United States Patent 9
Ath_anas et al.

4,724,520
Feb. 9, 19§§

[11] Patent Number:
45] Date of Patent:

[54] MODULAR MULTIPORT DATA HUB

[75] Inventors: Peter M. Athanas, South Windsor;
Gregory A. Portanova, Enfield, both
of Conn.

United Technologies Corporation,
Hartford, Conn.

[21] Appl. No.: 750,923

[73] Assignee:

[22] Filed: Jul. 1, 1985
[51] Imt. CLY s GO6F 13/38
[52] US. Cl ..ottt 364/200
[58] Field of Searchcccoovennn.e. 364/200 MS File
[56] References Cited
U.S. PATENT DOCUMENTS
4,253,144 2/1981 Bellamy et al. 364/200
4,354,225 10/1982 Friederetal.ovueeenvennne. 364/200

Primary Examiner—Thomas M. Heckler
Attorney, Agent, or Firm—Francis J. Maguire, Jr.

F/G.
6A

[57] ABSTRACT

A data hub for facilitating and effecting data transfers
between signal processors with high efficiency is dis-
closed. The data hub receives low priority data transfer
instructions from a master CPU and is capable of trans-
ferring such low priority data between processors with-
out imposing significant overhead burdens on etther the
data source or destination. The hub may have the fur-
ther capability of asynchronously receiving intermedi-
ate priority data transfers, storing the received data and
transferring it to a destination unit before any further
low priority transfers are effected. The hub may have
the further capability of asynchronously receiving high
priority transfer requests which are effected by the hub
before both intermediate and low priority transfers. The
hub may be used as a keystone building block for use in
linking signal processors.

4 Claims, 16 Drawing Figures

F/G.
65

4,724,520

v/ 9/
/ 9/ // _ o
NO/LYNILS IO
. /F28N0S
wivo
=3 Z ,
— Zl— NOLLYNLIS IO
e 7 32HN0S NO/LENILSTIT NOILLYNILSIO
2140 /IENOS 4 ¢17/ PLY 23085005
v— NO/LYNILSIT & LT 147
9 NOIIYNIISFT| # . e or
= c/ /FOHN0S —)
b
7P "
NO/LYNILSHT
e 7 I9N0S 4 bl
24
% NO/LYNILSTT
= </~ | /32HN0S
— LY,
y O\ [’
. Nos pf
0S
1LY, « 4 s @ VUV
e ¥ | NOLLIYNIL S FCT < s’/
~ 7, /32N0S [@ 4
- I, 1%e; zmw,wé%wmu zmt YNILS FT 2/
) Fl vLvd vivad
ot LY .
A NOLLYNILSFT mm\ mm\
. el \mm.wm%w
)

4,724,520

‘ NO/LYNILS FT
g/ 914 /3208005 |
IV a |
b/, 2/
NOIIVNILSIO
&\ NO/LIYNILSIC NO/LYNILSTT \m®$0w
v— 7 32&N0S 7 FOMN0S
= va) 2144
~ &/ 2/ Vi
- . ol NOILYNILSFT po
3 /3HNO0S
@nu O/ @ NO/LUYNILSTIC c’/ add NO/LYNILSTT
NOILYNILSFT /' 32UN0S /F24N0S
/395N0S s/ < vIVa N %e
viva o/ 2/ . rm\
NOLIYNLLSIT
/328N0S
o0 VLT
NOTIVNILSIT
X A" /324N0S </
ot wLVT | ¥/,
=N am%u@w%% 7 .* NO! L w?mmmq
S VT NO/LYNILSIC /l /I
< AN 7FINOS aya
- /- “ o L g of @ e
~ Y (NOLvNIZS7a
NOLIYNILISTT | P 9 ¢’/ /' TMNOS
! 7/ IIOHN0OS O/ - P/ ViIPd
IV
NOI1LVNILSIT ,
#/ &/ /' FN0S ¢
NOLIVNIISTO vivy

X005

Yide; /

U.S. Patent

4,724,520

Sheet 3 of 19

Feb. 9, 1988

U.S. Patent

FIG 2

4,724,520

i 8

S t K

IS

!
e

- o

m =

5 ___ml_@]

e ___ A _
L
_Wl”“.......... iiiii —-

b o o B - % . =~ - £ 2 _________3§¥ < = ¥ = = = ¥ =* ¥ =]

U.S. Patent

4,724,520

. | |
p—
Qo
= | |
To
2
5 | |
 p.
)
o0 _ — %D\\ ﬁ NO\\
o _ _
=3
o
% _ _
o
n _ FOTTTMONMN IOV FOTTIMONM IV
9// &1H /
Ndd
g SAS _ INVYO SNg y &m@mm\q W INVYO SNE _
N 70 L0/
m 1STIOFY HFFSNVML \Gmaom& SIISNV &L
~ 70 b/l 00/
Dn_laA ' g SAS 0\\
- c6 06
)
-

gnN VIVa ’ .

4,724,520

2O N Of .
LQOWQE - wﬁﬁ&@w < _ - L&G%e.«%
WIFLISAS |a | —| WILSAS |

&
»

&/ H

- Z # W/ mﬂkﬁh%%w WV >
“ WILSAS L 1&OLIN LA LL WITLSAS _
S
\&
o
5t TINWION#
o 7377
U - ASONW I
. [WVTLSAS
L
AMONTN -
NEWIISAS TINNYHD
777770 -~
0
ot .
N J
1 &
[. &
N
. =2, TINNVYHD C# N2
m N#NTLSAS 73777V [#WILSAS
F $ - , e
ASOWIW D c O/ J
CHNITLSAS CH#NTLISAS 5 9/

U.S. Patent

REG/ISTER ‘

U.S. Patent Feb. 9, 1988 Sheet 70f19 4,724,520
zo\;— — MULTIPORT
CONTROL | /188 DATA HUB
UNIT
L SR
CHANNEL A
IECE/_‘_LLE [rRansmiT
worD | J 1] worD
/80 I COUNT COUNT l
BUS REQUEST M | l REGISTER
REQUEST
GRANT -— FL/PFLOD\ l o6] — 58 l
ACKNOWLEDGE o] A BUFFER BUFFER
I REG/ISTER

MEMORY /
ADDRESS
REG/ISTER

—

/24 ,

LOCAL BUS /

[5 < L e
(MEMORY | cPU /

l BUFFER I\ ADDFPESS| l

l REGISTER | €H REGISTER9¢ |/xzo
! MEMORY

l SPACE 208 A |//96

"

REQUEST,
FLIP FLOP 0

N _ il il

FI1G.6

U.S. Patent

Feb. 9, 1988

Sheet 8 of 19

4,724,520

MULTIPORT . /0
STATUS
Dara HUB 190 PEG/S?‘EA"\
/38 1
CHANNEL B
[7RansmIT FECE/VE ‘
WORD WORD
| COUNT COUNT l 8.
REGISTER | I REG/STER A BUS REQUEST
| o oo || [EERR| o
_ _ 2 Y
BUFFER I l Bl IFFER ACKNOWLEDGE
REGISTER REG/ISTER
l 168 ' /70 I //55
ADDRESS I ADDRESS I MEMORY 2
| REGISTER Rsczsrsﬁ—l ggg,@%%
— _{.?ﬁ.J L_ /78
/o4 /SO
\ /e 44 126

LOCAL BUS 2

34 I

MEMORY 2 '
BUFFER

206N REGISTER

[MEMORY
2/ SPACE
2

ADDRESS
REG/STER

BUFFER
REG/ISTER

[t

PEOUES7‘|
0P~ FLIP FLOP |
lsuasrerM #2 l

{ /98

U.S. Patent

Feb. 9, 1988 Sheet90f 19 4,724,520

200

/204

o 202
NO

V&S PEOUEST FLIP-FLOP A=1?

— 1

HUB REQUESTS CPU / BUS 206

YES NO

— GRANTED?

MEMORY / CHANNEL A

ADDRESS o RECEIVE

| REG/STER ADDRESS
REG/ISTER

208

CHANNEL A MEMORY / MEMORY
RECENVE a— BUFFER —a— SFACE
BUFFER REGISTER /
REG/ISTER

REQUEST FLIP-FLOP A=0

REQUEST FLIP-FLOP B+ /
RELEASE CPU | BUS

,:f-c’c".?

FIG. 7A

24

ol

/6

o8

748,
FIG | FIG.
/A4 e

FIG 7

U.S. Patent

238

erovesT FoPl /<Y
FLOP A=/

Feb. 9, 1988 Sheet 10 of 19
200
START
- recd
YES " REQUEST FLIP-FLOP B=717 DNCQ
HUB REQUESTS CPU 2 BUS 226

YESGRANTED? L0 a0

228

MEMORY 2 CHANNEL A

| ADDRESS —a—o TRANSMIT
REG/ISTER ADDRESS
REG/ISTER

37

MEMORY MEMORY 2 CHANNVEL A
SPACE wa—— BUFFER -~a—— TRANSM/T
Z REG/ISTER BUFFER
REG/STER

REQUEST FLIP-FLOP 8=0 |/°

34

INTERRUPT

: NTERRUPT ENA ?)—
TES / EBJ;:U I ENABLED O

4,724,520

250

CPU

TRANSMIT WORD COUNT REGISTER (TWCR) = TWCR-1

RELEASE CRPU 2 BUS 240

LNO (T TRANSMIT WORD COUNT REGISTER= 07 >—-—*’ £S5
242 -

ey

FIG. 78

[INFORM CPU'S
TRANSFER
COMPLETE

46

U.S. Patent Feb. 9, 1988 Sheet 110f19 4,724,520

cPY HUB
00
SET UP
CHANNELS FOR A4 - 3072

DATA TRANSFER

START CHANNEL

.y ACTIVITY
EXECUTE ANY 208
UNRELATED 108
PROGRAMS -
REQUEST NEEDS/HAS
| FLip FLoP DATA
A=/
S
YES '
7,
" 3 34
VES NO =7, %%Ussr a
FLOP=]
|
VES
|
/& Ve
CPU
REQUEST NO FOR
FLIP FLOP TRANSFER
YeS TRANSFER
DATA
320
/S
VES « TRANSFER
DONE el
7
NO

FIG. &

US. Patent Feb. 9, 1988 Sheet 120f19 4,724,520

/O
J70 }
§ l_ -_—
33/
/OR I |- |
335 [OW I
I3 :
CSE
384y > 1360
- 4/6 364
o 3 & &
2 374 378-
N
{
) x . —
3 D
0 I 3
BEN
N\g02 I 386 *
A - 1
4/02 e I 383y 429]
- .
| P e N
9 mrRo I~>§ x act I> . N
422 | Mwk R 23 X Q
J96~ ack l ‘
INTER 367 w0 | 470
720
‘._‘_______._.____..___
18 MHZ
:390
FI/G 9A

A

U.S. Patent Feb. 9, 1988 Sheet 130f19 4,724,520
— 106
| — 372] .
S S S— MULTIPORT _l
DATA HUB /

J62
376 /..380 382

XMTR
XMTR
CNTRL

N
_ %
<
X
e | {
I I —— oy ADD/DATA DATA Y 3
— 3 2
D
] >
AEEEEREN
— .
IR
3 O T 3
V)
72/ 408 456
-

FIG. 98

4,724,520

Sheet 14 of 19

Feb. 9, 1988

U.S. Patent

/]S
MOV | [~—ss, 7
QSN L_~—~0cer (2)
NIg | f L ~,, (P)
O3 r _....,.I,,. /5 (2
LN |~0sr | (9

Nm:m\§§::§§:::::§

O\ /S
MV ._I_....l.;}m.ov &)
NILNOX | L_..._......\D%)
N3G i L ™0 (2)
OFe 1 L~ (P)
NIOFEX | T-/No,m. ()
UN _ _] | _ [~osr | (D
2o o UL VUL
——8%f

4,724,520

Sheet 15 of 19

Feb. 9, 1988

U.S. Patent

gl 9/

M1 —____1 L. D
Sngay ~=< LY OKSSFHITY Y-,)
MOVLa L= ("

San7 l—l..rmi..l.lli 0 (')
FIsV Tmt_l)m% &7
St | _er»» ®)
og _ —— @,
&g Pt ()
b 4 R _.../ND. (P
OF/ _n” ot /A 2/p l.\\ll_ (2)
MW/ TS o =] | (D
NFE /b \\l.l..._ [(D)
LUN | | _ I pee"L | l (I9)
zwe JUUULUU ::Ed,_:_,._::::._ U ==
&&¢E

4,724,520

Sheet 16 of 19

Feb. 9, 1988

U.S. Patent

MoV

Io/a4
NIG

07y

HWAd
M1
SNIEIV
Sar
JI5V
MNFOH

og

v/
QA
ZHW 2/

&/ 9/

 Ll~—g0 (W
I = @
o _I _....lrl}bunum, (/)
— - _..Il....:gm.)
-—q1 [)

06#——" —
s6p—= WO A Yss3uaay @
por—"1__1 “
reyr —~ _l i °
cop—" _ _ P)
A " e
e ﬁ I_. . | dlﬁx.% i I_wa/numﬁw 1 (9
papunnnnnn HyuvuuL =

S~ g

4,724,520

vl 9O/
U e g S (0
. MY e
y—
s SNgay ——— wwva)X ss3¥aay >—--- v
- - _ I)
~ MOV H)
¥ O// o &
= SaN7 - - “
7 mo.T\U, k
— g —— :
I75V g (P
| - oo,
o (6)
Yo \ /= oY,
m op - /R)
\
™ &G \I\.P - (%
S | oo’ = /-
e ZHW &/ | JR:

A L -
149)4

H IV _.011 /, |||w .. @
OE ~ S] U P
| |

]

e ANMOG MOTS -

(®)

mp—

U.S. Patent
S
-
|
N

U.S. Patent Feb. 9, 1988 Sheet 180f 19 4,724,520
READ AND WRITE LOWER BYTE
OECODES rp p7 D6 D5 D4 D3 D2 DI
¥ WR RX/_ADD
0 PNTR
- N S S | —_ - e — 1.
o RX2 ADD
/ PNTR
WR TX/ ADD
2 PNTR
1 I B
WR _ TX/ WRD
¢ COUNT 7X
We 7X2 ADD
y ANTR
WR | TX2 WRD
s ot CNT
WR SS/ BLK
5 4ADD PNTR
q._.___-L——---|———---—----Iv s
WR SS2 BLK
7 40D PNTR
] e w0
we | L2 | LS/ | cHE | cHs | e | CHE | cHe | chL | MaSK AND
o | Ev | En |BXFR| TX2 | Tx1 |RCV2 |RCVI | XREQ| ENBL WORD
WR LOAD TXI
e | DIRCT
WR LOAD TX2
/ DIRCT
. SR— m - "
WR XFR IMM
2 7O S52
WR WRITE SS /
3 | i 70 2 MLBX
RD READ
O RX/
RD READ
/ RX2
(aq7 Dl | - T T
rp MLEX| pip | Bwe [PMTR |\ XMIR| mx2 | Rxy (54257 | READ. STATUS
2 DATA| BT |5 \wés olwdso| BSY | BSY (v 8| WORD
RD READ MLBX
3 1 270/
RD | LS8 | LS/ | CH6. | CHS | CHe | CHI | CH2 | CHI | MASK AND
7 |'EN | En |BxFR| TX2 | TXI |RCV2 |RCVI | XREQ| ENBL WORD
RD READ MLBX
5 /702
[— —
wR WRITE 2 TO I
4 MLEX
FIG 15A

U.S. Patent Feb. 9, 1988 Sheet 190f19 4,724,520

READ AND WRITE UPPER BYTE
DECODES /s)5 pid DI3 D2 O DIO D9

WrR] | X/ ADD
o, PNTR
' e i - - |

Wwe | RxZ ADD

/ | PNTR

WR | 7X/ ADD

e | PNTR

WR | REST |SELF | Txt wRD

X X L XX XX oy \TEST| enT
o — —t -t - . : ¢

WR TX2 ADD

4 PNTR
e . { e $ - : —4

WR REST | SELF | Txe wrD

5 | Rxe |\TEST| cnT
——t+——T— —

WR 5SS/ BLK

5 | ADD PNTR

= ‘ SS2 BLK

7 ADD PNTR

v | OR | BLK WRD

| B/T | CNT

r
wo 1558+ SSE | TXS | TX | pyo | pxr | 7x2 | Txr | mask AnD
g .!,'t’fg; 2L Qgﬁf_; DBOL& oy | ROy | emp | EMP | ENBL WORD
wR] LOAD TX/
0 | | | DIRCT
WR LOAD TXO
. DIRCT
L . | B S - -
WR XFR MM
/2 70 $S2
! | | i I |
3 | WRITE SS/
| TO 2 MLBX
1 READ
QX
READ
RXC

—

Rx2 | Rx/ | mx2 | RX/
BLk | BLic| Tx2 | TXi | 84>
VLD | VLD |TEST | TEST

READ MLBX
e 70 /

rp [SS2=/| SS2 T X2 | X1 | pxe | Rxr | Txe | 7xr_ | mask anD
MLBX| BLK | Bik | BLK
7 \MBX| B | Bl | Bt | 7o | RO EmMP | EMP | ENBL WORD

RD "Wy | Msx | Xer | B | 27 * READ MLBX

WR WRITE 2 TO /
/4 MLBX

FIG. 158

4,724,520

1
MODULAR MULTIPORT DATA HUB

TECHNICAL FIELD

This invention relates to multiple processor and to
distributed processor systems, and more particularly to
means for transferring data between distributed proces-
sors and between multiple processors.

BACKGROUND ART

Multiprocessor system architectures for distributed
processing often employ shared common memory be-
tween processors. This may be accomplished in a multi-
processor system using multiport memories, or archi-
tectures including cross bar switches, a time-shared
common bus, or a dual-bus structure.

A multiport memory system employs separate buses
between each memory module and each processor.
Each processor bus is physically connected to each
memory module. Each memory module is multiported,
each port accommodating one of the buses. Each mem-
ory module may have internal control logic to deter-
mine which port will have access to memory at any
given time. Memory access conflicts are resolved by
assigning priorities to each memory port. High transfer
rates can be achieved because of the multiple paths
between processors and memory.

A multiprocessor cross bar switch architecture pro-
vides switched cross points placed at intersections be-
tween processor buses and memory module paths. Each
switch point has control logic to set up the physical
transfer path between a processor and memory. The
control logic examines the address that has been placed
on the bus to determine whether its particular module is
being addressed and also to resolve multiple requests for
access to the same memory module on a predetermined
priority basis.

In a multiprocessor time-shared architecture, a num-
ber of processors may be connected through a common
path to a memory unit. In such a system only one pro-
cessor can communicate with the memory at any given
time. Transfer operations are controlled by the proces-
sor that is in control of the bus at any given time. Any
other processor wishing to initiate a transfer must first
determine the availability status of the bus, and only
after the bus become available can the processor ad-
dress the memory unit to initiate the transfer. The sys-
tem may exhibit memory access conflicts since one
common bus is shared by all processors. Memory con-
tention must be resolved with a bus controller that
establishes priorities among the requesting units. The
time-shared architecture is disadvantageous because
when one processor is communicating with the mem-
ory, all other processors are either busy with internal
operations or must be idle waiting for the bus.

A more efficient architecture than the time-shared
common bus multiprocessor architecture is a dual-bus
multiprocessor organization in which a number of local
buses are each connected to a local memory and to one
or more processors. System bus controllers associated
with each local bus are used to link each local bus to a
common system bus. In most designs, the devices con-
nected to the local bus are available to the local proces-
sors only. Memory connected to the common system
bus is shared by all processors. The system may be
configured to permit devices attached to the local bus to
be accessed by processors on other local buses. Only
one processor can communicate with the shared mem-

10

15

20

25

30

35

45

50

35

635

2

ory and any other common resources through the sys-
tem bus at any given time. The other processors on the
local buses are kept busy communicating with their
local memory and local devices. Although such a sys-
tem qualifies as a multiprocessor system, it can also be
classified more correctly as a multiple computer system.
This is because when a processor, memory, and other
devices are connected together on a local bus the local
group constitutes a computer system in its own right.

For safety reasons many systems are organized 1n a
redundant fashion having multiple computers operating
independently. Other redundant systems permit semiau-
tonomous operation of distributed processors and pro-
vide that a failed processor or related device can be
severed from the system without catastrophically de-
grading overall system operation.

Distributed multiple processor systems must operate
semiautonomously to obtain maximum efficiency. To
acheive near independence despite their interconnected
communication links they must utilize some means of
transferring data between distributed processors which
avoids processor overhead. This may be acheived to
some degree by using multiport memory units having
physically isolated address and data input buses for each
port. Hand-shaking between processors provides the
necessary control for transferring data between proces-
sors using the multiport memory unit as an intermedi-
ary. Although the use of shared memory provides a
degree of addressing freedom, only one processor 1s
allowed access to the memory at any given point in
time. This restriction may not be acceptable for some
system design requirements, lL.e., it may not be accept-
able to deprive a processor of free access to memory.

A partial solution to the problem of system require-
ments not permitting the *‘wait” states dictated by
shared memory is the use of a first-in-first-out (FIFO)
buffer between processors. In this way no processor is
deprived of immediate access to memory and freedom
of data flow is therefore ensured. Data may be input and
output at two different rates and the output data are
always in the same order in which data entered the
buffer. For bidirectional flow FIFO buffers may be
employed in both directions. However, the freedom of
addressing acheived with shared memory is lost in the
FIF buffer solution.

In addition to the individual advantages of the shared
memory and FIFO buffer approaches descnibed above,
both approaches still suffer, despite the isolation pro-
vided by additional memory, from a certain lack of
processing independence which is most desirable. In the
case of a shared memory the denial of access to a pro-
cessor at any given time results in undesirable wait
states which decrease system efficiency. In the case of
CPU buffered by FIFOs the information which may be
provided by shared addressing is not available. l.e.,
while a CPU can control the position assignment of data
when writing into a FIFO, it has no control of the
assignment of data when reading from a FIFO. In other
words, the reading CPU may have to read data of no
present interest before getiing to the stored position of
present interest.

The desirability of providing more efficient process-
ing for distributed processors becomes more important
as the complexity of the system increases. As the num-
ber of processors increases and the intercommunication
requirements become more complex, the disadvanta-
geous opportunities for creating undesirable wait states

4,724,520

3

also increase. Thus, a means of increasing processing
efficiency while maintaining or increasing relative semi-
autonomous operation is needed.

DISCLOSURE OF THE INVENTION

The object of the present invention is to provide a
keystone building block for use in linking processors
which functions as a modular multiport data hub for
facilitating and effecting data transfers between proces-
sors with high efficiency.

According to the present invention, a control proces-
sor or master CPU and an associated memory together
may exchange data with one or more distributed de-
vices, which may include other processors having simi-
lar associated memory umts, by linking the control
processor and its associated memory to each of the
other devices and their associated memories, if any,
with a modular multiport data hub. After initialization
by the master CPU, the data hub may generate data
transfer requests at the behest of the master CPU to one
or more of the linked devices. Upon generation of one
or more requests the data hub initiates a request for a
data transfer to the device designated as a data source
by the master CPU. The generation of a reguest by the
hub to the designated data source initiates a direct mem-
ory access cycle. It is the prerogative of the data source
to continue processing, or relinquish control to the hub.
Instruction processing of the data source is undisturbed.
Once the hub has obtained the required data from the
data source it will then store the data and attempt to
transfer the data to a designated destination unit at the
convenience of the destination unit. Thus, the hub will
inform the destination unit that it has data ready for
transfer and will wait until the destination unit decides
that it is convenient to accept the data. Once the desti-
nation unit signals the hub that it should proceed with
the transfer, the destination unit may resume executing
any unrelated program which requires immediate atten-
tion while the hub is granted direct access to the desti-
nation unit’s associated memory. Depending on the
particular processor used at the destination, it may be
required to wait during the transfer until it is complete
before returning to normal program execution. The hub
may include plural parallel format data channels only or
combinations of parallel and serial format channels.

In further accord with the present invention, each of
the channels may have a programmable priority estab-
lished within the hub which permits the arbitration of
competing data transfer requests from the various de-
vices associated with each of the channels. Thus, if one
or more transfer requests are received by the hub from
separate channels having different assigned priorities,
the device having the highest priority will be granted
transfer access first while the competing channel’s or
channels’ request(s) will be put in a request queue and
each will be granted transfer access after all higher
priority transfers have been effected according to the
programmed transfer priorities. The priority scheme
may be structured so as to permit interruption of lower
priority transfers in progress when a higher priority
transfer request occurs. Such a lower priority transfer
can be resumed after the higher priority transfer has
been effected.

In still further accord with the present invention, a
maskable interrupt line may be provided in the hub
which 1s reprogrammable to be responsive to a selected
combination of independent interrupt conditions.

3

10

15

20

23

30

35

45

50

33

65

4

In still further accord with the present invention, the
multiport data hub according to the present invention
may be used as a keystone element in the construction
of distributed processor systems. Its use as a modular
building-block-like device as a hub for interfacing be-
tween multiple processors provides a versatile construc-
tion element which provides highly desirable indepen-
dence between distributed subsystems. Thus, a multi-
plicity of processors may be interfaced to a modular
multiport data hub and a plurality of modular multiport
data hubs may be linked to each other in constructing a
complex distributed processor system having numerous
multiprocessor subsystems. Each modular multiport
data hub functions as a data transfer focal point in an
overall system having numerous such data transfer focal
points.

Thus, the modular muitiport data hub, according to
the present invention, is a modular building-block-like
device which constitutes a data hub which may be repli-
cated as often as required in the construction of distrib-
uted processor systems in particular and which may also
be used for more limited purposes in multiple processor
applications. It combines the addressing independence
of shared bus systems such as dual port RAMs with the
freedom of information flow of FIFO architectures by
implementing a multi-channel interface device, each
channel having a DMA structure. Data may be trans-
ferred between distributed processors with very little
processor overhead.

These and other objects, features and advantages of
the present invention be will become more apparent in
the light of the following detailed description of an
exemplary embodiment thereof as illustrated in the ac-
companying drawing.

BRIEF DESCRIPTION OF DRAWINGS

FIGS. 1A & 1B, arranged as shown in FIG. 1, are an
illustration of a distributed processor system having a
plurality of modular multiport data hubs, according to
the present invention, utilized as keystone building
blocks;

F1G. 2 1s an illustration of a system is which a pair of
redundant systems are each designed using two data
hubs;

FIG. 3 1s another illustration of a redundant system
using two data hubs in each subsystem;

FI1G. 4 is a simplified block diagram illustration of a
modular multiport data hub, according to the present
invention:

FIG. § is a simplified block diagram illustration of a
multiport data hub, according to the present invention,
which is capable of transferring data between a plurality
of paralle] and serial channels:;

FIGS. 6A & 6B, arranged as shown in FIG. 6, are a
simplified block diagram illustration of a multiport data
hub, according to the present invention, having only
two ports for interfacing with two subsystems;

FIGS. TA & 7B, arranged as shown in FIG. 7, are a
simplified illustration of two flowcharts which are illus-
trative of the steps executed within the multiport data
hub of FIGS. 6A & 6B:

FIG. 8 is a flowchart illustration of the steps executed
in a typical subsystem CPU while at the same time
showing the steps executed in the multiport data hub,
according to the present invention;

FI1GS. 9A & 9B, arranged as shown in FIG. 9, are a
simplified block diagram illustration of an embodiment

4,724,520

S

of a modular multiport data hub, according to the pres-
ent Invention;

FIG. 10 is a timing diagram showing some typical
waveforms for a serial transfer using the hub of FIGS.
9A & 9B; 5

FIG. 11 is a timing diagram for illustrating the se-
quence of events within the data hub of FIGS. 9A & 9B
during a Manchester transmitter transfer;

FIG. 12 presents a number of waveforms showing
some of the timing relationships involved in transferring 10
data between the CPUs within subsystems 1 & 2 of
FIGS. 9A & 9B. The timing shown illustrates a one
word block transfer;

FIG. 13 illustrates some of the timing relationships
between signals involved in transferring data in FIGS. 15
9A & 9B from subsystem 1 to subsystem 2;

FIG. 14 shows the timing of a one word block trans-
fer in FIGS. 9A & 9B from subsystem 1 to subsystem 2;
and

FIGS. 15A & 15B are an illustration of word defini- 20
tions for the data hub of FIGS. 9A & 9B. FIGS. 15A &
15B illustrate the lower and upper bytes of each word,

respectively.

BEST MODE FOR CARRYING OUT THE
INVENTION

~ FIGS. 1A & 1B are an illustration of a distributed
processor system having a plurality of modular multi-
port data hubs 10 according to the present invention.
Each hub interfaces with a plurality of data source/des- 30
tination units 12 each of which may be any one or more
of a variety of devices including processors with dedi-
cated memory, 1/0 controllers, 1/0 devices, interface
devices, and many others. The data source/destination
units 12 may even include entire systems which could, 35
for example, be exact replicas of the system shown in
FIGS. 1A & 1B. Such a redundancy scheme would be
used for insuring data integrity, Data links 14 are used
to link each data source/destination 12 with an associ-
ated modular multiport data hub 10. These links 14 may 40
be serial or parallel, synchronous or asynchronous.

A modular multiport data hub 10, according to the
present invention, is intended as a building-block unit
for the construction of multi-processor systems, particu-
larly distributed processor systems. However, it should 45
be borne in mind that the data hub of the present inven-
tion may also be used in multiple processor systems.
The data hub 10 may be used by a system designer as a
keystone element which transfers data between source
and destination with little or no source/destination pro- 50
cessor overhead. A key feature of the hub design is that
it does not require the sharing of memory between data
sources and data destinations. This permits much of the
overhead demanded by previous systems to be elimi-
nated. 55

FIG. 2 is an illustration of a system 20 in which a pair
of redundant systems 22, 24 are each designed using two
data hubs 26, 28 and 30, 32. The two systems 22, 24 are
able to communicate with one another via two separate
serial data links 34, 36. Thus, data hub number 1 26 is 60
serially linked via link 34 to data hub number 3 30.
Similarily, data hub number 2 28 is senially linked via
serial link 36 to data hub number 4 32. In general, any of
the devices within system 22 may communicate with
any of the devices within system 24 via either of the 65
serial data links 34, 36. In practice, however, only se-
lected units within a given system will normally com-
municate with other selected units in another system. In

6
the system architecture of FIG. 2, each hub 26, 28, 30,
32 interfaces via parallel links 38, 40, 42, 44, 48, 50, 52,
54 with a pair of local buses 56 and 58, 56 and 60, 62 and
64, and 64 and 66, respectively.

Each of the local buses 56, 58, 60, 62, 64, 66 interfaces
with a group of devices 68, 70, 72, 74, 76, 78. Each
group shown in FIG. 2 contains a CPU and a memory
unit (MU). Each of the CPUs and MU:s are numbered in
FIG. 2 assuming that the associated local bus is
similarily numbered. In other words, data hub number 1
26 links local bus number 1 56 and local bus number 2 58
along with hub number 3 30. Thus, CPU number 1 may
transfer data from its MU number 1 via local bus num-
ber 1 56, parallel link 38, and data hub number 1 to any
of the other devices in the system 20.

Similarily, in FIG. 3, still another redundant system
80 is illustrated having redundant subsystems 82, 84
illustrated. The chief differences between the systems
illustrated in FIGS. 2 and 3 are that additional seral
data links 86, 88 exist between hubs 1 and 2 and hubs 3
and 4, respectively, and also there is no sharing of local
buses between hubs in the same subsystem. Of course, 1t
should be understood that the system architectures
illustrated in FIGS. 1A & 1B, 2, and 3 are merely sev-
eral architectures out of a wide variety of architectures
which may be constructed using a modular multiport
data hub according to the present invention.

FIG. 4 is a simplified block diagram illustration of a
modular multiport data hub 10 according to the present
invention. The multiport data hub shown in FIG. 41s a
dual port data hub and is presented with only two ports
for the sake of simplicity. It should be understood, how-
ever, that the inventive concept disclosed herein em-
braces a plurality of ports within the data hub and the
inventive concept is not restricted to dual port data
hubs.

The multiport data hub 10 of FIG. 4 is shown inter-
facing with System A 90 and System B 92. Both System
A and System B have a CPU 94, 96 and an associated
memory unit 98, 100. Each System’s CPU communi-
cates with its associated Memory Unit via data, address,
and control buses indicated generally by a single bus
line 102, 104. Each of the buses 102, 104 communicates
with the multiport data hub 10 separately at separate
ports. Thus, there is no shaning of memory between
System A and System B.

Handshaking control lines 106, 108, and 110 are pro-
vided between System A and the multiport data hub.
Similarily, handshaking lines 112, 114, and 116 are pro-
vided between System B and the multiport data hub. It
should be understood that the three handshaking con-
trol lines between the hub and each CPU could be re-
duced to two handshaking lines between the hub and
each of the CPUs. This will depend upon the handshak-
ing philosophy required by the individual CPUs.

It should also be understood that the multiport data
hub illustrated in simplified form in FIG. 4 is not, as
mentioned above, restricted to merely a dual port im-
plementation nor is it restricted to merely parallel inter-
facing. Each hub can be individually configured, lim-
ited only by bus bandwidth considerations, to include a
large number of parallel channels along with numerous
serial channels, as shown in FIG. 5. Bus bandwidth is
the maximum transfer rate allowed on a given memory
system. For example, a memory unit system having 100
nanosecond access memory devices has a bus band-
width of 10 Megahertz. This limits the total number of
channels to that transfer rate. The overall system can

4,724,520

7

communicate at the bandwidth of the slowest memory
unit within the system. Thus, in FIG. §, a multiport data
hub 10 is capable of transferring data between N paral-
lel channels and Z senial channels. In other words, the
multiport data hub according to the present invention
may be modularized in a wide variety of architectures.

FIGS. 6A & 6B are a simplified block diagram illus-
tration of a multiport data hub 10 having only two ports
interfacing with two subsystems 120, 122, as in FIG. 4,
except that FIGS. 6A & 6B are slightly more detailed
than FIG. 4. Each subsystem 120, 122 interfaces with
the multiport data hub 10 via local buses 124, 126, re-
spectively. Each subsystem includes a CPU 128, 130
and a memory unit 132, 134.

The multiport data hub 10 of FIGS. 6A & 6B are
shown having two channels 136, 138 each of which
communicates with both local bus number 1 124 and
local bus number 2 126. Channel A 136 receives parallel
information on line 140 from local bus number 1 124 and
provides that same information on line 142 to local bus
number 2 126. In general, the data received on line 140
will be identical to the data supplied on line 142 while
the addresses may or may not be identical. Channel B
138 receives data from local bus number 2 126 on line
144 and provides that same data at the same or a differ-
ent address on line 146 to local bus number 1 124. Thus,
Channel A and Channel B may be characterized as
uni-directional parallel data channels. It should be un-
derstood, however, that Channel A and Channel B
could be combined into a single bi-directional channel
according to the present invention. Separate channels
may be provided in order to enhance the transfer rate
independence of subsystem 1 120 and subsystem 2 122,

Each channel 136, 138 of the multiport data hub is
divided into a receive section 148, 150 and a transmit
section 152, 154. The various receive and transmit sec-
tions include word count registers 156, 158, 160, 162,
buffer registers 164, 166, 168, 170, and address registers
172, 174, 176, 178.

The multiport data hub 10 includes a request flipflop
180 associated with Channel A and a similar request
flipflop 182 associated with Channel B. Also, a memory
address register 184 is associated with Channel A while
a similar memory address register 186 is associated with
Channel B. The data hub 10 also includes a control unit
188 and a status register 190.

Each of the subsystems’ 120, 122 CPUs’ 128, 130
include an address register 192, 194, a buffer register
196, 198, and a request flipflop 200, 202. Each of the
subsystems’ 120, 122 memory units 132, 134 includes a
buffer register 204, 206 and a memory unit 208, 210. A
transfer of data between subsystem number 1 120 and
subsystem number 2 122 will be more easily understood
when described in connection with the flow charts of
FIGS. 7A and 7B.

FIGS. 7A & 7B are an illustration, by way of simpli-
fied example, of two flowcharts which may run concur-
rently within the multiport data hub 10 of FIGS. 6A &
6B. Beginning after a start step 200, in FIG. 7A a deter-
mination is first made in a decision step 202 as to
whether request flipflop A 180 of FIGS. 6A & 6B are
equal to one or not. If it is not, no request has been made
by any unit for access to subsystem number 1’s local bus
124. Therefore, a negative answer will cause the pro-
gram to loop continuously from step 202 back again to
ask the same question again as indicated by a line 204. If
a request has been made for local bus 124 a step 206 is
next executed in which the multiport data hub 10 actu-

5

10

15

20

25

30

35

45

50

33

60

635

8

ally requests local bus number 1 124. A step 208 next
determines whether access has been granted by CPU
number 1 128. If not, the program continuously loops
through step 208 as indicated by a line 210 until access
to the local bus i1s granted. Once access is granted a step
212 is next executed in which the Channel A receive
address register 172 transfers its contents to memory 1
address register 184. Channel A receive address register
172 would have received its contents from either CPU
1 or CPU 2 depending on which is the CPU in control
of the system transfers. A step 214 is next executed in
which the contents of memory space 1 208 at the ad-
dressed location is transfered to memory 1 buffer regis-
ter 204 and then transfered to Channel A receive buffer
register 164. The request flipflop A is then set equal to
zero in a step 216, request flipflop B is set equal to one
in a step 218, and local bus 1 124 is released in a step 220.
The program then loops back to step 202 as indicated by
a line 222.

As soon as request flipflop B is set equal to one in step
218, the change 1s detected in a step 224 as shown in
FIG. 7B. Previous to the detection in step 224 of a
change to a state equal to one, the program shown in
FIG. 7B would have been looping repeatedly through
step 224 until a request is detected. After detection, a
step 226 is next executed in which the data hub 10 re-
quests access to local bus 2 126. A decision step 228 is
next executed in which a determination of whether
access to the CPU bus has been granted or not is made.
If not, a continuous loop indicated by a line 230 is exe-
cuted repeatedly until access is granted. Once granted,
a step 232 is next executed in which the contents of
Channel A transmit address register 174 are transfered
to memory 2 address register 186. In the next step 234,
the data contained in the Channel A transmit buffer
register 166 is transfered to the memory 2 buffer register
206 and then into the proper address at memory space 2
210. The transmit buffer register 166 would have re-
ceived its contents from the receive buffer register 164
under the control of the control unit 188. Similar trans-
fers between the other blocks within the receive and
transmit sections will also have occurred prior to any
transfer. The request flipflop B is then set equal to zero
in a step 236. The contents of the transmit word count
register 158 is then decremeted by one in a step 238 and
the bus 2 126 1s then released 1n a step 240. A decision is
then made in a step 242 as to whether the transmit word
count register is equal to zero or not. If not, request
flipflop A is set equal to one in a step 244 and the steps
following step 202 of the FIG. 7A are then repeatedly
reexecuted until all words have been transfered.

If the word count register in step 242 of FIG. 7B was
found to be equal to zero, the CPUs are then informed
In a step 246 that the transfer is complete. A step 248 is
then executed to determine whether the maskable inter-
rupt has been enabled by the master CPU. If the inter-
rupt is enabled a designated CPU is interrupted in a step
250 and a return 1s made to step 224. If the interrupt was
not enabled the program returns immediately to step
224 without interrupting any CPU. Of course, it will be
understood that the flow program can be implemented
using a state machine.

A simplified flowchart in FIG. 8 shows the sequence
of events in a CPU in a typical subsystem and at the
same time the sequence of events taking place in the
multiport data hub. One may imagine an imaginary
timeline running from the top of the figure to the bot-
tom. In this case, the CPU is the control CPU and it first

4,724,520

9

sets up the channels in the data hub for a data transfer in
a step 300. The data hub responds by starting channel
activity in a step 302. Meanwhile, the CPU is free to
execute any unrelated programs as shown in a step 304.
When the channel determines that it needs or has data
for transfer in a step 306 it will set request flipflop A
equal to 1 in a step 308. The CPU periodically executes
a step 310 to determine whether a request exists or not.
If not, a return is made to executing any unrelated pro-
grams in step 304. If so, the CPU determines in a step
312 whether it is busy or not. If so, a return is made to
execute any unrelated programs in step 304. If not, the
CPU sets its request flipflop equal to 1 1n a step 314 and
at the same time, depending on the particular implemen-
tation, determines whether it will wait for the transfer
to be complete. If the particular processor implementa-
tion does not require the CPU to wait for the transfer to
be complete, the CPU determines in a step 316 that it i1s
unnecessary to wait for the transfer to be complete and
a step 318 is next executed in which the CPU request
flipflop is set equal to zero again. If, because of the
particular processor implementation, it 15 necessary to
wait for the transfer to be complete before proceding to
execute any unrelated programs, the CPU will deter-
mine in step 316 that a wait for a transfer is required and
a step 320 will next be executed in which a determina-
tion is repeatedly made as to whether the transfer is
complete or not. If not, step 320 is reexecuted repeat-
edly as indicated by a line 322 until the transfer is com-
plete. Once the transfer is complete step 318 is next
executed where the CPU request flipflop 1s reset to zero
and control is once again returned to step 304 and unre-
lated programs may continue to be executed by the
CPU.

After the CPU request flipflop was set equal to one in
step 314, the data hub, which will aiready have been
waiting in a step 324 for the CPU request flipflop to be
set equal to one in step 314, will next execute a step 326
in which the data transfer is effected between the hub
and the CPU. After the transfer is complete, the data
hub will set its request flipflop A equal to zero again in
step 328 and this will signify to the CPU in step 320 that
the transfer is complete.

FIGS. 9A & 9B are a simplified block diagram illus-
tration of an embodiment of a modular multiport data
hub 10 according to the present invention. The particu-
lar embodiment illustrated in FIGS. 9A & 9B has two
serial input/output ports and two paraliel input/output
ports. Subsystem #1 is the master CPU in this embodi-
ment. The hub shown in FIGS. 9A & 9B couid be used
in the architecture of FIG. 3, for example. There, each
hub interfaces with two serial data links and two paral-
lel data links. It should be understood, that the particu-
lar embodiment shown in FIGS. 9A & 9B which, as
pointed out, may be used to advantage in the architec-
ture of FIG. 3, is merely one of a large vanety of inter-
nal structures which could be selected for particular
embodiments of the modular multiport data hub accord-
ing to the present invention. The embodiment shown In
FIGS. 9A & 9B should be understood therefore as
merely illustrative of an embodiment for a particular
system architecture using the teachings of the present
invention.

The structure of the two parallel input/output ports
of the particular embodiment of FIGS. 9A & 9B include
a separate data bus 350 and a separate address bus 352 at
a first parallel port and a multiplexed data/address bus
354 at a second parallel port. The address output from

b

10

15

20

25

30

33

45

50

53

65

10

the hub 10 to subsystem #2 on lines 354 at the second
parallel port must be latched externally before data is
sent out or received over those same lines.

Of course, it will be understood that the peculiarities
of the particular address, data, and control line struc-
tures disclosed herein (in connection with FIGS. 9A &
9B) which link the hub to its satellite subsystems, hubs,
etc., are mere expedients dictated by the circumstances
of the particular embodiment shown. Therefore, many
other data transfer linking structures are contemplated
to be within the scope of this invention and those dis-
closed herein should in no way be construed as limiting
the scope of this invention.

The multiport data hub 10 of FIGS. 9A & 9B are
shown interfaced to two additional multiport data hubs
10a, 100 with which it communicates via serial lines
360, 362, 364, 366, MIL-STD-1553 remote termmnal
interface (1553 RTI) 368, a subsystem number 1 370 and
a subsystem 2 372, these last two being similar to the
subsystems shown in FIGS. 6A & 6B. Both subsystems
numbers 1 and 2 include a CPU unit and a memory unit
(not shown). As mentioned, subsystem #1 is the master
in this embodiment.

The particular embodiment of the modular multiport
data hub 10 according to the present invention pictured
in FIGS. 9A & 9B handles data transfers of six types.
Transfers take place between the multiport data hub 10
and subsystem number 1 370, the two data hubs 10q, 106
via two Manchester transmitter/receiver pairs 374, 376
and 378, 380, the 1553 RTI 368, and subsystem number
2 372. The following prioritized DMA transfers are
possible in the embodiment illustrated:

1. Transfer from/to the 15583 RTI to/from subsystem

number 1.
2. Transfer from hub number 3 106 to the subsystem

number 1’s memory.

3. Transfer from hub number 2 10g to subsystem num-
ber 1’s memory.

4. Transfer to hub number 3 104 from subsystem num-
ber 1's memory.

5. Transfer to hub number 2 102 from subsystem num-
ber 1's memory.

6. Transfer from/to subsystem number 1's memory
to/from subsystem number 2’s memory.

The DMA requests are asynchronous to the control
logic contained in a control block 382. The requests for
each transfer are prioritized in the above order where
number 1 is the highest priority and number 6 the low-
est. Each of the six transfers may be individually dis-
abled by a mask word written by the data transfer con-
trol (master) CPU, in this case within master subsystem
#1. Sixteen-bit address buses 352, 354 provide a full
64K addressing space on both the subsystem number 1,
the 1553 RTI, and the subsystem number 2 buses.

The master CPU programs the hub to provide ad-
dress pointers, word counts, and to enable the desired
channels for data transfers. FIGS. 15A & 15B show
word definitions for various sixteen-bit words trans-
ferred over the data lines 350 of FIGS. 9A & 9B in
conjunction with read and write decode instructions
sent over the address lines 352 from subsystem 1 to the
hub. In the case of the data lines, the sixteen-bit words
are sent to various reoisters within the hub. In the case
of the read and write decodes, a read decode is signaled
to the hub by an IOR signal on a line 331 occurring in
conjunction with a chip select (CSB) signal on a line 333
and a write decode is signaled by a JOW signal on a line
335 occurring in conjunction with the chip select signal.

4,724,520

11

To program the hub, subsystem #1 first writes the ad-
dress pointers to the appropriate registers within the
hub using the appropriate write decode. Then subsys-
tem 1 initialzes the proper word count register, again
using the appropriate write decode. Finally, the desired
channels are enabled by subsystem 1 using write decode
9.

1553 RTI TRANSFER DESCRIPTION

In preparation for a transfer, the 1533 RTI1 368 will
assert a request line 384. This request has the highest
priority of all of the possible six types of transfers. The
data hub 10 will respond to this request if all the follow-
ing are satisified:

1. DMA channel 1 is enabled.

2. The current DMA cycle has completed, i.e., the hub
is not currently servicing another channel.

3. MTC from subsystem number 1 goes low, 1.e., a mem-

ory toggle clock signal on a line 386.

Referring now to FIG. 10, a timing diagram showing
some typical waveforms for a 1553 RTI transfer (exter-
nal request DMA cycle) are shown. In FIG. 10a) is
illustrated a waveform 388 illustrative of a 12 MHz
signal on a line 390 in FIGS. 9A & 9B. FIG. 10(b) is an
illustration of a memory toggle clock (MTC) signal
waveform 390 illustrative of the signal on the line 386
from subsystem number 1's CPU. When MTC is high,
DMA transfers are permiited. When MTC is low, the
individual subsystem CPUs are permitted access to their
own associated memory units. MTC 1s used to prioritize
requests for subsystem #1 which is helpful in arbitrating
the bus. It should be noted that MTC, in some imple-
mentations, may not always be a regularly recurrent
signal, as shown, but may vary its pulse width in accor-
dance with the processor clock rate and software in-
structions being executed (see FIG. 14 for an MTC
“slowdown™). Since both data transfers and internal
prioritization of transfer requests are dependent on the
falling edge of MTC from subsystem #1, varying MTC
will affect DMA transfers. Usually, for the particular
implementation tllustrated in FIG. 10, MTC will pulse
periodically except for multiply, divide, and shift group
instructions during which MTC is held, even though
multiple ACK pulses occur. The data hub only utilizes
the first acknowledge pulse and ignores the others dur-
ing this period. Therefore, the occurrence of these in-
structions reduces the effective transfer rate of the data
hub.

FIG. 10{c) shows a waveform 392 illustrative of the
external request signal on the line 384 i1ssued by the RTI
368 in preparation for a transfer. FIG. 10(d) shows a
waveform 394 illustrative of a request signal on a line
410 from the hub 10 to subsystem #1. FIG. 10{e) shows
a bus enable waveform 400 indicative of the signal on
the line 402, the waveform indicative of subsystem #1
enabling its buses for an impending data transfer.

Similarly, FI1G. 1) shows a waveform 404 indica-
tive of the hub enabling its buses 350, 352 for the im-
pending transfer. After the transfer is completed, an
acknowledge signal is provided on line 396 as illustrated
by a waveform pulse 406 as is shown in FIG. 10().

MANCHESTER RECEIVER TRANSFER DE-
SCRIPTION

Each of the Manchester receivers 374, 378 will re-
quest a word transfer after a word reception is complete
in its associated internal register. The words are re-
cetved asynchronously and the receivers include means
for autonomously receiving and assembling senally
received words into the parallel format required by the

b

10

15

20

23

30

35

45

50

55

63

12

data hub. The two receivers, 374, 378, are assigned

priority levels 2 and 3, respectively. The data hub 10

will respond to these requests if:

1. The respective DMA channel (2 or 3) is enabled by a
write decode 0 or | (WRO0 or WR1 in FIGS. 15A &
15B). This means the proper address pointer i1s pres-
ent in an associated register and the channel has been
enabled by a write decode 9 (bit D2 or D3 in FIGS.
15A & 18B (CH2 or CH3J)).

2. A receiver RCVXRDY flag is active, i.e., the receiver
has completely decoded a full sixteen bit word. When
decoding is completed, the receiver sets an internal
RCVxRDY flag (bit D16 or D18 in the READ STA.-
TUS WORD of FIGS. 15A & 15B) indicating the
receiver s ready to transfer its contents (RX2 RDY
or RX1 RDY). This flag is readable in a status regis-
ter 408.

3. No higher requests are pending.

4. The current DMA cycle has completed, i.e., the last
DMA cycle that occurred has been completed.

5. MTC from the CPU in subsystem 1 370 falls.

After these requirements are satisified, a request is
asserted on a line 410 by the data hub 10 to the CPU in
subsystem number 1 370. FIG. 11(c) shows a REQ
waveform 412 in relation to an MTC waveform 390 in
FIG. 11() and a 12 MHZ signal waveform 388 in FIG.
11(a). After the MTC signal on the line 370 rises and the
bus enable signal on the line 402 is raised (see waveform
414 in FIG. 11{d)) by control logic in subsystem #1, the
data hub 10 will assert the address pointer on address
lines 352, the receiver data on data lines 350 is provided
by a multiplexer 386, and a memory read (MRD) signal
is provided on a line 418 as shown by a waveform 420
in FIG. 11(e). An acknowledge signal on the line 396
indicates the transfer is complete and the data bus 350 is
disabled on the rising edge of the acknowledge signal
(waveform 424 in FIG. 11(f)) along with the
RCVxRDY flag. The request signal on the line 410
(waveform 412 in FI1G. 11(¢)) is then removed when the
MTC signal on the line 386 falls.

MANCHESTER TRANSMITTER TRANSFER
DESCRIPTION

Each of the two Manchester transmitters 376, 380
may request 2 word transfer when its associated trans-
mitter buffer is empty (1.¢., the TXxEMP flag (in bit 13
or 14 of the status word register) is active)), and the
word transfer count on that channel is not zero. It takes
20 microseconds, in the embodiment illustrated, for a
Manchester Transmitter to transmit one word. While
the transmitter is busy, the TXxEMP flag (transmitter
register is empty) is held false indicating it is not ready
to be loaded with another word. This flag is readable in
the status register 408. The two transmitters 376, 380 are
assigned priority levels 4 and §, respectively. The multi-
port data hub 10 will respond to those requests if:

1. The respective multiport data hub channel (4 or §) is
enabled. This means subsystem 1 has set up the ad-
dress pointer which the hub uses in retrieving info
from subsystem 1’s memory. The address pointer is
set up by subsystem 1 asserting a write decode 2 or 4
(see FIGS. 15A & 15B), i.e,, by placing a binary 2 or
4 on the address lines 352 and placing the address
pointer on the data lines 350 for storage in TX1 or
TX2 registers 381, 383. It also means subsystem 1 has
asserted a write decode 3 or § whereby the address
lines assert a binary 3 or 5§ and the data lines contain
the count (in the first eight bits) for placement in a
word count register. Finally, subsystem 1 would have

4,724,520

13

enabled the transmitter by asserting a write decode 9
and placing a binary 1 in channel 4 or 5’s D4 or DS
bits (see FIGS. 15A & 15B).

2. The TXxEMP flag is active and the TXx word count
1S not zero.

3. No higher requests are pending.

4. The word transfer count 18 not zero.

5. The current DMA cycle has completed.

6. MTCB from subsystem number 1's CPU falls.

After these conditions are met, the multiport data hub
10 asserts a request (REQ) on line 410 for subsystem
number 1’s bus as shown by a waveform 412 in FIG.
12(c). FIG. 12(aa) shows a 12 megahertz clock pulse
waveform 388 corresponding to the signal present on
line 390 of FIGS. 9A & 9B. FIG. 12(bb) shows a wave-
form 390 corresponding to the MTC signal present on
the line 386 of FIGS. 9A & 9B. FIG. 12(aq) shows a
waveform 414 corresponding to the BEN signal on the
line 402 of FIGS. 9A & 9B. FIG. 12(b) shows a wave-
form 416 corresponding to either the MWR sional on
the line 422 or the MRD signal on the line 418. FIG.
12(d) shows a waveform 432 corresponding to the ACK
signal on the line 396.

After a request is asserted by the data hub for the
subsystem number 1 bus and after the MTC signal nses
as shown in FIG. 12(bb) the bus enable signals (BEN)
on the line 402 (waveform 414) is asserted. Assuming a
memory write is asserted on the line 422, during the
enable period the subsystem #1 memory writes the
addressed data from memory to the hub as indicated by
the MWR signal waveform 416. An acknowledge signal
waveform 432 is asserted as shown in FIG. 12(d). The
data is latched in the transmitter 376 or 380. When the
acknowledge signal in waveform 432 falls, the word
count is decremented and the TXxEMP flag is cleared.
The address pointer is incremented on the rising edge of
the acknowledge signal on the line 396 as shown in
FIG. 12(d). The request signal on the line 410 is then
removed on the falling edge of the first 12 megahertz
clock after the acknowledge signal on the line 396 i1s
released.

Thus, to summarize the sequence of events which
occur during a transmitter transfer, the transmitter
buffer 376 or 380 becomes empty, i.e.,, the TXxEMP
flag becomes active and the transmitter is indicating
that it is ready to transmit more information, the data
hub issues a request for more data to the CPU in subsys-
tem number 1, the CPU enables its data bus during a
MTC high period and tri-states the subsystems’s ad-
dress/data lines, the CPU sends an acknowledge to the
data hub to indicate that the DMA has occurred and the
multiport data hub increments its address register to
point to a new address for the next transfer. At that
time, the data is also ready for serial transfer from the
transmitter to one of the hubs 10a, 105.

BLOCK TRANSFERS BETWEEN PROCES-
SORS

The multiport data hub 10 of FIGS. 9A & 9B will
support transfers in either direction between the proces-
sor memories in subsystem number 1 370 and subsystem
number 2 372. This type of transfer has the lowest prior-
ity and is executed when:

1. DMA channel 6 is enabied.

2. No higher requests are pending.

3. The block transfer word count is not zero.

4. The current DMA cycle has completed.

5. The MTC signal on the line 386 of FIG. 9 falls.

10

|

20

25

30

35

43

50

33

63

14

Transfer direction is determined by the 9/ bit in an
internal word count write (see write decode 8 (BLK
WRD CNT) in FIGS. 15A & 15B) which is stored in a
BLK WRD CNT register 429. A high 977 bit indicates a
read cycle on the subsystem 2 side and write cycle on
the subsystem 1 side. Likewise, a low bit indicates a read
cycle on the subsystem 1 bus followed by a write cycle
on the subsystem 2 bus.

The assumption that DMA channel 6 i1s enabled
means that the subsystem 1 block address pointer (see
write decode 6 in FIGS. 15A & 15B) has already been
initialized by subsystem 1. Thus, the subsystem 1 block
address pointer contains the address from which data is
to be obtained from subsystem 1 in a subsystem 1 to
subsystem 2 transfer or the address in subsystem 1 in
which data is to be stored in a subsystem 2 to subsystem
1 transfer. Similarly, the subsystem 2 block address
pointer (see write decode 7 in FIGS. 15A & 15B) will
also have had an address placed therein either from
which or to which the hub will obtain or put informa-
tion on a transfer between subsystems. The block word
count (BLK WRD CNT) register will also have been
initialized upon enablement by the enablement of bit 6 in
write decode 9 (MASK AND ENABLE WORD) of
FIGS. 15A & 15B.

With the 9% bit of the word count low, i.e., with an
indication that a data transfer from subsystem number 1
370 to subsystem number 2 372 in FIGS. 9A & 9B, the
multiport data hub 10 initiates a read DMA cycle with
subsystem number 1 370 as explained above 1n connec-
tion with a transfer from subsystem number 1 to a trans-
mitter except that the data incoming to the data hub is
stored in an ATEMP register 430 instead of a transmit-
ter register 376, 380. The data is latched 1nto register
430 using the rising edge of the acknowledge signal on
the line 396 (see waveform 432 of FIG. 12(d)). Upon the
falling edge of the acknowledge signal on the line 396,
a bus request BR (see waveform 433 in FIG. 12(¢))
signal on a line 434 is asserted by the control unit 382.
After the CPU in subsystem 2 is free, i.e., after a bus
grant signal on a line 438 goes high (see waveform 439
in FIG. 12(f)), the bus grant acknowledge on the line
440 is asserted by the hub indicating that the previous
bus cycle is completed (see waveform 442 in FIG.
12(g)) and that the hub is now the bus master.

The destination address is then asserted on the multi-
plexed address/data bus (see waveform 446 in FIG.
12(k)) and when a stable address is present, an ASLE
signal on a line 448 (see waveform 449 of FIG. 12(h)) is
asserted by the hub. This latches the address informa-
tion in a latch 450 for presentation on address lines 452
to subsystem #2. The address is provided by a multi-
plexer 454 which receives the address from a BIN regis-
ter 456. The BIN 456 receives programmed address
information from subsystem #1 over data lines 350.

The data is then written to the subsystem #2 memory
by the control unit 382 by asserting the LUDS signal on
the line 460. (See waveform 462 in FIG. 12(i)). The
cycle is ended by an acknowledge signal illustrated by
waveform 464 in FIG. 12()) on the line 466 being as-
serted by subsystem #2. When the data acknowledge is
first asserted at the end of the cycle, it first is synchro-
nized with the 12 megahertz clock signal on the line
390. This is then used to end the cycle by tri-stating all
subsystem 2 lines and removing the request, and also
indicating the end of the cycle to subsystem 2.

When the 9% bit of the block word count is equal to
one, the multiport data hub first executes a read cycle

4,724,520

15

on the subsystem 2 side, temporarily latches it internally
in a data latch 470 then performs a write cycle on the
subsystem 1 side.

In all of the above cases, the falling edge of the ac-
knowledge signal on the line 396 or on the line 466 as
respectively shown in illustration (d) of FIG. 12, and
illustration {j) of FIG. 12 decrements the block word
counts. The rising edge of the acknowledge signals
increment the respective address pointers. In the case of
block moves from subsystem 1’s memory to subsystem
2’s memory the acknowledge is the synchronized ac-
knowledge on the line 466 of FIGS. 9A & 9B. When an
enable signal on a line 472 is negated, the current prio-
ritized request is cleared (thus the request signal on line
410 is cleared, see FIG. 12(c) and inhibits further re-
quests from ocurring. This does not affect any of the
fundamental requests; hence, when the enable signal on
line 472 is again asserted, the falling edge of MTC will
reprioritize and issue a new request if necessary.

Referring now to FIG. 13, a number of waveforms
are presented for showing some of the timing relation-
ships involved in transferring data from subsystem 2 372
to subsystem 1 370 of FIGS. 9A & 9B. A waveform 388
in FIG. 13(a) shows the 12 megahertz signal on the line
390 in FIGS. 9A & 9B. The MTC signal on the line 386
is shown as a waveform 390 in FIG. 13(b). The bus
request signal on the line 434 from the hub to subsystem
2 is shown in FIG. 13(c) as a waveform 480. The bus
grant (BG) and acknowledge (BGACK) signals on the
lines 438 and 440 are shown as waveforms 482 and 484,
respectively, in FIGS. 13(d) and (e). The sequence of
events for a block move from subsystem 2 to subsystem
1 is as follows: First, the data hub 10 issues a subsystem
2 bus request on the line 434. Once subsystem 2 is free,
it 1ssues a bus grant signal on a line 438 as shown in
waveforms 480 and 482 of FIGS. 14(c) and (d). The data
hub then issues a bus grant acknowledge signal on the
line 440 (see waveform 484 in FIG. 13(e)), gates off the
bus request signal on the line 434, drives the subsystem
2 read/write line 447 low (see waveform 490 in FIG.
13())), and asserts the destination address on the multi-
plexed address/data bus 354 (see waveform 491 in FIG.
13(1)). After the address is stable, the data hub asserts
the ASLE signal on the line 448 (address strobe input to
hub/latch enable output from hub; see waveform 493 of
FIG. 13(/)) which demultiplexes the address from data
450. The data stored in the strobed address within sub-
system 2 is then “pathed” onto the A/D bus 354 to
temporary register 470 (BTEMP) by the data hub’s
assertion of the R/W signal on the line 447 for the pur-
pose of directing the flow of data into the hub and also
the LUDS signal on the line 460. See waveforms 488
and 490 in FIGS. 13¥g) and (/), respectively.

Thus, the data hub receives data from subsystem 2 on
lines 354 into temporary data storage register (BTEMP)
470 by means of the data strobe signal (LUDS) on the
line 460. The end of the subsystem 2 cycle is indicated
by the DTACK signal waveform 492 in FIG. 13()). The
data hub then generates an internal bus request signal to
its control unit 382. The MTC signal latches in the bus
request, and issues a request on line 410 to subsystem 1
if there is then no higher pniority request pending. This
18 shown as waveform 500 in FIG. 13(k). In turn, sub-
system 1 issues a bus enable signal on the line 402 as
shown in FIG. 1¥X/), waveform 502, to start the data
transfer; this also tri-states the subsystem number 1 with
respect to the address/data lines 3382, 350. The data
transfer from register 470 through multiplexer 386 onto

5

10

15

20

25

30

335

40

45

30

55

65

16

data lines 350 to subsystem 1 then takes place. This is
signified in FIG. 13(m) by waveform 504 and FIG.
13(n) by waveform 506. The transfer is initiated by the
data hub after receiving the bus enable on line 402.
After the transfer is finished subsystem 1 indicates that
DMA has ocurred and that data has been written to the
subsystem 1 memory by initiating an acknowledge sig-
nal on the line 396 (see FIG. 13(n) for the acknowledge
signal). Both address pointers are then incremented and
the word count decremented. If the word count is not
zero the entire process is repeated again until it is.

TIMING REQUIREMENTS FOR DMA TRANS-
FERS

FIG. 14 shows the timing of a one word block trans-
fer from subsystem 1 to subsystem 2. T through T4 of
FIG. 12 vary due to synchronization of the data hub
with the two processors. Transfers on the subsystem #1
side are aligned with the MTC signal. Transfers on the
subsystem #2 side are aligned with the 12 MHz signal.
Although the transfer on the subsystem #2 side of FIG.
13 shows the signals between the hub and subsystem 2
aligned with the MTC signal, it should be understood
that this is not necessarily so. For example, in FIG. 14,
there is no relation shown between the MTC signal and
the signals between the hub and subsystem #2.

T through T4 derived herein are based on the hub
mterfacing to a Motorola MC68000 in subsystem 2. It
will be understood, however, that timing will vary
when other processors are used.

T is the time from the hub issuing a bus request to
subsystem 2 to the bus grant acknowledge from subsys-
tem 2. Based on the MC68000 specificatins, the mini-
mum time for T is one and a half times the period of the
controlling CPU’s running frequency, which in the
particular implementation illustrated 18 CPU 2 running
at 8§ megahertz. Similarly, the maximum time for T is
four times the controlling CPU running period, which
in this case is 500 nanoseconds. This time is dependent
upon where in the CPU 2 instruction cycle the bus was
requested. If requested in the middle of a cycle, the data
hub must wait until ASLE is negated before it can take
the bus. Thus, referring to FIG. 14{¢) a waveform 700 is
illustrated showing the bus request signal to the request-
ing device from the data hub and the time until it is
negated by the falling edge of a bus acknowledge signal
shown as waveform 702 in FI1G. 14(g).

The time, T, from the bus grant acknowledge signal
440 active until a valid address appears on the AD bus
354, as indicated by the signal ASLE on the line 448
falling, i.e., demultiplexing address from data, is mini-
mally 83 nanoseconds (one cycle of 12 MHz) and may,
at a maximum, be a long as 167 nanoseconds. This vari-
ance 15 due to the internal synchronization of the ac-
knowledge signal with the 12 megahertz clock signal.
I.e., the BGACK signal on the line 440 (waveform 702
in FIG. 14(g)) is asynchronous with respect to the 12
MHz signal and may occur anywhere within a one
cycle (83 nsec) window of 12 MHz. Thus, the 12 mega-
hertz signal is shown by waveform 704 in FIG. 14(d) as
triggering the ASLE signal falling edge a shown in
waveform 706 in FIG. 14(h). The duration, T3, from the
rising edge of the bus grant acknowledge as shown in
waveform 702 and the falling edge of the ASLE signal
as triggered by the second rising edge of the 12 mega-
hertz clock signal after BGACK as shown in waveform
704 of F1G. 14(d) 1s, as discussed above, 83 nanoseconds
minimum and 167 nanoseconds maximum.

4,724,520

17

The duration of the LUDS signal on the line 460 of

FIGS. 9A & 9B, as shown in FIG. 14(/) waveform 708

is a minimum of 83 nanoseconds and a maximum of

some integer times 83 nanoseconds. This time is depen-
dent on the synchronization of the LUDS signal with

the DTACK signal 466 as shown in a waveform 710 of

FIG. 14()). The minimum time is obtained by grounding
the DTACK signal on the line 466. As shown in FIG.
14()) the falling edge of the LUDS waveform 708 oc-
curs on the rising edge of the first 12 megahertz clock
pulse after the address is finished strobing into the exter-
nal latch 450.

The internal prioritization of requests takes place
during a time period signified by T4 in FIG. 14()) wave-
form 712. The internal prioritization period (T4) begins
after the negation of LUDS, i.e., after the data 1s strobed
and lasts until the next request from CPU 1.

The time required for internal prioritazation of re-
quests is dependent on other pending requests, the speed

5

10

I35

of the controlling processor, and the ocurrance of 20

MTCDB’s falling edge and may be anywhere from Q to
666 nanoseconds.

The transfer time is equal to T1+T2+T3+Ts+749
nanoseconds (666483 nanoseconds). The worst case
additive transfer time (including a T3 of nominally 332
nanoseconds) is 2,454 nanoseconds. The minimum addi-
tive transfer time is 1,351 nanoseconds. To program the
data hub, the address pointer(s) are first written. The
word count registers are then initialized. Finally, the
desired channels are enabled.

The two Manchester receiver DMA channels are, in
the particular embodiment shown herein, equipped
with only an incrementing 16-bit address pointer
counter. No word count register is available. However,
it should be understood that a word count register
could, of course, be provided in another embodiment.
Therefore, in this particular embodiment, a receiver
will continue to store data in adjacent locations until the
receiver channel is disabled.

25

335

A lock step mode is useful, according to the present 40

invention, in controlling the number of words trans-
fered via DMA by the receivers (see bits 7 and 8 of

write decode 9 and read decode 4 of FIGS. 15A & 15B).
Three flags per receiver are available in the status word

(see read decode 2 of FIGS. 18A & 15B) to determine 45

the state of the receiver channels. RX1 and RX2RDY
indicate that a word is decoded and ready for transfer.
This signal serves as a request to the priority logic.
RX1BSY and RX2BSY indicate that receiver x is cur-
rently busy decoding a word. This signal is useful in
determining when to disable a receiver DMA channel
or when to change an address pointer. RX1 BLK VLD
and RX2 BLK VLD are true if all past received words
in a receiver had no parity nor Manchester error. This
bit is cleared when CPU 1 reads the receiver buifer or
when a new receiver address pointer 18 written.

Thus, the lock-step mode feature that is provided 1n
the best mode embodiment offers a means for redundant
channels to remain somewhat synchronized (see bits 6 &
7 of write decode 9 in FIGS. 15A & 18B). In this mode,
transmitter and receiver DMA cycles are interweaved.
Thus, a load transmitter DMA cycle must be followed
by a store receiver DMA cycle which is dependent on
the RXxRDY flag and independent of the TX X EMP
and XMTR X WC>0 flags. Likewise, a store receiver
DMA cycle must be followed by a load transmitter
DMA cycle which is dependent on the TX X EMP and
XMTR XWC>»0 flags and independent of the

50

53

635

18

RCV XRDY flag. Upon loading the respective trans-
mitter word count register, the transmitter DMA chan-
nel is enabled and reciever requests are blocked. Link
pairs 1 and 2 may be independently put in lock-step
mode through a write decode. Lock-step enable bits are
readable in the enable read.

The link pairs may also independently be put in a
self-test wrap-around mode. In this mode, the transmit-
ter output is directed to the receiver input and the exter-
nal Manchester outputs are disabled. The wrap-around
mode enable bits are readable in the enable read. The
system is not in self test upon power-up.

MASKABLE INTERRUPT

Each data hub has an external open drain interrupt
line 720 (INTR) shown in FIGS. 9A & 9B. This line 1s
programmable to respond to any combination of eight
independent interrupt conditions:

1. Interrupt when TX1 buffer is empty.

2. Interrupt when TX2 buffer is empty.

3. Interrupt when a word 1s ready in RCV1.

4. Interrupt when a word is ready in RCV1.

5. Interrupt when TX1 DMA block transfer is done.
6. Interrupt when TX2 DMA block transfer is done.
7. Interrupt when a DMA block move is done.

8. Interrupt when mailbox data is available.

All conditions are maskable through the upper byte
of write decode nine (see FIGS. 1SA & 15B). The mask
register and all interrupt conditions are readable in the
status reads (see read decode 4 in FIGS. 15A & 15B).

A 16 bit word may be written to the DMAI1 by sub-
system 2 to a mailbox register 721. The data is located
into the mailbox register on the rising edge of LUDSB
when CPURW on the line 447 and a CTRL signal on a
line 722 are low. When written to,a MBX DTA AVLB
flag is set in bit 1 of read decode 2 (see FIGS. 15A &
15B-READ STATUS WORD) indicating mailbox data
is available. This bit is cleared when subsystern 1 reads
the maiibox data on the data bus 350 through multi-
plexer 386.

Subsystern 1 may also send mail to subsystem 2. A
decode unit 724 decodes bit 16 of write decode 9 to
write to an internal 11 bit latch. The latch is readable on
the subsystem 2 bus. The upper 6 bits of the read consist
of status information inside the hub. Once written to by
subsystem 1, a MXB DTA AVLB flag is set in bit 8 of
read decode 2 (see FIGS. 15A & 15B-READ STATUS
WORD). This flag is cleared when subsystem 2 reads
the mailbox through multiplexer 454.

An option is provided so that subsystem 1 may indi-
rectly DMA a word of data anywhere in the 64K ad-
dress space of subsystem 2. To send one 16 bit data
word to subsystem 2, subsystem 1 first sets up the sub-
system 2 pointer (see write decode 12 in FIGS. 15A &
15B) to point to the destination address of the one word.
Then subsystem 1 writes the data to the hub which
initiates the DMA transfer of the data into subsystem 2.
This should not be used while the block transfer DMA
channel is enabled. |

It will be understood by those skilled in the art that
various changes, deletions, and modifications to the
embodiments shown herein may be made without de-
parting from the spirit and scope of the invention.

We claim:

1. A data hub for controlling data flow between a
plurality of data source/destination units intercon-
nected to the hub via control signal lines and via parallel
address/data signal lines, the source/destination units
having addressable memory locations, the data hub

4,724,520

19

being responsive to at least one pair of address pointer
input control signal words, to a word count input con-
trol signal word and to a channel enable input control
signal word provided by a master source/destination

unit, said input control signal words being indicative of 35

one or more scheduled data signal word transfers to be
effected by the hub from one or more memory locations
within a data SOURCE/destination unit used as a chan-
nel source unit in a channel enabled in the data hub by
the channel enable input control signal word, the one or
more scheduled data transfers to be effected by the hub
from the SOURCE/destination unit to one or more
memory locations within an enabled channel data sor-
ce/DESTINATION unit used as a destination unit, the
first of the one or more channel source unit memory
locations indicated by a source address pointer input
control signal word and the remainder by a number of
sequential increments or decrements of the source ad-
dress pointer input control signal word equal to the
word count, the first of one or more destination mem-
ory locations indicated by a data transfer destination
address pointer input control signal word and the re-
mainder by a number of sequential increments or decre-
ments of the destination address pointer control signal
word equal to the word count, the data hub comprising:
storage means, for temporarily storing data trans-
ferred from the enabled channel data SOUR-
CE/destination for later transfer to the enabled
channel data source/DESTINATION; and
control means, responsive to the source and destina-
tion address pointer input control signal words, to
the word count and to the channel enable input
control signal words, for providing a source data
transfer request output signal to the enabled data
SOURCE/destination unit and for subsequently
receiving, in return, a source bus grant signal from
the enabled data SOURCE/destination unit, said
control means responsive to said source bus grant
signal for providing said source address pointer
input control signal word an an output signal to
said enabled data SOURCE/destination unit, said
storage means concurrently receiving and tempo-
rarily storing source data signal word from a mem-
ory location within the SOURCE/destination unit
as indicated by said source address pointer output
control signal word, said control means then pro-
viding a destination data transfer output request
signal to the data source/DESTINATION unit
and subsequently receiving, in return, a destination
bus grant signal from the data source/DESTINA-
TION unit, said control means responsive to said
destination bus grant signal for providing said des-
tination address pointer input control signal word
as a destination address pointer output control
signal word to said data source/DESTINATION
unit and concurrently providing a transfer of said
data signal word from said storage means to a
memory location within said source/DESTINA-
TION unit as indicated by said destination address
pointer output control signal and, said control
means incrementing or decrementing the source
and destination address pointer output signals and
decrementing the word count signal and cyclically
repeating the transfer of data from the enabled
channel’s data SOURCE/destination unit to the
data source/DESTINATION unit until the word
count signal equals zero.

10

15

20

25

30

35

45

50

55

65

20

2. The data hub of claim 1, wherein said control
means 1§ further responsive to asynchronous incoming
direct serial data signal word transfers to said storage
means and to asynchronous serial data transfer request
signal words from selected ones of said plurality of data
source/destination units, and wherein said control
means, in response thereto,

categorizes scheduled data signal word transfers in a

low prionty transfer category, asynchronous in-
coming direct serial data signal word transfers in an
intermediate priority transfer category, and asyn-
chronous senal data transfer request signal words
in a high priority transfer category, said control
means providing prioritized data transfer request
output signal words in keeping with said priority
categories, and wherein said

control means 1s responsive to said high priority asyn-

chronous serial data transfer request signal words
from a high priority data source/destination for
providing an enable signal which permits said high
priority data source/destination to immediately
transmit/receive data signal words directly
from/to another data source/destination, said con-
trol means also responsive to said intermediate
priority asynchronous incoming direct serial data
signal word transfers to said storage means for
effecting said intermediate priority asynchronous
incoming direct serial data signal word transfers
after all transfers represented by high priority asyn-
chronous serial data transfer request signal words
are completed by providing a destination bus re-
quest signal to an intermediate priority data sour-
ce/DESTINATION unit used as a destination unit
and for subsequently receiving, in return, a destina-
tion bus grant signal from said intermediate priority
data source/DESTINATION unit, said control
means providing a data signal word transfer from
said storage means to a memory address within said
intermediate priority source/DESTINATION
unit after said destination bus grant signal has been
provided, said control means also responsive to
said low priority scheduled data signal word trans-
fers, for effecting the one or more low priority data
signal word transfers after all transfers associated
with high priority asynchronous serial data transfer
request signal words and all intermediate priority
data signal word transfers are completed.

3. A data hub for handling a plurality of data transfers
between a plurality of data source/destination units,
comprising:

storage means, for temporarily storing signals trans-

ferred from a data source/destination; and

control means, responsive to a source address pointer

input signal, to a destination address pointer input
signal, to a word count input signal and to a chan-
nel enabile input signal, each input signal provided
by a master source/destination unit, said control
means storing said address pointer signals and said
word count signal in said storage means, said input
signals being indicative of one or more scheduled
data transfers to be sequentially effected in a series
of data transfer cycles equal in number to the mag-
nitude of said word count signal, said control
means enabling a channel indicated by said channel
enable signal, said hub effecting data transfer cy-
cles from memory locations within a data SOUR-
CE/destination unit in said enabled channel as
indicated by said source address pointer input sig-

4,724,520

21

nal and said word count signal, to memory loca-
tions within a data source/DESTINATION unit 1n
said enabled channel, as indicated by said destina-
tion address pointer input signal and said word
count signal, said control means, for each of said
data transfer cycles:
(1) providing a source data transfer request output
signal to said data SOURCE/destination and
(2) subseguently receiving, in return, a source bus
grant signal from said data SOURCE/destina-
tion, said control means responsive to said source
bus grant signal for

(3) providing said source address pointer input
signal as an output signal to said data source, said
storage means receiving and temporarily storing
source data from a memory location within said

SOURCE/destination as indicated by said
source address output signal, said control means
then

(4) providing a destination data transfer output
request signal to said data source/DESTINA-
TION and subsequently receiving, in return, a
destination bus grant signal from said data sour-
ce/DESTINATION, said control means re-
sponsive to said destination bus grant signal for

(5) providing said destination address pointer input
signal as an output signal to said data sour-
ce/DESTINATION and providing a data trans-
fer from said storage means to a location within
said source/DESTINATION as indicated by
said destination address output signal.

4. The data hub of claim 3, wherein said control
means is further responsive to asynchronous incoming
direct data transfers to said storage means for storage
therein and to asynchronous transfer requests from

10

13

20

25

30

33

45

50

33

65

22

selected ones of said plurality of data source/destination
units, and wherein said control means priorities said
scheduled data transfers as low priority, asynchronous
incoming data transfers as intermediate priority, and
asynchronous transfer requests as high priority, said
control means providing prioritized data transfer re-
quest output signals in keeping with said priority order,
and wherein said control means is responsive to said
high priority asynchronous transfer request signals from
a high priority data source/destination for providing an
enable signal which permits said high priority data sour-
ce/destination to immediately transmit/receive data
from/to another data source/destination, said control
means also responsive to said intermediate priority
asynchronous incoming direct data transfers to said
storage means for temporary storage therein and for
effecting said intermediate priority asynchronous in-
coming direct data transfers after all tasks represented
by high priority asynchronous transfer request signals
are completed by providing a destination bus request
signal to an intermediate priority data source/DESTI-
NATION unit and for subsequently receiving, in re-
turn, a destination bus grant signal from said intermedi-
ate priority data source/DESTINATION unit, said
control means providing a data transfer from said stor-
age means to an address within said intermediate prior-
ity source/DESTINATION unit after said destination
bus grant signal has been provided, said control means
also responsive to said low priority scheduled data
transfers, for effecting said low priority scheduled data
transfers after all transfers associated with high priority
asynchronous transfer request signals and all intermedi-

ate priority data transfers are completed.
* =X * % %

PATENT NO.
DATED

INVENTOR(S) : Peter M. Athanas et al

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

Column 2, line 46. Cancel "FIF" and substitute =- FIFQ -=

|
Column 19, line 41. Cancel "an an" and substitute
-= a8 an =-- l
]
:
i
| |
|
Signed and Sealed this ,
Tenth Day of January, 1989
|
|
Altest;
DONALD J. QUIGG ,
Attesting Officer Commissioner of Patents and Trademarks I
-

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

