United States Patent [

Himelstein et al.

[54] METHOD FOR MANIPULATION OF
GRAPHIC SUB-OBJECTS IN AN
INTERACTIVE DRAW GRAPHIC SYSTEM

Carol S. Himelstein; John S. Wang,
both of Austin, Tex.

[75] Inventors:

International Business Machines
Corp., Armonk, N.Y.

[21] Appl. No.: 710,762

[73] Assignee:

[22] Filed: Mar, 11, 1985

[51] Int. CL4 .orrirriiriiieiiiirieannecne reeraennns G09G 1/16
[52] U.S. Cl. cocovreeeereieeeeiriereeceee 340/709; 340/710;
| 340/747; 340/707
- [58] Field of Search 340/707, 709, 710, 723,
340/724, 727, 751, 747; 364/512, 521

[56] ~ References Cited

U.S. PATENT DOCUMENTS
Re. 31,200 4/1983 Sukonick et al. 340/709 X
3,509,350 4/1970 GUNATUM ceovereereereeeereanee. 340/707 X
3,846,826 11/1974 Mueher ceereereseeeraes 340/710 X
3,882,446 571975 Brittion et al. 340/723 X
4,392,130 7/1983 Lundstrom et al. 340/709 X
4,451,895 5/1984 ShwkowskKlcceeunnemneneen. 340/707 X
4,543,571 9/1985 Bilbrey et al. oveueeenne., 340/709 X
DISPLAY |

10

4,683,468
Jul, 28, 1987

[11] Patent Number:

[45] Date of Patent:

MICRO-
PROCESSOR
CONTROL

15

OTHER PUBLICATIONS

“The Lisa Computer System”, Gregg Williams, Byte
Pub. Inc., Feb. 1983, pp. 33-30.
Macintosh, MacPaint Instruction Manual., Apple Com-

puter, Inc.

Primary Examiner—QGerald L. Brigance
Attorney, Agent, or Firm—Richard E. Cummins; James

H. Barksdale
[57] ABSTRACT

‘A method for editing sub-objects in an interactive draw

graphic application which allows the operator to apply
the edit action to the sub-object without affecting the
rest of the object. Vertices of the object that are defined
by the adjacent common end points of the sub-object
are assigned attributes that either permit or prevent the
end points from being separated during the sub-object
editing process. If the end points are permitted to sepa-
rate, actual separation is determined by the operator
during the sub-object selection action and is based upon
whether the point of selection is in the center third of
the sub-object or the end third of the sub-object adja-
cent the vertex to be separated.

11 Claims, 7 Drawing Figures

PRINTER
13 1

US. Patent Jul. 28,1987 Sheet1of4 4,683,468

DISPLAY| ' PRINTER?
o | . 13

5 MICRO-
KEYBOARD | PROCESSOR

T CONTROL
> | MODEM

FIG. 1

U.S. Patent Ju.28,1987 Sheet2of4 4,683,468

OBJECT
16

U.S. Patent Jul. 28, 1987 Sheet 30of4 4,683,468

FLOWCHART FOR SUBOBJECT MANIPULATION

G

o READ USER |
INPUT ;

2

SELECT
KEY
PRESSED,

NEAR AN N\NO
OBJECT |

. DESELECT ANY |
YES ~ SELECTED |
5 =CTS

OBJECT
ALREADY
SELECTED

HIGHLIGHT| '
OBJECT | - |YES _
X [DEHIGHLIGHT OBJECT: |

(A) | HIGHLIGHT LINE 1
SEGMENT ;

NO

-

-

FIG. 6A

U.S. Patent Jul. 28, 1987

FIG. 6B

OUTER
2/3

13

BREAK LINE
SEGMENT FROM |

OBJECT AT |
CLOSEST VERTEX |

DO USER DEFINED |
ACTION ON LINE |

SEGMENT KEEP |
OTHER VERTEX
STATIONARY

14

NO

TERMINATE
ACTION

Tvyes

OF VERTICES

Sheet 4 of 4

ATTRIBUTE

BREAK

L

10
12

POSITION
OF CURSOR ON
THE LINE

CENTER
1/3

MAKE OBJECT
INTO 2 ;
SEPARATE
OBJECTS

DO USER
DEFINED
ACTION ON |
LINE SEGMENT|

e

E
TERMINATE
ACTION

- YES

50—

TERMINATE
SESSION

YES

END)

ATTACHED e

4,683,468

STAY
3

DO USER DEFINED

ACTION ON

INE SEGMENT

RUBBERBAND |
ADJOINING LINES |

BY 1/3 RULE |

11

NO

TERMINATE
ACTION .

YES

4,683,468

1

METHOD FOR MANIPULATION OF GRAPHIC
SUB-OBJECTS IN AN INTERACTIVE DRAW
GRAPHIC SYSTEM

TECHNICAL FIELD

This invention relates in general to interactive draw
graphic systems, and in particular, to an improved
method for manipulating a segment (sub-object) of the
graphic object.

BACKGROUND ART

The prior art has disclosed the various interactive:

draw graphic arrangements in which a graphic object
may be created and edited, e.g., modified by an operator
following a sequence of interactions with the systems.
These systems generally include an all-points address-
able display device which functions to display on its
screen, graphic object creating actions or editing ac-
tions that the operator has selected and entered into the
system by means of a keyboard or a mouse.

Interactive draw graphic systems may be physically
packaged as a dedicated type stand-alone work station
or be merely a group of separate, cable-connected per-
sonal computer system components that 1s executing a
draw graphic program.

Most all prior art interactive draw graphic systems
provide the operator with the ability to edit a graphic
object once it has been created. The typical editing
action provided by prior art systems include move,
copy, rotate, stretch, shrink, scale up or down, and
delete or erase. In the process of editing an object, the
operator must select the particular edit action and for
editing actions such as move, rotate, and scale, the oper-
ator must also provide a distance value to the system. In
addition, in some more sophisticated draw graphic ar-
rangements, the operator 1s provided with the ability to
select a particular object from a group of individual
objects that are displayed in an overlaid fashion on the
screen. h |

The manner in which these interactive steps are im-
plemented in the system is sometimes referred to as the
operator interface and it is this interface that determines
if the particular graphic application is “user friendly”
which is of paramount importance in the personal com-
puter market.

Some prior art systems permit the graphic editing
actions that are available for editing complete graphic
objects to also be used to edit a sub-object. The term
sub-object refers to a line segment that exists between
two defined points which are included in the definition
- of the main object. The end points of the subject object
may or may not be connected to another line segment.
If the object 1s a closed object, the the end points of
each sub-object are connected. If, on the other hand, the
object is open, then at least one of the end points 1s not
connected.

A “joint” or a vertex is formed when two end points
of different sub-objects are interconnected.

The ability of the system to edit sub-objects is impor-
tant to the operator’s efficiency, since it means that the
object does not have to be re-drawn. Prior art sub-
object graphic editing systems are somewhat limited in
the kind of editing actions that are permitted once the
sub-object has been selected. In these systems, move-
ment of the sub-object, for example, causes the line
segments that are attached to the end points of the mov-
ing sub-objects to “rubber band.” For example, if the

10

15

20

25

30

335

40

435

50

55

60

65

2

subject object 1s the right side of a square and the move-
ment of the sub-object is to the right in a generally
horizontal direction, the square 1s changed to a rectan-
gle. If, on the other hand, the sub-object i1s moved verti-
cally, the square is changed to a parallelogram. Similar
type “rubber banding” actions occur with other editing
actions in other type objects.

The rubber banding action occurs because the system
has defined all of the sub-objects that define the main
object as line segments between two points, each of
which is represented by an x, y coordinate. If the point
is moved by the editing action on a sub-object, the sys-
tem redefines the end points for the sub-object and also
for the attached line segments. If the operator merely
wants to modify the appearance of the sub-object and
not the total object, he must erase the sub-object and
re-draw it. This is not very efficient from the operator
standpoint and could be very frustrating if the sub-
object 1s overlaid with a number of other graphic ob-
jects since it is quite easy to erase the wrong lines in the
€rasing process.

The present invention avoids the above problems of
prior art draw graphic systems by providing the opera-
tor with the choice of whether or not to modify the rest
of the object when the sub-object is being modified.

SUMMARY OF THE INVENTION

In accordance with the method of the present inven-
tion, the operator is provided with the ability to modity
a sub-object of a selected graphic object without modi-
fying the other portions of the selected graphic object.
For example, if the operator selects a square graphic
object in one side as the sub-object, the selected side can
be moved completely away, i.e.,, detached from the
corners without affecting the other three sides of the
square. Alternately, the selected side can be detached at
either end point and, in effect, pivoted about the other
end point which acts as a hinge. The method involves
the step of assigning a binary attribute to the end points
of the sub-object that determine if the vertex defined by
the sub-objects can be broken. In one implementation,
the assignment is made for the entire object, preferably,
but not necessarily at the time the object is created. If
the assignment is made by the operator to have the
vertex break, the operator controls which one or both
vertexes break by where, along the length of the sub-
object, it 1s selected.

It is therefore an object of the present invention to
provide an improved method for editing sub-objects in
an interactive draw graphic system.

Another object of the present invention 1s to provide
the operator of an interactive draw graphic system the
ability to manipulate sub-objects of the selected object
without modifying the remaining portion of the selected
object. | |

A still further object of the present invention is to
provide a method for manipulating sub-objects of se-
lected graphic object in an interactive draw graphic
system in which the operator determines during the
sub-objective identification process whether one or
both end points of the sub-object will be detached from
the object during the editing process.

Objects and advantages other than those mentioned
above will become more apparent to those persons
skilled in the art from the following description when
read in connection with the drawing.

4,683,468

3

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 illustrates in block diagram form, a typical
interactive draw graphic system.

FIG. 2 illustrates a pair of identical rectangular
graphic objects having different break attributes as-

signed to their respective vertices.
FIG. 3 illustrates the modifications to the graphic
objects shown in FIG. 2 which result from the sub-

object selecting point, being in the left third of the sub-
object.

FIG. 4 illustrates the modification to the objects
shown in FIG. 2 which result from the sub-object selec-
tion point being in the middle of the sub-object.

FIG. 5 illustrates the modifications to the objects
shown in FIG. 2 which result from the sub-object selec-
tion point being in the right third of the sub-object.

FIGS. 6A and 6B are a flowchart setting forth the
steps involved in the improved method of editing

graphic objects in an interactive draw graphic system.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

FIG. 1 illustrates the general arrangement of a typical
interactive draw graphic system. The system shown
comprises a display device 10 for displaying informa-
tion to the operator, a keyboard 11 which the operator
uses to enter information including commands and data
into the system, a printer 13 which functions to provide
hard copy output of information generated by the sys-
tem and selected by the operator, a pair of diskette
drives, 14L and 14R which function to transfer informa-
tion between the system and the magnetic storage dis-
kettes that are removably associated with the diskette
drives and which store both program information, text
information, and graphic information. System compo-
nents 10, 11, 13 14L, and 14R are connected, as shown
in FIG. 1, to the microprocessor Block 15 which func-
tions as the overall control for the system and intercon-
-~ nects the various system components to perform their
~specific function at the appropriate time. The system of
" FIG. 1 also includes a modem 16 which functions to
interconnect that system to other systems through vari-
ous communication links.

Since the system of FIG. 1 1s adapted to process
“graphic applications such as interactive draw type ap-

10

15

20

23

30

35

40

45

plication programs, it should be assumed that the dis-

play device 10 is an all-points addressable type graphic
display device in which each individual picture element
(PEL) may be addressed, in contrast to a text-type dis-
play where only a character box is addressable. Since
interactive draw graphic applications are to be run by
the system, an auxiliary input device 18 is also provided
for permitting more rapid positioning of the cursor on
the screen than might be obtainable by the cursor posi-
tioning keys on the keyboard 11. Such devices are well
known in the art, and for purposes of this description, 1t
will be assumed that device 18 is a conventional
“mouse” equipped with two buttons or keys, 18A and
18B. Devices such as a data tablet, having similar func-
tions to the mouse, could also be employed for mput
device 18. |

It should be assumed that the system of FIG. 1 is
provided with a suitable interactive draw graphic type
program which permits the operator to draw graphic
objects on the screen of device 10, similar to the objects
shown in FIG. 2 which illustrates a display screen hav-
ing two rectangularly shaped objects, A and B.

>0

35

60

65

4

It should be further assumed that object A, as cre-
ated, was assigned a “‘stay attached vertex attribute,”
while object B was assigned a “break vertex attribute.”
The manner in which attributes may be assigned to
sub-objects in this system are well known to those per-
sons skilled in the interactive information system art

since such factors as color, highlighting, etc. are well
known attributes of displayed information in such sys-
tem. In the preferred embodiment the attribute is prefer-

ably established as one of the system defaults at the time
the draw graphic program is initially installed on the
system of FIG. 1 and a provision is included in the
program to enable that default to be changed at some
subsequnt time if the operator so desires.

Tt should also be understood, that in the following
description the function of selecting the graphic object
to be edited is not described, but that editing the sub-
object is, by definition, a sub-set function of the main
object editing function. The following description de-
scribes, in connection with FIGS. 3, 4, and 5, the differ-
ent results that occur for objects A and B of FIG. 2,
depending on where the sub-object point of selection
occurred. In this regard, the selection of the sub-object
is in accordance with the well known approach of posi-
tioning a pointing cursor adjacent the sub-object and
operating either a mouse key or keyboard key, having
the function of advising the system that the closest
object is the one that 1s selected.

The two objects, A and B, in FIG. 2 represent rectan-
sles previously created by the operator using a cursor
locating device. As mentioned previously, the locating
device can be a mouse, keyboard choice, etc. Objects A,
and B differ only in the attributes of their respective
vertices. Object A’s vertices V are defined to ‘remain
attached’, no matter how the operator manipulates any
of the sub-objects 10, 11, 12, or 13. Object B’s vertices
V' are designed to ‘break’ whenever the operator ma-
nipulates any of 1ts sub-objects, 16, 17, 18, or 19.

FIG. 3 illustrates what happens when the operator
selects the line segments 12 and 17 on objects A and B
on the left third L of the line. In object A, since the
vertices have been defined to stay attached, the entire
object changes shape to keep up with the movement of
the line segment 12 which results from the operator
moving the mouse. However, object B simply breaks
the end point on the left side L of the line 17, saving the
object from having to “rubber band” to keep up with
movement of the sub-object.

FIGS. 4 and 5 illustrate the results of other manipula-
tions of the sub-objects 12 and 17 with different sub-
object selecting points. In FIG. 4, the operator 1s manip-
ulating the line segments 12 and 17 from the middle
third M of the line, which affects both end points. In
FIG. 5, the operator is manipulating the line segments
12 and 17 from the right third R of the line, which
affects only the end point to the right of the line seg-
ment,

It should be noted that the operator can apply most
actions on the sub-objects 12 and 17 that can be applied
to objects as a whole. In other words, the operator can
move, rotate, scale up, scale down, stretch, and shrink a
sub-object. The end result is dependent upon how the
vertices of that object were originally defined and on
which third of the line segment representing the sub-
object, the operator made his selection.

The various steps involved in the method of editing
the sub-objects described in connection with FIGS. 1-5

4,683,468

S

will now be described in connection with the flowchart -

- of FIG. 6. |
First: assume the operator has obtained a pointer or
cursor. The operator then moves the pointer on the

display screen by means of a locator device, such as a .

mouse. During the movement of the mouse, the applica-
tion is reading the locator device for movement of the

pointer or pressing of the mouse keys (buttons). The

reading of the location device is depicted in Block 1.

When the application detects that a mouse key has
been pressed, it checks to see if the key i1s the Object
Select Key as shown in Block 2. If the Select Object
‘Key has been pressed, then the application checks to see
if the pointer is within selecting range of any graphic
objects. This is shown in Block 3. If the application
determines that the pointer is not close enough to any
objects to select, then it insures that all graphic objects
are dehighlighted, as shown in Block 4, and returns via
Terminal A to reading input in Block 1.

If the pointer is close enough to an object to select it,
then the application has to determine if that object has
already been selected, as shown in Block S. If the object
has not been selected, then the application highlights
the object, as shown in Block 6, and waits for further
operator input. The operator, at this point, can do a
range of actions on the object, but these are not the
subject of this invention. If the selected object 1s already
selected, then the operator is trying to select a portion
of the object. Therefore, the line segment he is pointing
to is highlighted and the rest of the object dehighlighted
a shown in Block 7.

Now that the line segment has been selected, the
application must determine how the rest of the object

‘will be affected by manipulation done on the sub-object.
~ This decision is done in Block 8. If the vertices of the
object have the attribute of “stay attached”, then the
application immediately begins doing the action speci-
fied by the operator, either through implicit actions or
through pop-down menus, as shown in Block 9. Since
the vertices must stay attached to the rest of the object,
the adjoining lines must rubber band in accordance with
the one-third rule to follow the line segment as it 1s
manipulated, as shown in Block 10. At this point, the
application checks to see if the operator has indicated
that the action terminate, as shown in Block 11. If not,
then control passes back to Block 9 until such time as
the operator indicates that it is time to stop.

If the vertices of the object have the attribute of
“Break,” then the application has to determine which
vertices and how many to break. This is done by figur-
ing out the position of the pointer on the line, a shown
in Block 12. If the pointer is on either of the outer thirds
L or R of the line, then the application must break the
vertex closest to the pointer, as shown in Block 13. This
is s0 that when the operator starts to manipulate the line
segment, the end of the line closest to the pointer will be
free from the rest of the object. The other vertex, if
there is one, will remain attached to the line segment
and will remain stationary no matter what manipula-
tions the operator does with the line segment. In Block
14, the application carries out whatever action the oper-
ator specified, either through implicit actions or
through pop-down menus. At this point, the application
checks to see if the operator has indicated that the ac-
tion terminate, as shown in Block 16. If not, then con-
trol passes back to Block 14 until such time as the opera-
tor indicates that it 1s time to stop.

10

15

20

23

30

35

40

43

50

335

60

6

If the pointer was in the middle third M of the line
segment, then the application must break the line seg-
ment away from the object completely, as shown In
Block 17. The operator can now do any action on the
line segment without any affect on the rest of the origi-
nal object. This is shown in Block 18. At this point, the
application checks to see if the operator has indicated
that the action terminate, as shown in Block 19. If not,
then control passes back to block 18 until such time as
the operator indicates that it 1s time to stop.

Once the action has been terminated, the applciation
checks to see if the operator wishes to terminate the
graphics session. If not, then control returns to the top
of the diagram, Block 1. The application will continue
until the operator indicates that the session 1s to termi-
nate at Block 20. -

An illustration of an application program useable by
the processor of F1G. 1 for causing sub-object manipula-
tion of graphic objects to occur during interactive
graphics follows. This program is in program design
language from which source and machine code are
derivable. It is to be assumed that the system 1s under
mouse and keyboard control. The mouse controls the
movement of a visible pointing cursor which allows the
operator to determine the current cursor position on the
screen.

The following is an explanation of the program. The
application calls a routine to query the mouse input
device to determine if a mouse key has been pressed
(CALL READ_INPUT DEVICE). READ_IN-
PUT_DEVICE will return the selected key and the
current X, v location of the pointing cursor. |

If the OBJECT__SELECT_KEY is pressed, a rou-
tine is called to determine if the x and y location re-
turned from READ_INPUT_DEVICE is currently
pointing to a graphic object (e.g., rectangle). If the
operator was not pointing at any object, then the appli-
cation insures that no objects are currently selected by
calling DESELECT_OBJECTS. If the operator
pointed to a graphic object, then the application must
determine if the object is already selected by calling the
function OBJECT _SELECTED. If the object 1s not
already selected, then the object is highlighted by a

‘routine (CALL HIGHLIGHT _OBJECT). If the ob-

ject is already selected, then the operator is trying to
select part of the object, namely a line segment. There-
fore, the object must be dehighlighted (DEHIGH-
LIGHT _OBJECT). FIND_LINE_SEGMENT will
return a handle to the line segment that the operator i1s
pointing at. The application then highlights the line
segment (HIGHLIGHT_OBJECT).

Next, the application must determine the attributes of
the vertices of the object. The attributes will determine
how the rest of the object responds to changes on the
line segment. The vertex attributes are determined by a
routine (GET_VERTEX_ATTR). If the attribute 1s
“Stay Attached” then the line segment will stay at-
tached to the object and the adjoining line segments will
rubber band to follow the movement of the line seg-
ment. The line segment and adjoining lines are modified
within a REPEAT loop. The first step in the loop 1s to

 read the input device (READ_INPUT_DEVICE).

63

With the output from the read input device routine a
routine is called to manipulate the sub-object (GRA-
PHIC__SUBOBJECT_ACTION). This routine deter-

mines which action the operator wants and modifies the

~ object on the screen to conform to the requirements of

the action. Upon return from this routine, the apphca-

4,683,468

7

tion has to rubber band any adjoining lines to meet the

new end points of the line segment (RUBBERBAND).
This loop continues until the SELECT_KEY_TYPE
is equal to ACTION_COMPLETE.

If the VERTEX_ATTRIBUTE was equal to
“Break” then one or both of the end points of the line
can be broken away from the object. The application
determines which end points and how many to break
away by looking at the position of the pointer on the
lines segment. CLOSEST_VERTEX returns the ver-
tex which was closest to the pointer if the pointer was
on an outer third of the line segment. If the pointer was
on the inner third of the line, the CLOSEST_VER-
TEX returns a nil pointer. When the pointer 1s on the
inner third of the line segment, then both end points are
be broken away from the original object, thus creating
an entirely new object and modifying the original
(BREAK_OBJECT). At this point, the application 1s

10

15

ready to let the operator start modifying the line and

enters 2 REPEAT loop that read input from the opera-
tor (READ_INPUT_DEVICE), and then calls a rou-
tine to manipulate the line object (GRAPHIC _AC-
TION). This loop continues until the SELECT_KEY
type is equal to ACTION_COMPLETE.

If the pointer was on_one of the outer thirds of the line
at the time of selection, then only one end point will be
broken away from the original object (BREAK__VER-
TEX). The other end point, if there is one, will remain
attached and stationary, no matter how the operator
manipulates the line segment. The application then en-
ters a READ loop for the manipulation of the line seg-
ment. The first step of the loop is to read operator input
(READ_INPUT_DEVICE), and (GRA-
PHIC_SUBOBJECT_ACTION). This loop continues
until the SELECT_KEY_TYPE is equal to AC-
TION_COMPLETE.

When the operator has completed the action on the
object, (i.e., SELECT_KEY_TYPE is equal to AC-
TION__COMPLETE), then the application checks to
see if the operator would like to terminate the graphics
session. If not, then the process starts all over again.
Otherwise, the application terminates.

PSEUDQ CODE FOR SUBOBJECT MANIPULATION

Repeat |

Call read__input__device (select__key__type, X, y)
If select__key__type = object__select__key then
Call find__object (x, y, object__ptr)

If object __ptr = nil then

(* no object was close enough to be selected *)
Call deselect__objects (* deselect any objects
that may already be selected *)

Else

If not object__selected (object__ptr) then

(* if object not already selected *)

Call highlight__object (object__ptr)
Else
Call dehighlight__object (object__ptr)

Call find_hine__segment

(object __ptr, X, y, line__segment)

Call highlight__object (line _segment)

Call get__vertex__attr

(object__ptr, vertex__attribute)

If vertex__attribute = **Stay Attached” then
Repeat

Call read__input__device

(Select __key __type, X, y)

Call graphic__subobject__action
(line__segment, X, y)

Call rubberband (line__segment, object__ptr)
Until select__key__type = action__complete
Else (* vertex__attribute = “break™ *)

20

25

30

35

40

45

50

33

60

65

8

-continued

M

PSEUDO CODE FOR SUBOBJECT MANIPULATION

W

vertex = closest__vertex {x, y, line__segment)
If vertex = nil then

(* we are at the center of the line *)

Call break _object

(line__segment, object__ptr)

Repeat

Call read__input__device
(select__key__type, X, ¥)

Call graphic__action (line__segment, X,)
Until select__key__type = action__complete
Else (* the pointer 1s on an

outer 3rd of the line *)

Call break__vertex (object__ptr, vertex)
Repeat

Call read__input__device
(select__key__type, X, ¥)

Call graphic__subobject__action
{(line__segment, X, V)

Until select__key__type = action__complete
Endif

Endif

Endif

Endif Until select__key__type = session__complete

While the invention has been particularly shown and
described with reference to a preferred embodiment
thereof, it will be understood by those skilied in the art
that various changes in the form and detail may be made
without departing from the scope and spirit of the in-
vention.

I claim: | -

1. A method for editing a sub-object of a graphic
object displayed in an interactive draw graphic system
in which said object has at least one vertex and a pair of
selectable line segment sub-objects which define said
vertex, said method including the steps of;

(a) assigning to said vertex an attribute which permits
said vertex to ‘break’ during a sub-object editing
action,

(b) selecting said line segment sub-object at a differ-
ent point along the length of said line segment
depending upon the modification desired on said
sub-object, and -

(c) moving said sub-object selected in step b) to ob-
tain said desired modification.

2. The method recited in claim 1 in which said
graphic object comprises a plurality of line segment
sub-objects and a corresponding plurality of vertices,
and said step of assigning an attribute to said vertex
further includes the step of assigning the same attribute
to all said vertices.

3. The method recited in claim 2 in which said step of
selecting a line segment sub-object includes the step of
positioning a cursor adjacent to said sub-object to be
selected and signaling said system to select said sub-
object.

4. The method recited in claim 3 in which said cursor
is a pointing cursor, said step of positioning includes the
step of activating a cursor control mouse’device at-
tached to said system, and said step of signaling involves
actuating a button on said mouse’ device.

5. The method recited in claim 4 in which said select-
ing step selects said line segment at a point in the middle
third portion of said line segment when the modification
desired involves separating said subobject from the rest
of said object.

6. The method recited in claim 5 in which vertices
associated with the selected sub-object break during the
editing action on said sub-object.

4,683,468

9

7. The method recited in claim 4 in which said select-
ing step selects said line segment at an end third portion
when the modification desired is to break only the one
vertex associated with said end third portion.

8. The method recited in claim 7 which said modifica-
tion involves movement of said selected sub-object
without moving any of the non-selected sub-objects.

9. The method recited in claim 8 in which said move-
ment of said selected sub-object involves a pivoting
motion of said sub-object about said end point of said
selected sub-object not associated with the said selected
end third portion. |

10

15

20

25

30

35

40

45

50

335

60

10

10. The method recited in claim 9 in which said step
of assigning said attribute also includes the step of selec-
tively assigning a ‘stay attached’ attribute to each vertex
so that said editing action on said selected sub-object
modifies the other sub-objects which have end points
attached to the selected sub-object. |

11. The method recited in claim 10 in which said step
of editing said selected sub-object causes said attached
non-selected sub-objects to move, stretch, and shrink 1n
order to conform to the movement of said selected

sub-object.
* * * X ¥

65

	Front Page
	Drawings
	Specification
	Claims

