United States Patent [

Kubo et al.

4,670,836
_J un. 2, 1987

111} Patent Number:
[45] Date of Patent:

[54] DEVICE FOR DETECTING AN OVERLAP OF
OPERANDS TO BE ACCESSED

[75] Inventors: Kanji Kubo, Hadano; Kenichi
Shiozaki, Odawara, both of Japan

[73] Assignee: Hitachi, Ltd., Tokyo, Japan
[2]1] Appl. No.: 618,257
[22] Filed: Jun. 7, 1984
[30] Foreign Application Priority Data

Jun. 13, 1983 [JP] Japanc.coeeennnenieenne. 58-105528
[51] Int. CLA oot ercser e GO6F 9/38
[52] U.S. Cli oottt 364/200

[58] Field of Search ... 364/200 MS File, 900 MS File

[56] References Cited

U.S. PATENT DOCUMENTS

3,728,692 471973 Fennel, Jr. nrvvriieecnnnnn. 3647200
4,085,450 4/1978 Tulpule feenarannsineestinees 364 /900
4,251,859 271981 Momose et al.cesneen. 3647200
4,398,245 871983 Fuilta ..cccovvevmrvvecmicimniiieniiinnns 364/200

F

4,454,578 6/1984 Matsumoto et al. 364/200

Primary Examiner—Thomas M. Heckler
Attorney, Agent, or Firm—Antonelli, Terry & Wands

[57] ABSTRACT

In order to guarantee the instruction execution se-
quence in a pipeline control data processing system, the
present overlap detector device detects whether or not
the operands overlap each other in access width units
by comparing the store address specified by a store
instruction with the fetch address contained in a fetch
instruction following the store instruction. Moreover,
the overlap detector device detects whether or not an
overlap occurs in an area of the access width based on
the store mark, the address in the access width unit
stored in the fetch address, and the fetch data length.
The overlap detector device detects the presence or
absence of an overlap according to the results of opera-
tions for detecting these two overlap conditions.

5 Claims, 8 Drawing Figures

2 3

r'

0w 8 0

STORE ADORESS \ ‘Mmu \
REGISTER REGISTER

FETCH ADDRES Inm I
REGI!STER %1;
347 0 RPWWNQ__Z
4 -BYTE

]

7

OR

U.S. Patent Jun. 2, 1987 Sheet1 of3 4,670,836

FIG. |

STORE ADDRESS
| REGISTER

20 28

FETCH ADDRES
REGISTER

28 29303 0 2

MARK
REGISTER
9,

| MARCHIRG

- | DETECTOR
IRCUIT

7— orR | |0R [~~8

OR [—~14

U.S. Patent Jun. 2, 1987 Sheet2 of3 4,670,836

FIG. 2a FIG. 2b
8-BYTE 4-BYTE 8-BYTE B-BYTE 4-BYTE 8-BYTE
EOQNUARY EOUﬁPARY BOUNQQRY BOUNDARY MJNQARY BOUNDARY
S AN S e e S eemmmAme s s S S
STORE V/// /.00 L STORE [/
8-8YTE 4-BYTE 8-BYTE 8-BYTE 4-BYTE 8-BYTE
BOUNDARY BOUNDARY BOUNDARY BOUNDARY BOUNDARY BOUNDARY
L 4 v ‘ ¥ :
FETCH (/222027 FETCH /L
FI1G. . 3a FIG. 3b
8-BYTE 4-BYTE 8-~-BYTE 8-8YTE 4-BYTE 8-BYTE
BOU*I\DARY EOUNPDAR‘I’ EOUNQARY BOUNDARY BOUN*DARY BOUNDARY
R S e e R A |
STORE /7] STORE i,
8-BYTE 4-8YTE 8-8YTE 8-BYTE q4-BYTE 8-BYTE
BOIJyDARY BOUI'iDARY BOUNDARY Bouyom BOUNPARY BOUNDARY
e ———— s
FETCH A FETCH [y
FIG. 3c

8-BYTE 4-BYTE 8-BYTE
BOUNDARY BOUNDARY BOUNDARY

et
STORE e

8-BYTE 4-BYTE 8-BYTE
BOUNDARY BOUNDARY BOUNDARY
et

FETCH Ly

U.S. Patent Jun 2, 1987 Sheet3of3 4,670,836

FIG. 4a

CONDITIONS FOR PRESENCE OF 4-BYTE CROSS

BITS 30 AND 3| OF DATA LENGTH
FETCH ADDRESS REGISTER
REGISTER

O O 100 ~ 1|

|
X
||

K IR

FIG. 4b
CONDITION FOR ABSENCE OF 4-BYTE CROSS

BITS 30 AND 3| OF
FETCH ADORESS

DATA LENGTH
REGISTER

000 ~ Ol
O | 000 ~ 010

REGISTER

4,670,836

1

DEVICE FOR DETECTING AN OVERLAP OF
OPERANDS TO BE ACCESSED

BACKGROUND OF THE INVENTION

This invention relates to an improvement of a device
for detecting overlap of operands in a memory, which
operands are specified by a store instruction and a fetch
instruction, respectively, in a pipeline control data pro-
cessing system.

In a pipeline control data processing system, the ef-
fective instruction processing time is minimized by exe-
cuting a plurality of instructions in parallel. Although
the pipeline control data processing system performs
parallel processing of several instructions, the sequence
for executing such instructions must be guaranteed.
According to the pipeline control, when a store instruc-
tion for writing a data item in 2 memory is followed by
a fetch instruction for reading a data item from the
memory, a fetch request due to the fetch instruction
following the store instruction may take place before a
store request by the store instruction. To guarantee the
sequence for executing the instructions in this situation,
the system checks whether or not the memory area to
be changed by the preceding store instruction overlaps
with the memory area from which a data item is read by
the succeeding fetch instruction. If it is found that they
overlap each other, the processing of the fetch instruc-
tion must be set to and retained in the wait state until the
processing of the preceding store instruction is com-
pleted. However, such an overlap between a store in-
struction and a fetch instruction is detected according
to the memory access width in the conventional art,
hence an overlap is detected even when there does not
actually exist any overlap, thereby degrading the ad-
vantage of the pipeline control. For example, in a data
processing system whose memory access width is eight
bytes, when the preceding store instruction changes the
first four bytes in an 8-byte memory boundary and the
succeeding fetch instruction reads the last four bytes
from the 8-byte memory boundary, an overlap is de-
tected although an overlap does not actually exist. Since
a reading of a data item from the memory by the suc-
ceeding fetch instruction is delayed until the preceding
instruction completely stores a data item in the memory
when the overlap is detected, the pipeline cannot be
operated properly and the performance is deteriorated.

SUMMARY OF THE INVENTION

An object of the present invention is to provide a
device which detects the overlap which takes place in a
unit less than the memory access width.

According to the present invention, a first detecting
means compares the store address specified by the pre-
ceding store instruction with the fetch address con-
tained in the succeeding fetch instruction to detect
whether or not the operands overlap each other in ac-
cess width units, while the second detecting means
detects whether or not the operands overlap each other
in the access width range by use of the store mark repre-
senting the presence/absence of the effective store data,
the address within the access width unit stored in the
fetch address, and the fetch data length. An output
means outputs an overlap signal when said first means
and said second means detect the operand overlap,
respectively, in said device.

5

10

15

20

25

30

335

45

50

33

65

2
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating an embodiment
of the present invention. |

FIGS. 2a, 2b, and 3a to 3¢ depict examples of the
presence/absence of overlap of the store and fetch
memory areas in the unit less than the memory access
width.

FIGS. 4a and 45 outline the conditions for the presen-
ce/absence of a 4-byte cross in the 4-byte cross detector
circuit illustrated in FIG. 1.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

FIG. 1 depicts an embodiment according to the pres-
ent invention. In this embodiment, the memory 1s ad-
dressed with a 32-bit address (the bit 0 is the most-sig-
nificant bit, while bit 31 is the least-significant bit) in
byte units, the memory page size is four kilobytes, the
memory access width is eight bytes, and the overlap
detect unit is four bytes obtained by dividing the access
width by two. Consequently, the address bits 0-19 indi-
cate a page address, address bits 20-28 an 8-byte unit
address-in-page, and address bits 29-31 a byte address in
an 8-byte unit field.

In FIG. 1, a store data address is stored in the store
address register 1 and the bits 20-28 of the address
indicates an 8-byte access width address in a page. The
mark register 2 comprises eight bits and is used to store
a store mark to indicate the store data presence/absence
for each byte of the 8-byte access width. That 1s, each
bit of the mark register corresponds to each byte posi-
tion of the 8-byte access width. If a bit 1s *1”, the store
data exists at the corresponding byte position; and if the
bit is “0”, the store data does not exist at the corre-
sponding position. For example, if the 8-bit store mark is
“00111100”, the store data is found at the byte positions
2-5 in the 8-byte access width. The fetch address regis-
ter 3 is used to store the first address of fetch data, and
the bit positions 20-28 indicate an address in a page of
the 8-byte access width and bits 29-31 an address in the
8-byte field. The data length register 4 indicates the
fetch data length in the 8-byte boundary; three bits are
used to indicate the data length (one byte to eight
bytes). For example, if the data length register contains
“000”, the fetch data length is one byte, and if 1t con-
tains “1117, the length is specified to be eight bytes. The
store address and mark are set to the registers 1 and 2,
respectively by a store instruction; while the fetch ad-
dress and data length are set to the registers 3 and 4,
respectively, by a fetch instruction following the store
instruction.

The address matching detector circuit 5 detects a
matching condition between the store and fetch ad-
dresses in 8-byte units according to the memory access
width. The 4-byte cross detector circuit 6 1s used to
detect whether or not the data to be fetched crosses
(astrides) a 4-byte data boundary. The bits 0-3 and bits
4-7 of the mark register 2 are ORed by the OR circuits
7 and 8, respectively. The NOT circuit 9 1s used to
reverse the value of bit 29 of the fetch address register
3, the AND circuit 10 to AND the outputs from the
4-byte cross detector circuit 6 and the NOT circuit 9,
and the OR circuit 11 to OR the bit 29 of the fetch
address register 3 and the output from the AND circuit
10. The outputs of the OR circuit 7 and the NOT circuit
9 are ANDed by the AND circuit 12, the outputs of the
OR circuits 8 and 11 are ANDed by the AND circuit

4,670,836

3
13, the outputs of the AND circuits 12 and 13 are ORed
by the OR circuit 14, and the outputs of the matching
detector circuit § and the OR circuit 14 are ANDed by
the AND circuit 185.

Operations of an embodiment depicted in FIG. 1 will
be described. Assume that a store address and a store
mark are stored in the store address register 1, and the
mark register 2, respectively, because of a store instruc-
tion 1ssued to store a data item in the memory and that
the first fetch address and the fetch data byte length are
stored in the fetch address register 3 and the fetch data
length register 4, respectively, due to a fetch instruction
1ssued after the store instruction to read a data item
from the memory. The address matching detector cir-
cuit § compares the content of the store address register
1 and the bits 20-28 of the fetch address register 3 indi-
cating an address-in-page. If they are found to be equal,
the matching detector circuit 5 outputs “1”, otherwise,
it outputs “0”,

In this embodiment, logical addresses are used as the
store and fetch addresses to be set to the store address
register 1, and the fetch address register 3, respectively.
In a data processing system handling a virtual space, it
~ 1s known that a logical address is specified by an instruc-
tion for accessing the memory and that the real memory
1s accessed by use of a real address obtained by translat-
ing the logical address. Only the portion of bits 0-19
specifying a page address is translated, that is, the bits
20-31 indicating an address-in-page are commonly used
for the logical and real addresses.. The real address for
accessing the real memory should be used to detect the
overlap; however, since a comparison of the real ad-
dress after the address translation is time consuming, the
logical address is used for the comparison. The real-
address comparison may be naturally conducted if the
time delay due to the address translation is allowable for
detecting the overlap.

Moreover, the matching detector circuit 8§ processes
a logical address, thus an address-in-page specified by
the bits 20-28 is compared. Therefore, even if the same
address-in-page 1s found for the different pages, the
overlap 1s assumed to be detected. This is because the
different logical addresses may be translated into the
same real address in some software systems. If the soft-
ware guarantees that the different logical addresses will
not be assigned to the same real address, the matching
detector circuit $ may be designed to compare the store
address bits 0-28 with the fetch address bits 0-28.

If the matching detector circuit (8) outputs *“0”, the
operands of the store and fetch operations do not over-
lap within the 8-byte boundary (memory access width
unit) in the memory; hence the pipeline control nor-
mally functions properly to execute the preceding store
instruction and the succeeding fetch instruction in par-
allel. On the other hand, if the output of the matching
detector circuit § 1s “1”, the operands of the store and
fetch instructions overlap each other in an 8-byte mem-
ory boundary. In this case, an overlap condition is con-
ventionally assumed to be satisfied, so the memory read
operation by the succeeding fetch instruction is delayed
until the data is completely stored in the memory by the
preceding store instruction. Differing from this method,
an embodiment depicted in FIG. 1 checks for an over-
lap 1n the first and second four bytes of the area in the
8-byte memory boundary. If the overlap condition is
not detected in these 4-byte fields, the overlap is not
assumed t0 be satisfied even if an overlap condition
within the 8-byte boundary is detected. In this regard,

10

15

20

25

30

33

45

50

55

635

4

the system operations will be described in detail herein-
after.

First, referring to FIGS. 2¢ and 25, the operations
will be explained for a case in which the valid data to be
stored in the memory exists only in the first four bytes
within the 8-byte memory boundary.

In this case, the outputs of the OR circuits 7 and 8 are
“1” and *“0”, respectively. As illustrated in FIG. 2q, if
the fetch address specifies an arbitrary byte of the first
four bytes in the 8-byte boundary, the bit 29 of the fetch
address register 3 is “0”. The value of hit 29 is reversed
by the NOT circuit 9, and the resultant data is ANDed
in the AND circuit 12, then the output of the AND
circuit 15 via the OR circuit 14 becomes “1”, thus an
overlap is detected.

On the other hand, as depicted in FIG. 25, if the fetch
address specifies an arbitrary byte of the last four bytes
in the 8-byte boundary, the bit 29 of the fetch address
register 3 1s 1, so the AND condition is not satisfied in
the AND circuit 12. Furthermore, since the OR circuit
8 outputs “0”, the AND condition is not satisfied in the
AND circuit 13, either. Consequently, even if an over-
lap 1s detected in the 8-byte boundary and the output of
the matching detector circuit 5 is “1”, the AND circuit
15 outputs “0” and the overlap is not assumed to be
detected.

Next, referring to FIG. 3, the operations will be de-
scribed for a case in which the valid data to be stored in
the memory only exists in the last four bytes of an area
in the 8-byte boundary.

In this case, the outputs of the OR circuits 7 and 8 are
“0” and “1”, respectively. As illustrated in FIG. 3q, if
the fetch address specifies an arbitrary byte of the last
four bytes in the 8-byte boundary, the value of bit 29 of
the fetch address register 3 is *1”. The bit 29 is inputted
to the AND circuit 13 via the OR circuit 11, that is, the
mput 1s ANDed in the AND circuit 13, thus an overlap
1s detected according to the output of the AND circuit
15.

On the other hand, if the fetch address specifies an
arbitrary byte of the first four bytes in the 8-byte bound-
ary, the value of bit 29 of the fetch address register 3 is
“0”. In this case, it i1s checked whether or not the fetch
data stradles (crosses) the 4-byte boundary in the 8-byte
boundary by use of the fetch data length. If such a
condition s found, an overlap must be assumed to take
place; otherwise, it must not be assumed to be detected.
These operations are carried out by the 4-byte cross
detector circuit 6.

The 4-byte cross detector circuit 6 inputs the values
of bits 30 and 31 from the fetch address register 3 and
the fetch data length from the register 4. If one of the
logical conditions listed in FIG. 4q is satisfied between
these input values, a 4-byte cross is assumed to take
place. If any other condition listed in FIG. 44 is met, the
4-byte cross 1s not assumed to be detected. For example,
if the bits 30 and 31 of the fetch address register 3 are
“00” (the bit 29 is “0"), the address in the 8-byte area
stored in the fetch address indicates byte 0. In this case,
therefore, if the fetch data length is five bytes or more
(the value of register 4 is at least *“100”), a 4-byte cross
i1s assumed to be detected. If the fetch data length is four
bytes or less (the value of register 4 is at most “011”), a
4-byte cross i1s not assumed to take place. If the bits 30
and 31 of the fetch address register 3 are “01”, the ad-
dress in the 8-byte area indicates byte 1. In this case, a
4-byte cross is detected if the fetch data length is four
bytes or more (the value of register 4 is at least *“011),

4,670,836

S

while it is not detected if the fetch data length 1s three
bytes or less (the value of register 4 is at most *0107). If
the bits 30 and 31 of the fetch address register 3 are
“10”, the address in the 8-byte area indicates byte 2. In
this case, a 4-byte cross is assumed to occur if the fetch
data length is three bytes or more (the value of register
4 is at least “010”), while a 4-byte cross is not assumed
to be found if the fetch data length is two bytes or less
(the value of register 4 is at most “001”). If the bits 30
and 31 of the fetch address register 3 are “11”, the ad-
dress in the 8-byte area indicates byte 3. In this case, a
4-byte cross is detected if the fetch data length is two
bytes or more (the value of register 4 is at least “*001”),
while a 4-byte cross is not detected only if the fetch data
length is one byte (the value of register 4 is “000”).

If the 4-byte cross detector circuit 6 detects a 4-byte
cross condition as explained above, it outputs *1”°; oth-
erwise it outputs “0”. Since the bit 29 of the fetch ad-
dress register 3 is now *0”, the AND operation 1s per-
formed by the AND circuit 10 if the 4-byte cross detec-
tor circuit 6 outputs “1”. Since the valid data to be
stored in the memory is assumed to exist in the last four
bytes of the area within the 8-byte boundary, the output
of the OR circuit 8 is ““1”, and the AND condition is
satisfied in- the AND circuit 13 according to the
ANDed result from the AND circuit 10. Thus, the
output of the AND circuit 15 via the OR circuit 14
becomes “1”’ and an overlap is assumed to be detected.
This case is illustrated in FIG. 36 in which the address
in the 8-byte area stored in the fetch address indicates
byte 1 (the bits 30 and 31 of the fetch address register 3
are *“01”) and the fetch data length is five bytes (the
value of register 4 1s “100”).

On the other hand, if the 4-byte cross detector circuit
6 outputs “0”, the AND condition 1s not satisfied in the
AND circuit 10. Moreover, since the bit 29 of the fetch
address register 3 is “0”, the OR circuit 11 outputs *“0”.
Therefore, the AND condition is not met in the AND
circuit 13. Furthermore, since the valid data to be
stored in the memory is assumed to exist in the last four
bytes of the area within the 8-byte boundary, the output
of the OR circuit 7 is **0” and the AND condition is not
met in the AND circuit 12, either. As a result, the AND
circuit 15 outputs “0”, so an overlap 1s not assumed to
be detected even if an overlap in the 8-byte boundary is
detected and the matching detector circuit 5 outputs
““1”. This case is detected in FIG. 3¢ in which the ad-
dress in the 8-byte area stored in the fetch address indi-
cates byte 1 and the fetch data length is three bytes (the
value of register 4 is “010”).

Although the memory access width is assumed to be
eight bytes in the embodiment of FIG. 1, this is not the
limitation to the present invention. Furthermore, the
overlap detection unit for the store and fetch operations
is set to four bytes in the embodiment; however, this is
only an example, and any overlap detection unit, if it 1s
equal to or less than the memory access width, can be
used. For example, it may be one byte or two bytes.

As is clear from the foregoing description, according
to the present invention, an overlap between the oper-
ands in the memory which are specified by the preced-
ing store instruction and the succeeding fetch instruc-
tion is detected in a unit equal to or less than the mem-
ory access width; consequently, the possibility of an
overlap detection in a case in which the operands are
not actually overlapping each other 1s almost com-
pletely removed, thereby allowing effective utilization
of the pipeline control.

What is claimed 1s:

10

|

20

23

30

35

40

45

50

55

60

65

6

1. A device for detecting an overlap of operands to be
accessed in a memory in a pipeline control data process-
ing system, comprising:
first register means for holding therein a store address
of said memory specified by a store instruction;

second register means for holding therein a store
mask indicating the presence or absence of a store
data item of an access width in byte units;

third register means for holding therein a fetch ad-

dress of said memory specified by a fetch instruc-
tion following said store instruction;

fourth register reans for holding therein the length of

a data item to be fetched by using said fetch address
in said third register means as a start address for the
data to be fetched,

first detector means for detecting whether or not the

operands to be accessed in said memory overlap
each other in access width units based on said store
address in said first register means and said fetch
address in said third register means;

second detector means for detecting whether or not

said operands overlap each other in an area of said
access width unit based on said store mark in said
second register means, bits indicating an address in
said access width unit of said fetch address in said
third register means, and said fetch data length 1n
said fourth register means; and

means connected to said first and said second detec-

tor means for outputting an indication that said
operands overlap each other when said first detec-
tor means and said second detector means detect an
overlap, respectively.

2. A device for detecting an overlap of operands to be
accessed in a memory in a pipeline control data process-
ing system according to claim 1, wherein said second
detector means comprises:

first indiction means for indicating the presence or

absence of said store data in each division unit
obtained by subdividing by n said access width
based on said store mark;

second indication means for indicating said division

unit to be fetched by said fetch address and said
fetch data length; and

means for detecting an overlap in said access unit

based on information stored in said first and second
indication means.

3. A device for detecting an overlap of operands to be
accessed in a memory in a pipeline control data process-
ing system according to claim 2, wherein each said first
indication means comprises means for ORing said store
marks in each of said division units with every other
division unit.

4. A device for detecting an overlap of operands to be
accessed in a memory in a pipeline control data process-
ing system according to claim 1, wherein said store and
fetch addresses indicate logical addresses.

5. A device for detecting an overlap of operands to be
accessed in a memory in a pipeline control data process-
ing system according to claim 4, wherein said store
address and fetch address each comprise a page address
portion, and a portion for an address in the access width
unit; and

said first detection means coxprises means for detect-

ing a matching between said store address in said
first register means and said fetch address in said
third register means and a matching between said
address in a page of said store address and said

address in a page of said fetch address.
= % » 0 %*

	Front Page
	Drawings
	Specification
	Claims

