United States Patent [

Brenza

[54] VARIABLE ADDRESS MODE CACHE

[75] Inventor: James G. Brenza, Putnam Valley,
N.Y.

International Business Machines
Corporation, Armonk, N.Y.

[2]1] Appl. No.: 858,322

[73] Assignee:

[22] Filed: May 1, 1986
[S1] Imt. CL4ooeeverrrceereveeersecessnnaens GO6F 12/08
[S2] US. ClL ... crrrersesssssessessessunes 364/200
(58] Field of Search ... 364/200 MS File, 900 MS File
156] References Cited
U.S. PATENT DOCUMENTS
4,070,706 1/1978 Scheunemanccerereen.. 364/200
4,290,103 9/1981 HAUOT ..covoomrrrremrirnrceerrraeenn, 364/200
4,322,795 3/1982 lLangeetal.ccooriemvrennnne 364/200
4,464,712 8/1984 Fletcher ...uuereriiieeriennn. 364/200
4,484,267 11/1984 Fletcher ..ceerieeerrevcevveennens 364/200
4,495,575 1/1985 Eguchicvvveercerevvneerenns 364/200
4,654,790 3/1987 Woffindenccocriverrenenne. 364/200
OTHER PUBLICATIONS

“Cross Interrogate Directory for a Real, Virtual or
Combined Real/Virtual Cache”, J. G. Brenza, IBM
T.D.B,, vol. 26, No. 11, Apr. "84, p. 6069.

Primary Examiner—David Y. Eng
Assistant Examiner—Florin Munteanu
Attorney, Agent, or Firm—Bernard M. Goldman

[57] ABSTRACT
A data processing system which contains a multi-level

(FROM FIG.1)
STORAGE REQUEST FROM CPU

e e

4] 42 43 44 U6 47 4B 49

S|]

r—————ﬁﬂ——— |

1] COMPARES
(5119) » mam
(LRU COR 75
Crs0 LA)

230 68

CONTROL
ARRAY

256X4

(18:2%)

ACF (S:19)
LA

qiﬁ?r-\llllﬁﬂHEEWEﬁlll
OUT BUS 52A

F={OM AA{F«19]TO L3
FIG. 16 REQ.REG.IN FI1G,16

, LA(RY) 63
i l LA[18125) o
[CACHE
LA(£13)
I 13167 , (SIC)
| 0 L2 (A.B.C.O |f{128 BYTE
i W LINE}
LA(14123) [F— = Lt OHITY
- OMMON 256X 6uXY
DIRECTORY SELECT
. 030X T

Lt TO LZ]
LA IW:2S]) L2 CALRE
{STC)
- (4036XEUXY]
256 avre |
{ﬁtBquD LINE)
L1 MISS
g2 HIT] SELECT
GATES

L Lrﬁ
"IIHWIIIII!!!HIHE12:191

&2
TLB 256&X2 ~

4,797,814
Jan. 10, 1989

[11] Patent Number:
[45] Date of Patent:

storage hierarchy, in which the two highest hierarchy
levels (e.g. L1 and L2) are private (not shared) to a
single CPU, in order to be in close proximity to each
other and to the CPU. Each cache has a data line length
convenient to the respective cache. A common direc-
tory and an L1 control array (LL1CA) are provided for
the CPU to access both the L1 and L2 caches. The
common directory contains and is addressed by the
CPU requesting logical addresses, each of which is
either a real/absolute address or a virtual address, ac-
cording to whichever address mode the CPU is in. Each
entry in the directory contains a logical address repre-
sentation derived from a logical address that previously
missed in the directory. A CPU request “hits” in the
directory if its requested address is in any private cache
(e.g. in L1 or L2). A line presence field (LPF) is in-
cluded in each directory entry to aid in determining a
hit in the L1 cache. The L.1CA contains L1 cache infor-
mation to supplement the corresponding common di-
rectory entry; the L1CA is used during a L1 LRU cast-
out, but is not the critical path of an L1 or L2 hit. A
translation lookaside buffer (TLB) is not used to deter-
mine cache hits. The TLB output is used only during
the infrequent times that a CPU request misses in the
cache directory, and the translated address (i.e. absolute
address) is then used to access the data in a synonym
location in the same cache, or in main storage, or in the
L1 or L2 cache in another CPU in a multiprocessor
system using synonym/cross-interrogate directories.

24 Claims, 16 Drawing Sheets

(CACHE ARKRANGEMENT)

OATA

EROM DATA

a=10 TS CPU
S e e

L

(A0 SEL
ABCE

[DATA

L2 MISS
;___E::;IEEEEEi%%%%fT
DATA 70
3
L3

DATA FROM

U.S. Patent Jan. 10, 1989

(

cXTENDED CONTROL (EC)

FIG.1 MODE BIT)

(LR s

LR STO

:R7 STO

2]

(NON-ZERO
VALUE FOR ADD
USING
TR&NS“A'ION)

{

O

5
PSW r
(7

(DAT MODE
BIT)

I
R
(ZE

(CR7 STO)

-FFECTIVE LOGICAL A

DDRESS F

Sheet 1 of 16

4,797,814

24

RO VALUE

FOR ADDR NOT
USING TRANSLATION)

ROM CPU)

f___________“__—_—_”A“__““———“““———_————\

ou

28

“+ 2

1e¢1]
ACF]

L2

43 I B B

iy 46
13 12219 14:23]

RUENCE CLASS
=L ECT FIELD

2>=-3]

Y A

REG .
30

3:25 14:25 24 20:31

U.S. Patent Jan. 10, 1989 Sheet 2 of 16

-F1G. 2

FRCM S/XI OUT ~ROM L3 R

e

.

BUS 290 REG 210
IN FIG.16 IN FIG.16
FROM CPU
LA REG 30
IN FI1G.]
l
[19 20

LOGICAL ADDRESS REG.30

4,797,814

31

3

OUTRPUTS SHOWN IN
FIG.1 OR 2

U.S. Patent Jan. 10, 1989 Sheet 30f16 4,797,814
- 1G. 3 .
(FROM FIG.1} (CACHE ARRANGEMENT }

STORAGE REQUEST FROM CPU

r A DATA

41 42 U3 Uy 46 Y7 48 49 oM SATA
ey TO CPU

LA (24) 63

L1
CACHE
(SIC)

(128 BYTE
L INE)

II LA{18:25)

L2 & L1
COMMON

DIRECTORY

256 XoH X4

(H0I96XEHYXH)

(256 BYT
L INE)

1 MISS
gL2 HIT)

LA
(12:19)

LB 256X2 - 62
L
62 A v

QUT BUS DATA TO
FROM éA(T:!?)TO L3 | 3 DATA FROM

F1G.16 REQ.REG.IN FIG.16 2

L2 MISS

4,797,814

Sheet 4 of 16

Jan. 10, 1989

U.S. Patent

v
LIH 3HIVD 17 Aa _

SSIW 1
8 H
e e Y e s L
SSIW 11 NO - -
B L
[| s
VL —
SSIW <) | qi/
- 34V dWoD)
q
08

-- _
- CalaC

< |
aiy q°9% “q (1337135)
4d" (€2t hl)
Vil VT

U.S. Patent

Jan. 10, 1989 Sheet 5 of 16 4,797,814

F1G.5 COMMON DIRECTORY ENTRY
(IN FIG.2)

L2 L2

||
LRU I BF
(3) | (1) 6]
FTG.6A L1 CONTROL ARRAY (L1CA)
A B C D
o
LA (18:25) |
CONGRUENCE N NS
|
osel | | |
o 11
~ROM SELECT
L (A,B,C.D) 81
DIR
SELECTED
_1CA
. CELL
LA(12:17)+L2 BIN (2) C%IiET
F1G.7 - _

LT CONTROL ARRAY

R

1CA)

U.S. Patent Jan. 10, 1989 Sheet 6 of 16 4,797,814

-1G.8

(L1 CACHE)

DATA DATA
~ROM L& FROM
CACHE CPU

.1 MISS ‘
L1 LRU SEL
(A,B.C,D)

A B C D 63

LA{18:25)
CONGRUENCE N
CLASS SELECT N
(FROM FIG.1) N [euB|euB | 64B|64B
86 A | a5
A 37 |ese T T 1
11
. 868|
L1 HIT ﬂ =
(F1G.3) m =
I
[D I B6
5
C70 5EL 2 DATA BUS TO CPU DATA BUS TO
S IN# 86D FOR | HIT L2 & L3
FROM C FOR L1 C/0
_1CA S

US. Patent Jan 10, 1989 Sheet 70f16 4,797,814

-1G.9 ' DATA

FROM L3 FROM LT
(L2 CACHE)

L1 BIN #
clLL SELECT
L2 LRU SEL RITE GATES

(L2 CACHE) 64
LA 14325) U8 \ A B C D

CONGRUENCE CLASS I T D
(FROM FIG.1) 87A

|
A |
|
|
L2 HIT » l
||
(FIG.3) | C 6
D
A
2 LRU 2
SELECT L
(F1G. o) D DATA BUS TO L3 DATA BUS TO L]

U.S. Patent

FIC?, 10 18 MIss

TLB)

DAT OFF .
!

Jan. 10, 1989

ACF(5:19)+LA(1:11)

CPU REQ

S0

(SEE
F1G.2)

LA(12:19)

CONGRU

CLASS
SELECT

ACF (5

LA (1:71)

L2 MI
- ROM

&7

- NC

1!

: 19) +

5SS
CCD

LB MISS

Sheet 8 of 16

88

|
848

4,797.814

360

e 19) TO L3

EG ON Lz MISS

U.S. Patent Jan. 10, 1989 Sheet9of 16 4,797,814

F TG, 1] (EXTENDED CONTROL (EC)
MODE BIT)

I-I-I-
CRT|STO

(DAT MODE
3IT) (ADDRESS
SPALCE

CR‘/’ ——+— LONTROL
l: -
I (CR7
STO)
3]
25 (CR1
STO)
STO ID EFFECTIVE LOGICAL ADDRESS FRCM CRPU)
ASS TGN
o= = =13 4o — - — — - 23 o4 25- =L 3]
DAT
- ENCE CLASS
~ SELECT FIELD
25 2
45
DAT

18:25 1d:2% 24 20: 37

OF F

U.S. Patent Jan. ‘10, 1989 Sheet 10 0f 16 4,797,814

F1G. 12

(FROM FIG.10) (CACHE ARRANGEMENT)
STORAGE REQUEST FROM CPRPU

DQT& DATA

43 Uy 4g 47 -
L0 45 yp 48 49 “OME 10 opy
CPU
f_—H
LA(24)
63

(128 BYTE
L INE)

COMMON 256 Xbu X4

RECTORY

e CACH
(STC)
(LO26X64HXY)

(256 BYT
L INE)

!
oL,

‘\iA.BqC,D)

LT MISS

gL HIT)
L2 MISS
S/XT COMPAR: . ,
QUT BUS !
Y ' - DATA TO
AALT:19)TO L2 L3 DATA FROM

-1G.16 pEQ REG IN FIG.16 3

SSIW L

4,797,814

&
—
S
y—
oy
g AR lLva INFHIND
= 2] |
7p _ Ol
| (€1: 1)V | -g7 4
ch |
N NOHA)
SSINW
% - rl Im.w._ 0734 Al 01S
p—
—3 O
o
3

(11°9I4 NI LINGWIdDNvVHAVY AdO0L313491d NOWWOJ)

U.S. Patent

U.S. Patent Jan. 10, 1989 Sheet 120f16 4,797,814
F1G. T4
COMMON DIRECTORY ENTRY
(IN FIG.12)

OFF| LA [CM | L

U.S. Patent Jan. 10, 1989 Sheet 130f 16 4,797,814
TLB MISS FIG. 15 (7L8)
DAT OFF SAT g 8]
PREF IX
STO ID REG+LA(1:11) . AA(T:19)
CPU RE Tl R _l |
LRU Il ll
l6c &N goa “ qon

DAT | STO AT ST0

I T T T T T T T

r = N -
CURRENT DAT - l “
swe [= ||l o
STO ID(5:19)
e |
HEhr
r r CMP

:

u.' GATE GATE
COM DIR -__ .
' | sum

86

LA(12:19)
CONGRUENC

CLASS
SELECT

— e v — —. —

AV,
\J1

]

s

H

H
(2
Py
()
I~
__,I
Bk

TIR MISS AA(Ts19) TO L3
REQ REG ON L2 MISS

4,797,814

Sheet 14 of 16

Jan. 10, 1989

U.S. Patent

L $#Slnk I Ak S Sk T PR B 0 e S

N-QLC N NdJ

A10
IX/A5

o j

— — 17 |-£€2
41D 34 I4M 400234 dI NdJ H1J JLI1dM
LIH LIH
IX/S N [X/ |

| -0t

22
AdI ON o ’ Nd3 ON
N d] d04 SS337V l I Ndd H04 SSIIIY
\IIJ \IIIrJ
¢ ¢ ¢ €
I4INV]) 55330V O34 1737135 ALIHOTHA SSIIIV TIINVD
|» S1INJYID ALIMOIYd IX/S 1z cle
1L IH LIH
IX/S ANV N S S IX/S ANV

l
E%Em (1g:02)v1 | (613 1)vv |AI N NdJ —_—— m%zz (61LhIVT (1g:02)v] (61 1)vvl I | NdD

(9349 BIY €7 N (D38 D34 €
N Ndd) —_—— =
SSIW 27 HO L NdJ) SSIN 27 HO
N Nd3d WOHA ¥ NVYH e NVH I Ndd WQH A o
N-012 ool O -012 Vol 9T 4

-
p—
” o) SNdD 1V 0L sng 1N0 IX/S 06C
& .
T~ | ——— | NdJ) Ol
4_-.,, | dI Ndd
| (61th1)V 1X/S
\O N NdJ ¥04 ") | 3 X3 ANI 0/ NANONAS L NdJ ON
- " 192 -
.w g |-0h2 r4{—----+------——--"—-"—|-"—"———-— - =
. _ EEWEES
£ LTI
N-Ohe S1INIYID r-
1 N0H1INOD AN »
[X/S H
N NdD
JHVAW0T VY AT VA
2 _ — + . “.
=
— T I ———— 7 I
y— }
m._ r T e ™ — / |
_ | TP, I3 1T lyy bk —
) ...Dm.l._ .HZWMMWFTMMG..MMLIH T.m‘dL STIMIHT)
€S AHLNT HIG 43172373S 0HINO
d9 | ° O 4 — _ 1
| (d)
V Nd) 10N
| v NdJ |
dl J1 81 V X 3 vV al ol a v VvV NdJ

SNBSS - M $# TEEEeE 2 SaEmny Spielai. EEa—— b dnhibinile $essesbes 2 2 =ebbesls 00 SShESA i R

U.S. Patent

A g
ey
- 012 (*934 "I €1 nlt
N
T~ 1 T4 NI
-Ol/ | HJ 134 JI190] vOL 1INDYID ¥0 01
- NTg | X3 - HJ1 34 { \
F1IAD /3H01S
g —_— — — — v
-)
o (gh9) &1 0L |7
=
G (dh9)c1 04 17 "A NS
—
M (Vo1 1) fId HD) 1S3t
=
7 (41Q) 118 I 13S i _ v
1041 N0 | 4 | %
(VoL 1)1lIg I 13S JLVAIIVANT »
—
X [©-=- 02, Gl-=hlcl-— -1 L%
=5 | _ _ Kels
e —
. -
m 0L "93d V1 m _ cOL - -
o [61:hl]V -
| all HS
gL WOod4 Y # NIg
@—-@HI ZH o
SOg LX/S WOMHA S T104dINOD FSN0ds5dd 1 XS | NdD NI — _Mv H_H “*

U.S. Patent

4,797,814

1
VARIABLE ADDRESS MODE CACHE

This invention relates to data processing systems
which contain a multilevel storage hierarchy, in which
one or more levels contain a cache (i.e. high speed
buffer) to speed up the access of data and/or instruc-
tions between a CPU and storage.

BACKGROUND

The prior art teaches data processing systems which
contain a mulitilevel storage hierarchy having one or
more caches, in which the cache in the lowest hierarchy
level L1 is directly accessible (i.e. private) to a single
CPU, in order to be in close proximity to the CPU for
fast access. Each cache contains lines of data having a
line length (i.e. byte length) convenient to the respec-
tive cache, wherein the different caches may have dif-
ferent line lengths. The prior art also teaches having a
second level (L2) cache which may have a line length
that is a multiple of the line length in each entry in the
lowest level cache (L1).

In the prior art, main frame CPUs often include an
instruction unit as a source of requested addresses, a
translation lookaside buffer (T1.B), an 1.1 cache and as
the lowest hierarchy level, and an 1.2 cache and direc-
tory as its next hierarchy level.

Cache efficiency is important to system performance.
An important parameter for measuring cache efficiency
is the average time duration from when a storage re-
quest address is available from the CPU instruction unit
until the requested data is available to the instruction
unit. This duration is usually measured in numbers of
machine cycles. Cache efficiency increases as this pa-
rameter decreases.

Conventional systems may operate in the following
manner: A requested storage address from the instruc-
tion unit may be real, absolute, or virtual. If virtual, the
page address (containing the requested address) may
have been previously translated by dynamic address
translation (DAT) means in the system which put the
page’s real or absolute address in a TLLB entry, which is
now accessed in the TLLB by the requested address to
obtain the translated address. A TLB miss is determined

if no TLB entry contains the required translation, and
then the requested virtual address is translated by DAT,
which puts the translation into the TLB, from which it
may be later accessed. Thereafter the requested virtual
address only requires a TLB lookup and compare to
obtain the corresponding translated real/virtual address
from the TLB, until it is later replaced in the entry after
a period of nonuse.

The DAT translates a virtual address to a real ad-
dress, which is put into the TLB in a uniprocessor.

But if the CPU is in a multiprocessor, a prefix address
18 added to the translated real address to make it into an
absolute address, and the virtual request’s absolute ad-
dress is then put into the TLB.

If the CPU requests a real address, no translation is
done, but if the CPU is in a multiprocessor a prefix
address 18 added to the requested real address to make it
into an absolute address.

CPU requested real addresses have been handled in
different ways by prior CPUs; some have put the real-
/absolute address in the TLB in the same manner as is
done with virtual addresses, while others have used a
bypass path around the TLB to the L1 cache for an

10

15

20

25

35

45

33

65

2
access attempt in the cache, in order to avoid using
TLB space for an address not requiring translation.

The DAT operation in the IBM System/370 archi-
tecture uses a segment table descriptor (STD), com-
prised of a segment table origin (STQO) and a segment
table length (STL).

In systems using multiple address spaces, a STO 1s
part of each requested virtual address for identifying the
virtual address space containing the requested virtual
address. STOs (or STO identifiers) have previously
been put in each TLB entry as part of the virtual ad-
dress. The STO in the accessed TLB entry must be
compared with the STO provided with each requested
virtual address in finding any TLB address translation.
Thereafter only the translated address 1s used in access-
ing the requested data in the cache, and in main storage
when needed. Some prior systems uses a STO identifier
table to contain all recently used STOs and correspond-
ing assigned STO identifiers that have fewer bits than
the STO; and the STO identifier is put in the TLB
instead of the STO to allow a smaller size TILB circuit
array, since smaller arrays allow faster access.

In the conventional cache directory, a set associative
arrangement was provided, in which a row in the cache
directory (called a “congruence class’) was selected by
each address provided by the instruction unit (whether
real/absolute, or virtual). And each row comprised a set
of entries (called bins or bin identifier) which were
handled associatively, i.e. each congruence class was set
associative. In this manner the directory row selection
was being made before TLB address translation was
completed, in order to obtain selection of a cache con-
gruence class before the TLB translated address was
avatlable, which speeded up operation on the critical
cache path in the CPU.

In the conventional cache, only translated addresses
are put into the cache directory. That 1s, a real/absolute
address representation is provided in each used cache
directory entry. This real address was read out of each
directory entry in the congruence class selected by each
instruction unit requested address. The set of directory
readout real addresses arrived at respective comparator
circuits at about the same time that the TLB translated
address arrived at these circuits, and a simultaneous
comparison was made to find which, if any, of the plural
addresses from the selected congruence class matched
the translated requested address, i.e. this is the set asso-
ciative comparison for the cache.

This prior operation resulted in requiring a TLB hit
before a L1 cache hit could be obtained. If a TL.B miss
occurred, the .1 cache determination had to wait until
the TLB miss operation was completed by a DAT oper-
ation, with the L1 cache operation being restarted after
the DAT operation for the current CPU request had
put the new translation into the TLB. A TLB miss
required a dynamic address transiation (DAT), that
may require two accesses of translation tables in main
storage, which is relatively slow.

It i1s noted that known commercially used L1 cache
directories do not contain virtual addresses. Their cache
addresses are real/absolute addresses so they can be
compared with TLB outputted real/absolute addresses.
Virtual address values cannot be compared with real-
/absolute address values, since a virtual address may be
translated into any real page address available in main
storage.

Accordingly, the conventional L1 cache directory
requires two serially occurring compare operations

4,797,814

3

before a corresponding L1 directory address can be
found to exist or not exist, i.e. L1 cache hit or miss. If an
L1 hit occurs, the data (usually a double-word) s ac-
cessed in the L1 cache and 1t is sent to the CPU.

U.S. Pat. No. 4,495,575 has a single buffer corre-
sponding to an L1 cache, which is not a private CPU
cache because it is accessed by 1/0 channels as well as
a CPU. Its cache directory entries each have “sum
data” comprised of a space ID and a block address
which are compared to a space ID and a block address
in the virtual address in a register 46 received from the
CPU or channel. Upon a buffer miss, an address conver-
sion table 61 supplies a real address to MM 22 to obtain
the data. |

In all prior cache systems, a L1 cache miss requires an
access of the requested data from the next higher level
in the storage hierarchy, which commonly has been
main storage in large systems.

If a L2 level cache exists in the system, L2 is accessed
instead of main storage to provide the requested data to
both L1 and the CPU if L2 contains the data. If the L2
cache does not contain the requested data, main storage
is accessed for it, with the access time for determin.ing
the L2 cache miss being added to the overall access time
for the requested data. A real/absolute address is con-
ventionally used to access the L2 cache directory,
which requires the output of the TLB when a virtual
address is being requested by the CPU.

In all prior caches, the occurrence of a TLB miss may
occur independently of a L1 cache directory miss. For-
tunately most CPU requests (over 90%) hit in both the
TLB and cache, which is the reason for the existence of
the TLB and caches.

A basic requirement of L2 caches is that they must
have a large size to be effective, such as several times
larger than the L1 cache. Hence L2 has the likelithood
of containing data from many more pages in main stor-
age than does L1. However a fundamental problem may
exist in that the TLB is not usually large enough to
contain all the page translations representing the data
existing in L2. The result is that even though a re-
quested line of data may exist in the L2 cache, its TLB
entry may have been replaced before the current re-
quest is made, so that a TLB miss results, and its related
DAT operation must be completed for the TLB in such
prior systems before the L2 cache can be accessed to
obtain data already there.

In prior U.S. Pat. No. 4,464,712, the page-translating
TLB entries correspond to page-size lines in the L2
cache, which has a L2 cache directory separate from
the TLB (i.e. DLAT). Absolute-addresses outputted by
the TLB upon each TLB entry replacement operation
locate and control the settings of replacement-candidate
flag bits R in the L2 entries to control the LRU replace-
ment selection of line entries in the L2 cache directory.
This requires a TLB/L2 relationship in which the L2
cache has an L2 line size equal to the TLLB controlled
page size (e.g. 4096 bytes).

SUMMARY OF THE INVENTION

It is the primary object of this invention to increase
cache size privately available to a CPU while at the
same time decreasing the critical path for cache ac-
cesses. The invention supports the CPU use of switch-
able mode addressing wherein the CPU can arbitrarily
switch between virtual addressing and real storage ad-
dressing (such as occurs when using IBM S/370 logical
addressing by “pfogram status word” (PSW) that

10

5

20

25

30

35

435

50

33

65

4

switches the “dynamic address translation” (IDAT) state
on and off.) The invention allows switchable mode
addressing by the CPU to be easily handled by the
cache.

It is a feature of this invention to provide an address
mode indicator for each cache directory entry to indi-
cate whether the entry represents a real/absolute ad-
dress or a virtual address. This indicator enables the
elimination of TLB operation from the critical CPU-to-
cache access path even though the CPU uses switchable
mode logical addressing.

It is a another feature of this invention to provide an
address mode flag field with each cache directory entry
to indicate whether the address represented in the entry
is a real/absolute address not translated from any ad-
dress space, or if it is a virtual address. Use of the ad-
dress mode flag field eliminates the TLB operation from
the critical CPU to cache access path when the CPU
uses switchable mode logical addressing. |

It is a still another feature of this invention to provide
an address mode indicator with each cache directory
entry (as an alternative to having any address mode flag
field) by using a predetermined value, or range of values
within an address space name in each cache directory
entry to indicate when the address represented in the
entry is: (1) a real/absolute address not translated from
any address space, and the address space name field
does not represent any address space name, or (2) a
virtual address, and the address space name field repre-
sents the name of the address space containing the vir-
tual address. This control over the address space name
field content can eliminate the TLB operation from the
critical CPU-to-cache access path when the CPU uses
switchable mode logical addressing.

It is a further object of this invention to allow the use
of plural levels of private caches to expand the cache
size accessible to a CPU while eliminating the TLB
operation from the critical path to all levels of private
cache accesses for a processor request.

It is another object of this invention to provide a
cache design arrangement that provides simplification
of synonym resolution. This invention avoids the con-
ventional exponential (i.e. 2 to the n power) increase in
synonym resolution complexity as cache size is in-
creased. Cache size i3 increased by increasing the num-
ber (n) of logical address bits in the cache address.

It is a still further object of this invention to eliminate
the need for plural cache directories where plural levels
of caches are used to improve the average CPU access
time for storage requests.

It is a further object of this invention to avoid cache
directory synchronization problems among plural levels
of caches.

It is a another object of this invention to provide a
single cache directory common to plural levels of
caches private to one processor to reduce the cache
directory costs and hardware requirements.

It is a further object of this invention {0 provide a
single cache directory for plural levels of private caches
for a processor in which each directory entry has an
address mode field or indicator for indicating whether
or not dynamic address translation (DAT) is used with
the address represented in the cache entry.

It is a another object of this invention to provide a
single cache directory for plural levels of private caches
for a processor in which each directory entry represents
a line of data or instructions in the highest level private

4,797,814

5

cache and also indicates the location of any part of the
respective highest level line in each lower-level cache.

It is another object of this invention to enable the
DAT and TLB to operate in parallel while the CPU is
accessing data or instructions in any level of the CPUs
private caches.

It is a still another object of this invention to eliminate
the use of TLB operations in a processor’s critical path
that accesses data or instructions available in any of the
processor’s private caches.

It is a still further object of this invention to eliminate
the use of TLB operations in a processor’s critical path
for accessing data or instructions available in a first-
level store-in cache of a processor.

It is another object of this invention to eliminate the
use of TLB operations for a processor to use logical
address requests, as long as the storage accesses re-
quested by the processor are found in any of plural
private caches of the processor.

It is a still further object of this invention to use TLB
operations only when a requested storage access is not
found in the one of plural caches private to the request-
ing processor.

It is a further object of this invention to provide a
single directory to handle all plural levels of private
caches, any of which may be a store-through cache or a
store-in cache.

It 13 another object of this invention to provide a
single cache directory to handle plural levels of private
caches for a processor in which the lowest level is a
store-in cache and the highest level is a store-through
cache. X

It 1s a further object of this invention to provide a
single cache directory to handle two levels of private
caches for a processor in which the first (lowest) level
has a store-in cache and the second (and highest) level
has a store-through cache.

It 1s another object of this invention to provide a
control array for handling supplementary information
required by a lowest level store-in cache (such as for
handling its line castouts), while using a common direc-
tory for handling the CPU accessing information for the
plural levels of private caches.

It 13 another object of this invention to provide a
control array (associated with a common directory for
plural levels of private caches) for identifying the set
assocliative location in a respective private store-in
cache level that contains a data line to be castout of that
level.

It 138 another object of this invention to provide a
control array (associated with a common directory for
plural levels of private caches) for handling flagging
requirements of a lower private cache level(s).

It 18 another object of this invention to provide a
control array (associated with a particular cache level
among plural levels of private caches managed by a
common directory), in which the control array entries
correspond to the entries in the common directory, and
each control array entry contains a bin number field for
indicating the set-associative location in the next higher
level cache for locating the higher level line containing
the respective lower level line.

It 1s a further object of this invention to provide a
single directory that signals a cache hit for a processor
request available in any of plural private caches of a
CPU and accesses the requested data or instructions in
the lowest-level cache containing the data.

10

15

20

25

30

35

45

30

53

65

6

It is a still further object of this invention to provide
a unmique system for detecting and using synonym cache
entries.

It is a another object of this invention to provide a
system for resolving and using synonym cache entries
which may be in any or plural levels of a multilevel
private cache system by using a cross-interrogation
directory system of a multiprocessor.

It is a further object of this invention to provide a
unique system for casting out and invalidating cache
entries requested by another processor in a multiproces-
SOr system.

It is another object of this invention to provide a
system for uniquely finding cross-interrogation hits in
any CPU in a multiprocessor for cast out or invalida-
tion, in which cross-interrogation hits in the system are
communicated by a cross-interrogation directory sys-
tem that detects the hits.

This invention relates to a data processing system
which contains a multi-level storage hierarchy, and may
have plural hierarchy levels private to a single CPU
(not shared with any other processor), in which the
caches are in close proximity to each other and to the
CPU. The lowest cache level L1 is the fastest level for
accessing CPU requests, and L1 has the smallest storage
capacity of all levels. The next higher cache level L2 is
the next fastest level for accessing CPU requests, and
L2 has a much larger storage capacity than L.1. Other
still higher cache levels, 1.3 etc., may also be provided
to obtain a larger cache storage capacity, but they are
slower levels for accessing CPU requests. Thus the
CPU access time gets longer as an access request needs
to go higher in the hierarchy levels to get requested
data or instructions.

The respective cache size at each private hierarchy
level 1s flexibly designed to containing any number of
lines of data with a line length convenient to the respec-
tive cache. Each lower level private cache uses a line
length which is a sub-multiple of the line length (e.g. in
bytes) of its higher level private cache(s). Any sub-mul-
tiple may theoretically be used, and the sub-multiples
may be different among different cache levels. Thus the
length of each line in a L1 cache is a sub-multiple part
of the length of each line in its L2 cache. That is, each
I.2 line is comprised of plural L1 lines, and each 1.1 line
is a sub-multiple part of the 1.2 line. Hence the L2 line
length may be several times the L1 line length.

A CPU request “hits” in the common directory if its
requested address is for data available in any private
cache of the directory, and the requested data is ac-
cessed in the lowest level (fastest) cache in which the
requested data or instructions are available. A CPU
request “‘misses” in the common direct if no hit occurs.

Each CPU request address (a switchable logical ad-
dress) simultaneously addresses a congruence class in
the common cache directory and a respective congru-
ence class in each of the CPU’s private caches. Any
potential “hit” for the requested access is determined by
the directory for the cache locations in these congru-
ence classes.

The “common directory” is a cache directory com-
mon to all levels in a multilevel cache, in which each
entry represents:

(a) a respective line in the highest level private cache,

and

(b) the location of each part of the line available in

any one or more lower level private caches.

4,797,814

7

That is, corresponding parts in all private cache levels
are located through a single entry in the common direc-
tory. The “common directory entry” manages the cor-
responding parts in all of the private caches. Thus each
common directory entry: (a) represents a line in the
highest level (largest) private cache (containing all line
parts), and (b) keeps track of every part of that same line
that may be copied into any other cache(s) in that hier-
archy.

To keep track of all copied parts of each highest-level
line, each common directory entry contains a line pres-
ence field (LPF) for enabling the entry to manage all of
its line parts in all private caches. To do this, the LPF
with each common directory entry indicates:

(1) each other cache level containing a copied part,

(2) which part of the line is copied therein, and

(3) the set-associative position in each other cache

containing the part (if it is a set-associative cache).
Items (1) and (2) may be combined into one LPF indica-
tor if there are only two private cache levels, and item
(3) need not be used for any cache-level not using set-
associativity.

The LPF is not needed in a directory that handles
only a single private cache for a processor. Thus LPFs
are used by this invention in a common directory servic-
ing plural private caches.

Many large systems presently use the IBM Sys-
tem/370 architecture in which the CPU can switch
address modes at any time between real/absolute ad-
dress mode and virtual address mode, in which the
interpretation of the effective CPU storage addresses in
a program bing executed are controlled by the address
mode currently existing. The CPU addressing mode can
switch at any time between the virtual mode (e.g. vir-
tual addresses with a STO, or STO identifier) and the
real mode (e.g. real or absolute addresses without any
STO, or STO identifier); this switchable type of ad-
dressing is called *“S/370 logical addressing™, and 1t is
controlled by PSW bit 5§, called the DAT mode bit.

In the invention, each valid cache directory entry
must indicate the address mode used by the request
which generated the entry. Therefore, the indicated
address mode can arbitrarily vary from one directory
entry to another for any current state of the cache direc-
tory.

CPU accessing of the hierarchy in this invention 1s to
the lowest-level (fastest) cache containing the CPU
requested data in its plural private caches. For example
where there are two private caches L1 and L2, a hat in
either cache avoids any use of the TLB in the critical
path; that is, a miss in L1 but a hit in L2 avoids involving
the TLB in the data accessing operation.

In a preferred form of the invention, each common
directory entry contains a number of fields in addition
to the LPF and the logical address representation field
including: an invalid (T) field, a STO (or STO identifier)
field, a change (CH) field, and a DAT ON/OFF field
unless the STO field is uniquely controlied to addition-
ally perform the DAT ON/OFF function. (For exam-
ple, a STO value of zero may be used to indicate the
special case of the associated logical address being a real
or absolute address, which prevents the zero STO value
from being an address space identifier.)

Other flag fields can be added to the directory entries
to identify special conditions for the associated line of
cache data, such as an exclusive/readonly (EX) field in
the cache directories in an MP, and a common bit (C) to

10

15

20

23

35

45

30

33

65

8

handle common virtual storage areas in an MVS envi-
ronment.

The 1 field indicates if the directory entry represents
any useable data in any of the plural caches; if on it
indicates the entry does not represent any valid data,
but if off it indicates the entry represents a valid line in
at least the highest-level cache. The CH field indicates
if the directory entry represented-data has been written-
into (i.e. changed) in any of the plural caches; if on it
indicates the represented data is changed, but if off it
indicates the valid line has not been changed. The ex-
clusive/readonly (EX) flag field (usually a single bit) is
used in the cache directories of an MP to indicate
whether the line represented by the entry can exist only
in a single cache at a time for exclusive CPU access, or
whether that line is allowed to be simultaneously repre-
sented in plural CPU directories to allow shared access
by plural CPUs.

An intermediate-order group of bits taken from the
middle portion of the requested logical address is used
as a select address for selecting a candidate congruence
class in the common directory and in each cache. The
locations of all set-associative entries in each congru-
ence class are predetermined, and they are readout of
the directory as candidate entries when the congruence
class is accessed.

In each readout candidate entry, the location of the I
field, the address representation, the LPF and other
entry fields is also predetermined.

The I field in each candidate entry is tested to deter-
mine if the requested line exist (i.e. is valid) in the high-
est-level cache. If the I field is on in all entries in the
selected congruence class, the requested line is not in
any private cache, and a cache miss is signaled. A cache
directory entry is then assigned for the missed request.
The congruence class for the new directory entry is
determined by the intermediate-order group in the re-
questing address. One of the set-associative locations for
the entry within that congruence class is assigned by a
cache directory LRU replacement circuit. The I field in
that entry is set on, and the entry content is generated,
including an LPF with assigned field and subfields de-
termining the location assignments for the required line
in the highest-order cache and for each of its part(s) in
each lower order cache. Simultaneously the required
line fetch signals are sent to main storage. The fetched
line and its required parts are copied into the assigned
locations in all of the caches. This main memory line
fetch uses the translated page address outputted from
the TLB, and a low-order group of bits from the re-
quested logical address defining the required page in the
conventional manner.

If a CPU request finds the I field is off in at least one
candidate entry, the requested data may be in the high-
est-order cache and may be in the one (or more, if they
exist) lower-order cache(s). Then the address mode
indicator or field is examined for each valid entry to
determine if the entry’s-represented address is real/ab-
solute or virtual. If the entry’s-represented logical ad-
dress is virtual, its STO (or STO identifier) field and its
logical address representation field are compared to the
CPU request’s STO (or STO identifier) and a high-
order group of bits in its logical address, respectively. If
the entry’s logical address is real/absolute, the STO
does not define any address space name in the compari-
son but only acts as a real/absolute indicator. If the
compared fields are equal for any validly candidate
entry, a cache hit exist for it.

4,797,814

9

The L.PF must be examined in this cache hit entry to
determine in which of the lower-level cache(s), if any,
the requested data may be contained, and its set-associa-
tive location in its congruence class. To do this, a low-
order bit (or predetermined group of bits) next to the
intermediate-order group is also taken from the request-
ing logical address to locate the correct subfield (and
sub-sub- field, if it exists) within the LPF in each read-
out entry. A presence bit located at the beginning of this
subfield is tested to determine if the requested line exist
(i.e. is valid) in the lowest-level cache.

A lowest-order group of bits is also taken from the
requested logical address and i1s used to select the re-
quested data unit in the selected line.

If the line presence bit in the selected LPF sub-field is
off, the requested line is not in the associated cache, and
the requested line 18 accessed m a higher-level cache
which is the lowest-level cache containing the re-
quested data which is then copied from the higher-
order cache into the lower-order cache.

Whenever the processor writes data into a low-level
cache which is a store-in cache, the same data i1s not
written into any higher-order cache. But if each higher-
level cache 13 a *“‘store-through” cache, whenever a line
is castout of the low-level cache, it will be stored in
each higher-level cache and in main storage.

Even when a TLLB miss and a DAT operation occur
while there is a cache hit in the directory, the cache
access 18 obtained in the above described manner with-
out involving (or waiting for) the DAT or TLB opera-
tions. The DAT operation for the TL.B miss will occur
in parallel with the cache accessing operations. Since
the higher-level cache may hold lines from many more
pages than the TLB can hold translations for, it is very
possible that the translation will not be in the TLB for
a page containing a line presently available in at least
the highest-level cache. While the DAT and TLB are
operating for a CPU request, the requested data for the
same request may then be transferred to the CPU from
the lowest-level cache having the requested data.

Thus, the requested data is accessed in the lowest-
order (fastest) cache level in which the data is available.

In an example of two private cache levels, a line
presence field (LPF) is included in each entry in the
common directory to indicate which, if any, of the L2
parts (i.e. L2 sub-lines represented in the common direc-
tory entry) is currently available to the processor in the
L1 cache, in order to aid in determining when a L1 hit
occurs. Each LPF has a plurality of subfields for repre-
senting each L2 line in the L2 cache. Each L2 subfield
represents a L2 subline in the addressed L2 line which
may have been copied into a L1 line location in the L1
cache, whereupon the L2 subline also becomes a L1
line. And if a set-associative L1 cache is used, the LPF
also contains an L1 bin number to select the set-associa-
tive location in the the addressed 1.1 congruence class
which may contain the requested data. This L1 location
will contain the L1 line having the requested data if the
requested address “hit” 1n the common directory. A
common directory “hit” requires both an address “hit”
and a unique LPF “hit”.

In the two level private cache example, the LPF in
each directory entry may be comprised of a plurality of
sets respectively corresponding to the associative sets
found in the corresponding congruence class in the L1
cache. Each LPF set may be comprised of a plural bit
field, in which one bit represents whether the respective
L2 subline is present in the L1 congruence class and the

10

135

20

23

30

35

43

50

33

65

10

remaining bit(s) in the LPF set combinatortally repre-
sent the particular set-associative L1 line containing the
respective L2 sub-line.

The LPF for a respective L2 sub-line may represent
any L1 set-associative line of the addressed L1 congru-
ence class into which the respective L2 sub-line was
copied (then the L2 sub-line also became a L1 line). The
L2 sub-line copying is done by a fetch of the sub-line
from the L2 cache into a LRU selected associative set
location in the L1 cache.

In a further example, if there.are three private cache
levels L1, L2 and L3 for a CPU, the LPFs in the com-
mon directory entries basically represent the location(s)
in the .2 and L1 caches of sub-lines and sub-sub-lines of
data in the L3 cache, which here is the highest level.
The LPF in each common directory entry here com-
prises a sequence of LPF sub-fields representing the
presence of the respective L3 sub-lines that presently
exist in L2 line locations. They are set upon a sub-line
fetch from the L3 cache to the L2 cache, involving the
copying of a selected L3 sub-line into into a selected L2
line location. Each LPF sub-field has a L2 presence flag
bit to indicate if the respective L3 sub-line was copied
into the 1.2 cache, and also has L2 set-associative bits
indicating its set-associative location in the addressed
L2 congruence class. Each LPF L2-associating sub-
field further has a sequence of L3-associating sub-sub-
fields corresponding to respective 1.3 sub-sub-lines ex-
isting in the L1 cache. Each LPF sub-sub-field has a L1
presence flag bit to indicate if the respective L3 sub-sub-
line was copied into the L1 cache, and also has L1
set-associative flag bits indicating its set-associative
location in the addressed L1 congruence class. Hence
each L3 sub-sub-field represents a multiplicity of L3
sub-sub-lines, any one of which is copiable into a line
location in the L1 cache. If the L3 sub-sub-field settings
indicate a requested sub-sub-line is not in L1 but is in
L2, the sub-sub-line is fetched from the L2 cache, and
not from the L3 cache, because this is the fastest way to
access the requested data for the CPU. That 1s, the
copying into L2 from L3 may have been done at an
earlier time for a different cache miss. However if the
L3 sub-sub-field settings indicate a requested 1.3 sub-
sub-line is not in L1 or L2, the sub-sub-line is fetched
from the L3 cache into both the .2 and 1.1 caches.

The number of private cache levels may be theoreti-
cally increased by any amount in the above described
manner. The complexity of the LPF accordingly in-
creases exponentially as the number of private cache
levels increases.

Thus this invention allows the CPU to access its
cache using switchabie logical addresses while TLB
translation accessing 18 being done in parallel for the
same CPU requests.

A synonym and/or cross-interrogation directory
(S/XI) arrangement is provided for proper functioning
of the common directory cache system. A synonym (S)
directory i1s provided for each CPU, and it also can
function as a cross-interrogation (XI) directory when
the CPU is provided in a multiprocessor system. Upon
a TLB miss the real/absolute address outputted from
the TLB is used to address the S/XI directory to locate
a congruence class, which may contain set-associative
entries. Each entry in the S/XI drectory corresponds to
an entry in the common directory, but the (S/XI) con-
gruence classes do not correspond to the cache direc-
tory congruence classes because the cache congruence
classes are mapped by logical addresses while the S/XI

4,797,814

11

directory congruence classes are mapped by real/abso-
lute addresses.

When the LA and real/absolute address are related
(as is the case with cache misses), the different congru-
ence classes in the common directory (mapped with
L As) and in the (S/XI) directory {(mapped with real/ab-
solute addresses) can be found in the different directo-
ries. Then any directly related set associative entry in
each of these directories is located by a set-associative
comparison in the respectively addressed congruence
class using the high-order bits of the respective address.

However there are situations where the absolute
address is known, but the corresponding LA is not
known, or visa versa. This is the case with synonyms
and XI requests. The bin number concept in this inven-
tion is used to solve this problem. (The bin number
concept is also used to solve the set associative entry
location problem occurring with cast outs from the L1
to L2 cache, in which no real/absolute address was
involved with the LA being used and the bin numbers in
the found L2 entry are used to locate the L2 sublines
corresponding to the castout L1 entry.)

A bin number is provided in each (S/XI) entry in
order to locate the required set-associative entry having
a S or XI hit in the (S/XI) directory for locating the
required L2 line, after a (S/XI) hit entry has been found
using a real/absolute address in any S/XI directory. An
immediate field of the logical address and the bin num-
ber field in the S/XI entry then defines the congruence
class and the set associative location where the required
entry exists in the common directory of the CPU associ-
ated with the respective S/XI directory having the S or
XTI hit. The bin number and the CPU identification for
the hit S/XI directory can then find the correct L2
set-associative entry in the common directory from
which its LPF can be used to locate the required en-
try(s) in the L1 cache for a XI induced castout. Then its
LPF bits are examined to locate the data line in the next
lower level cache that contains the requested data.

The distinction between a synonym hit and a cross-
interrogate hit is determined by whether a hit occurs in
the S/XI directory associated with the CPU making the
particular request or with the S/XI directory associated
with another CPU. It is a synonym hit if it occurs in the
S/XI directory associated with the CPU making the
particular request, and it is a cross-interrogate hit if the
hit occurs in a S/XI directory associated with another
CPU. In a uniprocessor there is only one S/XI direc-
tory which acts as a synonym directory for CPU re-
quests, but acts as an XI directory for channel requests.

In the case of a synonym hit in the S/XI directory
associated with the CPU originating the request, a L1

discrimination bit in the requesting LA (e.g. bit 24)

locates the particular L1 entry in the found L2 line. In
the case of a cross-interrogate hit in a S/XI directory,
an invalidation or castout is required of all hit L1 lines
in the found L2 line in the cache of the CPU receiving
the hit; invalidation occurs when an unchanged line
held in its cache readonly or exclusively is hit by an
exclusive request, and a cast out occurs when a changed
line is hit by an exclusive request. No invalidation or
castout is required of an L1 line hit by an readonly
request, regardless of whether the L1 line was held in its
cache readonly or exclusively; but if it was held exclu-
sively, it is changed to readonly state.

10

15

20

25

3O

12
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates the CPU means for selecting stor-
age addresses in the preferred embodiment.

FIG. 2 represents different sources in a system which
provided a logical address (LA), or parts thereof 1n the
preferred embodiment.

FIG. 3 illustrates the multilevel cache, its directory
arrangement, and TLB controls used in the preferred
embodiment.

FI1G. 4 illustrates the circuits supporting the common
directory operation in the preferred embodiment.

FI1G. § shows detailed structure for any cell in the
common directory shown in FIG. 3.

FIG. 6 shows the structure for the L1 control array
shown in FIG. 3.

FIG. 7 shows detailed structure for any cell in the L1
control array shown in FIG. 3 or 6.

FIG. 8 shows a general structure for the L1 cache
shown 1n FIG. 3.

FIG. 9 shows a general structure for the L2 cache
shown in FIG. 3.

FI1G. 10 shows the general structure for the transla-
tion lookaside buffer (TL.B) shown in FIG. 3.

FIGS. 11 and 12 provide a diagram of another em-
bodiment of the invention.

FIG. 13 shows a general arrangement of the unique
common cache directory found in FIG. 12.

F1G. 14 illustrates an example of any cell in the com-
mon cache directory found in FIGS. 12 and 13.

FIG. 15 shows the general structure for the transla-
tion lookaside buffer (TLB) shown in FIGS. 3 and 12.

FIGS. 16A and 16B show a synonym/cross-interro-
gation (S/XI) directory arrangement used by the em-

35 bodiments in a multiprocessor environment.

43

30

33

65

FIG. 17 illustrates synonym/cross-interrogation
(S/X]) response controls found with each CPU used by
the embodiments in a multiprocessor environment.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

Abbreviation and Definition Index

In this specification abbreviations are used to save
space and reading time. The following is an index of
abbreviations and their definitions:

AA: Absolute Address. The AA is formed from an
RA by the CPU with prefixing hardware. AAs are used
in multiprocessors.

ACF: Address Control Field. The ACF 1s a CPU
provided field switched between a zero value when the
CPU is requesting a real address, and a non-zero STO
value when the CPU is requesting a virtual address.

Address Concatenation. The expression “STO(5:19)-
+LA(1:11)” means, for example, that the 15 STO bits
are concatenated with the 11 LA bits to form a 26 bit
binary number. o

AG: Address Generation. Address arithmetic usually
summing a base, index and displacement of an operand
address to generate an effective address.

BCE.: Buffer Control Element. The BCE is that por-
tion of a CPU which contains the cache arrays, their
directories, the TLB (or DLAT) and their control
logic.

Bin#: A field in each L1 Control Array entry corre-
sponding to a L1 entry in the common cache directory
for finding the set-associative location (A, B, Cor D) in
the common directory containing that part of a L2 line

13
containing the L1 line. The bin# is used for controlling
castouts of changed L1 lines to the L2 cache, e.g. after
a L1 cache miss or a cross-interrogate request from
another CPU.

Cache: A high speed buffer physically located in
close proximity to a CPU for storing “lines of data”
containing instructions and/or operands most recently
fetched from main memory. A line (or block) fetched
into the cache will include a number of instructions or
operands in the immediate address proximity of the
instruction or operand requested from main memory by
the CPU. A “private cache” is dedicated to use by one
CPU, except for cross-interrogate requests in a multi-
Processor system.

- C/0: Cast-Out. A cast-out line from a cache.

CMP: Compare. It is used to designate hardware
compare Circuits.

DAT: Dynamic Address Translation. DAT is turned
on/off by the setting of bit number § in the Program
Status Word.

LA: Logical Address. Any address provided by a
CPU, whether a RA (i.e. untranslatable) or a VA (i.e.
translatable), which may be controlled by the state of
the DAT bit in the PSW.

LPF: Line Presence Field. A field in each common
directory entry indicating the L1 cache location repre-
sented by the entry. The directory entry basically indi-
cates the L2 cache location containing the L2 data line
having that L.1 line as one of its parts.

LRU. Least recently used, or partitioned least re-
cently used (PLRU), circuits. The LRU and PLRU
algorithms determine which line of data in a cache is to
be “cast out” to a higher level in the hierarchy, in order
to make space for a new line not currently in the cache
directory. The cache directory entry of the castout line
is invalidated, and that entry may be reassigned for a
new line to be put in the cache.

RA: Real Address. The CPU provides RAs with
DAT off which do not use translation, and the CPU
provides VAs with DAT on which are transiated to
generate RAs.

SA: Storage Address. It is the address issued by a
CPU for an operand or instruction in the main memory
of a system.

STO: Segment Table Origin. The STO bits are ob-
tained from CR1 or CR7 (bits 5-19) for primary and
secondary storage mode.

TRAD: Translated address. It is obtained from DAT
or a TLB as a result of current or previous DAT opera-
tion.

TLB: Translation Lookaside Buffer (sometimes
called DLAT: Directory Look-Aside Table).

UTRAD: Untranslated address. It is the effective
address requested by a CPU, and it may be a VA, or a
RA.

VA: Virtual Address. The CPU generates VAs with
DAT on.

A major cause of loss of performance in general pur-
pose data processing systems is the so called “storage
penalty’. This occurs in the normal execution of a pro-
gram when the access time to main memory (also called
main storage) is substantially longer than a few machine
cycles in order to fetch instructions and/or operand
data from main memory. The storage penalty becomes
increasingly costly in general purpose computer sys-
tems employing virtual storage, because several main
storage references (and therefore several invocations of
the storage penalty) are required to access tables which

4,797,814

10

15

20

25

30

35

45

50

35

63

14 |

are used to perform the virtual to real dynamic address
translation (DAT). After DAT, the resulting real ad-
dress (RA) is becomes known to the CPU and the sto-
re/fetch operation in main memory may then proceed.

Computer architects have evolved a number of
mechanisms to substantially reduce the storage penalty.
Three commonly used mechanisms for reducing the
storage penalty are: caches and their cache directories,
and TLBs. These mechamisms rely on a well established
principle called the “locality of reference” principle.
Stated simply, once an element of data (instruction or
operand) is requested from a memory, a line of data is
accessed containing that element (and other elements of
data in the immediate address proxiity to the referenced
element). The other elements have a high probability of
being referenced in the immediate future by the CPU.

Once a data line 18 entered into a cache from main
memory, subsequent references to data elements con-
tained within the line are accessed from the cache,
thereby avoiding the storage penalty.

Prior cache systems have been designed with more
than one “level” of a storage hierarchy. An L1 (first
level) and 1.2 (second level) cache hierarchical arrange-
ment has been used. In such a hierarchy, the CPU first
attempts to locate CPU requested data in the 1.1 direc-
tory (for the smaller capacity, higher speed cache). If
the data is not present in the L1 cache (i.e. L1 miss), the
CPU will attempt to locate the data in the 1.2 cache (a
larger capacity, lower Speecl cache, compared to L1). A
miss 1n L2 necessitates a main memory (L3) fetch. But a
it m L2 results in a storage penalty significantly
smaller than the storage penalty of a fetch from 1.3.

Two embodiments are shown in this specification,
which differ in the way the entries in the directory
differentiate between translatable and untranslatable
types of addresses represented therein. A first (and pre-
ferred) embodiment shown in FIGS. 1, 2 and 3 uses a
zero or non-zero address control field (ACF) 1n each
entry, in which a non-zero ACF 1s a2 STO value, to
differentiate between translatable and untranslatable
types of addresses. A second embodiment shown in
FIGS. 11 and 12 uses the DAT ON/OFF field in the
current S/370 PSW in the CPU as a zero or one valued
address control field in each entry, in addition to any
STO, to differentiate between translatable and untrans-

latable types of addresses.
Both embodiments have a ‘“‘common cache direc-

tory” (CCD) for accessing data in a two-level cache
organization private to a high-performance central pro-
cessor (CPU). The CCD “remembers” which “lines of
data” are currently resident in both the L.1 and L2
caches. The CCD contains only untranslated address
bits of previously requested CPU addresses. A “local
search” within the CCD is executed in hardware to
determine if a line containing requested data is in the L1
or L2 cache, and if so, the CCD generates a signal to
“gate” the addressed operand to the CPU from the L1
cache (if available in L1), and if not, then from the L2
cache (if available in L2).

(The common cache directory avoids a common
problem in prior cache organizations from which the
CPU can request both untransiatable and translatable
types of logical addresses. For example, the TLB and
L1 cache previously have had their arrays addressed
with bits of an untranslated logical address (virtual or
real), while any L2 cache was addressed with bits of a
translated logical address (real or absolute). But each
level previously had its respective cache directory typi-

4,797,814

15

cally containing only translated (real/absolute) address
fields. A cache hit could only be determined after a
translatable logical address had its translation coms-
pleted, unless the requested logical address was a real
address, in which case the TLB was bypassed. Thus the
compare and select logic within the TLLB was based on
virtual addresses, whereas the compare and select logic
within the L1 cache directory (and within any L2 cache
directory) had to wait for the completion of address
translation.

This prior way of requiring both translated and un-
translated forms of the same address to determine a
cache hit created considerable complexity to the prior
hardware for “sorting out” what is virtual and what is
real, and modifying the addressing paths within the
cache system accordingly.)

The common cache directory (CCD) of this inven-
tion uses only a single form of the switchable logical
addresses, which is the untranslated form of all CPU
requested addresses (whether or not it is transiatable)
for accessing both the L1 and L2 caches. The common
directory combines the L1 directory, the L2 directory,
and some of the functions of the TLB. The requested
form of each logical address (regardless of its actual
type) is used uniformly in cache operations without
translation, both: (1) within the entries in the common
cache directory, and (2) to address the common cache
directory, the L1 cache, the .2 cache, and an L1 con-
trol array. This single form for the vanable addresses
leads to a simpler cache addressing structure, greater
economy of hardware due to array consolidation, and
higher performance due to reduced hardware in the
critical cache path, thereby reducing the cache cycle
time.

In FIG. 1, circuits are shown for switching the ad-
dress type between untranslatable and translatable
types, in which the address type is indicated in an ad-
dress control field (ACF) 28, which is associated with a
logical address register 30, in which a non-zero ACF
value indicates a translatable LA is in register 30, and a
zero ACF value indicates an untranslatable LA is in
register 30.

A unique structure (in which only untransiated ad-
dresses are represented) is provided in the common
cache directory of each embodiment. The elimination
of address translation from cache accessing provides a
fast critical path for both real and virtual address re-
quests from the CPU to obtain L1 and L.2 cache ac-
cesses. An L2 access is started simultaneously witha L1
access, and is completed if the requested data 18 not
obtainable from the L1 cache.

FI1G. 1 shows unique hardware provided for the com-
mon directory to differentiate untranslated and trans-
lated (real and virtual) addresses. The address control
field (ACF) is set to indicate whether a requested logi-
cal address in register 30 is a translated or untranslated
address. ACF field 28 is a multiple bit field which is set
by the output of AND gate 21, 22, 23 or 24. A zero
output indicates the logical address in register 30 does
not require translation (RA or AA), and a non-zero
output indicates a logical address requiring translation.

In more detail, AND gates 23 and 24 receive an all
zeros signal from a source 19, which may be a micro-
code source in the CPU. All of the gates 21-24 are
controlled by one or more of the control bits in a pro-
gram status word (PSW) currently in control of the
CPU. They include a DAT mode control bit §, an ex-
tended control (EC) mode bit 12 and an address space

10

15

20

25

35

45

33

65

16
control bit 16. The PSW and its content including these
bits, is described in the IBM System/370 Principles of
Operation (Form No. GA22-7000-8), e.g. beginning on
page 3-14,

The EC mode bit 12 controls whether AND gate 24
outputs an all zero signal, which it does if bit 12 is off
indicating the basic mode (equivalent to the S/360
mode of operation). AND gate 23 provides the all
zeroes output when the EC mode bit is on, which means
that the system is operating with the S/370 architecture.
Also, a DAT mode bit § conditions the operation of
gate 23 due to the inverter inputting that signal to gate
23 when bit S is off indicating that DAT is off, so that
gate 23 outputs an all zero signal.

Gates 21 and 22 provide non-zero value signals for
indicating logical addresses in register 30 which use
translation, these are addresses which require the use of
a segment table and a page table in main memory. Gate
22 outputs a segment table origin (STO) for locating the
segment table in main memory. A STO is provided
from a control register (CR1) to AND gate 22 It is
enabled by: DAT mode bit § indicating DAT is on, the
EC mode bit 12 is on, and the address space control bit
16 is off. The AND gate 21 outputs the STO from CR?
when the DAT mode bit § is on and the address space
control bit 16 also 13 on.

The output of AND gates 21-24 is dot-ORed to pro-
vide a signal to the ACF register 28, which is capable of
representing a STQO, but this signal does not represent a
STO if it is all zeroes which indicates that the associated
logical address does not use translation and hence is
either a real or absolute address. The associated logical
address in register 30 is the effective logical address,
which is the computed form for an operand address.

FIG. 2 illustrates alternate inputs to LA register 30,
of which the logical address input from the CPU (by
in-gating bits 1-31) is used in the operation described
thus far. The other inputs to register 30 are provided by
synonym and cross-interrogate directory circuits that
control both the L1 cache accessing of synonym entries
to obtain the data requested by the local CPU, and the
invalidation and cast-out of L1 cache entries at the
request of another CPU.

All of fields 4149 are gated out simultaneously to
FIG. 3 within a single machine cycle to directory 640,
cache 63, L1 control array 61, TLB 62, L2 cache 64,
LRU circuit 67 and LRU circuit 68.

FIG. 3 receives the signal outputs from FIG. 1. FIG.
3 has a single cache directory 60 that operates in com-
mon for controlling the accessing of both 1.1 and L2
private caches 63 and 64. Private caches have the ad-
vantage of avoiding contention between processors
makin storage requests. Each entry in the common
directory can represent a L2 line in a corresponding
location in the L2 cache. The same entry also represents
any or all parts of the L.2 line that are available 1n the L1

. cache.

Thus in FIG. 1, the addressing structure enables each
untranslated CPU requested address to address in paral-
lel and in a uniform manner the common directory 60,
the L1 cache 63, the L2 cache 64, and the TLB 62.
Common cache directory 60 serves as the directory for
both the L1 cache 63 and the L2 cache 64 and elimi-
nates the need for separate cache directories.

The cache examples in FIG. 3 (or FIG. 12) are:

L1 cache 63:

64K byte capacity
4W set associative

4,797,814

17
128 byte line
64 byte data bus to L2 and L3 and CPU
“store-in” cache
L2 cache 64:
IM byte capacity
4W set associative
256 byte line
2 L1 lines per L2 line
64 byte data buses to I.1 and L3 and CPU
“store-thru™ cache

The embodiment shown in FIGS. 1, 2 and 3 has a
common cache directory 60 in which each entry has the
exemplary format shown in FIG. §. The embodiment
shown in FIGS. 11 and 12 has a directory 160 in which
each entry has the exemplary format shown in FIG. 14.

In FIG. 1 the output fields from ACF register 28 and
LA register 30 are provided on a plurality of buses
41-49. The various buses 41-49 each represent a se-
lected field having boundary bit positions indicated by
two values separated by a colon symbol, except where
there is only a single bit such as in the case of the LPF
field 33 providing only bit 24.

The particular output fields of FIG. 1 are provided
for the first embodiment and can easily be changed to
accommodate different size addresses, or different size
caches or different size common directories. Thus, In
FIG. 1, the defined fields in register 30 are to accommo-
date the particular size arrays in directory 60, and
caches 63 and 64 shown for FIG. 3. Buses 41, 43 and 46
are used for determining L2 hits in directory 60 with its
comparators fields. Select field 32 is outputted on line
46 for addressing directory 60 in order to select a partic-
ular congruence class therein. The ACF output on lines
41 and compare field 43 are also provided to the com-
pare section of common directory 60 to select an entry
(A,B,C, or D), if any, in the congruence class for deter-
mining an L2 hit in the directory. The LPF select field
33 is outputted on lines 49 to directory 60 for determin-
ing if there is an .1 hit when an L2 hit is determined.

FIG. § illustrates the fields in each combined direc-
tory entry, which has the following fields (the values in
parenthesis are the number of bit positions that a field
may occupy in the embodiment):

LRU field: represents the LRU state of the respective
L2 line in its congruence class in the L.2 cache repre-
sented by the respective entry.,

I field: represents the invalid/valid state of the re-
spective L2 line represented by the respective entry.

EX field: represents the exclusive/readonly state of
the respective L2 line represented by the entry in the L2
cache.

CH field: represents the changed/not changed state
of the respective L2 line represented by the entry in the
L2 cache.

CM field: represents whether the respective L2 line
represented by the entry in the L2 cache is in a page in
a common oOr private virtual address space.

ACF field: has a zero value when the entry represents
a real address, and is a non-zero STO value when the
entry represents a virtual address. The ACF field was
denved from the CPU request from which the entry
was generated and is used by the directory compare
circuits.

LA field: contains high-order bits of the logical ad-
dress from which the entry was generated for use by the
directory compare circuits.

LPF field: line presence field in each directory entry
has 6 bits that indicate which, if any, of either part of the

10

15

20

23

30

35

45

50

35

63

- 18
L2 line is available in the 1.1 cache. The bit positions in
each LPF in this embodiment are defined as follows

BIT BIT LPF
POSITION NAME FUNCTION

| P Presence bit for part | of 1.2 line.

2 bl bi&b2 encode the position of part |
3 b2 of the L2 line in the L1 cache.

4 P Presence bit for part 2 of L2 line.

b bl bi&b2 encode the position of part 2
6 b2 of the L2 line in the L1 cache.

The unit of data selected for “exclusive’ allocation
and control is an L2 line in both embodiments.

The least recently used (LRU) circuit 67 generates
the L2 LRU field content in each directory entry ac-
cessed in each of the the described embodiments. The
.2 LRU fields are updated in all entries in a L2 congru-
ence class when any entry in the class is accessed. When
1.2 misses occur in the directory, new entries are made
in it to represent a new data line put into the L2 cache.
During a cache miss, all the fields in the selected con-
gruence class are examined to find which entry to assign
to receive a new entry to be generated for the CPU
missed request. In this manner, the LRU algorithm
determines which directory entry (and its correspond-
ing line of data in L2) may need to be *‘cast out” to main
memory (L3) in the hierarchy, in order to make space
for a new entry before the content of the new entry can
be written into the directory. (A cast-out from the L2
cache is required only when L2 is operated as a store-in
cache. If L2 is a store-thru cache, then no cast-out is
required after the LRU designation for the new entry.)

FIG. 4 represents the common cache directory 60
and shows an example of a selected one of its 4-way
set-associative congruence classes. The compares in
directory 60 are illustrated as four comparator circuits
71A-D for respectively comparing each of the four
entries in the selected congruence class with the ACF
field and LA field 1:13. Each compare circuit 71 com-
prises sub-compare circuits 72 and 73 which are com-
bined in AND circuit 74. When AND circuit 74 pro-
vides an output signal, it indicates an equal comparison
that determines the respective entry has a cache hit.
When AND circuit 74 does not provide an output signal
in response to a congruence class selection, it indicates
an unequal comparison that determines the respective
entry does not have a cache hit. If the ACF value is zero
(meaning that the CPU request is a non-translatable
address), a directory entry must have a zero ACF value
to be able to provide an equal companison. If the ACF
value is non-zero (meaning that the ACF is a §TQ, the
CPU request is a translatable address), a directory entry
must have the same non-zero ACF value to be able to
provide an equal comparison. The outputs of AND
circuits 74A-D signal if there is a L2 cache hit in the
selected congruence class. An 1.2 miss signal is gener-
ated in FIG. 4 by an AND circuit 80 which receives the
inverted outputs of AND circuits 74.

In this manner, each of the cache directory compare
circuits automatically operates under control of the
current ACF signal to determine within the comparison
whether it occurred between: (1) a translatable LA and
an untranslatable entry-represented address (UERAD),
(2) an untranslatable LA and a translatable entry-repre-
sented address (TERAD), (3) an untranslatable LA and
an UERAD, or (4) a translatable LA and a TERAD.
This invention requires that comparison (1) or (2) al-

4,797,814

19

ways be declared an unequal comparison, even though
the compared LA values are equal. Only comparison (3)
or (4) may be declared an equal comparison when the
compared LA values are equal. Accordingly a L2 cache
miss is determined whenever the requested LA and
each of the TERADs in the selected congruence class

have different translation characteristics, regardiess of

whether any of their TERADs equal the requested LA.

Whenever an L2 cache hit is determined, the direc-
tory 60 must determine whether a 1.1 cache hit exists. In
FIG. 3, a L1 cache hit is determined by operation of the
L1 hit determination circuitry 73 when a L2 hit is deter-
mined by the output of its respective AND circuits 74.
Circuitry 75 uses the LPF select field 33 from FIG. 1
from which it is signalled on line 49 and is used in the
directory in FIG. 4 to locate the part of the LPF needed
for determining if any L1 cache hit exists. If a L1 hit
exists, a signal is outputted on one of four L1 cache hit
signal lines A, B, C or D to select the correct data line
of the four data lines in the congruence class currently
being addressed in L1 cache 63 by the LA bits 18:25
being provided on signal lines 47. The activated one of
the four data lines A, B, C, & D in the required L1
congruence class is thereby selected and the requested
bus unit (e.g.four quadwords) is outgated as the re-
quested L1 data on the data bus to the CPU.

Thus in FIG. 4, each circuit 78 comprises a pair of
gates 76, 77 and a decode circuit 78. Gate 76 is enabled
by the first (leftmost) bit P when 1t is in a one state to
select and pass the first set of LPF bits bl and b2 to
decode circuit 78. Gate 77 is enabled by the second
(rightmost) bit P when it is in a one state to select and
pass the second set of LPF bits bl and b2 to decode
circuit 78. Decode circuit 78 combinatonally decodes
its received bits bl and b2 to determine the particular
L1 data line of the four (A, B, C, or D) in the selected
congruence class in the L1 cache.

If the compare operations of directory 60 find only
unequal comparisons for the directory entries in the
selected congruence class, there is no L2 cache hit; and
a L2 cache miss is declared. It is signaled to the output
gate of TLB 62 in F1G. 3 to control the outputting from
TLB 62 to main memory of a RA (in a UP) or an AA (in
a MP) for fetching the missed L2 line. An L1 miss signal
is generated in FIG. 3 by an AND circuit 81 which
recetves the inverted outputs of decoders 78.

FIG. 8 represents the L1 cache and its data line select
circuitry. Each L1 data cell can contain a data line
having 64 bytes in this example. Its cell select gates 82
select one cell in the selected congruence class by en-
ablement of one of its input lines A, B, C or D, which
are activated by the output of one of OR circuits 86 A,
B, C or D, that are enabled by the output of either an L1
hit select signal A, B, C or D, or a castout selected bin
number from the L1 control array 61 in FIGS. 3 and 6.

The cell select gates 82 provide two types of outputs

from the selected data line; they are the entire line and
the data unit in the line being requested by the CPU.
The entire data line is needed when it is being castout to
the L2 cache and the L3 main memory. This transfer
occurs as two contiguous 64 byte blocks; each requiring
a separate L1 cycle using LA bits 18:25. The data unit in
the selected data line is needed when it is being re-
quested by the CPU, and it is addressed within the
selected data line by LA bit 25 for being outputted on
the data bus to the CPU.

FI1G. 9 represents the L2 cache and its L2 data line
select circuitry. Each L.2data cell can contain a bus unit

10

15

20

23

30

35

435

50

20

of 64 bytes in this example. Its cell select gates 83 select
one cell in the selected congruence class by enablement
of one of its input lines A, B, C or D, which are acti-
vated by the output of one of OR circuits 87 A, B, C or
D, that are enabled by the output of either an L2 hit
select signal A, B, C or D from FIG. 4, or a castout
LRU select signal from the L2 LRU circuit 67 in FIG.
3. The cell select gates 83 provide two types of outputs
from the selected data line; they are the entire line and
the data unit in the line being requested by the CPU.
The entire data line is needed when it is being castout to
the L3 main memory. (A cast-out from the L2 cache is
required only when L2 is operated as a store-in cache. If
L2 is a store-thru cache, then no cast-out is required
after the LRU designation for the new entry.) The L1
part of the selected data line needs to be addressed
within the selected L2 data line by LA bit 24 for receiv-
ing any L1 line being castout of the .1 cache on the
data bus to the L2 cache. The L2 transfers occur in bus
units of 64 bytes.

In FIG. 3, no output from translation Lookaside
Buffer (TLB) 62 is needed for cache accessing until an
L2 cache miss occurs. The TLB simultaneously stores
the page frame addresses of both “real addresses” (or
“absolute addresses’) and “virtual addresses” that have
been recently requested by the CPU. The TLB congru-
ence class is addressed by bit positions 12 to 19 (12:19)
of each CPU requested logical address, and all entnies in
that class are compared with the ACF and with LA
1:11. If they compare equal, the requested address is
contained in the TLB; then its page frame real address
is immediately known to the CPU from the TLB for
accessing main memory, and a “long path” DAT wait
cycle is avoided.

The TLB generates an entry for each requested LA
address, regardless of whether it is a translatable LA or
an untranslatable LA (i.e. VA or AA). In this regard,
TLB 62 is not a true TLB, because a true TLB only
contains translatable addresses (i.e. VAs). That 1s, the
LA field in any entry in TLB 62 may contain either a
VA or RA. But the AA fields in all entries in the TLB
always contain only RAs or AAs, according to whether
the TLB is in a UP or MP, respectively.

The TLB array stores, for each entry, a portion of the
effective logical address, the STO, etc., as 1s conven-
tionally required for TLB operation. Each valid TLB
entry also contains the page Absolute Address (AA).

The LA bits 12:19 on bus 44 from FIG. 1 select a
TLB congruence class. Also, bus 41 provides the ACF
field to the TLB 62 to do a comparison between the
signaled ACF and the ACF-representation in each TLB

- entry. Like the cache directory compare circuits, the

33

65

TLB compare circuits automatically operate under
control of the ACF signals to control the comparison
according to whether it is between: (1) an untranslatable
LA and a translatable entry-represented address
(TERAD), (2) a translatable LA and an untranslatable
entry-represented address (UETRAD), (3) an untrans-
latable 1. A and an untranslatable EA, or (4) a translat-
able LA and a TERAD. This invention requires that an
unequal comparison always be declared for cases (1)
and (2), even though the compared LA values are equal.
Only comparison (3) or (4) may be declared an equal
comparison when the compared LA values are equal.
Accordingly a TLB hit 1s determined only for an equal
condition found under the process of this invention,
which is only when the requested LA and each of the
TERADs in the selected congruence class have the

4,797,814

21

same translation characteristics when their TERADs
equal the requested LA in register 30. And a TLB miss
is determined under the process of this invention when
the requested LA and each of the TERADs in the se-
lected congruence class have different translation char-
acteristics even though their TERADs equal the re-
quested LA in register 30.

Upon a L2 cache miss, the TLB is caused to output an
address (an RA or AA), which is sent to main memory
L3 to fetch the missing L2 data line. Before the TL.B
can do this, it must contain an entry for the requested
L.A. It is searched using the LA to find a congruence
class, and using the ACF and high-order LA bits for
examining its entries. If all entries in the selected TLB
congruence class cause an unequal comparison, the
requested LA does not have any entry in the TLB, and
a TLLB miss is declared. Then a TLB entry is generated
for the requested LA. But the requested LA requires
translation only if it is a VA, and then the LA is sent to
DAT circuitry in the CPU to perform the translation, in
which case the CPU must wait for this translation to
complete the entry and have the translated address with
which the required L2 data line can be fetched from
main memory. However the CPU can operate in paral-
lel with TLB operation if the CPU has another address
to request in another L2 cache data line, while the L3
fetch 18 bemng made.

FIG. 10 shows more detail for the TLB circuit used
in the embodiment of FIG. 3. It is two-way set associa-
tive, and one of its congruence classes is selected by the
current LA bits 12:19. It has cell select compare circuits
83A and B respectively receiving the two cells output-
ted from the selected congruence class. Each circuit 83
1s internally 1dentical to each circuit 71 in FIG. 4, and
each circuit 83 detects compare-equal inputs from its
cell and from the current CPU request by providing an
output signal to its respective gate 84A or B to enable it
to pass the absolute address (AA) from its cell to an
address bus 86 to main memory L3. If the respective
circuit 83 receives unequal inputs, it does not enable its
gate 84. At most, only one of gates 84A and B can
output an AA to bus 86.

A TLB muiss is detected by an AND circuit 87, which
receives the inverted inputs from the outputs of cell
select compare circuits 83A and B. Each TLB miss is
provided by AND circuit 87 to a gate 88, which is
enabled by any DAT ON signal from PSW bit § in FIG.
1 to thereby pass a current virtual address to DAT
circuits 81 in FIG. 10 for translating it to an AA. A
TLB LRU circuit 90 enables a respective write circuit
82A or 82B to write the newly generated AA ina TLB
cell assigned by the LLRU circuit to receive a new entry
for the VA that missed in the TLB.

No TLB output is required when the directory 60 has
found a L2 cache hit, even though directory 60 also
may have found a L1 cache miss. The L1 miss condition
18 determined by the L1 hit circuitry 75 whenever the
set-associative comparison operation for a selected con-
gruence class in directory 60 finds an L2 entry having a
compare-equal status (i.e. L2 hit). Circuitry 78 uses: (1)
the LPF select field in the found L2 entry, and (2) LA
bit 24 from the current logical address in order to deter-
mine if any part of the corresponding L2 line (now
known to be available in L2 cache directory 64) is pres-
ent in the L1 cache. If LA bit 24 is zero, the first part of
the LPF field is selected. If LA bit 24 is one, the second
part of the LPF field is selected. In the selected part of
the LPF field, the state of the P bit is tested: If the P bit

10

13

20

25

35

45

20

33

65

22

is one, the requested data i1s in L1, and an L1 hit is
declared. The LPF bits bl and b2 are combinatonally
examined to determine which L1 entry (A, B, C or D)
is the .1 hit. Then the L1 cache hit, which is signalled
on one of four lines A, B, C, or D to L1 cache 63 to
enable accessing the correct L1 to obtain the requested
data from it, which is located by address bits 18:25 and
outgated to the CPU.

When the P bit is zero, and an L1 miss is declared, i.e.
a L2 hit and L1 miss situation, the L1 line 1s fetched
from the current L2 hit line and is copied into the L1
cache, while the requested data in the line is being sent
to the CPU. The part of the L2 line comprising the
required L1 line is located by the LA bits 14:24 and the
requested data in that part (i.e. 64 bytes) is located in L.1
cache 63 by the LA bits 18:28.

Essential supplementary information about the L1
entry being generated is stored in an L1 control array
61, which 1s done when the CPU misses in LL1. When-
ever an L1 entry is selected by the L1 LRU to make
space for a new L1 entry, any L1 entry existing in that
space (which has the change bit set on) must be castout
to 1.2, and the logical address (LA) field in the L1 con-
trol array 61 is needed to locate the corresponding 1.2
entry. The L2 address is formed from LA[14:17] from
the control array and LA[18:25] from the requesting
address.

Since the L1 cache is a store-in cache, and its CPU
may be in an MP, there will be times when the activity
of another processor (e.g. channel or another CPU) will
provide a foreign request that may require the invalida-
tion or castout of a changed 1.1 data line in the L1
cache. Such a request from an external source does not
know the location of any corresponding entry in the L1
or L.2 cache. The L1 control array 61 (L1CA) in FIGS.
3 and 6 supports several functions in relation to L1
cache 63, including normal L1 cache flag indications.
Each request requiring an L1 line invalidation or cast-
out from .2 or from the L1 and L2 caches, must send
the required LA bits of the request.

The location of each entry in the L1 control array 61
corresponds to a like located L1 line in the L1 cache.
The content of the L1CA entry represents the state of
the corresponding data line in the L1 cache. The con-
tent of each L.1CA entry is shown in FIG. 7 to contain
the following fields (the values in parenthesis are the
number of bit positions that the field may occupy in the
embodiment):

I field: represents the invalid/valid state of the re-
spective L1 line.

EX field: represents the exclusive/readonly state of
the respective L1 line represented by the entry.

C/0 LA field: contains bits 12:17 of the logical ad-
dress in the address being generated. These bits are
concatenated with bitts 18:23 in the requesting address
for locating the congruence class in the common cache
directory and the TLB.

Bin# field: finds the associative set (A, B, C or D) in
the selected common directory congruence class. The
corresponding L1 and L2 cache entries can be in any
associative set in either cache. That is, the bin# indi-
cates the associative set in L2 for a line in L1.

CH field: represents the changed/not changed state
of the respective L1 line represented by the entry. Only
changed lines are castout of any cache.

LRU field: represents the least recently used (LRU)
entry of the associative sets A, B, C, and D for the four
entries in each congruence class in the L1 cache.

4,797,814

23

In a uniprocessor (UP), the local CPU is the only
CPU in the system, although there are usually other
processors in the form of channel processors. In a multi-
processor (MP), there are other CPU(s) in addition to
the local CPU, and each respective CPU may have one
or more channel processors or none.

When the local CPU makes a request which misses in
the common directory 60, the L1 LRU locates a corre-
sponding L1CA entry in the selected congruence class
in L1CA and the L2 LRU locates an entry in the se-
lected congruence class in the directory 60. The fields
in the accessed L1CA entry are generated when the
corresponding common directory entry is generated in
the directory 60. In both arrays, the corresponding
invalid (I) fields are then set off, the corresponding
change (CH) fields are set on whenever the L1 line
receives a write access, the corresponding exclusive/-
readonly bits (E) are set according to the L1 line request
type (if any L1 line is exclusive in an L2 line, the entire
L2 line is set to the exclusive state), the high-order LA
bits 12:17 are set in L1CA for later use in finding the
corresponding entries in the L2 cache and the TLB, the
bin number of the corresponding L1 cache location is
inserted into the common directory entry, and the L1
and L2 LRU fields controlling the congruence classes
containing these entries are updated by the respective
LRU circuitry 67 and 68 to control the selection of a
candidate for replacement of the next entry in the re-
spective congruence class.

Thus, the L1 control array (L1CA) 61 enables any
changed entry in the L1 cache to be castout to the L2
cache at the correct L2 location, such as when there is
no invalid entry available and the L1 LRU circuitry
must choose one of the valid entries, in which case the
LRU selects the least recently used entry in the same
congruence class and causes it to be castout. This 1s
done by first storing the content of the reassigned L1
cache entry in its corresponding location in the L2
cache at a set-associative location determined by the bin
number (bin#), and the L2 congruence-class locating
field in the L1CA entry originally obtained from the
bits 12:17 in the corresponding LA address.

A L1 LRU entry assignment is require when ther s a
L1 cache miss and all set-associative entries are valid
(with previously-written entries) in the addressed con-
gruence class. This will cause a L1 castout from an
LRU selected entry, if it represents a line with changed
data. No cast out is needed if the represented data is
unchanged.

A LRU L1 castout will be to a corresponding entry
in a valid L2 cache line, and to main memory L3 when
L2 is a store-thru cache. In that case, the TLB 1s ad-
dressed by LA 12:17] from the control array and LA
[18:19] from the requested address. The directory entry
at the castout location gives the ACF and LA [1:11]
fields needed to complete the TLB compare to deter-
mine the L3 address (AA or RA) for the castout line.
The new request (causing the current L1 miss) will have
a new entry written into the LRU f{reed entry. That 1s,
a new entry is to be written in L1 at the LRU assigned
location. However before the new entry can be written,
any required cast out from the old entry must be made
before the information in the old entry is destroyed by
being written over. The invention solves this problem
by storing the LA [12:17] and the bin# from the L1CA
array in the entry corresponding to the LRU selected
entry, which must be accessed for the cast out before
the old L1CA entry is written over by a new L1CA

10

15

20

25

33

45

20

33

63

24

entry for the new L1 line. The casoout L1 entry can be
in any set associative location in the cast-out L2 congru-
ence class, whereas the L1 entry can be found in any set
associative entries of the addressed L2 congruence
class.

Another cause of L1 cache line castout or invalida-
tion is a cross-interrogate (XI) request (1) from another
CPU for an exclusively (EX) held L2 line if the re-
quested line is indicated to be changed by the corre-
sponding entry in the L1CA, or (2) from a channel
processor for data from a requested line.

Cross-interrogate directories are used to determine
the potential need for a cache line cast-out or invalida-
tion by another CPU. (A pertinent cross-interrogate
directory is described in the IBM Technical Disclosure
Bulletin, Volume 26, No. 11, April 1984, pp 6069-6070.)

The synonym and/or cross-interrogation directory
(8/XI) arrangement in FIGS. 16A and 16B provide a
S/XI directory associated with each CPU in the MP.
Each S/XI directory is a synonym (S) directory for the
common cache directory in its assoclated CPU. Each
S/XI directory is also a cross-interrogation (XI) direc-
tory for all other CPU(s) provided in the multiprocessor
system, and for all channels.

In FIG. 16A, the plurality of synonym/cross-interro-
gate (S/XI) directories 230-1 through 230-N corre-
spond to the respective CPUs 1-N in the MP system. In
a UP system, only directory 230-1 is provided.

Upon a L2 cache miss, the real/absolute address out-
putted from the associated TLB is used to address all
S/X1 directories to locate a congruence class in each
S/X1 directory 230. Each congruence class contains
plural set-associative entries.

Each entry in any S/XI directory 230 has a corre-
sponding entry in its associated common cache direc-
tory, but the S/XI congruence classes do not corre-
spond to the cache directory congruence classes, be-
cause the cache congruence directory associated with a
requesting CPU; and a XI search occurs in all of the
other S/XI directories.

The content of each entry in each XI directory, 230 is
illustrated in FIG. 16B by the illustrated entry 231, and
it contains: an absolute address, the 1.2 congruence-
class locating field (L.A [14:19]), a bin number (bin#), an
exclusive indicator, an invalid indicator, and a directory
LRU field. The contents of each entry (except its LRU
field) reflect the information about the common cache
miss that generated the respective S/XI entry.

The output of S/XI priority circuit 211 (provided to
register 212) contains the selected request’s CPU ID, its
absolute address, its common directory bin number, and
its Exclusive bit state. Absolute address register 212
receives the priority selected output request, and CPU
ID decoder 220 receives the identifier of the CPU
which has the request in register 212. (In a UP, no CPU
identifier is necessary since there is no other CPU in the
system.)

All S/X1 directories are searched for the current
request’s absolute address bits 1:19 (and optionally for
logical address bits 14:19) in register 212. Compare
circuit 232 receives the (n) entries (e.g. four) in each
directory’s congruence class addressed by the absolute
address bits 14:19 in register 212, and compares the
absolute address field in each of the four entries with the
absolute address bits 1:13 in register 212 to determine if
any entry in any S/XI directory contains an entry hav-
ing that absolute address. Comparator 232 outputs an

4,797,814

25
unequal signal on line 234 or an equal signal to ANDs
circuit 251, 252, 253 and to gate 261.

If no entry in the requesting CPU’s associated S/XI
directory is found to compare-equal with the request’s
absolute address, an unequal signal is provided to a
write circuit 233 associated with the same S/XI direc-
tory. Then there is no synonym entry in the requesting
CPU’s cache, and a new S/XI entry is written into the
addressed congruence class at a set-associative location
determined by the S/XI LRU field in the respective
S/XI1 entry to represent the requested L2 line in the
S/XI directory. The new entry will be used by subse-
quent S/XI searches to determine synonym or a XI hit
conditions for the new L2 line fetched into the L2 cache
as a result of the current request.

(There must be no entry in the requesting CPU asso-
ciated S/XI directory found to compare-equal with
both the request,s absolute address and its LA, because
then the entry is indicated to be in the requestin® CPU’s
cache, and a no L2 miss should have occurred; and an
error condition should be indicated.)

A “synonym hit” is indicated by an equal signal out-
put from AND circuit 252 when a compare-equal con-
dition is found with the AA field (and not with the LA
field) of any entry in the S/XI directory associated with
the CPU having the current request.

A “XI hit” is indicated if a compare-equal condition
is found in any other S/XI directory (i.e. associated
with a CPU other than the requesting CPU). Thus each
S/XI directory is a synonym directory for its associated
CPU; and the same directory is a cross-interrogate di-
rectory for all other CPUs and all channels in the sys-
tem.

The XI search is simultanecusly done in the other
S/XI directories by AND gates 252 and 253, which
receilve the equal signal from comparator 232 and also
receive an inverted CPU ID signal from the CPU ID
decoder 220 indicating that they are operating for the
other CPUs and not for the associated CPU. Circuit 252
also receives the EX signal from the found S/XI entry
to output a cast out signal to its associated CPU for the
current request.

Circuit 253 also receives an RO signal (the invert of
the EX signal) from the found S/XI entry and a signal

3

10

15

20

25

30

35

from the EX field in register 212 to output a XI invali- 45

date signal to its associated CPU for the current request
to indicate when the current request is for an exclusive
request which hit a readonly entry that could not have
been changed and therefore only needs invalidation.

Whenever a synonym or XI hit is obtained in any
S/XI directory, some of the content of the hit entry is
sent to the requesting CPU (i.e. the CPU currently
having its CPU ID in register 212). The transferred
content i8 the L2 congruence-class locating field, the
bin number (bin#), and the exclusive/readonly (E)
field. This is done by gate 261. The transferred 1.2 con-
gruence-class locating field will address the correct
congruence class in the common directory and L1CA;
and the transferred bin# locates the required entry
therein. The LPF in the selected common directory
entry locates the L1 line to be accessed for a synonym
hit, or the L1 line(s) to be castout to the requesting CPU
for a X1 hit.

A S/XI out bus 290 receives the output signals from
the S/XI directory having a S or XI hit and provides
them to the requesting CPU having the CPU ID cur-
rently in register 212. FIG. 17 shows a circuit for each
CPU that receives the signals outputted from FIG. 16.

50

53

63

26

In FIG. 17, when received by the requesting CPU, a
synonym signal from the S/XI circuitry to store/fetch
control logic circuits 314 causes the requesting CPU to
execute the cache access at the synonym address. But a
X1 cast out signal to c/o control logic circuit 312 causes
a cast-out of the addressed line only if it is changed, i.e.
its CH bit i8 on. The bin number is received by decoder
301 which activates an AND circuit 303A, B, C or D
when it is conditioned by a synonym, castout or invali-
date signal from OR circuit 302 to provide a signal to
OR circuit 70A, B, C or D in FIG. 4.

In this manner the bin numbers are sent to the L1CA,
where the line change bits are tested. For each such
changed L1 line for the XI request, a cast-out is initiated
to update the corresponding L1 line part(s) in the L2
cache, and then this L2 line is castout to update the
corresponding line in main memory (L3) from which
the requesting CPU can get its requested XI data. (For
a store-thru L2 cache, only the L1 cast-out operation is
required, since it will store-thru to main storage.)

Thus the S/XI directory may be considered to be
partitioned into N discrete parts, in which N is the
number of processors, each with a private cache(s) that
share(s) main memory (L3). One such partition is allo-
cated to each CPU. If the S/XI interrogation finds a X1
hit on a partition different than that allocated to the
requesting CPU, then a cast-out request is initiated.
However, if the S/XI interrogation finds a hit to the
partition allocated to the requesting processor, this is a
synonym discovery. In the second case the LA [14:19]
and bin number are returned to the requesting CPU, and
the cache access may now execute at the synonym
address.

The second embodiment shown in FIGS. 11 and 12
primarily differs from the embodiment in FIGS. 1 and 3
in the entry structure of the common cache directory
160 and TLB 162. In FIG. 12 each entry in directory
160 and TL.B 162 contains a one bit DAT OFF field
received from the current S/370 PSW in the CPU as a
zero or one value, respectively indicating DAT OFF
and DAT ON states, and also contains any STO or STO
ID being provided by the CPU.

In FIG. 12, the common cache directory (CCD) 160
1 also used (like in FIG. 3) for accessing data in a two-
level cache organization private to a high-performance
central processor (CPU). Likewise the CCD contains
only untranslated address bits of previously requested
CPU addresses, whether or not those address were
translatable. Also a “local search” within the CCD is
executed in hardware to determine if a line containing
requested data is in the L1 or L2 cache, and if so, the
CCD generates a signal to “gate” the addressed data to
the CPU from the 1.1 cache if available in L1:; and if not,
then from the L2 cache if available in L2.

Thus the common cache directory 160 and TLLB 162
in the second embodiment use a different form of the
CPU requested switchable logical addresses in their
untranslated form (whether or not they are translatable)
for accessing both the L1 and L2 caches. The requested
form of each logical address (regardless of its actual
type) 18 likewise used unmiformly in cache operations
without translation, both: (1) within the entries in the
common cache directory, -and (2) to address the com-
mon cache directory, the L1 cache, the L.2 cache, and
an L1 control array.

In FIG. 11 circuits are also shown for switching the
address type between untranslatable and translatable
types, but the address type is indicated in a DAT OFF

4,797,814

27

register 26 which receives the inverted value of the
DAT mode bit 5 in the PSW. The content of register 26
is associated with the content in logical address register
30, in which a one value in DAT OFF register 26 indi-
cates an untranslatable LA is in register 30, and a zero
value in DAT OFF register 26 indicates an translatable
LA is in register 30 .

FIG. 11 shows unique hardware provided for the
common directory to differentiate untranslatable (real)
and translated (virtual) addresses. The DAT OFF regis-
ter 26 is an address control register set by the inverted
state of DAT mode bit § in the PSW to indicate
whether a requested logical address in register 30 is a
translatable or untranslatable address. Register 30 has a
single bit field. A zero DAT OFF value in register 26
indicates the logical address in register 30 requires
translation (it is a VA), and a one output indicates a
logical address not requiring translation (it is a RA or
AA). A STO ID value in register 27 is set by the output
of AND gate 21 or 22. The STO ID value in register 27
may be zero or non-zero, but it is valid only if the value
in DAT OFF register 26 is zero; that is, if register 26
contains a one the content of STO ID register 27 is
invalid.

In more detail, AND gates 21 and 22 are conditioned
by DAT mode control bit §, extended control (EC)
mode bit 12 and address space control bit 16 for select-
ing between the STOs in CR1 or CR7. The output of
AND gates 21 and 22 is dot-ORed to provide a STO
signal to STO ID assignment circuits 25. Any selected
STO ID is provided by the CPU. The outputs of regis-
ters 26 and 27 are provided on buses 40 and 48.

In FIG. 11 all of fields 40, 45, 42-49 are gated out
simultaneously to FIG. 12 within a single machine cycle
to directory 160, cache 63, L1 control array 161, TLB
162, and cache 64. Thus only the structure of directory
160 and TLB 162 in FIG. 12 are different from direc-
tory 60 and TLB 62 in FIG. 3. Likewise the single
cache directory 160 operates in common for controlling
the accessing of both L1 and L2 private caches 63 and
64.

Thus in FIG. 12, the addressing structure enabiles
each untranslated CPU requested address to address in
parallel and in a uniform manner the common directory
160, the L1 cache 63, the 1.2 cache 64, and the TL.B 162.

Each entry in directory 160 has the exemplary format
shown in FIG. 14, which differs from the format shown
in FIG. §, by FIG. 14 having a STO ID field instead of
an ACF field, and additionally having a DAT OFF
field.

FIG. 13 represents the common cache directory 160
and shows an example of a selected one of its 4-way
set-associative congruence classes. The compares in
directory 160 are illustrated as four comparator circuits
171A-D for respectively comparing each of the four
entries in the selected congruence class with the DAT
OFF field and LA field 1:13. Each compare circuit 171
comprises sub-compare circuits 172 and 173, AND
circuits 174 and 177, and OR circuit 177. When any
AND circuit 177 provides an output signal, it indicates
an “equal” comparison that determines the respective
directory entry has a cache hit. When AND circuit 177
does not provide an output signal in response to a con-
gruence class selection, it indicates an “unequal” com-
parison that determines the respective directory entry
does not have a cache hit. If the DAT OFF field is one,
the CPU requested address in LA is a non-transiatable
address, and whatever value is in the STO ID field is

10

15

20

258

30

35

45

50

53

65

28

disregarded in the comparison by providing a signal
from AND circuit 174 through OR circuit 176 to enable
AND circuit 177 regardless of the STO or STO ID
values. If the DAT OFF value is zero, the STO ID
(whether zero or non-zero) is used in the comparison
operation, since AND circuit circuit 174 receives a zero
value as the current DAT signal with the CPU request,
and therefore does not provide any output signai to OR
circuit 176, so that the output of the STO ID compare
circuit 172 controls the enablement of AND circuit 177.
An L2 miss signal is generated by an AND circuit 180
which receives the inverted outputs of AND circuits
177.

In this manner, each of the cache directory compare
circuits 171 automatically operates under control of the
current DAT state signal to determine whether the
comparison is between: (1) a translatable LA and an
untranslatable entry-represented address (UTERAD),
(2) an untranslatable LA and a translatable entry-repre-
sented address (TERED), (3) an untranslatable LA and
an UTERAD, or (4) a translatable LA and a TERAD.
This invention requires that comparison (1) or (2) al-
ways be declared an unequal comparison, even though
the compared LA values are equal. Only comparison (3)
or (4) may be declared an equal comparison when the
compared LA values are equal. Accordingly a 1.2 cache
miss 18 determined whenever the requested LA and

each of the TERADs in the selected congruence class
have different translation characteristics, regardless of

whether any of their TERADs equal the requestd LA.

Whenever a L2 cache hit is determined, the directory
160 also determines whether a L1 cache hit exists. The
L1 hit circuit 78 in FIG. 12 is provided by select and
decoders 175A-D in FIG. 13, one of which can receive
an L2 hit output from one of AND circuits 177A-D if
there is a L2 cache hit in the selected congruence class.
Thus any L1 cache hit is determined by operation of the
L1 hit determination circuitry 175A-D when a L2 hit 1s
determined by the output of its respective AND circuits
177. Circuits 175A-D may be the same as circuits
75A-D in FIG. 4, and they operate in the same manner
to locate the part of the LPF needed for determining if
any L1 cache hit exists. Also the AND circuit 181 sig-
nals a L1 miss and is the same as the circuits 81 in FIG.
4.

AND circuits 178 each receive the L1 miss signal
from circuit 181 and the respective L2 hit signal from
circuits 177 to output a signal indicatinga L1 hitona L1
miss.

Any L1 hit signal from any decoder 178 is provided
on one of four L1 cache hit signal lines 179A, B, Cor D
to the L1 cache 63 to select the correct data line of the
four data lines in the congruence class currently being
addressed in L1, cache 63 by the LA bits 18:25 being
provided on signal lines 47. An activated one of the four
data lines A, B, C, & D in the required L1 congruence
class thereby selects a requested bus unit (e.g. four
quadwords) in the line, and the unit is outgated as the
requested L1 data on the data bus to the CPU.

In FIG. 12 (as in FIG. 3), no output from Translation
Lookaside Buffer (TLB) 162 is needed for cache access-
ing until an L.2 cache miss occurs (which statistically
infrequently happens).

FI1G. 18 shows more detail for the TLB circuit used
in the embodiment of FIG. 12. The FIG. 1§ TLB circuit
differs from the TLB of FIG. 10 in that FIG. 15 uses a
DAT OFTF field and a STO ID field in each entry in-
stead of the ACF field in FIG. 10. Each of compare

4,797,814

29
circuits 80A and 80B in FIG. 18§ is structured and oper-
ates the same as each compare circuit 171 in FIG. 13.
Otherwise the TLB arrangements in FIG. 1§ and FIG.
10 are the same.

While the invention has been particularly shown and
described with reference to the preferred embodiments
thereof, it will be understood by those skilled in the art
that the foregoing and other changes in form and detail
may be made therein without departing from the spirit
and scope of the invention.

Having thus described my invention, what I claim as
new and desire to secure by Letters Patent is:

1. A logical address private cache arrangement in a
data processing system including a processor, a transla-
tion lookaside buffer (TLLB) and a main storage, the
processor being able to switch its mode of addressing
between real and virtual in its requests for data units
from main storage, the cache arrangement comprising:

a first cache accessible to the processor, the first

3

10

15

cache having locations for containing a plurality of 20

lines of data initially copied from main storage,

a cache directory having a plurality of directory
entries, each cache directory entry including a
logical address representation with an associated
indicator of whether the representation is of a real-
/absolute address or is of a virtual address,

means providing to the cache directory each logical
address (LA) requested by the processor with an
indicator signal of whether the requested LA is a
real/absolute address or a virtual address,

directory selecting means for receiving each logical
address (LA) requested by the processor and se-
lecting a set containing one or more potential hit
entries in the cache directory,

cache hit determining means for examining each po-
tential hit entry in the set by comparing the logical
address (I.LA) and the indicator signal requested by
the processor with a LA representation and the
associated indicator in each valid entry in the set
for a match condition in order to determine if any
entry 18 a hit entry without using any address trans-
lation from the TLB.

2. A logical address cache arrangement in a data
processing system as defined in claim 1, further com-
prising:

plural caches private to the processor including the
first cache and one or more other caches up to an
Nth cache, the caches being at different hierarchy
levels in relation to the processor,

the cache directory being a common cache directory
for the plural caches for receiving each indicator
signal and its logical address (LLA) request from the
processor to determine if data requested by the
processor exists in any data line in one or more of
the plural caches.

3. A logical address cache arrangement in a data
processing system as defined in claim 2, further com-
prising:

the directory selecting means receiving a LA repre-
sentation from the processor for each new storage
request for seleting a congruence class of set-
associative entries in the common directory,

the cache hit determining means comparing each
requested indicator signal and its LA signal with
each indicator and its LA representation in each
valid entry in the selected congruence class to
determine 1if a hit entry exists in at least one of the
caches.

25

30

35

45

30

535

60

65

30

4. A logical address cache arrangement in a data
processing system as defined in claim 2, further com-
prising: |

means for providing to the TLB each LA and for
inserting in the TLB the LA and its translated or
untranslated real/absolute address in accordance
with a processor request for translation,

common cache directory miss signal means for gener-
ating a miss signal when no common directory
entry 1s found for the indicator and LA representa-
tion requested by the processor,

TLB output means actuated by a common cache
directory miss signal to provide the translated or
untransiated real/absolute address, associated with
a requested LA, for a main storage access.

. 3. A logical address cache arrangement in a data
processing system as defined in claim 2, further com-
prising:

at least one control array associated with the first
cache to contain information for determining loca-
tions 1n another cache to receive castouts from
locations in the first cache selected for replace-
ment.

6. A logical address cache arrangement in a data
processing system as defined in claim 4, further com-
prising:

control array addressing means receiving a requested
LA from the processor for each new storage re-
quest for selecting a congruence class of set-
associative entries in the control array.

7. A logical address cache arrangement in a data
processing system as defined in claim 3, further com-
prising:

at least one control array associated with the first
cache to contain information supplementary to the
common directory for determining locations in
another cache for castouts of the first cache.

8. A logical address cache arrangement in a data
processing system as defined in claim §, further com-
prising:

line presence fields (LPFSs) in each entry in the com-
mon cache directory for indicating whether any
part of an associated line in the Nth cache 1s avail-
able in another cache more directly accessible to
the processor.

9. A logical address cache arrangement in a data

processing system as defined in claim 8, in which:
each line presence field (ILPF) has first subfields for
indicating whther or not one or more locations in
the other cache contain part(s) of the line in the
Nth cache associated with the entry in the common
cache directory containing the respective line pres-
ence field (LPF).

10. A logical address cache arrangement in a data
processing system as defined in claim 9, in which:

a second subfield is provided with each first subfield
in each line presence field (LPF) for indicating the
particular location in the other cache that contains
an associated part of the line in the Nth cache indi-
cated to exist in the other cache.

11. A logical address cache arrangement in a data
processing system as defined in claim 10, further com-
prising:

a logical address (L A) field being contained in each
entry in the control array for containing a LA for
locating a Ine in another cache to be updated by a
cast out of the corresponding line in the first cache
if the corresponding line has been changed.

4,797,814

31

12. A logical address cache arrangement in a data
processing system as defined in claim 11, further com-
prising:

a change field (CH) being contained in each entry in
the control array for indicating any change previ-
ously made in the associated line being cast out of
the first cache t0 update a line in another cache
located by the LA field in the same control array
entry.

13. A logical address cache arrangement in a data
processing system as defined in claim 11, further com-
prising:

an exclusive/readonly field (EX) being contained in
each entry in the control array for indicating the
exclusive/readonly state designated for an assocx—
ated line in the first cache.

14. A logical address cache arrangement in a data
processing system as defined in claim 11, further com-
prising:

a bin number field being contained in each entry in
the control array to locate a set-associative position
in a conguence class located by the LA field in the
same control array entry in order to find the line in
another cache to be updated by receiving a cast out ,
of the corresponding line in the first cache array if 2
the corresponding line has been changed.

15. A logical address cache arrangement in a data
processing system as defined in claim 4, further com-
prising:

a synonym directory containing a plurality of entries

and being associated with the common directory,

a LA field in each synonym directory entry for en-
abling the locating of a common directory entry
which caused the generation of the respective syn-
onym directory entry,

means for locating in the synonym directory entry a
real/absolute address representation that is the
same as a real/absolute address provided for a
requested LA, causmg by a common cache direc-
tory muiss signal reqmnng a main storage access,

means for generating in the synonym directory a new
entry when no synonym entry is found, the new
entry having a real/absolute address representation
that 1s the same as the received translated or un-
translated real/absolute address associated with the
requested LA that caused a current common cache
directory miss signal.

16. A logical address cache arrangement in a data
processing system as defined in claim 18§, the locating
means further comprising:

synonym directory addressing means for receiving
each translated or untranslated real/absolute ad-
dress (associated with a requested LA) for a main
storage access due to a common cache directory
miss signal to select a congruence class in the syn-
onym directory which may contain a synonym
entry,

set-agsociative comparison means for comparing the
received translated or untranslated real/absolute
address with the real/absolute address representa-
tion in each entry in the selected congruence class
to find any synonym entry by an equal comparison.

17. A logical address cache arrangement in a multi-
processing (MP) system, including a plurality of data
processing systems as defined in claim 4, all CPUs in the
MP system having their caches access data in a common
main storage, the MP system further comprising:

b

10

15

20

30

35

435

50

33

65

32

a plurality of main storage request registers respec-
tively receiving cache miss requests from the
CPUs, each cache miss request including at least a
real/absolute address representation and a LA rep-
resentation of the request that missed in the respec-
tive cache,

a plurality of synonym/cross-interrogate (S/XI) di-
rectories, each containing a plurality of S/XI
entries and being associated with the common di-
rectory of a respective CPU, each S/XI entry in-
cluding at least a real/absolute address representa-
tion and a LA representation found in a current
entry in the respective cache,

a priority circuit receiving the cache miss requests
provided to the main storage request registers and
priority selecting based on a priority, a received
cache miss request of an identified CPU for a S/XI
determination,

S/XI search means with each S/XI directory for
receiving a real/absolute address representation
provided with a prionty selected cache miss re-
quest for searching the S/XI entries in each S/XI
directory for any equal real/absolute address rep-
resentation, the S/XI search means providing an
unequal signal if no S/XI entry is found or provid-
ing S/XI hit signals if a S/XI entry is found, the
S/XI hit signals including the LA representation in
the S/XI entry found by a S/XI search,

a S/XI bus logic transmitting the LA representation
with hit signals to the CPU requesting the S/XI
search.

18. A logical address cache arrangement in a multi-
processing (MP) system, as defined in claim 17, the MP
system further comprising:

a synonym signal being provided by the S$/XI bus
logic to the requesting CPU, when the CPU mak-
ing a request is identified as the CPU associated
with the S/XI directory providing the hit signals
found by a S/XI1 search.

19. A logical address cache arrangement in a muliti-
processing (MP) system, as defined in claim 17, the MP
system further comprising:

a cast out signal being provided by the S/XI bus logic
to the requesting CPU, when the CPU making a
request is identified as not being the CPU associ-
ated with the S/XI directory providing the hit
entry found by a S/XI search.

20. A logical address cache arrangement in a multi-
processing (MP) system, as defined in claim 17, the MP
system further comprising:

a cast out signal being provided by the S/X1 bus logic
to the requesting CPU, when the CPU making a
request is identified as not being the CPU associ-
ated with the S/XI directory providing the hit
entry, and the hit entry identifies exclusive data.

21. A logical address cache arrangement in a maulti-
processing (MP) system, as defined in claim 17, the MP
system further comprising:

an invalidate signal being provided by the S/XI bus
logic to the requesting CPU, when the CPU mak-
ing a request 18 identified as not being the CPU
associated with the S/XI directory providing the
hit entry, and the hit entry identifies readonly data
when the current request 1s for exclusive data.

22. A logical address cache arrangement in a multi-

processing (MP) system, as defined in claim 17, the MP
system further comprising:

4,797,814

33

a set-associative bin number field and a LA represen-
tation field and a real/absolute address representa-
tion field being provided in each of the main stor-
age request registers respectively receiving cache
miss requests from the CPUs,

each S/XI entry in each synonym/cross-interrogate
(S/XI) directory containing a set-associative bin
number field and a LA representation field and a
real/absolute address representation field, each
S/X1 entry being associated with the common
directory of a respective CPU,

the S/XI1 search means including a S/XI priority
register for receiving the priority selected output
of the priority circuit for searching the S/XI
entries in each S/XI directory, the S/XI priority
register containing a set-associative bin number
field and a LA representation field and a real/abso-
lute address representation field, the bin number in
a found S/XI entry identifying a set-associative
location in a CPU cache required by a CPU request
currently in the S/XI priority register.

23. A logical address cache arrangement in a multi-
processing (MP) system, as defined in claim 22, the MP
system further comprising:

set-associative location selection means of the CPU
identified by hit signals on the S/XI bus to ingate a
bin number being transmitted on the bus for select-
ing a set-associative location in a Nth cache of the
CPU, the selected location containing LPF fields

5

34

for locating any set-associative entry(s) in any fast-
er-access cache for obtaining data lines needed for
cast out and/or invalidation,

means for casting out and/or invalidating any lines
found in the faster-access cache at locations indi-
cated by the LPF fields and then casting out and-
/or invalidating a line found at the selected loca-
tion in the Nth cache.

24. A logical address cache arrangement in a data

10 processing system in which a processor also provides a

15

20

23

30

35

45

30

33

65

translation table identifier with each requested logical
address, comprising:

the cache means including an L1 cache and an and 1.2
cache, each line in the L2 cache being a multiple of
the line size in the I.1 cache, the L1 cache having
faster access time than the L2 cache for a request
CPU,

each entry in a common cache directory correspond-
ing to a data line in the .2 cache and including a
line presence field (LPF), the LPF including a
plurality of subfields equal in number to the multi-
ple of the line size in the L1 cache,

a plurality of subline locations in each line location in
the L2 cache corresponding to the respective sub-
fields in a LPF, each L2 subline location being
equal in size to the line size in the L1 cache, each
subfield in the LPF indicating if a corresponding

L2 subline exists in the L1 cache.
* . x $ *

	Front Page
	Drawings
	Specification
	Claims

