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[57] ABSTRACT

A digital data processor is provided to multiply data
elements by coefficients. It includes a systolic array of
cells consisting of nearest neighbor connected gated full
adders. The cells multiply data bits received from later-
ally adjacent cells and subsequently pass them on. The
product 1s added to a cumulative sum bit from a cell

above and to a carry bit recirculated from an earlier
computation. The output 1s passed to a cell below, and

a new carry bit 1s recirculated for addition in a subse-
quent computation. Data and coefficients are input in
counterflow to opposite sides of the array. An adder
tree accumulates non-simultaneously computed contri-
butions to individual output terms. The tree incorpo-
rates a delay and switches arranged to implement or

bypass the delay according to earlier or later computa-
tion of a contribution. By virtue of this accumulation,

the processor provides reduced cell redundancy com-
pared to the prior art.

8 Claims, 19 Drawing Figures
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DIGITAL DATA PROCESSOR FOR MULTIPLYING
DATA BY A COEFFICIENT SET

This invention relates to a digital data processor of 35

the kind incorporating a systolic array of pipelined

bit-level processing celis.
Systolic arrays of pipelined bit-level processing cells
are known, as set out for example is published United

Kingdom Patent Application No. GB 2106 287 A (cor-
responds to U.S. Pat. No. 4,639,857). This form of array
consists of nearest-neighbour connected processing
cells for which the only external control required is a
clock. A computer programme 1s not required, since
array operation is prescribed by cell function, cell inter-
connection and data propagation. Systolic arrays are
well suited to pipelined operations and parallel process-
ing which can reduce the number of idle devices await-
ing data undergoing processing elsewhere. A sequence
of operations is said to be pipelined if a data element
may enter the sequence before the preceding element
has left it.

Prior art Application No. GB 2106 287 A describes
systolic array processors for multiplying (1) two num-
bers, (2) 2 number and a vector, (3) two vectors, (4) a
vector and a matrix. In addition, convolution and corre-
lation of data with a set of coefficients 1s described.
Each cell of these prior art arrays 1s a bit-level gated full
adder arranged to multiply together two 1nput data bits
received from respective lateral nearest neighbour cells,
to add the product to a cumulative sum bit from an
upper nearest neighbour cell and a carry bit from a
lower order bit computation, to output the result to a
lower nearest neighbour cell and to generate a new
carry bit. Data bits previously input from left and right
hand neighbouring cells are passed on to right and left
hand neighbours respectively. Carry bits propagate to
the left. Data elements and coefficients are input bit-
serially to both sides of an array and form two data
streams moving through each other to the left and to
the right respectively, individual bit-level interactions
taking place at cell sites. Accumulating means are pro-
vided to accumulate bit-level product terms computed
by processing cells and corresponding to different ele-
ments in a result.

It 1s a disadvantage to the use of the prior art array
that it incorporates cell redundancy; i.e. an appreciable
number of processing cells do not contribute to the
computed result at any given instant. Those cells which
are redundant change from clock cycle to clock cycle
as Imput data streams mutually counter-propagate
through the array, but overall there 1s a significant num-
ber of cells surplus to the relevant computation at any
given time.

It is an object of the present invention to provide a
-digital data processor having reduced cell redundancy
as compared to the prior art.

The present invention provides a digital data proces-
sor for carrying out a multiplication operation involv-
ing a stream of data words and a set of coefficient words
to form output terms each consisting of a sum of data/-
coefficient products, the processor including:

(1) a systolic array of bit-level processing cells each
arranged for bit-level multiplication,

(2) input means to produce interaction between bit-

serial data elements and coefficients in the array,
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(3) accumulating means for summing non-simultane-
ously computed contributions to individual bits of out-
put terms, and

(4) clocking means to control operation of the pro-
cessing cells, input means and accumulating means.

It has been found that a processor of the invention

can provide reduced cell redundancy as compared to

the prior art.
In a preferred embodiment, data elements and coeffi-

cients are input bit-serially, least significant bit leading,
with each coefficient passing repetitively through a
respective row of the array. |

The data element and coefficient word lengths are

'preferably extended with zero bits to half the maximum

word length of output terms in order to accommodate
output word growth.

The input means may be arranged to input data and
coefficient words with zero bits interspersed between
adjacent bits and adjacent words. The clocking means is
then arranged to advance each word one cell along a
respective row of the array after each processing cycle,
and a cumulative time stagger or delay is applied be-
tween input of successive data elements and coefficient
words to adjacent rows.

In a preferred embodiment however, the input means
is arranged for word input without interspersed zero

‘bits. The clocking means is then arranged to advance

both data elements and coefficients 1n adjacent rows on
alternate processing cycles such that each advanced
data element or coefficient interacts with a respective
stationary coefficient or data element. Data elements in
alternate rows are input with a cumulative time stagger
therebetween, and are advanced on alternate cycles to
establish time staggers over data elements in each re-
spective adjacent row. Each adjacent row 1s advanced
on each subsequent cycle to remove the stagger estab-
lished by a respective neighbouring row. Similar input
arrangements apply in antiphase to coefficients.

The processing cells may conveniently be nearest
neighbour connected gated full adders arranged to gen-

erate the product of two data coefficient bits input from
first and second neighbouring cells, add the product to

a cumulative sum bit received from a third neighbour-
ing cell and to a carry bit from a lower order bit compu-
tation, output a result to a fourth neighbouring cell, pass
on the data coefficient bits to the second and first neigh-
bouring cells respectively, and generate a new carry bit

- for addition to a higher order bit computation one cycle

30

33

60

65

later. The carry bit is preferably recirculated for addi-
tion by the same cell in a later computation.

The accumulating means may be a full adder tree
incorporating delaying means such as a shift register to
realign in time non-simultaneously computed contribu-
tions to individual bits of output terms. The accumulat-
ing means may also include switching means arranged
to implement or bypass the delaying means during pas-
sage of earlier or later computed contributions respec-
tively. '

The data input means may conveniently be arranged
to cycle each coefficient repetitively through a respec-
tive row of the array via a feedback line incorporating
delaying means ensuring sequential word input.

In one embodiment, the processor of the invention is
arranged to perform convolution or correlation of data
elements with coefficients. The data input means then
includes feed lines to transfer data output from each
row of the array for input to a respective adjacent row,
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the feed lines incorporating delaying means to ensure
sequential word input.

In a second embodiment, the processor of the imnven-
tion is arranged to multiply a matrix by a vector, the
data elements and coefficients correspond to matrix and
vector elements respectively. In this embodiment, the
input means is arranged to pass each row of the matrix
through a respective row of the array.

In a third embodiment, the processor of the invention
is arranged to generate a matrix-matrix product. This
processor incorporates a cascaded array of matrix-vec-
tor sub-arrays each in accordance with the second em-
bodiment. One of the matrices 1s treated as being equiv-
alent to a set of vectors, each matrix row being associ-
ated with a respective sub-array and each row element
recirculating through a respective sub-array row. The
other matrix is input with matrix rows passing through
respective sub-array rows sequentially.

The processor of the invention may be implemented
as a single integrated circuit cascadable both in one
dimension to increase the number of coefficients or
matrix elements accommodated, and in a second dimen-
sion to accommodate increased input word lengths
and/or matrix-matrix multiplication. The integrated
circuit may incorporate programmable switching
means to adapt it for different modes of operation, such
as coefficient loading, convolution computation and
matrix-vector multiplication.

In order that the invention might be more fully un-
derstood, examples thereof will now be described by
way of example only, with reference to the accompany-
ing drawings, in which:

FIG. 1 is a schematic drawing of a prior art array of

processing cells implementing a digital convolver,

FIG. 2 is a schematic drawing of a gated full adder
cell as incorporated in the FIG. 1 array,

FIGS. 3 and 4 are schematic drawings of a processor
of the invention for performing a convolution, and 1llus-
trate the seventy-third and seventy-seventh cycles of
operation respectively,

FIGS. 5 and 6 illustrate gated full adder cells for
processing all positive and twos complement numbers
respectively in a processor of the invention,

FIG. 7 illustrates an accumulator for accumulating
bit-level products in the FIG. 3 or 4 processor of the
invention,

FIG. 8 is a drawing of a full adder cell for the FIG.
7 accumulator,

FIGS. 9 and 10 are schematic drawings of a further
processor of the invention during successive processing
cycles,

FIG. 11 illustrates an accumulator for the processor
of FIGS. 9 and 10,

FIG. 12 illustrates in more detail three rows of the
processor shown in FIGS. 9 and 10,

FIG. 13 illustrates a processing cell incorporated in
FIGS. 9, 10 and 12.

FIG. 14 illustrates a laich incorporated in the FIG. 13
cell,

FIG. 15 illustrates clock waveforms for the FIG. 14
latch, and

FIGS. 16, 17, 18 and 19 show respectively schematic
word level representation of a convolver, a correlator,
a matrix-vector multiplier and a matrix-matrix multi-
plier in accordance with the invention.

Referring to FIG. 1, there is shown a prior art sys-
tolic array indicated by a rectangle 10. The array 10
comprises individual bit-level processing cells indicated
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4

by squares such as 11 with nearest neighbour cell inter-
connections (not shown). The array 10 is arranged to
carry out an N-point convolution of a set of coefficients
a(i) with an input data stream of variables x(n—1) to
form successive products y(n) given by:

N-—1
_20 a(}x(n — D, n=0,1,2,...
] =

]
y(n) = D

where coefficients a(i) and data words x(n—i) each
have four bits. Bit significance is indicated in FIG. 1 by
an integer p=0, 1, 2 or 3, in ap(i) or xp(n—1) 1n ascend-
ing order of significance, i.e. p=0 indicates a least sig-
nificant bit (Isb).

FIG. 1 is similar to FIG. 15 of published United
Kingdom Patent Application No. GB 2106 287 A,
which relates to a ten-point convolution of three-bit
coefficients and data words.

The array 10 is illustrated at a single instant of time
during processing of data and coefficients to produce
convolution products. It has ten rows of cells 11, one
row for each point of the convolution, and seven col-
umns, the prior art array 10 requiring (2m—1) columns
for data words and convolution coefficients m bits
wide.

Referring now also to FIG. 2, each processing cell 11
consists of a one-bit gated full adder having on iis right
hand side co-efficient and carry bit input lines 21 and 22
together with a data bit output line 23. The lines 21, 22
and 23 are connected to the respective right-hand near-
est neighbour cell, except for cells on the right hand
edge of the array 10, where line 21 1s connected to
bit-level coefficient input means, carry input line 22 1s
initialised to zero and data output line 23 is uncon-
nected.

Carry and coefficient output lines 24 and 235 together
with a data bit input line 27 are connected to the left
hand side of each cell 11 from its left hand nearest
neighbour cell. At the left hand edge of the array 10,
coefficient output line 25 is unconnected, data bit input
line 27 is connected to data input means (not shown)
and carry output line 24 is connected to word growth
means (not shown). Each cell 11 is connected via cumu-
lative sum input and output lines 28 and 29 to 1is upper
and lower nearest neighbours, except for input lines 28
to top row cells which are initialised to zero, and output
lines 29 from bottom row cells which are connected to
accumulating means (not shown). The cell mmput lines
21, 22, 27 and 28 contain respective one-bit storage
latches 30, 31, 32 and 33.

On each array processing or clock cycle, coefficient,
carry input, data and cumulative sum input bits a, ¢’, X
and s’ are clocked in from latches 30 to 33 respectively
(word and bit indices are omitted for convenience). The
cell computes the product of bits a and x, adds to 1t the
sum of carry and sum input bits ¢’ and s’ and generates
new carry and cumulative sum bits ¢ and s. The gated
full adder logic function is given by:

(2.1)

c={(a.x).s +{a.x).c’+s.'c

s=s'"P(a.x)Pc’ (2.2)

Coefficient and data bits a and x are passed on un-
changed to left and right hand neighbouring cells via
lines 25 and 23, or out of the array 10 if there 1s no
relevant neighbour. New carry bit ¢ 1s output via line 24
to the respective left-hand neighbour or word growth
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means, and new cumulative sum bit s is output via line
29 to the lower neighbour or accumulating means as
appropriate. On the next clock cycle, the cell operation
repeats.

Referring once more to FIG. 1, the array 10 receives
input of data words x(j) (j==n—1i) from the left and coef-
ficient words a(1) from the right. Each data or coeffici-
ent word has blanks or zeros between 1ts respective bits.
There are however no blanks between adjacent words,
each coefficient or data word following directly after
the corresponding preceding word. Coefficient words
a(i) progress through the array 10 to the left and data
words x(j) to the right, each word moving on by one bit
to the next respective cell 11 on each clock cycle.

Coefficient words a(i) are input to the array 10 with
most significant bits (msb) a3(i) leading, whereas data
words are input Isb x0()) leading. Coefficient mput to
adjacent rows takes place with a one-cell time delay or
stagger increasing cumulatively down the array 10; i.e.
a3(9) in a top row cell leads a3(8) in the next row by one
cell and a3(5) in the fifth row by four cells. Coefficients
are input to the array 10 repeatedly, each coefficient a(1)

being recirculated through a respective row. Because of
the cumulative time stagger, the series of blocks of
coefficients input to the array 10 may be envisaged as
successive leftward leaning parallelograms, e.g. 40, 41,
42, 43 and 44 indicated by chain lines, parallelogram 42
being shown in full and others in part.

The sequence of data words x(0), x(1), x(2) . . . 1s input
sequentially to each row of the array 10. Input to each
row is delayed by six cells or clock cycles compared to
input to the respective row immediately below. The
array 10 is shown executing the sixty-sixth cycle of
operation, the first cycle being that on which the lead-
ing bit x0(0) entered the bottom row. By inspection, it
will be noted that data words x(0) to x(7) have passed
entirely through the bottom row of the array 10,
whereas x(0) has yet to leave the top row.

Although the six-cell time stagger between nput of
the same data word x(j) to adjacent rows is cumulative
in the direction up the array 10, it is equivalent and
convenient for analysis purposes to envisage a one-celi
time stagger cumulative down the array between suc-
cessive words x(3) and x(j4 1) input to adjacent rows, it
being noted that each data word occupies seven cells.
On this basis, and by analogy with the coefficient paral-
lelograms 40 to 43, successive illustrated blocks of data
words 0 to x(7), 0 to x(8), x(0) to x(9), x(1) to x(10) and
x(2) to x(11) are envisaged as occupying successive
rightward leaning parallelograms 30, 31, 52, 53 and 54
indicated by dotted lines, parallelogram 52 (x(0) to x(9))
being shown in full and others in part.

It will be appreciated that those parts of data or coef-
ficient parallelograms outside the array 10 do not have
physical significance, since they do not correspond to
cells 11 evaluating products. They are however 1illus-
trated to assist understanding of processor operation.

The FIG. 1 prior art convolver array 10 operates as
follows. Data and coefficient parallelograms interact
within the array 10 in diamond shaped interaction re-
gions such as 60 produced by the interaction of parallel-
ograms 42 and 52. Parallelograms 41 and 51 have nearly
completed interaction in part diamond or triangular
shaped region 61, and parallelograms 43 and 43 have
begun to interact in region 62. Parallelograms 40/50 or
44/54 have finished or have yet to begin interaction
respectively.
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The interaction regions 60, 61 and 62 contain those
cells 11 which are computing bit-level products forming
contributions to each convolution product y(n). Convo-
lution terms y(0) to y(7) inclusive have previously been
computed and corresponding interaction regions have
passed out of the array 10. Regions 60, 61 and 62 are
evaluating y(9), y(8) and y(10) respectively. Cells 11 not
within regions 60 to 62 produce zero products only,
since the effect of interspersing zeros between data or
coefficient bits 1s to ensure that such cells contain a data
or coefficient bit and a zero at any instant. As data and
coefficient parallelograms mutually counter-propagate
through the array 10, the interaction regions 60 to 62
move downwards. Each partial column of cells within
an interaction region contributes to a respective bit of
the convolution product generated by that region. The
extreme right-hand cell 11 within region 60 is shown
computing the product of Isbs a0(4) and x0(5), to which
it 1s adding a cumulative sum bit received from the cell
above. The cumulative sum bit represents the Isb of the
sum of products a0(90).x0(0), a0(8).x0(1), a0(7).x0(2),
a0(6).x0(3) and a0(5).x0(4) computed on the preceding
five cycles, carry bits having been transferred laterally
to respective left hand neighbouring cells. On the four
subsequent to that illustrated, products
a0(4).x0(5) to a0(0).x0(9) will have been computed and
their isbs added to the cumulative sum. Accordingly,
the output of the extreme right hand bottom row cell 11
will, five cycles after that illustrated, provide the Isb of
v(9), 1.e. y0(9).

The second column of cells from the right similarly
provides the second Isb of y(9), v1(9). However, on
each cycle three cells 11 contribute to y1(9). On the
cycle illustrated a0(5).x1(4) and a1(3).x0(6) are being
evaluated by two cells 11, with a third cell computing a
zero product. There is also addition of carry bits com-
puted by right hand neighbours a cycle earlier, and
higher order carry bits pass to the left. In general, the
bit-level contributions to y(n) accumulate vertically and
carry bits propagate laterally to the left.

Below the array 10, individual full adders (not
shown) are arranged to accumulate bottom row cell
outputs as appropriate to generate successive bit-paral-
lel y(n) terms. The accumulator incorporates switching
means to adjust bit accumulation from the earlier initial
and later final contributions from inner columns of an
interaction region as compared to those from outer
columns, so that bit-level contributions to successive
y(n) terms are accumulated correctly. Word growth of
y(n), i.e. propagation of carry bits to the left increasing
the word size beyond the array width, is accommodated
by half-adder cells (not shown) connected to the left
hand side of the array 10, the numbers of half-adder
cells adjacent to successive rows increasing logarithmi-
cally down the array. The bottom row of cells 11 re-
quires logaN half-adder cells to its left to accommodate
growth, N being the number of convolution points, l.e.
four half-adder cells after rounding up the logarithm.
The accumulating means or full adder cells extend to
accumulate half-adder cell outputs, and provision 18
made to accumulate in appropriate y(n) terms respec-
tive carry bits required to propagate across the array 10
and half adder cells on its left hand side. This requires
twinning of corresponding full adder accumulator cells
and means for switching therebetween. These arrange-
ments are described in detail in the Proceedings of

VLSI 83 (Trondhetm, Norway, 16-18 Aug. 1983, pp
227-235, North Holland). |
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As described above, data input to the prior art array

10 is arranged specifically to ensure that bit-level prod-

uct contributions to each value of y(n) are evaluated
within interaction regions such as 60 to 62. This results
from zeros being interspersed between adjacent bits but
not between adjacent words, and avoids the generation
of unwanted bit-level products. However, the effect is
that cells 11 outside interaction regions 60 to 62 are idle
at any given time, in that they are computing null prod-
ucts, and are brought into play only when interaction
regions move fo enclose them. |

Referring now to FIGS. 3 and 4, in which like parts
are like referenced, there is shown a digital data proces-
sor of the invention arranged to carry out the ten-point
convolution operation of Equation (1) with four bit data
and coefficient words. The processor comprises an
array 70 of processing cells indicated by squares such as
71 shown in more detail in FIG. §. Each cell 71 1s a
gated full adder similar to the cell 11 illustrated in FIG.
2, except that each successive output carry bit ¢ 1s recir-
culated via a line 72 having a latch 73, and becomes an
input carry bit ¢’ to the same cell 71 on the next cycle.
Since carry bits recirculate on each cell 71 rather than
propagating to the left as in the prior art array 10, half-
adder cells to accommodate word growth of convolu-
tion products y(n) are not required. In other respects,
cell 71 is identical to cell 11, and performs the same
logical operations set out in Equations (2.1) and (2.2).

The array 70 comprises ten rows of cells 71, one row
for each point of the convolution, and four columns,
one column for each bit of a data or coefficient word.
Successive data parallelograms 0 to x(8), x(0) to x(9),
x(1) to x(10) and x(2) to x(11) are partially or wholly
illustrated within dotted lines, and are indicated at 80,
81, 82 and 83 respectively. Successive coefficient paral-
lelograms a(9) to a(0) are indicated at 84, 85, 86 and 87
within chain lines. Data and coefficient words x(J) and
a(i) propagate to the right and left respectively by one
cell space per processing or clock cycle. Blanks are
interspersed both between adjacent bits and between
adjacent words, so that parallelograms are eight cell
spaces wide. Data and coefficient words are both input
Isb x0(3) or a0(1) leading.

FIGS. 3 and 4 respectively show the array 70 execut-
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ing the seventy-third and seventy-seventh cycles of 45

convolution computation, the first cycle being that on

which the Isb of x(0), x0(0), entered the bottom row of

cells 71. FIG. 4 accordingly shows the array 70 four
cycles later than FIG. 3.

By analogy with FIG. 1, in FIG. 3 data and coeffici-
ent parallelograms 81 and 85 share a common diamond
shaped region having parts 88 and 89, of which only
part 88 lies within the array 70. Part 88 contains bit-
level convolution products ap(i) xq(j) (p,q=0, 1, 2 or 3)
not being evaluated because there are no cells 71 at
corresponding locations. However, four cycles later in
FIG. 4 it is seen that movement of data and coefficient
parallelograms has produced a triangular overlap re-
gion 90 within the array 70, the region 90 containing
identical bit-level convolution products to those of re-
gion 89 outside the array 70 four cycles earlier. It may
be envisaged for analysis purposes that the diamond
shaped interaction region 60 of FIG. 1 has become
divided vertically into two parts, and the left hand tni-
angular part has been relocated above, to the right and
adjacent to the right hand part. This results in parallelo-
gram shaped interaction regions 911 and 91; (shown in
part within broad lines) in FIGS. 3 and 4 respectively,
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in which regions convolution term y(9) is being com-
puted. The interaction region 91; moves down the array
70 as data and coefficient parallelograms counterpropa-
gate across, and becomes region 91; four cycles later.
Similarly region 92; in which y(10) is being computed
moves down the array 70 to become 92;. Region 93 in
FIG. 3, corresponding to y(8), is shown only partly
within the array 70 in FIG. 3, and has wholly left the
array four cycles later in FIG. 4. Regions correspond-
ing to y(0) to y(7) have passed through the array 70 in
FIGS. 3 and 4, and regions corresponding to y(11)
onwards have yet to enter it.

Each interaction region 91, 92 or 93 contains all the
bit-level partial products necessary to produce a respec-
tive convolution term y(9), y(10) or y(8). Accordingly,
despite having fewer cells than the prior art array 10,
the array 70 of the invention still performs an equivalent
operation. In effect, the array 70 employs cells 71 corre-
sponding to redundant prior art cells 11 which com-
puted products of zeros and data bits. This may be ap-
preciated by comparing the upper right portion of re-
gion 917 with the region above and to the right of inter-
action region 60 in FIG. 1. Accordingly the array 70 of
the invention incorporates reduced redundancy as com-
pared to the prior art array 70.

The reduced cell redundancy of the array 70 arises
from the differences in data and coefficient input and
timing as compared to the prior art array 10. As has
been said, both data and coefficient words are input Isb
leading with blanks interspersed between both bits and
words. In the prior art device coefficient words were
input msb leading, and adjacent coefficient or data
words were not separated by blanks. These differences
produce the following effects. The prior art array 10
produces a bit-parallel output, bit-level contributions to
each convolution term being arranged vertically up the
array 10. However, array 70 of the invention provides
bit-serial outputs, with individual contributions to each
bit of a convolution term y(n) being arranged horizon-
tally across the array within an interaction region. The
Equation (1) word-level summation of contributions to
each y(n) term may be expressed as a bit-level double
summation providing individual bits of y(n); 1.e. the rth
bit yr(n) is given by:

5 ak k 3)
i={ k_—..oa (Dx [r — Kl(n — ) +

carry bit from (» — 1)th bit computation

For example, it can be seen that the fourth least signif-
icant bit of y(9), i.e. y3(9), has four bit-level product
contributions in the same horizontal line in regions 88
and 89 in FIG. 3. Of these, contributions a2(3) x1(6) and
a3(3) x0(6) are being evaluated as shown in region 88,
and contributions a0(3) x3(6) and al(3) x2(6) within
region 89 will be evaluated four cycles later within the
array 70 as shown in FIG. 4. In order to compute each
bit of y(n), it is necessary during accumulation of bits to
apply a four cycle delay to the lower left triangular
portion of each interaction region 91 to realign in time
bit-level products of equivalent bit significance. This 1s
carried out within accumulating means to be described
later.

As has been mentioned, in the prior art carry bits
propagate to the left to be accommodated in word-
growth half adder cells when they have passed out of
the array 10. In the array 70 of the invenrtion, carry bits
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recirculate on each cell 71 as interaction regions 91
move downwards. In effect, carry bits propagate up
respective interaction regions. It is necessary that carry
bits remain within their respective interaction regions.
This requires a carry bit to have become zero by the
time that the next interaction region has moved down to
encompass the relevant cell 71. By inspection of FIG. 3,
it is seen that the maximum number of bits in each coef-
ficient y(n) is eight if carry bits are not to propagate
from interaction region 91; to 92;. This eight bit limit
arises from the maximum number of eight cells of a
column encompassed by an interaction region. In FIG.
3, eight cells 71 of the left hand column of the array are
contained by region 91,. For the purposes of illustrating
operation of the array 70 in drawings of comparatively
reasonable scale, and to facilitate explanation and prior
art comparison, it was assumed that the sum of bit-level
partial products in Equation (3) would generate etght-
bit y(n) values for a(i) and x(j) of four bits. This is not
generally the case, since a product of four-bit numbers
produces an eight bit number and a sum of four-bit
products may produce numbers larger than eight bits.
In general, a sum of k products of two numbers each m
bits wide produces a number having 2m-logy k bits.
Thus, in the example illustrated in FIGS. 3 and 4, y(n)
having eight bits corresponds to 8=2m+logs & This is
turn corresponds to a(i) and x(j) originally having m bits
but extended with zeros to m+3 loge k bits to accom-
modate word growth of the convolution terms; i.e.
m+-3 logs k=4, since a(1) and x(j) were treated as four
bit numbers. Now k=N, the number of points in the
convolution, so k=10 and 3} logz 10=2 upon rounding
up. Accordingly, if m+ 3 logy k=4, m=2. The array 70
therefore i1s capable of dealing with values of a(1) and
x(j) which are two bits wide but which are extended
with zero bits to four bits.

To provide an N point convolution of two m-bit
numbers, the prior art array 10 requires 2m - 1 columns
of gated full adder cells 11 together with up to loga N
1.e. four half-adder cells alongside each row to accom-
modate word growth. The array 70 of the invention

requires m—+ 3 logs N columns to execute the same con-
volution, but without any half-adder cells. For small
values of m, the difference between the two approaches
1s not very great. For a(i) and x(j) four bits wide, the
prior art would require seven columns as illustrated in
FIG. 1 plus up to four half-adders, whereas an array of
the invention would require six columns without half-
adders. The benefits of the invention become more
appreciable when larger word lengths are employed.
For a ten-point convolution of sixteen bit data and coef-
ficient words, the prior art array would have thirty-one
columns, whereas an array of the invention would have
only eighteen.

Referring now to FIG. 6, there 1s shown an alterna-
tive form of cell 100 appropriate for processing twos
complement numbers. The cell 100 is equivalent to cell
71 of FIG. § with the addition of a vertical input control
line 101 incorporating a laich 102 together with a verti-
cal output control line 103.

The cell 100 modifies the array (20 or 70¢) to handle
twos complement words in accordance with the Baugh
Woolley algorithm, IEEE Trans. on Computers, Vol
C-22, No 12, December 1973 pp 1045-1047. The multi-
plication of two twos complement words may be trans-
formed into all positive partial products, provided that
all negatively weighted partial products (those involv-
ing multiplication of a sign bit by a non-sign bit) are

5

10

complemented and a fixed correction term is added to
the final answer. If the numbers to be multiplied are m
bits wide, the correction term has the value 2m—22m—1
A detailed analysis based on FIG. 1 would indicate that
the partial products to be complemented are those fall-
ing on the upper left and right boundaries—but not the

- apex—of the diamond shaped interaction regions when
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present in the array 10, and corresponding products in
the parallelogram shaped interaction regions of FIGS. 3
and 4. It will be appreciated that equivalent products
must be complemented as they move in the array 70.
The partial products to be complemented are identified
by means of the control function of the cell 100. An
additional control bit 1s latched at 102 for input to the
cell 100, the control bit being set to 1 when the comple-
ment of the partial product a.b is to be added to the
cumulative mnput sum s’ to form the cell output s. The
control bit is latched from cell to cell vertically down
the array 70 in synchronism with the propagation of the
edges of interaction regions, and is used to indicate cells
at which complementing is required.

The logic function of the cell 100 is as follows, where
ctrl indicates the control bit and other terms are as
previously defined:

s=5'@(ctrida.b.)PDc (4.1)

c=(ctridpa.b).s’ +(ctrlPa.b).c’'+5'.¢ (4.2)

As has been mentioned, the final results of the array
computations are required to be corrected for the pres-
ence of unwanted sign/non-sign cross-product terms. If
the resultant value y(n) in Equation (3) emergent from
the array 70 is the result of k additions of bit-level multi-
plications, the correction term is k x(2m—22m—1) for
m-bit words. Correction may be achieved quite simply
either by initialising the cumulative product inputs of
top row processing cells, or by adding corrections to
the output of the accumulating means to be described.

One form of handling twos complement numbers has
been described in detail in published United Kingdom

Patent Application No. GB 2106 287 A, The above
form 1s expected to be published shortly in the IEEE
Trans. Circuits and Systems under the authorship of
McWhirter, Wood, Wood, Evans and McCabe.
Referring now to FIGS. 7 and 8, there 1s shown an
accumulator indicated generally by 110 appropriate for
the array 70 of FIGS. 3 and 4. The accumulator 110 has
individual cells 111 which are one bit full adders. Each
adder 111 has two input lines 112 incorporating respec-
tive latches 113, a carry recirculation line 114 including
a latch 115, and an output line 116. On each clock cycle,
each adder 111 receives two input data bits p’ and ¢’ on
input lines 112, adds them to a carry bit ¢’ from a com-
putation one cycle earlier, and produces a sum bit s on
output line 116 and a new carry bit ¢ on recirculation
line 114. The full adder logic function is given by:

s«—p'Dq'Pe’ (5.1)

cp'.q' +p.c’+q'.c (5.2)

The accumulator 110 has six adders 111 arranged in
upper, middle and lower ranks indicated by chain lines
117, 118 and 119 and containing three, two and one of
the adders 111 respectively. The input lines 112 of ad-
ders 111 to 1113 in the upper rank 117 are connected to
sum outputs of the four bottom row cells 71; to 714 of
the array 70 via four two-way switches indicated sche-
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matically by 120; to 1204. Each adder 1114 0r 1115 of the
middle rank 118 is connected directly to a respective
outer upper rank adder 111; or 1113 and indirectly via a
two-way switch 121 to the central upper rank adder
111,. The left-hand middle rank adder 11141s connected 3
via a four-bit shift register 122 to the lower rank adder
111¢, to which the right-hand middle rank adder 11151s
connected directly.

The accumulator 110 operates under the action of the
clocking means (not shown) employed to control the
array 70, each rank of adder 111 operating on each
clock cycle. Outputs from cells 71; to 714 accordingly
emerge from lower rank adder 111¢ three cycles later.
The positions of the switches 120; to 1204 determine the
routeing of outputs from cells 71 to upper rank adders
111, to 1113, as shown in Table 1 where L or R indicates
a left or right switch position.

10

15

TABLE 1|

Cell Switch Position Adder 20
711 1201 L 1114

R 1115
71y 120, L 1114

R 1115
713 1203 L 1115

R 1113 23
T4 1204 L 1115

R 1113

Similarly, the output of upper rank adder 111; is
routed to middle rank adder 1114 or 1115 according to
whether switch 121 is positioned to the left or right. If
all four switches 120 and switch 121 are positioned to
the left, middle rank adder 1114 receives the outputs of
all four bottom row cells 71. The output of adder 1114
is delayed by four clock cycles by the shifi register 112
before reaching the lower rank adder 111¢. If all four
switches 120 and switch 121 are positioned to the right,
middle rank adder 1115 receives all four cell outputs
which pass to lower rank adder 111¢ without interven-
ing delay. If some of switches 120 are positioned to the
left and others to the right, cell outputs are divided
between the delayed route and the non-delayed route
before being recombined by adder 11l to provide a
bit-serial output Isb leading for successwe convolution
terms.

In order to realign in time bit-level contributions to
successive convolution terms, the switching sequence
given in Table 2 below 1s carried out cyclically. The
sequence repeats every eight clock cycles, 1n accor-
dance with the maximum number of eight bits in each
convolution term. Switch 121 changes its position from
left to right or right to left whenever, on the previous
cycle, a majority of the switches 120 have become posi-
tioned to the right or left respectively, switch 121 re-
ceiving data bits which passed through switches 120
one cycle earlier.
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TABLE 2-continued

Switch Position

Switch L
Clock Cycle 1204 1207 1203 1204 121
W+9 L R R R R

The Table 2 switching sequence relationship to the
cycle illustrated in FIG. 3 is given by setting the cycle
basis integer W to 73, i.e. Table 2 gives the accumulator
switching sequence for the next nine cycles after that
shown in FIG. 3. .

In practice, the switches 120 and 121 would be imple-
mented by transistors operated by switching wave-
forms. In practice, an adder 111; to 1115 having one or
both unconnected inputs would be arranged to receive
one or two zero inputs as appropriate. Provision of
apprOpriate circuitry and waveforms is well understood
in the art of digital electronics and will not be described
further.

By inspection of FIGS. 3 and 4, it will be appreciated
that at any given time half of the cells 71 are not evalu-
ating bit-level products. This is a consequence of inter-
spersing with spaces or zeros the bits of data and coeffi-
cient words. The corresponding cell redundancy 1s
capable of further reduction.

Referring now to FIGS. 9 and 10, there is shown a
further processor array 130 of the invention arranged to
carry out the convolution operation of Equation (1) and
illustrated on two successive cycles of operation, the
seventy-second and seventy-third respectively. The
array 130 incorporates twenty gated full adder cells
such as 131 and as illustrated in FIG. § or 6. The cells
131 are arranged in two columns indicated by chain
lines 132 and 133 and ten rows indicated by chain lines
135 to 144 inclusive, one row for each point of the
convolution.

Data and coefficient input is arranged so that there
are no zeros or spaces between either bits of a word or
successive words. This has the effect that all cells 131
are evaluating bit level products on every clock cycle.
In FIG. 9, five successive data regions 145, to 149;
(dotted lines) are shown moving to the right, together
with four coefficient regions 150; to 153; (chain lines)
moving to the left. Data regions 1461, 147 and 148; are
in the process of interaction with successive coefficient
regions 151; and 152, to define interaction regions 1541,
1551 and 156; (broad lines) evaluating y(8), y(9) and
y(10) respectively. The data, coefficient and interaction
regions became 145, to 156; respectively one cycle later
in FIG. 10. Regions 147,/147,, 1511/151; and 153; are
shown in full and others in part. The effect of contrac-
tion to remove interspersed zeros may be inferred from
the multilateral shapes of the regions 145 and 1495; to
1561 and 1565 inclusive. In particular, data or coefficient
regions have zig-zag diagonal sides and interaction re-
gions become two linked elongate rectangles in this
example. By analogy with parallelogram interaction
region 911/91; in FIGS. 3 and 4, interaction region
1551/155; has two component regions 1571/137; and
158,/158; to be realigned in time by accumulatlng
means to be described.

To compensate for the lack of interspersed zeros, the
movement of data and coefficient words through the
array is more complex than in FIGS. 1, 3 and 4, where
both types of word move through one cell on every
cycle. In the present case, on even numbered cycles,
data words x(j) in odd numbered rows 135, 137 . . . and
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coefficient words a(i) in even numbered rows 136, 138 .
.. move one cell to the right and left respectively. Data
and coefficient words in even and odd numbered rows
respectively remain stationary. On odd numbered cy-
cles, data and coefficient words in respective even and
odd numbered rows move one cell to the right and left
respectively, and those in respective odd and even num-

bered rows remain stationary. There 1s a one cell or
cycle cumulative time stagger between input of coeffici-
ents or data words to alternate rows 135, 137 ... or 136,
138 . ... However, as regards data or coefficient words
in any adjacent pair of rows, the upper word moves to
establish a one cell time stagger over the lower on alter-
nate cycles, and this stagger is removed on each subse-
quent cycle by movement of the lower. In FIG. 9, a(9)
is in phase with a(8) and x(0) leads x(1) by one cycle.
Comparing FIG. 10, a(9) and x(1) have moved while
a(8) and x(0) remained stationary, such that a (9) now
leads a(8) but x(0) has become in phase with x(1). This

10

15

pattern of movement is repeated for adjacent pairs of 5

rows down the array 130. The effect 1s achieved by
clocking each cell’s data and coefficient bit input latches
on respective alternate clock cycles, whereas crtl, carry
and sum bit input latches are clocked every cycle. Each
of the cells 131 now evaluates bit-level products on
every clock cycle.

Referring now also to FIG. 11, there is shown an
~accumulator 160 for accumulating bit-level contribu-
tions to convolution terms y(n), and for generating
successive values of y(n) bit senially Isb leading. Cells
131, and 131, in the bottom array row 144 are connected
to respective two-way switches 1611 and 161>, and
thence to either of two full adders 1627 or 162> 1n accor-
dance with switch position. The adders 162 are as
shown in FIG. 8. A third adder 1623 receives the output
of adder 162; via a four-bit shift register 163 giving a
four cycle delay, but receives the output of adder 162,
directly.

TABLE 3
Switch Position
Switch
Clock Cycle 161, 1617
W + 1 L R
W + 2 L R
W + 3 L L
W 4 4 L L
W 4§ L L
W 4 6 L R
W+ 7 L R
W 4 8 R R
W 40 L R

Table 3 sets out the switching pattern of switches
1611 and 161> on nine successive clock cycles, the pat-
tern repeating every eight cycles. This pattern operates
to realign 1n time components of interaction regions
such as components 152 and 153 in FIGS. 9 and 10.
Operation 1s analogous to that described with reference
to FIG. 7. The switching pattern corresponds to that
shown in FIG. 9 or 10 with the cycle basis number W
set equal to seventy-three, 1.e. cycle W41 is equivalent
to two cycles later than the seventy-second cycle 1llus-
trated in FIG. 9.

The example of the invention described with refer-
ence to FIGS. 9 to 11 operates equivalently to that
described with reference to FIGS. 3 to 9. It employs
two columns of ten cells 131 to compute a convolution
of two bit data and coefficient words extended with
zeros to four bits to accommodate word growth. For an
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N-point convolution of m bit words, it would require
3(m+ 3 logz N) columns. For a ten point convolution of
sixteen bit words, it would require nine columns as
opposed to thirty-one for the prior art and eighteen for
a processor corresponding to the earlier example of the
invention.

To demonstrate that the FIGS. 9 to 11 embodiment
of the invention collects bit-level contributions in the
appropriate manner, consider the lowermost or tenth
cell 131 (row 144, column 132) within interaction region
158, in FIG. 10 and corresponding to y(9). That cell is
computing the product of al(0) and x0(9), and adding a
cumulative input sum bit s’ equal to the Isb of the sum of
Isb products calculated on the previous nine cycles. The
expression for input bit s’ includes nine terms (i=1 to 9)
as follows:

9 (6
s = Isb of ; El a0{i) xX0(9 — i |

On the next cycle, the output of the cell 131 will be
given by output bit s incorporating ten terms (1=0 to 9)
as follows:

9 7
s=1Isbof 2 7
==

o a0(?) x0(9 — &) = y0(9)

Of the various bit-level contributions to the summa-
tions in Equations (6) and (7), a0(9) x0(0) was evaluated
in the top left hand cell 131 (row 135, column 132) nine
cycles earlier than that illustrated in FIG. 10, a0(8) x0(1)
eight cycles earlier in the second left hand cell 131 (row
136, column 132) and so on. Carry bits have recircu-
lated on respective cells after every product computa-
tion, so that higher order carry bits arising out of the
Eqguation (7) summation have propagated up the inter-
action region 155; as it moves down. THe sum bit s will
emerge from the FIG. 11 accumulator six cycles after
that illustrated in FIG. 10 because of the four cycle
delay applied by the shift register 163.

Two cycles after that shown in FIG. 10, a sum bit s
will emerge from the left-hand bottom row cell 131, s

being given by:

8
al() x0(9 — i) + first order carry bit from Equation (7) ®)

Il 0

§ =
=

Six cycles after that i1llustrated in FIG. 10, a sum bit s
will emerge from the right-hand bottom row cell 131, s

being given by:

9 (9
—ED al()) x1(9 — i)

§ ==

!

The shift register 163 applies a four cycle delay so
that the Equation (8) and (9) expressions are added to
form the second lsb of y(9), 1.e. y1(9). |

(10)

[al(D) xO0(9 — /) + a0() x1(9 — )] + carry bit

9
19) = 3
y1(%) 24

9 | (11)
2z ak(iy x|t — k(9 — ) + carry bit

1
2
=) j=()

e, yl(9) = '
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Similar expressions are subsequently produced for

higher order bits, ie yr(9) with r=2 and 3 (Equation (3)
refers). However, ai) and x(n—1) have been extended
with zeros from two to four bits to accommodate word
growth of y(n) as previously described. Accordingly,
the fifth to eighth bits of each value of y(n), 1.e. y4(n) to
y7(n), will consist only of carry bits from respective
lower order summations.

Referring now to FIG. 12, there is shown a more

detailed version of three successive rows 138 to 140 of 10

the array 130 of FIGS. 9 and 10. There are shown six
gated full adder cells 171 to 176, each equivalent to that
shown in FIG. 6. Each cell 171 to 176 respectively has
a ctrl input latch 171; to 176;, a cumulative sum (c')
input latch 1715 to 176y, a carry latch 1713 to 1763 in a
recirculation line 1714 to 1764, and data (x) and coeffici-
ent (a) input latches 1715to 1765and 171¢to 1766 respec-
tively. The data input latch 171s, 1735 or 1735 of each
left hand cell is connected by a respective feed line 177;,
177, or 1775 to the data output line 174, 1767 or not
shown of the right hand cell in the respective row be-
low. The data feed lines 177; to 1773 incorporate respec-
tive pairs of latches 1733/1743, 1753/176g, or not shown,
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each latch being associated with a respective cell. The

coefficient input latch 172¢, 1746 or 176¢ of each right
hand cell is connected by a respective feedback line
1794, 179, or 1793 to the coefficient output 1719, 173g or
1759 of a respective left hand cell in the same row. Each
coefficient feedback line 179; to 1793 incorporates re-
spective pairs of latches 17110/17210 to 17510/17610,
each latch being associated with a respective cell.

The rows 170; to 1703 of cells 171 to 176 operate as
follows. Referring now also to FIGS. 9 and 10 once
more, it is noted that each coefficient word a(i) passes
repeatedly through a respective row. This effect 1s

achieved in the FIG. 12 by feeding back each a(1) from.

left hand coefficient outputs 171g, 173g or 1753 to right
hand coefficient input latches 172¢, 174¢ or 1764 via two
latches 180 in each case. The number of cells 171 etc 1n
each row 138 to 140 plus the number of feedback
latches 171¢ etc between rows 1s equal to the coeffici-
ent word length to ensure that coefficients recycle with-
out gaps or overlap.

Referring now also to FIG. 3 once more, 1t is noted
that data words x(j) are input in such a way that a bit
passing out of each row of the array 70 1s required two
cycles later to enter the respective row immediately
above. In particular, the three leading bits of x(8) have
passed out of the bottom row and x0(8) has entered the
penultimate row. Data words may accordingly be con-
sidered to spiral up the array 70. This feature 1s incorpo-
rated in the FIG. 12 arrangement by means of data feed
lines 177. The data feed latches 1715 etc ensure that data
words move up from row to row without gaps or over-
lap, as with coefficient words the number of cells per
row and number of latches between rows being equal to
the data word length. This data input arrangement 1is
particularly convenient, since it requires data input only
to the left hand bottom row cell of an array. Data words
subsequently pass across successive rows before passing
out of the top row right hand cell.

In order to load successive rows with appropriate
respective coefficient words, it is convenient to incor-
porate a respective iwo-way loading switch (not
shown) in each coefficient feedback line 179. In one
position, the switches close the feedback lines so that
the circuit 1s equivalent to that shown in FIG. 12. In the
other position, to load coefficients the loading switches
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connect each left hand cell coefficient output such as
1755 to the carry feedback line 179 of the respective row
of cells immediately above. While the loading switches
are in the load position, the coefficient words are input
sequentially in reverse order to the bottom row right
hand cell of the array 130. They then propagate up
successive rows, in an analogous fashion to data input
previously described, until each row is loaded with the
appropriate coefficient. The loading switches are then
reset to the normal position equivalent to FIG. 12, and
data input then proceeds.

Referring now to FIGS. 13 and 14, there 1s shown an
individual cell 180 of the kind incorporated in FIGS. 9, -
10 and 12 and having the logic functions set out in
Equations (4.1) and (4.2). The cell 180 has carry, control
and cumulative sum bit input latches 181, 182 and 183
indicated by solid squares. Data input and feed latches
184 and 185 are indicated by open squares, and coeffici-
ent input and feedback latches 186 and 187 are indicated
by crossed squares. The latches are as illustrated in
FIG. 14, and comprise first and second half latches 190
and 191 each including a clocked switch or transistor
192 or 193 having a clock input 194 or 195. Each half
latch is in series with a respective inverter 196 or 197.

Referring now also to FIG. 15, there are shown four
clock waveforms 200 to 203 in mutual antiphase pairs
200/201 and 202/203. Waveforms 202/203 have half the
frequency of waveforms 200/201. Each of the carry,
control and sum bit input latches 181, 182 and 183 (solid
squares) has a first half latch 190 clocked by waveform
201 and a second half latch 191 clocked in antiphase by
waveform 200. Data input and feed latches 184 and 185
(open squares) have first half latches 190 clocked by
waveform 203 and second half latches 191 clocked by
waveform 202 in antiphase. Coefficient input and feed-
back latches 186 and 187 (crossed squares) have first
half latches 190 clocked by waveform 202 and second
half latches 191 clocked by waveform 203. Each latch
inputs a data bit when its first half latch 190 is clocked
and outputs a data bit when its second half latch 191 is
clocked. Data input and feed latches are accordingly
clocked in antiphase with coefficient input and feedback
latches, and both are clocked at half the rate of carry,
control and sum input laiches.

Clocking of odd numbered rows of cells in FIGS. 9,
10 and 12 is similar except that the daia and coefficient
latches 184 to 187 receive reversed phase clocking sig-
nals, so that they are clocked in antiphase with the cells
in even numbered rows as previously described. The
circuit of FIG. 12 incorporates a minor degree of redun-
dancy to achieve an array of like cells. A detailed analy-
sis would show that half of one of latches 1715/1733 1s
redundant with the clocking arrangements described,
with similar redundancy applying to other equivalent
latch pairs. | |

Referring now to FIG. 16, there is shown a schematic
word-level representation (not to scale) of the convolu-
tion operation of FIG. 3 or 4. Successive data word
parallelograms 210 to 213 incorporating x(0) . . . x(9) to
x(3) ... x(12) respectively move to the right as indicated
by arrow 214. Successive a(9) . . . a(0) coefficient word
parallelograms 215 to 217 move to the left as indicated
by arrow 219, and interaction takes place in an array
indicated by a rectangle 220. N.B. Data words x(0) to
x(8), which have passed through the bottom array row
221, are omitted for clarity, with corresponding omis-
sions up the array (cf analysis of FIG. 1). The parallelo-

- grams 210 to 213 and 215 to 217 may be further con-
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tracted to form multilaterals in accordance with FIGS.
- 9 and 10, but are shown as parallelograms for clarity.

Referring now to FIG. 17, there 1s shown a schematic
word-level representation (not to scale) of a correlation
operation performed by the invention, parts equivalent
to those shown in FIG. 16 being like-referenced with a
prime superscript. It can be seen that correlation is
similar to convolution, but coefficient parallelograms
215" to 217 contain coefficients 1n reversed vertical
order, 1.e. a(0) to a(9) instead of a(9) to a(0) as before.

Referring now to FIG. 18, there is shown a schematic
word-level representation (not to scale) of a matrix-vec-
tor multiplier array 230 in accordance with the inven-
tion. The multiplier array 230 is arranged to evaluate
the vector y formed by multiplying a vector x by a 4 X4
matrix A having coefficients ajj . . . agg indicated within
parallelogram 231.

e p=Ax (12)

The vector x has coefficients x; to x4 indicated within
parallelogram 232, and the product vector y has coeffi-
clents y to v4. Interaction of matrix A and vector x is
shown about to take place within the multiplier array
230, each coefficient x, recirculating through a respec-
tive nth array row 233, (n=1 to 4) as indicated by ar-
rows 234. Rows aj, to ag, (n=1 to 4) of A are input bit
serially Isb leading to respective row 231, of the array
230. Unlike the convolver, elements of the matrnix A
pass straight through the array 230, rather than Splral-
ling upwards.

As the matrix A propagates across the array 230,
successive values yi to ys of the product matrix y are
formed in successive parallelograms 2351 to 2354. The
parallelograms 235 pass down the array 230 for accu-
mulation in a manner analogous to that in which convo-
lution terms were formed and accumulated as described
with reference to FIGS. 3 and 4.

A matrix-matrix multiplication may be treated as a

- number of individual matrix-vector multiplications.

Referring now to FIG. 19, there is shown an array 240

.. consisting of four sub-arrays 241; to 2414 disposed hori-

-zontally and each equivalent to the array 230 of FIG. 1.
- The array 240 provides for matrix-matrix multiplication
in accordance with the invention. Two 4 X4 matrices A
and B having coefficients a; and b; are shown interact-
ing to form a product matrix C having coefficients c; (i,
1=1, 2, 3 or 4). C and its coefficients c;j are given by:

C=AB (13)

4 (14)
kzl aik biji, j=1t04

and c;; =

The columns of matrix A, aij to ax4, are input to the
array 240 in sequence as indicated within data parallelo-
grams 2427 to 2424 (dotted lines). These columns
progress to the right through successive sub-arrays
2411 to 2414, each row of A passing through respective
sub-array rows. Each element of B, bj, recirculates as
indicated by arrows such as 243 on a respective row of
a respective sub-array. Each row of B occupies a re-
spective sub-array, e.g. row b occupies sub-array 241;.
Coefficients of C, cj are formed within downward

moving parallelograms shaped interaction regions such
as C14 within parallelogram 244. For illustrational pur-

poses coefficients c; are shown above and below the
array 240, i.e before and after computation. As has been
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mentioned, however, only those interaction regions
within the array 240 have physical significance.

Coefficients of C emerge bit-serially 1sb leading from
the array 240, each column of C being computed by a
respective sub-array 241.

. For presentational clarity, FIGS. 16 to 19 are drawn
in terms of input and interaction regions shaped as par-
allelograms in accordance with FIGS. 3 and 4. Alterna-
tively, by employing the alternating input clocking
arrangements described with reference to FIGS. 9 to
1S, the input and interaction regions become multilater-

als as shown in FIGS. 9 and 10.

The examples of FIGS. 16 to 19 were described in
terms of a ten-point convolution or correlation, a four
element vector and four by four matrices. The arrays
220, 230 and 240 may be extended vertically with larger
numbers of cells to accommodate further convolution,
correlation or product terms. This may be achieved by
increasing the number of cells per array or by cascading
individual circuits having fixed numbers of cells. In
addition, the array 240 may be extended horizontally to
accommodate larger input word sizes and/or matrices
by adding sub-arrays 241. This makes it possible to
provide an individual multi-purpose integrated circuit
or chip suitable for convolution, correlation and matrix-
vector or matrix-matrix multiplication, the chip being
cascadable vertically and horizontally to accommodate
the relevant application. The chip would have pro-
grammable switches for loading recirculating coeffici-
ents and for either upward spiral throughput of convo-
lution or correlation data or linear throughput of matrix
clements. Such a chip could easily be constructed in a
similar manner to that described with reference to FIG.
12.

We claim:

1. A digital data processor for carrying out a multipli-
cation operation involving a stream of data words and a

set of coeffictent words to form output terms, each

consmtmg of a sum of data/coefficient products, com-
prising:
(1) an array of bit-level logic cells arranged in rows
and columns;
(2) each logic cell 1s arranged to:

(a) input data, coefficient, carry and cumulative
sum bits,

(b) compute output cumulative sum and carry bits
corresponding to addition of the input cumula-
tive sum and carry bits to the product of the
input data and coefficient bits, each cumulative
sum bit being a contribution to a respective bit of .
an output term,

(c) output the data, coefficient and output cumula-
tive sum bits, and

(d) recirculate the output carry bit via a clock-
activated carry latch to provide the respective
cell with an input carry bit for a succeeding
computation;

wherein each array row has a data input and a

coefficient input at mutually opposite row ends for

input of data and coefficient words bit-serially with
least significant bits leading, each coefficient word
being associated with a respective row;

wherein each pair of row neighbour cells is inter-

connected via a respective data line and coefficient

line and each pair of column neighbour cells is
interconnected via a respective cumulative sum

Iine, and
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(3) a respective clock-activated latch provided on
each said line for bit storage and advance for data
and coefficient bit movement in counterflow along
array rows and cumulative sum bit movement

down array columns; said clock-activated latches 5

providing delays appropriate to time movement of
carry, data, coefficient and cumulative sum bits
such that in operation of the array each cell com-
putes contributions to output terms in ascending
order of bit significance and cumulative sum gener-
ation is cascaded down array columns to yield
sums of contributions to respective output term
bits; and |

(4) accumulating means coupled to cumulative sum

outputs of final cells of said array columns, for
adding said outputs together, the accumulating
means incorporating bypassable delaying means
arranged to counteract relative delay between
array output of sums of contributions to each out-
put term bit.

2. A digital data processor according to claim 1
wherein each array row has a respective coeffictent
output at a row end opposite to that of its said coeffici-
ent input, and further comprising clock-activated delay-
ing means connected between the respective coefficient
output and the respective coefficient input for recircu-
lating the respective coefficient repetitively through the
TOW.

3. A digital data processor according to claim 2
wherein the multiplication operation is one of a convo-
lution and correlation operation, and wherein each row
other than that uppermost row has a data output con-
nected via a respective data feed line to a data input of
a respective row immediately above it, the data feed
lines including clock-activated delaying means ar-
ranged to relay data words from row to row up the
array.

4, A digital data processor according to claim 1
wherein the accumulating means includes an adder tree
comprising three full adder logic cells, arranged 1n suc-
cessive cell ranks to add all sums of contributions to
each output term bit, said delaying means being ar-
ranged to delay one input to a final rank full adder logic
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cell of the tree and said accumulating means including
switchable adder inputs arranged to route added sums
of contributions to respective output term bits by one
of: (1) through the delaying means, and (2) around said
delaying means an appropriate to synchronise arrival of
added sums of contributions to each output term bit at
the said final rank full adder cell.

5. A digital data processor according to claim 1
wherein each said clock-activated latch includes two
half latches in series arranged for clocking in antiphase,
and including clocking means for generating two anti-
phase pairs of signals, one pair having twice the fre-
quency of the other, the clocking means for:

(1) activating carry and cumulative sum line latches
with the higher frequency pair of signals and data
and coefficient line latches with the lower fre-
quency pair of signals, and

(2) activating data line latches in each row in anti-
phase both with coefficient line latches in that row
and with adjacent row data line latches.

6. A digital data processor according to claim 1
wherein the multiplication operation is matrix-vector
multiplication, each data word is a matrix element and
each coefficient is a vector element, and wherein the
processor includes data input means arranged to input
each matrix row word serially into a respective row of
the array.

7. A digital data processor according to claim 1
wherein each array row has a respective data output at
a row end opposite to that of its data input, and wherein
the data inputs are connectable to corresponding data
outputs of a second like processor and the data outputs
are connectable to corresponding data inputs of a third
like processor as appropriate to enable the processor to
form part of an array of like processors.

8. A digital data processor according to claim 7
wherein each array row has a respective coefficient
output at a row end opposite to that of its said coeffici-
ent input, and further comprising clock-activated delay-
ing means between the respective coefficient output and
the respective coefficient input, for circulating the re-

spective coefficient through the corresponding row.
*x % ¥ ¥ ¥
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