United States Patent [

Boebert et al.

[54]

[75]

[73]
[21]
[22]

[51]
(52]

[58]

[56]

SECURE DATA PROCESSING SYSTEM
ARCHITECTURE WITH FORMAT
CONTROL

Inventors: William E, Boebert; Richard Y. Kain,
both of Minneapolis, Minn.

Assignee: Honeywell Inc., Minneapolis, Minn.
Appl. No.: 703,638

Filed: Feb. 21, 1985

 (YI o) K GOGF 1/00; HO4L 9/00
US. CL e 364,/200; 340/825.34;
380/4; 380/25

Field of Search ... 364/200 MS File, 900 MS File,
364/300; 178/22.08

References Cited
U.S. PATENT DOCUMENTS

4,104,721 8/1979 Markstein et al. 364/200
4,621,321 11/1986 Boebert et al. 364/200

(11] Patent Number: 4,713,753
[451 Date of Patent: Dec. 15, 1987

Primary Examiner—Raulfe B. Zache
Attorney, Agent, or Firm—John G. Shudy, Jr.

[57] ABSTRACT

Means and methods of securing protected system files in
a data processing system are disclosed, wherein the
information determining access rights of system users to
the protected systems files remains at all times within a
secure processor. Provision is also made for allowing
the display or labeling of protected data files only when
markings consistent with the security level of such files
are also displayed or included in the label. Furthermore,
provision is also made for limiting the access rights of
users to protected system files based on a comparison
between the formats associated with said files and the
function or subsystem performing operations on behalf
of the users.

17 Claims, 9 Drawing Figures

e)
USER ENTITY CLURRENT SECURITY DATA OBJECTS -l
USER <31 TERMINAL IDENTIFICAT SR Y POLICY ICHARACTERISTICS
APPARATUS REGISTER UNIT TABLE
20

3 33

-33_g ¢ 333

| ORDINARY

DATA OBJECT
PROCESSING l

2| 1 UMT i

DASTINGUISHED
OATA OBJECT
PROCESSING

PROGRAM
WORKING
SET TABLE

335

33 .-

1 —

TaAG CODE RECOGNITION
APPARATUS

APPARATUS 338

ENCRYPTION

APPARATUS 337

|
|
MEMORY ADDRESS ~ 3360 l
|
I

COMMUNICATIONS
ME MORY NETWORK

U.S. Patent

Dec. 15, 1987 Sheet 1 of 5 4,713,753

RITE
ONLY

A(2)

WRITE
ONLY

WRITE
ONLY

WRITE
ONLY
WRITE
ONLY

= USER ENTITY CURRENTLY
POSSESSING ATTRIBUTE

VALUE X

DATA OBJECT
_ = POSSESSING ATTRIBUTE

VALUE Y

USER T >

ENTITY TERMINAL

PROCESSOR MEMORY

20 21 22

£19. 2

+*
L]

U.S. Patent Dec. 15, 1987 Sheet 2 of 5 4,713,753

» ——OTHER
SUBSYSTEMS
WITH ACCESS
TO FI
READ ONLY WRITE ONLY
[TO
TERMINAL
OR DISPLAY
DEVICE
@ WRITE '
OTHER
""’" SUBSYSTEMS
WITH NO
- ACCESS
I . |=SUBSYSTEM PERFORMING TO FI.F2,0R F3
A SPECIFIC TASK
(Y) =DATA IN A SPECIFIC FORMAT Fig la

40
DISTINGUISHED
DATA OBJECT
DATA OBJECT BY DOID OTHER
IDENTIFICATION | MISC le — — — _o GURRENT || enGTH EE%UERL'T CHARACTER-|FORMA
NUMBER ADDRESS ISTICS
o5 7] 7] T ol __aos
DATA
CHARACTERISTICS
TABLE

, - ORDINARY
Fig 4 DATA OBJUECT

T 22 4 MEMORY

ORDINARY DATA OBJECT |

SFONARY — \DATA Y
40 DATA OBJECT2 |OBJECT 3
40! 40 40! 40 40 50, —"A~— 4+

5061 ooz Y boosl VY | | | | |

roomess 3 Jeverw s | | Fig 5

405 406

Dec. 15, 1987 Sheet 3 of 5

U.S. Patent

4,713,753

& D14
22—
WHOMLIN AHSOW 3N
SNOI LVDINNWINOD
1 7
—— —— SE———————— S—t—— 8 B
7 \/ _
Jee SNLVNVYddY
_ NOILJANON3 _
_ 9¢¢ SNivyvYddy T\nm
DOge . SSINOAY ANOW3INW
_ SNLYNYddY o
_ NOILINSOD3¥ 300D 9V. _
2¢
_ w bee : _ LINN e
LINN
Gee) ONIMHOM 19390 viva
123rg0 vivo WYNO ONd | . "o
7 Q3HSINONILSIG | AHVRIC
| esc cc |
| 2ee | e 02
379v.L 1INN ¥3LSI93Y || SNLVYYYVddY
SOILSINI LOVHVHD A2110d LXANO & NOLLYOIJILNIAI 1" TUNIWY3L J_wm_w_
S123r80 viva ALIYNJ3S ._.zmmm:o|_ ALILN3 d3SN

U.S. Patent

COMPARED

LOCAL ADDRESS-602

CODE

INDEX|OFFSET I--60
6020 602b

INSTRUCTION

332

Nl

40

(] DISTINGUISHED
DATA OBJECT

Fig. 6

SECURITY
POLICY

UNIT

oop oo
40l 55
MEMORY
DATA OBJECT 61

Dec. 15, 1987 Sheet 4 of 5

4,713,733

334 PROGRAM WORKING SET TABLE
—

PROGRAM WORKING SET ENTRY

22

DOID ACCESS | CURRENT
RIGHT ADDRESS

o L \ [T =] ‘& e\

ORODINARY DATA OBJECT -6!

62

LENGTH

) | [meopet |

MEMORY

334 PROGRAM WORKING SET TABLE

62 PROGRAM WORKING SET ENTRY

ACCESS

CURRENT
ADDRESS

LENGTH

<JW .

~

CURRENT
SECURITY
CONTEXT
REGISTER

331

BY DOID _|CURRENT SECURIT
409

405 406

333

U.S. Patent Dec. 15, 1987 Sheet 5 of 5 4,713,753

SECURITY POLICY UNIT

SECURITY ATTRIBUTE
L§V$'- COMPARER 3321
© PROVISIONAL
JSER ACCESS RIGHT
ENTITY
CURRENT AT TRIBUTES &~ 33l
SECURITY ACCESS
CONTEXT SUBSYSTE RIGHT
33| UBSYSTEM/
suca:g:TEM ORMAT 622
COMPARATOR
DATA 3322
OBJECT '
FORMAT 332
409

Firg &

4,713,753

1

SECURE DATA PROCESSING SYSTEM
ARCHITECTURE WITH FORMAT CONTROL

The present invention was developed in conjunction
with the United States Govermment Contract No.
MDA 904-84-C-6011.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates generally to data processing
systems which possess system files. Such files can be
viewed as consisting of one or more segments, which in
turn consist of fields, wherein segments, data objects,
and fields are logical aggregates of information which
may have a variety of physical manifestations including
the format of the data. This invention relates particu-
larly to secure data processing systems, in which access
or manipulation of data objects, and the labeling and
display of data objects can be performed only by pro-
grams executing on behalf of user entities which possess
authorization and only by programs which are permit-
ted to perform specific tasks. Authorization is deter-
mined by a security policy, which includes a set of
pre-existing relationship that exist between security
attributes associated, at the time access or manipulation
is attempted, with the aforesaid user entities and data
objects. Such security attributes can, for example, rep-
resent the degree of sensitivity of information contained
in the data object with which one security attribute is
associated and the degree of trustworthiness of a user
entity with which a second security attribute is associ-
ated. Those tasks which a program are permitted to
perform are also determined by the security policy, by
having the policy include a set of pre-existing relation-
ships that exist between programs or groups of pro-
grams (i.e., subsystems) which perform the tasks, the
formats of the data objects that those programs (or
groups of programs) may access, and the modes of
access to the aforesaid data objects. A security policy,
and a secure data processing system which enforces it,
can be used in this case to mandate that sensitive infor-
mation is accessed or manipulated only by appropriate
programs executed on behalf of user entities which
possess sufficient trustworthiness.

2. Description of the Related Art

It is known in related art to provide means whereby
the modes or manners in which a program can access or
manipulate a data object can be restricted to a fixed set,
as for example, permitting or denying of the ability to
read (access) information, write (enter) information,
and/or other modes singly and in combination. An
instance of such a set shall be referred to herein as an
access right. In this techinique, access rights are granted
by programs for data objects under their control, by
setting values of fields within distinguished data objects,
said distinguished data objects being differentiated from
ordinary ones by being located within distinguished
segments. The distanguished data objects are fetched by
the data processing system prior to access or manipula-
tion, and the data processing system will only perform
the access or manipulations permitted by the contents of
their access rights fields. The above technique suffers
from two weaknesses. First, the existence of distin-
guished segments adds complication to the programs
executed by the data processing system, because the
programs must treat distinguished and ordinary seg-
ments in different ways. Second, programs are permit-

5

10

13

20

25

30

35

40

43

50

55

60

65

2

ted to grant access without regard for the user entity on
whose behalf the program is being executed, or any
security attributes currently possessed by said user en-
tity. Thus a user entity may execute a program which
grants an access right to another program executing on
behalf of said user entity, which access right is not au-
thorized by pre-existing security policy. It is further
known within related art to permit only highly trusted
programs to grant access rights, When a program exe-
cuting on behalf of a given user entity wishes a given
access right to a given ordinary data object, said pro-
gram invokes the highly trusted program, which ob-
tains the current security attributes associated with the
given user entity and the given ordinary data object and
insures that an access right is granted which is autho-
rized by the security policy. The above technique suf-
fers from the weakness that the compromise of software
programs, such as the highly trusted program described
above, 15 known to be relatively easy to accomplish,
such compromise can go undetected, and demonstra-
tion that a program has not been compromised i1s known
to be extremely difficult.

It 1s still further known 1n related art to provide appa-
ratus which is capable of recognizing distinguished data
objects, thereby permitting the mixing of distinguished
and ordinary data objects within segments, and to re-
strict the setting of access rights to highly trusted pro-
grams in the manner described above. This technique
suffers from two weaknesses. First, the highly trusted
program is subject to compromise as described above.
Second, even if the highly trusted program is not com-
promised, a program executing on behalf of one user
entity may establish an access right to some ordinary
data object, which access right is unauthorized accord-
ing to security policy. Such compromise is effected by
having the program obtain a distinguished data object
which grants an access right to a given ordinary data
object, said access right being authorized by secunity
policy, and then having the program place said distin-
guished data object in a segment which can be accessed
by a program executing on behalf of a second user en-
tity, which second user entity has current security attri-
butes different from the first user entity, and which
second user entity security attributes do not authorize,
according to security policy, the access right thereby
obtained.

It is yet further known in the related art to provide, in
addition to the mixing of distinguished and ordinary
data objects in segments, and in addition to the provid-
ing of highly trusted software to set the values of distin-
guished data objects in the manner described above,
apparatus which restricts the placement of distain-
guished data objects to segments which are accessed in
common only by programs executing on behalf of user
entities whose possible security attributes would autho-
rize, according to security policy, the access rights
granted by such distinguished data objects. The above
technique suffers from three weaknesses. First, the
highly trusted software is subject to compromise as
described above. Second, the restriction on the storage
of distinguished data objects limits the activity of pro-
grams executing on behalf of user entities, and thereby
reduces the effectiveness and efficiency of those pro-
grams. Third, the consequences of a malfunction in the
apparatus which enforces such restriction is cata-
strophic, in that once a distinguished data object 1s
placed in a segment to which access is freely shared,
said distinguished data object can be moved and copied

4,713,753

3

among segments in the data processing system in a man-
ner impossible to trace and reverse.

All of the aforementioned techniques suffer from the
additional weakness that a malicious user entity may
place in the system a program which can be executed on
the behalf of an unsuspecting user entity. The malicious
program may then use the access rights authorized to
the unsuspecting user entity to copy information in a
manner such that the malicious user entity would, in
effect, obtain unauthonzed access to data objects and
such copying would not be detected by said unsuspect-
Ing user entity.

It is still further known in the related art to permit
only highly trusted programs to access system files, and
to require that programs executing on behalf of user
entities invoke said highly trusted program upon each
attempt to access system files. This technique suffers
from three weaknesses. First, the highly trusted pro-
gram 1s subject to compromise as described above, and
the demonstration that the program has not been com-
promised is virtually impossible, owing to the number
of functions performed by the program. Second, even if
the highly trusted program is not subject to compro-
mise, it is extermely difficult to demonstrate that access
to system files cannot be gained by means outside said
highly trusted program. Third, the use of an intermedi-
ary program to perform accesses to system files se-
verely degrades the performance of the programs
which execute on behalf of user entities.

[t 18 yet further known in the related art to permit
users to store a distinguished data object describing a
segment within other segments, the distinguished data
object containing access rights information, and to per-
mit users to retrieve the distinguished data object and
subsequently to access the contents of the described
segment in accordance with the access rights informa-
tion retrieved from the distinguished data object. The
above technique suffers from the weakness that since
the user’s access rights for a segment are determined
when the distinguished data object is constructed, that
user’s access rights cannot effectively be revoked if the
user can retain obsolete access rights for use after revo-
cation.

A further weakness of these prior techniques is that
one authorized by the security policy to access a data
object may output such data in an unmarked format,
then use or copy the data in contravention of the secu-
rity status of the data.

SUMMARY

In 1s therefore an object of the present invention to
provide an architecture for a data processing system
which 18 secure in the sense defined above.

It 1s a further object of the present invention to pro-
vide said security without recourse to or reliance upon
highly trusted complex software programs.

It 1s still another object of the present invention to
provide apparatus which associates security attributes
with user entities and data objects and which permits
those security attributes to vary in a controlled manner
over tiume.

[t 1s yet another object of the present invention to
provide apparatus which guarantees that programs exe-
cuting on behalf of a user entity can exercise only those
access rights which are consistent with limits set by a
predetermined security policy.

It 1s a still further object of the present invention to
provide apparatus which guarantees that no program

10

15

20

25

30

33

45

30

33

635

4

executing on behalf of a given user entity can, by abus-
ing access rights to data objects, perform operations
unauthorized by a predefined security policy.

It is a yet further object to accomplish the aforemen-
tioned objects using techniques which require minimal
changes to software and programming practices in
order for said software and programming practices to
result in secure processing, by providing techniques
which are extensions of and not restrictions to the tech-
niques provided by nonsecure computer architectures.

It is a further object of the invention to provide a data
processing system wherein data output therefrom is
displayed and labelled only in a manner consistent with
the sensitivity of the data and the nature of the data
display device.

It 1s a further object of the invention to provide a data
processing system wherein a user cannot retain obsolete
access rights to protected system files or data.

The aforementioned and other objects of the present
invention are accomplished by including within the
data processing system apparatus which can recognize
distinguished data objects within segments of the sys-
tem files. Each satd distinguished data object denotes a
single data object. Before a program can access or ma-
nipulate a given data object in a given mode or manner,
said program must make available to said apparatus a
distinguished data object, the value of which denotes
the given data object. Said apparatus will permit seg-
ments to contain both distinguished data objects and
ordinary ones, and will impose no restrictions on which
segments can contain distinguished data objects, other
than those restrictions imposed by programs using the
techniques provided by distinguished data objects. Said
apparatus will permit the display of labeled data objects
only in a manner consistent with the security level of
the data object and the nature of the display device on
which the data object is displayed. Said apparatus will
protect distinguished data objects from compromise or
examination by restricting the operations which may be
performed on them. Said apparatus will use the follow-
ing technique to insure that a program executing on
behalf of a given user entity cannot use distinguished
data objects to directly or indirectly access or manipu-
late ordinary data objects in modes or manners which
are unauthorized by a pre-existing security policy: the
apparatus will associate a specific instance of security
attributes with each data object. Such a specific instance
shall be referred to herein as the security level of the
data object. The apparatus will maintain at all times the
security attributes associated with the user entity on
whose behalf the data processing system is currently
executing a program. An instance of such security attri-
butes in effect at the time an access or manipulation is to
be performed by a program shall be referred to herein as
the current security context of the program. Access
rights to protected system files or data will be retained
at all times within a secure processor which can have
data therein altered only by a director entity of the data
processing system. The apparatus will only permit a
program to access, manipulate, display or label the data
object denoted by a distinguished data object in the
mode or manner defined by the pre-existing security
policy for this specific combination of program security
context and data object security level. As a result, no
program ever executed on behalf of a given user entity
can, either directly or indirectly, access, manipulate,
display or label information contained in a data object in

4,713,753

S

a manner or mode which is not authorized by the pre-
existing security policy.

Distinguished data objects may be included in seg-
ments that are shared between processors, either along
secure transmission links or in an encrypted form,
thereby providing uniformity of control of access by
user entities on all data processing units in a distributed
system.

These and other features of the invention will be
understood upon reading of the following description
along with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 1s a diagram illustrating how restrictions on
the flow of information can be mandated by a security
policy which associates security attributes with user
entities and data objects and controls modes and man-
ners of access and manipulation by relationships be-

tween said attributes.
FIG. 1A is a diagram illustrating how restrictions on

access to information can be mandated by an additional
security policy which governs the manner in which
specific subsystems may access information stored in
specific formats.

FIG. 2 1s a simplified block diagram of a typical data
processing system.

FIG. 3 1s a block diagram of a data processing system
illustrating the apparatus impiementing the instant in-

vention.
FIG. 4 is a diagram illustrating the fields of a distin-

 guished data object.

FIG. § 1s a diagram showing how distinguished data
objects can denote overlapping or nested ordinary data
objects.

FIG. 6 is a diagram 1llustrating how data objects are
addressed in a manner that enforces access rights.

FI1G. 7 1s a diagram that shows how a program adds
~ a data object to the set of data objects upon which it is
. working, in such a manner that the pre-existing security
policy is upheld.

FIG. 8 is a diagram showing how access rights are
computed by a security policy unit.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

In all diagrams, detailed element numbers can refer to
elements of previous drawings.

Referring now to FIG. 1, the manner in which the
flow of information between user entities can be con-
trolled by the level portions of the security attributes
associated with the user entities and the data objects
manipulated or accessed by those entities is illustrated.
The level portions of the security attributes in this ex-
ample are partially ordered: A(2) is defined to be
greater than A(1) which is defined to be greater than
A(0), B(2) 1s defined to be greater than B(1) which is
defined to be greater than B(0), A(2) is defined to be
greater than B(0), each attribute is defined to be equal to
itself, and no other relations exist between the level
portions of the attributes. The predefined security pol-
icy is that a user entity may read (retrieve) information
from a data object if and only if the current value in the
level portion of the security attribute of the user entity
1s greater than or equal to the level portion of the secu-
rity attribute of the data object, and a user entity may
write (enter) information into a data object if and only
if the level portion of the security attribute of the data
object is greater than or equal to the level portion of the

10

15

20

23

30

35

45

50

55

65

6

security attribute currently associated with the user
entity. As indicated in the diagram, and with relation to
user entities communicating by means of data objects
contained within system files in the memory unit of
computers, memory space is available to any data pro-
cessing user entity. Any user entity can access or manip-
ulate any data object to which a connecting line exists in
the diagram, in the mode or manner shown on the label
attached to the line. The lines accordingly define all the
possible directional paths along which information can
flow from user entity to user entity, given the example
security attributes. Thus one-way communication 1s
possible from A(0) and A(1) to A(2), from B(0) and B(1)
to B(2), and from B(0) to A(2), in many cases through a
variety of data objects. In such a manner arbitrary infor-
mation flows between user entities may be controlled in
a manner not restricted to rigid relations between those
user entities, such as strict hierarchical ordering. As an
example, in modern corporate practice, the B(n) set of
data objects could contain financial data of increasing
sensitivity and the A(n) set of data objects could contain
production data of increasing sensitivity. Likewise, the
B(n) set of user entities could be members of the finan-
cial staff of increasing rank and privilege and the A(n)
set similarly members of the production staff. The infor-
mation flow controls in the example diagram show a
circumstance wherein information flows upwards only
within each staff, the highest ranking member of the
production staff is able to examine but not alter low-sen-
sitivity financial data such as individual invoices, no
other members of the production staff have any access
whatever to any financial data, and no members of the
financial staff, no matter how high ranking, have the
ability to read production information. It will be clear
that the information flow restrictions are enforced
solely by permitting or prohibiting operations based on
a comparison of the current security attributes of a user
entity and those of a data object. Thus if a user entity
has a security attribute A(0) at the time access is at-
tempted to a data object with security attribute B(n), a
comparison of attributes will yield a result of non-com-
patibility. It will also be clear that although FIG. 1
represents data objects as distinct entities, in general,
the data objects may be located anywhere within physi-

cal media.
Referring now to FIG. 1A, the manner in which

access to information of specific format may be limited
to subsystems performing specific tasks is illustrated. In
this example, F1, F2, and F3 are sets of data objects,
each set having a specific internal format; S1 and S2 are
subsystems, comprised of hardware and software work-
ing in concert to perform a specific task. As indicated in
the diagram, data in format F1 is generally available to
numerous subsystems including S1 and S6; data in for-
mat F2 may only be manipulated by subsystem S1; and
data in format F3 may only be used to communicate
between subsystem S1 and subsystem S2.

Thus format F1 may be the generally used format for
data within the machine, such as encoded strings of
characters. Format F2 may be the format of information
which must remain incorruptible, such as the strings of
characters (e.g., TOP SECRET, PROPRIETARY,
etc.) used to mark output from the computer when 1t 1s
displayed or produced in human-readable form, and
tables which define what information must be marked in
which manner. Format F3 may be ordinary information
which 1s properly marked and formatted for display.

4,713,753

7

Subsystem S1 would then be a subsystem whose task
is to determine the proper marking and insert it in the
proper location in the data as part of the task of format-
ting the data for output. Subsystem S2 would be a sub-
system whose task it is to display the data on some
appropriate device.

It will be clear that the access restrictions shown in
the example prevent malicious programs from subvert-
ing the intent of a predefined security policy by altering
the markings on information when it is displayed, e.g.,
by altering “PROPRIETARY” to “RELEASED FOR
PUBLIC DISTRIBUTION.” Subsystems S1 and $2
will have been shown to be free from malicious intent
by a process of stringent examination and test. It will be
clear to anyone well-versed in the art of computer sys-
tem design that such a proof of a restricted property 1s
substantially simpler than the general proof that a sub-
system does not in any way violate security policy.
Subsystems S1 and S2 process special privilege only to
the degree that they are allowed access to information
of formats F2 and F3. Any access which they make will
also be constrained by the security levels of the informa-
tion which is in the respective formats, as shown in
FIG. 1. A malicious program which 1s not part of sub-

10

i5

20

system S1 will not be able to access information of 25

format F2 and will thereby be prevented from altering
the definition of what information must be marked in
what manner, or the nature of the markings. A mali-
cious program which is not part of subsystem S1 will
not be able to produce or modify information of format
F3, and will therefore be prevented from causing the
display of improperly marked data.

It will further be clear that this method of restricting
access on the basis of predetermined relations between
data format and subsystems can be used to maintain the
incorruptability of information in circumstances other
than those shown in the example.

Referring now to FIG. 2, a data processing system is
seen to be comprised of a terminal 20, a processor 21,
and a memory 22. A user entity desirous having a pro-
gram executed on its behalf by processor 21 must first
identify itself by means of an elaborate login procedure
using, for example, a password. A further example in-
volves the use of the terminal, wherein the identity of
the terminal will automatically identify the user entity
and define the security attributes of said user entity.
Once the user entity (or terminal) has been coupled to
processor 21, said processor may execute programs on
behalf of said user entity, which programs may access
or manipulate information in memory 22 in a variety of
modes and manners.

Referring now to FIG. 3, a schematic diagram of the
principal components implementing the present inven-
tion is illustrated. Processor 21 of FIG. 2 is composed of
user entity identification apparatus 31, ordinary data
object processing unit 32, and secure processor 33. User
entity 1dentification apparatus 31 maintains security
context register 331 by monitoring the security atin-
butes currently associated with the user entity who is
communicating through terminal 20 of FIG. 2, and by
monitoring the subsystem which is currently being exe-
cuted by ordinary data processing unit 32. Secure pro-
cessor 33 18 composed of current security context regis-
ter 331, security policy unit 332, which stores the secu-
rity policy and computes the allowed access modes for
a user entity operating on an ordinary data object, data
object characteristics table 333, which carries the ad-
dress and other characteristics of every data object

30

35

40

45

30

33

65

8

denoted by a distinguished data object. Secure proces-
sor 33 also includes program working set table 334,
which contains the information necessary for a program
to address those ordinary data objects upon which it is
currently working, and distinguished data object pro-
cessing unit 335, which performs the restricted set of
operations on distinguished data objects. Secure proces-
sor 33 also includes memory address apparatus 336,
which fetches information from and stores information
into memory 22 of FIG. 2 and which includes tag code
recognition apparatus 336ag, which apparatus insures
that ordinary data processing unit 32 only purposes
ordinary data objects. The final component of secure
processor 33 is encryption apparatus 337, which may be
included to ensure the secure transmission of segments
containing distinguished data objects.

Secure processor 33 may be accessed, and data
therein manipulated, only by a director entity of the
data processing system (such as a security officer). FIG.
J depicts secure processor 33 as a distinct unit. How-
ever, the functions of secure processor 33 could be
distributed throughout the hardware and software of
the data processing system (e.g., they could be imple-
mented in a general purpose processing system by soft-
ware operating in specific modes).

Referring to FIG. 4, a distinguished data object is
shown along with the ordinary data object it denotes.
Distinguished data object 40 1s composed of data object
identification number 401, which uniquely identifies the
ordinary data object 41, miscellaneous field 403, which
may be used to contain information such as error check-
ing and correcting codes, current address 405, which
locates the beginning of ordinary data object 41 within
memory 22 of FIG. 2, length 406, which defines the
extent of and thus locates the end of ordinary data ob-
ject 41 within memory 22 of FIG. 2, security level 407,
which defines the security level of the information in
ordinary data object 41, format 409, which defines the
format of the information in ordinary data object 41,
and other characteristics field 408, which contains other
characteristics of ordinary data object 41, such as the
manner in which information is encoded in it. In the
preferred embodiment, fields 401 and 403 occupy con-
tiguous locations in memory 22 of FIG. 2 and have tag
codes assoctated with the physical media containing
those locations, and fields 408, 406, and 407 are carried
within data object characteristics table 333 of FIG. 3
and located by means of data object identification num-
ber 401. This organization yields the most efficient use
of memory and increases the performance of the secure
processor. Other organizations can be functionally
equivalent, provided said organization permits fields
403, 405, 406, 407, 408 and 409 to be made available to
the secure processor given a value of field 401, and
provides identification to distinguish the object contain-
ing field 401 and to protect it against unauthorized ac-
cess or manipulation.

Referning to FIG. §, the manner in which nested and
overlapping ordinary data objects can be denoted by
distinguished data objects is illustrated. Three distin-
guished data objects 40 of FIG. 4 are shown in memory
22 of F1G. 2. Each has a distinct data object identifier
value 401 of FIG. 4, and they therefore respectively
denote distinct ordinary data objects 50, 51, and 52. The
diagram shows how the fields 405 and 406 of F1G. 4 can
assume values such that ordinary data object 51 is
nested within ordinary data object 50, and ordinary data
object 52 overlaps ordinary data object 50. It is also

4,713,753

9

possible that the values in fields 405 and 406 assume
values such that all three distinguished data objects
denote the identical ordinary data object.

Referring to FIG. 6, the manner in which addresses
are computed and access rights checked is illustrated.
An instruction 60 is composed of an operation code 601,
which defines the operation a program is to perform
upon field 611 of ordinary data object 61 within mem-
ory 22 of FIG. 2, and address 602, which is the location
of field 611 expressed relative to the set of data objects
upon which the program is currently working. Address
602 is interpreted as containing fields 602a and 6025b.
Field 602a is interpreted as an index into program work-
ing set table 334 of FIG. 3, which index locates program
working set entry 62, which consists of data object
identifier field 621, access right field 622, current ad-
dress field 623, and length field 624. Field 6025 is inter-
preted as an offset within ordinary data object 61. In-
struction 60 1s transmitted to memory address apparatus
336 of FIG. 3.

Memory address apparatus 336 extracts field 602q
and uses it to locate program working set entry 62.
Memory address apparatus 336 compares access right
622 against operation 601 and verifies that the modes
and manners of access and manipulation required by
operation 601 are permitted by access right 622. If they
are not, memory address apparatus 336 invokes an ap-
propriate administrative program by such means as an
interrupt. If the operation 601 and access right 622 are
compatible, memory address apparatus 336 then com-
pares offset field 6026 against length field 624 to verify
that field 611 is indeed within ordinary data object 61. If
it is not, memory address apparatus 336 invokes an
appropriate administrative program by such means as
an interrupt. If 1t 1s, memory address apparatus 336 adds
field 6025 to field 623 in order to obtain the address of
field 611, and, if a read 1s desired, transmits field 611 to
the ordinary data object processing unit 32 of FIG. 3 or
distinguished data object processing unit 335 of FIG. 3,
depending on operation code 601. Tag code recognition
apparatus 336a of FI1G. 3 checks the transfer to insure
that no data stored in locations containing tag codes is
transmitted to ordinary data object processor 32. It will
be clear to those versed in the art how to modify this
description if operation code 601 implies other mode(s)
of access to field 611.

Referring to FIG. 7, the method by which a program
adds a data object to the set upon which it 1s currently
working 1s illustrated. A program transmits to secure
processor 33 of FIG. 3 a request to add desired data
object 61 to said program’s working set, in order that
desired data object 61 may be accessed or manipulated
in the manner described above. The request may be
encoded in any combination of operation codes, ad-
dresses, and field values which identify the request,
denote a distinguished data object 40 of FIG. 4 which is
contained in memory 22 of FIG. 2 and which in turn
denotes the desired data object 61 in memory 22, and
identify a program working set entry 62 of FIG. 6,
which entry is to be used by the program for subsequent
reference to data object 61. Distinguished data object
processor 335 of FIG. 3 fetches fields 401 and 403 from
memory 22 using the steps described in reference to
FIG. 6.

Using the data object identification number 481, pro-
cessor 335 fetches the security level 407 and data format
409 from data characteristics table 333, and the current
security context from current security context register

5

10

15

20

25

30

35

43

50

35

65

10

331, said register 331 being continuously maintained by
user entity identification apparatus 31, and sends those
three values to the security policy unit 332. The security
policy unit returns the correct value of access right 622
which processor 335 places in entry 62. Processor 335
constructs the remainder of entry 62 in the manner
shown, by moving field 401 to field 621, field 405 to
field 623, and field 406 to field 623.

It will be clear to one well-versed in the art of com-
puter systems design that the operations depicted in
FIG. 6 and those depicted in FIG. 7, operating in con-
cert, insure that every operation of the machine is in
accord with the predefined security policy. Operation
601 in FIG. 6 unavoidably encounters access right field
602 when attempting to generate an address which is
required to locate field 611 in order to access or manipu-
late the values it contains. Access right 622 may only be
set by secure processor 33 of FIG. 3. In setting these
rights secure processor 33 unavoidably encounters se-
cunty policy unit 332 which selects rights based on the
relationship, as defined by the external policy, between
the current security context in register 331 and the
security level and format of the contents of field 611
carried in data characteristics table 333. Thus there
exists no way of accessing or manipulating the informa-
tion in field 611 except through mechanisms which
enforce the external policy.

Referring to FIG. 8, the operation of the security
policy unit 332 is shown. Current security context 331 1s
decomposed into its constituent parts-user entity attri-
bute 3311 and subsystem 3312. User entity attribute
3311 and secunty level 407 are sent to attribute com-
parer 3321, which computes provisional access right
3323. The computation of provisional access right 3323
may be made by a number of means which correctly
reflect the intent of the predefined policy, including but
not limited to comparisions of encoded values of user
entity trustworthiness and data sensitivity, and/or
matching of user names with lists of authorized users.
Provisional access right 3323 is then validated by sub-
system/format comparer 3322, which compares current
subsystem 3312 and data object format 409 against a
table or other representation of allowed accesses by
specific subsystems to data of specific formats. Subsys-
tem/format comparer 3322 then deletes from prowvi-
sional access right 3323 any mode or manner of access
not allowed by the result of the aforementioned com-
parision, and produces the result as access right 622.
Equivalent operation of security policy unit 332 may be
obtained by performing the operations of subsystem/-
format comparator 3322 and attribute comparer 3321 in
different order, provided that access right 622 contains
no mode or manner of access denied by either the attri-
bute comparison or the subsystem/format comparison,
unless authorized in advance by an appropriate author-
ity (e.g., a predefined program which can override the
access right signal).

Access right 622 is generated only in response to
attempts to add data object 61 to program working set
entry 62. Therefore access right 622 need not be and is
not stored other than temporarily while object 61 is
included in working set table 334. Note that access right
622 cannot leave secure processor 33. This restriction is
enforced by the structure of memory address apparatus
336, in which access rights signals are used to control
the flow of data between memory 22 and ordinary data
object processing unit 32, without sending the access
rights information as data. This structure 1s similar to

4,713,753

11

the structure of the access control portion of a contem-
porary memory management unit.

Storage of access right signals only while the corre-
sponding object is included in working set tabie 334
simplifies the problem of revoking access once granted.
If access rights could be retained by a user in any mem-
ory object, said access right signals could be used to
obtain access to object 61 at a later time, even though
the user may not have retained a working set table
during the entire time since the access right signals were
obtained.

The present invention, in effect, automatically re-
vokes any outstanding access rights after the working
set table is destroyed, which might occur when a user
terminates the session with the processor, or when a
new working set table is initialized, which might occur
when a user initiates a session with the processor. The
fact that access right 622 cannot leave secure processor
33 prevents users from circumventing the revocation
rules by storing obsolete access rights in protected sys-
tem files.

OPERATION OF THE PREFERRED
EMBODIMENT

In the preferred embodiment, distinguished data ob-
jects are distinguished from ordinary data objects by
having tag codes associated with the physical media in
which, at any given instant, the distinguished data ob-
ject is stored. Distinguished data objects may only be
“acted upon by special apparatus. Distinguished data
objects may be included as fields within ordinary data
objects, in which case they appear to the apparatus
which processes ordinary data objects as forbidden
fields.

The apparatus which recognizes and acts upon distin-
guished data objects is included in the data processing
system as a separate secure processing unit with mem-
ory subject only to the control of the secure processing
unit. Prior to accessing or manipulating an ordinary

data object, a program executing on behalf of a user 40

entity must transfer a distinguished data object to the
secure processing unit, whereupon the secure process-
ing unit extracts the current security context of the
program, the security level of the ordinary data object
denoted by that distinguished data object, and the for-
mat of the ordinary data object from the secure process-
ing unit’s memory. The secure processing unit then
determines what access rights are consistent with the
predetermined security policy and the predetermined
access relations between subsystems and formats. The
secure processing unit will permit the program to access
or manipulate the ordinary data object denoted by the
distinguished data object only in those modes and man-
ners consistent with said predetermined policy and pre-
determined access relations.

Distinguished data objects are created under two
circumstances. In the first circumstance, a program
transmits to the secure processing unit a request that a
new ordinary data object be created. The request must
include the characteristics of the ordinary data object to
be created, such as for exampie its size, the manner in
which information is encoded in it, and where it should
be located in the system files. The request must also
include the security attributes and the format of the
ordinary data object to be created. The secure process-
ing unit places in its memory the characteristics of the
ordinary data object, allocates space in an appropriate
physical medium, and creates a new distinguished data

5

10

135

20

25

30

35

45

50

55

63

12

object that denotes the new ordinary data object. The
secure processing unit then transmits the new distin-
guished data object to the requesting program. In the
second circumstance, a program transmits a request to
the secure processing unit that a distinguished data
object be copied. The request must include a distin-
guished data object which is to be used as an original.
The secure processing unit returns the the new distin-
guished data object to the requesting program.

The preferred embodiment achieves security by six
techniques used in concert. First, it collects all informa-
tion into identifiable data objects. Second, it requires
that for every operation on a data object the user pro-
cess uses a distinguished data object which denotes said
data object. Third, it 1s cognizant at all times of the
security attributes of the user entity on whose behalf
operations are being performed, including the identity
of the subsystem in use. Fourth, it controls the manner
in which distinguished data objects may be used to
access data objects by associating with every data ob-
ject a set of security attributes and a format. Fifth, it
selects modes and manners of access at the time distin-
guished data objects are used by an operation, such that
the operation can access or manipulate data objects only
in modes or manners which are authorized by a prede-
fined security policy. Sixth, it collects all programs into
subsystems and restricts the mode and manner of access
by programs to ordinary data objects by maintaining a
predefined relation which defines allowed access by
programs in a subsystem to data objects based on the
format of said data objects.

Operation of the first technique is made clear by
reference to FIG. 6. Information stored in memory 22
of FIG. 2 can only be made available to an operation
601 through local address 602. Address 602 selects, by
its very nature, a field 611 within a collection of fields,
said collection being data object 61. Thus all informa-
tion which is accessible to an operation must be part of
a data object.

Operation of the second technique is made clear by
reference to FIGS. 6 and 7. A program accesses Or
manipulates information in a field by means of an in-
struction 60 of FIG. 6 whose local address 602 selects
field 611. In order to perform the computation neces-
sary to select field 611, program working set entry 62
must be fetched. Program working set entry 62 is shown
in FIG. 7 to be derived from fields of distinguished data
object 40 whose data object identification number 401
denotes data object 61. Thus the act of addressing a field
unavoidably involves the presentation of a distinguished
data object prior to the attempt to address.

Operation of the third technique is by any appropri-
ate organization of user entity identification apparatus
31 of FIG. 3 and the communication between it and
current security context register 331. Apparatus 31, in
conjunction with terminal 20 of FIG. 2, can use any of
a variety of means, such as passwords, secure and dedi-
cated telephone lines, callback, cryptographic seals, and
others, singly and in combination, in order to determine
what set of attributes to place inttially in register 331. At
the same time, program working set table 334 is initial-
1zed by loading a set of entries 62 with access rights
compatible with the contents of security context regis-
tor 331. During program execution, the operation code
601, in conjunction with address 602, may request a
change from one subsystemn to another subsystem,
which then causes a different program working set table
334 to be used in accessing field 611.

4,713,753

13

Operation of the fourth technique can be made clear
by reference to FIG. 4, in which it can be seen that
security level field 407 and format field 409 are associ-
ated with the same data object identification number
401 which selects the current address of ordinary data
object 41.

Operation of the fifth technique is made clear by
reference to FIG. 7. Use of a distinguished data object
involves its being fetched by distinguished data object
processing unit 335 of FIG. 3, and fields being moved
from it to the program working set entry 62. Once
fetched, data object identifier 401 1s available to obtain
security level 407 from data object characteristics table
333 of FIG. 3. Current security context is always avail-
able to processing unit 335 by its accessing current
security context register 331 of FIG. 3. Hence the use of
a distinguished data object unavoidably involves the
comparison of data object security level with current
security context, and hence the proper setting of access
right field 622 of FIG. 6 by security policy unit 332 of
FIG. 3. Once set, access right field 622 is unavoidably
encountered by an operation seeking current address
field 623 of FIG. 6 in order to access field 611 of FIG.
6. The restriction in modes and manners of access is
therefore uniformly enforced.

Operation of the sixth technique can be made clear by
reference to FIG. 8. In the calculation of access right
622, of FIG. 6, data object format 409 of FIG. 4 and the
subsystem component 3312 of the current security con-
text register 331 of FIG. 3 are compared by the subsys-
tem/format comparer 3322 and the results of this com-
parison used to insure that all modes and manners of
access granted by access right 622 are consistent with a
predefined set of access rights allowed by programs in
subsystems to data of specific formats. By reference to
FIG. 6 it can be seen that access right field 622 is un-
avoidably encountered by operation 601 of any pro-
. gram in the course of forming the current address 623 of

field 611 to be operated upon. Thus the access right

.. restrictions imposed by subsystem/format comparer

- 3322 of FIG. 8 are uniformly enforced.

The mechanisms and techniques of this invention can
be embodied in a variety of ways, including, but not
limited to, the following two system configurations.
These possible embodiments can be understood with
reference to FIG. 3. In the first embodiment, the func-
tions of the ordinary data object processing unit 32 are
performed by a conventional processing unit, such as a
microprocessor which provides signals concerning the
types of access being requested in a memory access
request. The functions of the memory address apparatus
336 are performed by a hardware module positioned
between the ordinary data object processing unit 32 and
the bus which connects the processor to memory units
22. The program working set table would be contained
either within the module performing the functions of
the memory address apparatus 336 or in a memory unit
easily accessible from that unit, said memory unit being
protected against attempts to access its contents from
the ordinary data processor 32. The functions of the
distinguished data object processing unit 335 could be
implemented in a special hardware module attached to
the memory bus or attached by means of a dedicated
connection to the memory address apparatus 336. The
memory units 22 would be modified to include tags
associated with each addressible entity, and to commu-
nicate said tag values along with the contents of the
addressible entities on the bus. The memory address

10

15

20

25

30

35

40

14

apparatus would examine the value of the tag field asso-
ciated with incoming data, and would control the flow
of such information so as to guarantee that the ordinary
data object processing unit 32 is never sent the contents
of any object whose tag value indicates that it is con-
tained within a distinguished data object.

In the second embodiment, the functions of the ordi-
nary data object processing unit 32 are performed by a
conventional processor, such as a minicomputer, and
the functions of the distinguished data object processing
unit 335 are performed by a suitably programmed mi-
croprocessor. The memory address apparatus could be
implemented as described above for the first embodi-
ment. It is readily seen by persons experienced in the art
of computer systems design that other embodiments are
possible, including one in which all operations are per-
formed in the same processing unit, with the tag values
of the operands serving to limit the functions which can
be performed on those operands.

In either embodiment, the tag fields and therefore the
distinction between ordinary and distinguished data
objects may be omitted. In the resulting embodiment,
any data object of the proper size may be submitted to
distinguished data object processing unit 335 and inter-
preted by said unit as a data object identification num-
ber 401 of FIG. 4. It is clear to anyone well-versed in
the art of computer systems design that while such an
embodiment may produce unanticipated results for
operations, all such results will be consistent with the
predefined security policy and the predefined set of
accesses allowed by subsystems to information of spe-
cific formats.

If the distinction between ordinary and distinguished
data objects is maintained through tagging, then distin-
guished data objects may be written more freely than
ordinary data objects. In particular, it would be possibie
to permit distinguished data objects to be copied (which
is a form of writing) into ordinary data objects in certain
circumstances under which the copying of ordinary
information would be forbidden by the preexisting pol-
icy, in such a manner that visible information flows do

- not violate the preexisting policy. Allowing such opera-

45

50

35

05

tions permits a greater degree of freedom in the design
of programs without compromising security.

It should be clear to one well-versed in the art of
computer system design that the present invention,
though described above for a processor having a single
user terminal, can be effectively adapted to create a
computer system having a multiplicity of user terminals.
As is known in related art, processors can be switched
among programs associated with different users provid-
ing that state information regarding a user’s program is
saved when the program is switched out and reliably
restored when the program is switched back in to the
processor. Adapting the above technique to the present
invention requires that the state of a user program in-
clude the contents of the current security context regis-
ter 331 of FIG. 3 and the contents of the program work-
ing set table 334 of FIG. 3.

It should also be clear to one well-versed in the art of
computer system design that the operation of setting
access right 622 may be performed at any time prior to
performing operation 601. In general, the later it is
performed the more often it 1s performed. The more
often it is performed, the longer the machine will take to
execute a program comprised of sets of operations 601.
The more often it is performed, the more frequently
data characteristics table 333 will be consulted, and

4,713,733

15

hence the more rapidly that changes to that table will be
reflected in the restrictions imposed on the behavior of
programs. There accordingly exist a range of embodi-
ments of this invention in which different tradeoffs are
made between the performance of programs and the
timeliness of the data security characteristics which
controls the accesses made by those programs. A com-
mon case in which data access characteristics change is
when the access granted to a user by name 1s granted or
revoked. If access right 622 is recomputed for each
operation 601, then the grant or revocation will be
effective on the very next operation. If access right 622
is recomputed at some greater interval, then some num-
ber of operations 601 may execute under the control of
an obsolete value of field 622.

Many changes and modifications in the above-
described embodiments of the invention can, of course,
be carried out without departing from the scope
thereof. Accordingly, the scope of the invention is to be
limited only by the scope of the accompanying claims.

What is claimed is:

1. A data processing system having protected system
files, wherein each protected system file 1s associated
with a data format and wherein said data processing
system operates in response to programs or groups of
programs which perform specific tasks, comprising:
identification means for identifying a user interacting

with said data processing system, said identification

means relating preselected security attributes with
said user; and

secure processor, connected to said identification

means, for storing, at least temporarily, a security
policy and for processing data in accordance with
said security policy, said security policy defining
permissible access rights to said protected system
files in terms of possible values of data formats,
possible values of said preselected security attri-
butes and functions of said specific tasks, wherein
data stored in said secure processor can be altered
only by a director entity of said data processing
system and retrieved only by portions of said se-
cure processor, said secure processor having gener-
ating means for generating an access rights signal
for any one of said protected system files, said
access rights signal being determined by a compari-
son of said security policy to said predetermined
security attributes, said data format associated with
said any one of said protected system files and any
functions to be performed with or upon said any
one of said protected system files.

2. The data processing system of claim 1 further com-
prising:

determining means, connected to said generating

means, for determining permissible access to said
any one of said protected system files each time a
function attempts to access said any one of said
protected system files by comparing said access
rights signal to said function.

3. The data processing system of claim 2 further com-
prising:

overriding means, connected to said determining

means, for overriding said access right signal in
response to selected of said programs or groups of
programs.

4. The data processing system of claim 2 wherein:

each of said protected system files is associated with

a security level:;

5

10

15

20

25

30

35

45

50

35

635

16

said security policy further defines permissible access
rights to said protected system files in terms of
possible values of security levels; and

said access rights generating means includes a com-

parison of said security policy to the security level
associated with said any one of said protected sys-
tem files.

5. The data processing system of claim 4 wherein said
specific tasks include:

outputting said protected system files, and labeling

said protected system files when said protected
system files are output.

6. A data processing system having protected system
files, wherein each protected system file is associated
with a security level and wherein said data processing
system attempts to perform operations with or upon
said protected files in response to programs or groups of
programs, comprising:

identification means for identifying a user, said identi-

fication means relating preselected security attri-
butes with said user;

secure processor, connected to said identification

means, for storing, at least temporarily, a security
policy and for processing data in accordance with
said security policy in response to said programs,
said security policy defining permissible access
rights to said protected system files in terms of
possible values of said preselected security attri-
butes and possible values of security levels,
wherein data stored in said secure processor can be
altered only by a director entity of said data pro-
cessing system and retrieved only by portions of
said secure processor, said secure processor having
generating means for generating an access rights
signal for any one of said protected system files,
said access rights signal being determined by a
comparison of said security policy to said prese-
lected security attributes and the securnity level
associated with said any one of said protected sys-
tem files, and said secure processor having prohib-
iting means, connected to said generating means,
for prohibiting said access rights signal from exit-
ing said secure processor; and

storage means, connected to said secure processor,

for storing said protected system files, access to
protected system storage means being controlled
by said secure processor.

7. The data processing system of claim 6 wherein:

said protected system files are further associated with

a data format;

said program or groups of programs perform specific

tasks:;

said secunity policy further defines permissible for-

mats of said protected system files in terms of possi-
ble values of data formats, possible values of said
preselected security attributes and functions of said
specific tasks; and

said access rights generating means includes a secu-

rity attribute comparator and a format comparator,
wherein said security attribute comparator com-
pares said security policy to said security level
associated with said any one of said protected sys-
tem files and said preselected security attributes,
and said format comparator compares said security
policy to a data format associated with said any one
of said protected system files and any functions to
be performed with or upon said any one of said
protected system files.

17

8. The data processing system of claim 7 further com-
prising:

determining means, connected to said generating

means, for determining permissible access to said
any one of said protected system files each time a
function attempts to access said any one of said
protected system files by comparing said access
rights signal to said function.

9. The data processing system of claim 8 further com-
prising:

overriding means, connected to said determining

means, for overriding said access right signal in
response to selected of said programs or groups of
programs.

10. The data processing system of claim 7 wherein:

one and only one of said security attribute compara-

tor or said format comparator generates a provi-
sional access rights signal, with another of said
security attribute comparator or said format com-
parator receiving and deleting from said provi-
sional access rights signal any access right not per-
mitted by a comparison with said security policy
made in another comparator, so that said access
rights signal is generated.

11. A method of protecting system files in a data
processing system, wherein each system file to be pro-
tected is associated with a security level and wherein
said data processing system attempts to perform opera-
tions with or upon protected system files in response to
programs or groups of programs, comprising:

identifying a user, an identification relating prese-

lected security attributes with saixd user;

storing, at least temporarily, a security policy in a

secure processor, said security policy defining per-
missible access rights for protected system files in
terms of possible values of said preselected security
attributes and possible values of security levels, and
wherein data stored in said secure processor can be
altered only by a director entity of said data pro-

10

15

20

25

30

35

cessing system and retrieved only by portions of 40

said secure processor;

processing protected system files in accordance with
said security policy; and

generating an access right signal for any one of pro-

tected system files, said access rights signal being 45

determined by a comparison of said security policy
to said preselected attributes and security level
associated with said any one of protected system
files, an access rights signal generating means being
a portion of said secure processor; and

prohibiting said access rights signal from exiting said
secure processor.

12. The method of claim 11 further including:

30

33

65

4,713,753

18

determining permissible access to said any one of
protected system files each time an operation at-
tempts to access said any one of protected system
files by comparing said access rights signal to said
operation.,

13. The method of claim 12 further including:
overriding said access right signal in response to se-
lected of said programs or groups of programs.
14. A method of protecting system files in a data
processing system, wherein each system file to be pro-
tected is associated with a data format and wherein said
data processing system operates In response o pro-
grams or groups of programs which perform specific

tasks, comprising:

identifying a user interacting with said data process-
ing system, an identification relating preselected
security attributes with said user;

storing, at least temporarily, a security policy in a
secure processor, satd security policy defining per-
missible access rights to protected system files as a
function of possible values of data formats, possible
values of said preselected security attributes and
functions of specific tasks, wherein data stored in
said secure processor can be altered only by a di-
rector entity of said data processing system and
retrieved only by portions of said secure processor;

processing protected system files ind said secure pro-
cessor in accordance with said security policy; and

generating an access rights signal for any one of pro-
tected system files, said access rights signal being
determined by a comparison of said security policy
to said preselected security attributes, said data
format associated with said any one of protected
system files and any function to be performed with
or upon said any one of protected system files.

15. The method of claim 14, further including:

determining permissible access to said any one of
protected system files each time a function at-
tempts to access said any one of protected system
files by comparing said access rights signal to said
function.

16. The method of claim 15 further including:

overriding said access right signal in response to se-
lected of said programs or group of programs.

17. The method of claim 15 wherein:

said security policy further defines permissible access
rights of protected system files in terms of possible
values of security levels; and said generating in-
cludes a comparison of said security policy to a
security level associated with

said any one of protected system files in determining

said access rights signal.
*x x ¥ .

	Front Page
	Drawings
	Specification
	Claims

