two instruction
breakpoint registers, into which a debugger can place
the addresses of two instructions.

External Bus

The microprocessor’s bus i1s a 32-bit multiplexed bus
with burst-transfer capability. The burst-transfer mech-
anism (which allows multiple words to be transferred in
successive cycles) allows the bus to be defined as multi-
plexed. Burst transfers can occur for 1, 2, 3, or 4 words.
During the address cycle, the processor indicates the
number of words in the request in the low-order two
address bits. For instance, if the processor wishes to
read four words, the bus operation isn’t terminated until

4,811,208

9

for READY’s are received. Burst-transfer operations
are used often by the processor for instruction-cache
fills, stack-frame-cache saves and restores, multiword
loads and stores, string operations, and so on.

The microprocessor is highly pipelined. There are
normally five instructions in different stages of execu-
tion in the pipeline at any given moment. In any given
cycle, the instruction pointer to instruction n+-4 is com-
puted, instruction n+3 is read from the instruction
cache, instruction n+2 is decoded and issued to the
microinstruction bus, instruction n+1 18 being exe-
cuted, and the result of instruction n is being stored into
the register file.

While the invention has been particularly shown and
described with reference to preferred embodiments
thereof, it will be understood by those skilled in the art
that the foregoing and other changes in form and detail
may be made therein without departing from the spirit
and scope of the invention.

What is claimed is:

1. A data processor fabricated on an integrated circuit
chip, said data processor including an instruction execu-
tion unit (24), said data processor having a main mem-
ory bus (local bus) for connecting said data processor to
a main memory, said main memory being external to
said chip, said main memory having stored therein first
program instructions of a first process and program
instructions of a second process, said first instructions
including a call instruction for calling said second pro-
cess, said data processor having a register (stack frame)
cache (23), the improvement in said data processor
comprising:

a plurality (G0-G15) of global registers (21) on said
integrated circuit chip, one ((G15) of said global
registers being a frame pointer register containing a
current frame pointer which points to a current
frame corresponding to a current process running
on said processor, and the remainder of said global
registers being general registers available to said
current process,

a register set pool in said register cache (23) on said
integrated circuit chip made up of a plurality of
register sets, each register set being comprised of a
number of local registers;

address translation means (18, 24) connected to said
register cache (23) for mapping said local registers
onto corresponding frames in the address space of
sald main memory external to said chip;

said frame pointer register (G15) including a frame
pointer which points to an earlier allocated register
set;

said local registers of each register set providing
space for storing linkage information including a
previous frame pointer (H6) which contains the

10

13

20

25

30

33

40

43

30

10

struction pointer (RIP) which contains the instruc-
tion pointer of the next sequential instruction in the
instruction stream of the process that had created
the frame to which said register set corresponds;

a first one of said register sets being allocated to said
first process;

an internal bus in said processor connecting together
said register cache (23), said global registers (21)
and said instruction execution unit (24);

said global registers (21) and said local registers (23)
being addressable over said internal bus by micro-
instructions executed by said instruction execution
unit (24) in said data processor;

an instruction decoder (12) connected to said instruc-
tion execution unit {24); and,

control means (14) in said processor, responsive to
said instruction decoder (12) and activated upon
the decoding by said instruction decoder (12) of
said call instruction of said first process, for allocat-
ing to said second process, a second register set of
local registers from said register set pool in said
register cache (23) and for placing in said frame
pointer register (G15) a current frame pointer
which points to said second register set,

said control means (14) including means for transfer-
ring, over said main memory bus (local bus) to said
main memory, the contents of an earlier allocated
register set previously allocated to an earlier acti-
vated process, and for reallocating said earlier allo-
cated register set to said current process, by plac-
ing in said frame pointer register (G1S) the frame
pointer which points to said earlier allocated regis-
ter set.

2. The combination in accordance with claim 1

wherein said first control means (14) includes

means activated upon the decoding of a return in-
struction in the instruction stream of said second
process for transferring over said main memory bus
(local bus) to said main memory, the contents of
said second register set allocated to said second
process from said register set pool and for placing
in said frame pointer register (G135) the previous
frame pointer stored in said second register set, said
previous frame pointer stored in said second regis-
ter set pointing to said first one of said register sets,
thereby providing the means by which instruction
execution by said first process is resumed from the
point in the instruction stream pointed to by said
return instruction pointer (46) of said first said

register set.
3. The combination in accordance with claim 1

wherein said previous frame pointer includes bits com-
prising a linear address of the first byte of the previous

address of a location in said main memory of the 55 frame.

last previously activated frame and a return in-

63

*x ®x & %X =

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENTNO. : 4811208
DATED - March 7, 1989

INVENTOR(S): Myers, et al.

It is certified that error appears in the above-identified patent and that said Letters Patent are
hereby corrected as shown beiow:

Column 8, line 2, change "calloing" to - calling —;
Column 9, line 1, change "for" to --four —;

- - Signed and Sealed this
Second Day of July, 1996

BRUCE LEHMAN

Attesting Oﬁk‘er Commissioner of Partents und Trademarks

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

