United States Patent [
Gallant

4,648,036
Mar. 3, 1987

[11]] Patent Number:

[54] METHOD FOR CONTROLLING QUERY
AND UPDATE PROCESSING IN A
DATABASE SYSTEM

[75] Inventor: John K. Gallant, Westerville, Ohto
[73] Assignee: AT&T Bell Laboratories, Murray
Hill, N.J.

[21] Appl. No.: 708,963

[22] Filed: Mar. 6, 1985

[51] Int. CLA it GO6F 15/40
[52] ULS. CL rcciiecrrrcveenecen e [, 364/300

[58] Field of Searchccccovemvireninivnnnnnne. 364/300

[56] References Cited

U.S. PATENT DOCUMENTS
4,506,326 3/1985 Shaw et al.ccoceverncnnennne 364/300

OTHER PUBLICATIONS

IEEE—1979—*Locking Policies: Safety and Freedom
from Deadlock”—pp. 286-297—Y annakakis-Papadimi-
~ triou-Kung.

IEEE—1981—“Transaction Monitoring in Encompass

[TM]& Reliable Distribute Transaction Processing-
*—pp. 155-165—Borr. |

702w,

7

g

100
SYSTEM STATE =
NON_LPOATE
D4 - YES

[45] Date of Patent:

IEEE—1983—*A Case for Non-Two Phase Locking
Protocols that Ensure Atomicity”’—pp. 535-538.

Primary Examiner—Raulfe B. Zache
Attorney, Agent, or Firm—Jerry W. Herndon

[57] ABSTRACT

A method of performing update transactions in a data-
base system to perserve consistent logical data states at
all times. Each changeable data entry in the database 1s
associated with an individual code field. When no up-
date transaction is in progress, every code field 1s set to
a first value. An update transaction is begun by chang-
ing a system state parameter from a NON-UPDATE to
an UPDATE state. During the UPDATE state, the
code fields of data entries to be added are marked with
a second value and then inserted into the database. Code
fields of entries to be deleted are marked with a third
value. When this 1s complete, the system state parame-
ter i1s set to a POST-UPDATE state. All code fields are
then returned to the first value at which time the system
is returned to the NON-UPDATE state. During the

UPDATE state, all queries are given access to entries

with first and third code field value. Conversely during
the POST-UPDATE state, queries are allowed access
only to entries with first and second code field values.

6 Claims, 8 Drawing Figures

START

Wil e e A W

WORMA| PROCESSING

DB UPDATE REQ RCYV'D
ENTERED AT NON-
MTERAUPT SYSTEM

LEVEL

QUELE UPDATE AEQUESY

YES

REGISTER= LPDATE

SET STATE

o

READ NEXT COMMAKD
W UPDATE MESSAGE

ARE
AWY DUERIES iN

Nnd :
WSERT /OELETE
COMMAND

MO

MSERT

'_'] . 712
AL TN DELETE CREATE NEW RECORD
T T2 w0 (N D8 AS SPECIFIED
WAl | LOCATE THE MECORD BY COMMAND
L _ _: ?2“ . 4 J _f"' ?1‘
_l YES SET COOE VALUE SET CODE VALUE IN
W RECORD = 1 MEW RECORD a2
722, ; 6. l‘
SET STATE MEGISTEA » ADD RECORD ADDRESS
POST.UPDATE TO WORKSFACE OUEUE —
124 ~— } e e
GET ADDRESS OF NEXT
RECORD FROM
WORKSPACE OUEUE
126 728 732\
N0 NG
@. COOE VALUE OF SET.CODE VALUE Lo
RECOAD = 1 OF RECORD «0
734 YES
710 YES
SET STATE MEGISTER = B
NOS_UPDATE | ELETE AECORD Faom o - -

U.S. Patent Mar. 3, 1987 Sheetlof4 4,648,036

FIG. |

U 100
140

TORED RAM s~ 110
QUERIES MERY S PROG |
o " BUFFER ~
o WORKSPACE QUEUE |.s~ 160
UPDATES POATE .
. BUFFER
150

STATE REGISTER 120

DATABASE 130

220 210 200

FIG. 3

UPDATE _MESSAGE

INSERT 10 (1) 5
DELETE 20 (1)
DELETE 1 (2)
INSERT 1 (2) 1,2 -

END_UPDATE

_ B U.S. Patent Mar. 3, 1987 Sheet2of4 4,648,036

FIG. 4
' TABLE 10

SYSTEM STATE =NON_UPDATE

‘

SYSTEM STATE =UPDATE

~ RETURN TO SYSTEM STATE NON_UPDATE.

U.S. Patent Mar. 3, 1987 Sheet 3 of 4 4,648,036
LN G

NORMAL PROCESSING

700

NO 08 UPDATE REQ RCV'D
SYSTEM .STATE = ENTERED AT NON~
NON_UPDATE INTERRUPT SYSTEM
_ LEVEL
YES
QUEUE UPDATE REQUEST SET STATE
| REGISTER= UPDATE

706

| READ NEXT COMMAND
IN UPDATE MESSAGE

708

N |
70 . o
INSERT /DELETE INSERT 710 |
COMMAND

. CREATE NEW RECORD
T T 723
WAIT) LOCATE THE RECORD

YES

ARE
ANY QUERIES iN
- PROGRESS

IN D8 AS SPECIFIED
BY COMMAND

714
YES SET CODE VALLUE SET CODE VALUE IN
o W RECORD = 1 NEW RECORD =2
722, ' . .
SET STATE REGISTER=| | ADD RECORD ADDRESS |
POST.UPOATE TO WORKSPACE QUELE
724 —
| GET ADDRESS OF NEXT
RECORD FROM
WORKSPACE QUEUE | -
726 . 728 732
‘ N0 —TOOE VALUE OF SET CODE VALLUE
RECORD = 1 OF RECORD =0
734 YES ' -

SET STATE REGISTER =
NON_UPDATE

DELETE RECORD FROM D8

- U.S. Patent Mar. 3, 1987 - Sheet 4 of 4 4’648’036 .'

FIG. 8 - -
o | ENTERED
802 _ ' AT |
: - . SYSTEM
GET TABLE NO. AND SEARCH KEY VALUES | INTERRUPT

804

- SEARCH DB AND ACCESS MATCHING
RECORDS (2 RECORDS MAY BE

FOUND, ONE IN PRESENT DB &
ONE IN FUTURE DB)

ONLY 1
POSSIBLE

MATCHING-
RECORD

806
_ STATE REGISTER= NON_UPDATE

810 N
SETUP LOOP TO TEST TWO POSS RECORDS

o 512 _ -
YES ' -
_ , STATE REG=UPDATE
- INo '

CODE VALUE OF THIS
RECORD =0 OR 1

YES

814

RETURN
RECORD

CODE VALUE OF THIS ' 808
RECORD=0 OR 2 -

NG

816
' LOOP FINISHED

818 YES
~ RETURN “RECORD NOT FOUND”
'

_NO

4,648,036

1

- METHOD FOR CONTROLLING QUERY AND
UPDATE PROCESSING IN A DATABASE SYSTEM

TECHNICAL FIELD

The invention relates to database systems in general
and, in particular, to methods of controlling concurrent
~ database query and update functions to maintain consis-

tent logical states of the database at all times.

 BACKGROUND OF THE INVENTION

Database concurrency control is the control process
in a database system that allows interactive querying
 and updating of the stored data contents of the database
system. The purpose of concurrency control is to en-
sure that the logical state of the database 1s consistent at
all times. This means, for example, if a query and an
update process are in progress at the same time, the
‘query will receive the appropriate database information
that existed before the update process began or, possi-
bly, information that exists after the update process is
completely finished. The query should not receive,
however, information that represents a data state after
the update begins but before it completes.
- The property that ensures consistent data states of a
- database is called “serializability.” The classic method

of query and update processing is to lockout query
functions while an update is occurring and vice versa.
Thus, queries and updates take place in a serial format 1n
the classic method. Any algorithm that can be shown to
be equivalent to the classic serial scheme can be made to
result in consistent database states.

In many types of databases, the query function is
more important than the update function and should,
therefore, be given preference over the update function.
The classic concurrency control method is lacking in
this respect because queries are iocked out while up-
dates are occurring. To mitigate this problem, some
databases use a technique known as “shadowing.” In
this technique, the database entries (entry, record, page,
etc.) on which updates are based are copied into a sepa-
rate portion of memory that is not yet part of the pres-
ent contents of the database. Update changes are then
made to the copies. While, the “shadow” changes are
being made, queries are referred to the unchanged data-
base. When updating of the “shadow” copies is com-
plete, queries are temporarily locked out and database

10

15

20

25

30

35

45

linkages are then modified to point to the ‘“‘shadow”

copies rather than to the old data entries. Querying is
then reallowed. The result is that queries are locked out
for a shorter period of time than in the classic method.

While “shadowing’ works well, it 1s clear that the
control structure, i.e., the software, necessary to accom-
plish the result, is complicated. This is due in large part
to the fact that different logic must be provided to ac-
count for the different types of semipermanent and
- temporary data structures present in such a system, i.e.,
the database memory, the “shadow’ memory, the link-
ages that point to one or the other and administrative
control functions. It 1s desirable to simplify the control
structure and at the same time further shorten the time

that query functions are locked out by updates, if possi-
~ ble. -

SUMMARY OF THE INVENTION

The above problems are solved and an advance in the
art is achieved in a method of controlling query and
update processing in a database system. Database up-

50

55

65

2

date transactions may include database entry insert and

delete commands. Insert commands result in the addi-

tion of new data entries to the database structure,
whereas delete commands result in the elimination of
existing entries. In response to such a transaction, indi-
vidual entries to be inserted are marked as being part of
a future database structure and are then added to the
database in a homogeneous fashion. Existing entires
which are to be deleted are individually marked as such
in the present database structure. At the completion of
the marking procedure, a system state parameter is

marked indicating a switch from the present database
structure to the future database structure. As a result,
the present structure immediately becomes an old struc-
ture and the future database structure becomes the pres-
ent structure. A query process always accesses the pres-
ent database structure as it is defined by the system state
parameter at any given time. Only entries belonging to
the presently defined database structure are returned to
the query process.

In the preferred embodiment of the invention, each
changeable entry of the database (entry, page, record,
etc.) is associated with an individual code field value.

There are at least three system states associated with a
system state parameter, NON-UPDATE, UPDATE
and POST-UPDATE. In the NON-UPDATE system

state, all code field values for the data entries are set to
a first value. The system is placed into the UPDATE
state when an update transaction is received. During
this state, the code fields of data entries being inserted
are set to a second value. The code fields of entries
being deleted are marked with a third value. Queries
processed during the UPDATE state are given access
only to entries marked with the first value (signifying
entries unaffected by any concurrent update transac-
tion) or with the third value (signifying entries marked
for deletion, but still defined as being part of the present
database structure). Entries having the second code
field values are considered part of a future structure and
are not accessible in this system state.

When all entries affected by a transaction are marked
during the UPDATE state, the system state is switched
to the POST-UPDATE state. At this point, the present
database structure becomes the old structure and the
future structure becomes the present structure. Queries
processed during the POST-UPDATE state are given
access to entries having first (unaffected entries) and
second (inserted entries) code field values. Entries with
third code field values are now not considered part of
the present structure.

During the POST-UPDATE state, all entries af-
fected by an update transaction are cleaned up. Entries
that have been deleted are erased from the system to
free-up the memory space. The code fields of eniries
that have been added are set to the first value. When
this is completed, the system is placed into the NON-
UPDATE state in readiness for the next update transac-
tion.

This method has the following advantages over the
prior art. The database structure 1s homogeneous. Thus,
there is no need for control structures to account for
special cases such as “shadow” pages. There is effec-
tively no interval of time that query processes are
locked out due to an update transaction because only a
system state parameter need be changed to switch from

present to future data structures. Finally, update pro-
cessing during the UPDATE and POST-UPDATE

4,648,036

3

states may be performed at low priority during system
idle time, while query processes are concurrently
served at high priority, such at interrupt level.

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 shows a functional entry diagram of an illus-

trative database system used to describe the invention;
FIG. 2 shows an illustrative format of a fundamental
changeable data entry, from now on referred to as a

record in the database. The illustrative record includes
one or more key fields on which searches may be made,
one or more data fields, and a code field which indi-
cates, In conjunction with a system state parameter,
whether or not the record belongs to a present version
~on an old version or to a future version of the database:
FI1G. 3 shows an illustrative update transaction, in-

cluding record insert and delete commands, used to

1llustrate the operation of the invention:
FIGS. 4 through 6 each show illustrative data tables

10

15

contamning the records of FIG. 3 and the contents of 20

those records in each of three system states UPDATE,
NON-UPDATE, and POST-UPDATE;

FIG. 7 1s a detailed flowchart showing the method
steps of processing an update request such as shown in
FIG. 3; and

FIG. 8 shows a detailed flowchart of the method
steps of processing a query function.

DETAILED DESCRIPTION

The illustrative database system shown in FIG. 1
comprises a central processing entry (CPU) 100 oper-
ated under control of a stored program 110. A state
register 120 contains an indication of the present update
state of the system. Only three states are necessary in
my illustrative embodiment. A NON-UPDATE state in
which no update processing is in progress, an UP-
DATE state during which an update transaction is
being processed and a POST-UPDATE state during
which, as will be seen, bookkeeping operations are per-
formed on changed or deleted records before returning
the system state to the NON-UPDATE state. The ac-
tual database records are maintained in a database entity
130. Queries to search the database arrive in a query
buffer 140. Queries are served by CPU 100 on a first
come-first serve basis. Information found as a result of a
query are returned to a user process via the query buffer
140. Similarly, update transactions arrive from a user
process via an update buffer 150 and are served in order
by CPU 100. As records are added or deleted to or from
the database in response to an update transaction, the
identities of the effected records are placed in a work-
space queue 160. The workspace queue 160 is used
during the POST-UPDATE state by CPU 100 to ac-
complish the above-mentioned bookkeeping operations
preparatory to returning the system to the NON-
UPDATE state.

Although each of the functional entities, 110 through
160, are shown separately in FIG. 1, in a practical im-
plementation each might reside, for example, in some
dedicated part of the main memory of the database
system. Database 130 illustratively comprises a plurality
of data tables each identified by unique table numbers.
Each table, in turn, is made up of one or more records.
An 1llustrative format of a single record is shown in
FIG. 2. The actual data contained in a record is in data
fields 200. The format of the data fields is arbitrary and
unimportant for purposes of this invention. For our
purposes, it is assumed that the number of data fields

25

30

35

45

>0

29

60

65

4

present in 200 1s defined by a user when a table format
1s defined. The record also contains one or more key
fields 210 which contain relevant search parameters for
a given table. The format and contents of the key field
are likewise defined by a user when the format of a table
1s initially defined.

Every record has automatically associated with it a

code field 220, which 1s used in conjunction with the
contents of state register 120 to determine if a given

record 1s part of the present, old or a future database.
By way of example, code fields are assigned values
having the following meanings:

CODE FIELD
SYSTEM STATE VALUE MEANING
NON-UPDATE 0 Present database.
UPDATE 0 Present database:
1 Present database -
marked for deletion;
2 Future database.
POST-UPDATE 0 Present database:
] OIld database - to
be erased:
2 Present database -
code field value to
be set to (.

The use of the code field will become more apparent as
we progress further with this discussion.

FIG. 3 shows an illustrative update transaction used
to describe the invention herein. This is intended to
reflect an actual update message as it might be typed in
on a system terminal by a user. The first line, UP-
DATE_MESSAGE, prompts the system that this is
the beginning of an update transaction. The update
message 1s terminated with the identifier END_UP-
DATE. In between the initial prompt and ending identi-
fier are the individual record insert, and delete com-
mands. In the illustrative example of FIG. 3 there are
two 1nsert and two delete commands. Each refer to a
specific record as will be discussed. By way of example,
change record commands are not necessary. To change
a record, the record is deleted and a new record con-
taining the new desired data is inserted.

The first insert command in the update message of
FIG. 3 1s INSERT 10 (1) 5. By way of example, the 10
refers to the table number containing the record to be
inserted. The number (or numbers) in parentheses is a
search key parameter (the number 1 in this case). The 5
1n the mnitial insert command is the data to be contained
in data field 200 of this record. The delete command

-format 1s similar to the insert format, except that no data

for field 200 need be specified. Thus, for example, the
first delete command in FIG. 3 relates to table 20. A
search parameter must be specified (here the number 1)
to 1dentify a specific record to be deleted in the table.
The final DELETE 1 (2) and INSERT 1 (2) 1,2 com-
mands in FIG. 3 illustrate a situation where a record is
to be modified. The delete command deletes the current
record and the insert command reinserts the record
with the modified data (3,2).

Assume now that the update transaction of FIG. 3
arrives from an appropriate user process into query
buffer 140. In the normal course of processing, CPU 100
will eventually serve this transaction in the query
buffer. At that time CPU 100 begins execution of the
program in FIG. 7 at address START to process the
request. F1G. 4 shows the state of pertinent tables 1, 10
and 20 in the database at this time. It is assumed for

S
illustration that tables 1 and 2 have respective records
(2) 1,3 and (1) 7, 6, 2, 4; each having code field values
of 0 as shown in FIG. 4.

Because an update transaction is a low priority item
‘in this illustrative system, it is assumed, by way of exam-
ple, that the entry to START is made during system idle
time at noninterrupt level. Step 700 initially determines
from the state register 120 if the system is in the NON-
UPDATE state. If not, the system 1s either processing
an earlier update transaction and the system is in the
UPDATE state, or the system is performing bookkeep-
ing operations for such a transaction in the POST-
UPDATE state. The illustrative system serves only one
update transaction at a time. Therefore, in such a case
step 702 requeues the update request in query buffer 140
for subsequent processing. Assuming, however, that the
system is in the NON-UPDATE state, step 704 sets
state register 120 to UPDATE. The next command (the
first command at this point) in the update transaction is
now obtained by step 706. Since we are just beginning
the update processing, this is the initial INSERT 10 (1)
5 command shown in FIG. 3. Step 708 determines that
we are not yet finished with the transaction since step
706 did not receive and END_UPDATE command.
Therefore, step 710 determines that the initial command
is an insert and accordingly executes step 712. Step 712
“creates a new record in the database as specified by the
- command. This is shown in table 10 of FIG. § as the
new record (1) 5. Because this 1s a newly inserted re-
cord which is not yet part of the present database, step
714 sets the code field to the value 2. As will be seen,
this prevents concurrent queries being served while this
update transaction is processed from gaining access to
the newly inserted record. Step 716 next adds the data-
base address of this inserted record to the workspace
queue 160 and returns to step 706 to repeat the process
for remaining commands in the update transaction.

Step 706 now obtains the second command from the
- transaction which is shown to be a DELETE 206(1) in
- FIG. 3. As a result, step 710 causes the execution of step
718. Step 710 locates, by means of any desired search
method, the record in database 130. When this is accom-
plished, step 720 sets the code field 1n the record to the
value 1. This identifies the record as being marked for
deletion. However, as may be seen, records marked for
deletion are still part of the present database and acces-
sible to query functions until a switch i1s made from the
present database to the new database. The database
address of this record is added to workspace queue 160
by step 716 and the above process is again repeated for
remaining commands in the update transaction.

FIG. § shows the pertinent data states of tables 1, 10
and 20 after being processed as described above. Specif-
ically, note that the delete and insert commands for
table 1, as shown 1n the update transaction of FIG. 3,
are reflected by two records (2) 1,3 and (2) 1,2 now 1n
~ table 1. The record (2) 1,3 1s marked for deletion by a
- code field value 1. The record (2) 1,2 is marked for

insertion by the code field value of 2. Similarly, in table
10 record (1) 5§ 1s marked for insertion by the code field
value of 2 and, in table 20, record (1) 7,6,2,4 is marked
for deietion by a code field value 1. When the update
transaction is finished, as determined at step 708, step
721 determines, by interrogating an appropriate system
flag, whether any queries are in progress in the system.
This is necessary because, 1n accordance with the inven-

tion, database updating and querying occur concur-
rently. Placing the system in the POST-UPDATE

4,648,036

10

15

20

25

30

35

45

50

35

65

6

while a concurrently running query is still in progress
would potentially interfere with the query. Therefore, if
any query is in progress, step 723 i1s executed. Step 723
schedules, via the executive program of the system, a
prescribed time delay and re-entry to step 721. Eventu-
ally, when all system queries have completed, step 722
is executed.

Step 722 now sets state register 120 to the POST-
UPDATE state. This marks the shifting of the database
from the old to the new version. Accordingly, while in
the POST-UPDATE state, records marked for deletion
by code field values of 1 are no longer accessible to
query functions. However, records marked as newly
inserted (code field values of 2) and unchanged records
(code field values of 0) are query accessible. This will be
seen in our discussion of FIG. 8. The START program
now performs bookkeeping to operations return all
records effected by the update transaction to a state in
which the code field values of all database records are 0.
‘To accomplish this, step 724 retrieves the address of a
record that was effected by the update transaction from
workspace queue 160. Step 726 determines if post-
update processing is finished. Because we are not at the
present time, step 728 is executed. Step 728.determines
if the record obtained from workspace queue 160 1s
marked for deletion. If so, step 730 deletes the record
from the database and frees up the memory space for a
subsequent record. If the present record identified from
the workspace queue is not marked for deletion, its
respective code field value is set O by step 732. In either
event, return is mase to step 724 to continue the post
up-date processing with the next record. When all re-
cords whose addresses are contained in the workspace
queue have been either deleted or returned to a code
field value of O, step 726 executes step 734, which places
the system into the NON-UPDATE state. At this point
in time the update transition is complete and return is
made to the main program. FIG. 6 shows the states of
tables 1, 10 and 20 at the completion of the POST-
UPDATE state.

FIG. 8 shows an illustrative detailed flow chart of the
processing of query functions. Because queries are
served with high priority in this illustrative system, I
assume, by way of example, that entry is made to
QUERY in FIG. 8 at, for example, interrupt level. Step
802 obtains from the query request a table number and
search key values. Step 804 searches the database in
accordance with any desired search algorithm and fet-
ches all records that match the search request. No re-
cords, one record or two records may be found, de-
pending upon the system state and the search request. If
no records are found, that information is returned to the
query process. This 1s not shown in FIG. 8. At step 806,
it is assumed that one or two records have been located
in response to the query. If the state register 120 indi-
cates a NON-UPDATE system state, as determined by
step 806, then only one matching record has been found.
This record is necessarily the record in the present
database. There is no defined future database i1n the
NON-UPDATE state causing the future database to
become the present database. Accordingly, step 808
merely returns the found record to the query process
and exit 1s made to the main program.

On the other hand, if step 806 determines that the
system 1s not in the NON-UPDATE state, it 1s possible
that two records may have been located in response to
the search request, one belonging to a present database
and one belonging to a future database. Step 810 initi-

4,648,036

7

ates a two-pass loop to test the two possible found re-
cords. If the system is in the UPDATE state as deter-
mined by step 812, then step 814 tests the value in the
code field of the record currently being examined. If
that value is 0 (record unchanged) or 1 (marked for

deletion) the record belongs to the present database and

1s returned to the user process by step 808. The second
found record, if any, is not tested since there can only be

one valid record at any given time. At step 814, if the
code field value of the record being tested is not O or 1,
then this record must be marked for insertion and is part
of the future database. Therefore, step 816 causes the
loop to be repeated for a second found record, if any. If
a second record was not found, however, step 818 re-
turns this information to the query process and exits.
At step 812, if the system state is not UPDATE, then
by default the system must be in the POST-UPDATE
state. It is recalled that the system has been switched
from the old to the future database at the beginning of
this system state causing the future database to become
the present database. Therefore, step 820 determines if
the code value of a found record is O or 2. If so, that
record is returned at step 808 and exit is made to the
query process. If no record is found having a code field

value of O or 2, step 818 returns a “record not found” °

message and likewise terminates the query process.

It 1s to be understood that the above-described ar-
rangement 1s merely illustrative of the application of the
principles of the invention and that other arrangements
may be devised by those skilled in the art without de-
parting from the spirit and scope of the invention.

What is claimed is:

1. A method of controlling query and update process-
ing in a database system, comprising the steps of

in response to a database update transaction contain-
ing data insert and delete commands,

(A) inserting data entries into the database marked as
being part of a future database structure, and

(B) marking data entries to be deleted as being part of
the present database structure,

at the completion of steps A and B, setting a system
state parameter to a prescribed state indicating a
switch from the present database structure to the
future database structure, whereby the future data-
base structure immediately becomes the present
database structure and the prior present database
structure immediately becomes an old database
structure,

In response to a database query, determining if any
data entries which match the query belong to the
present, to an old or to a future database structure,
and

responding to the query with only data entries that
belong to the present database structure.

2. The mvention of claim 1 further comprising the

step of

after setting the system state at the completion of
steps A and B, erasing all database entries that are
part of the old database structure.

3. A method of controlling query and update process-

Ing in a database system, comprising the steps of

(A) setting a state parameter to an UPDATE state at

the beginning of a database update transaction,

5

10

15

20

25

30

35

40

45

50

55

60

65

- 8
(B) during the UPDATE state, inserting new entries
of data marked as being part of a new data struc-
ture into the database and marking entries to be
deleted from the database as being part of an old
data structure,

(C) m response to database queries received during
the UPDATE state, returning only entries satisfy-
mg the query that are marked as being part of ei-

ther the old or a present database, and

(D) setting the state parameter to a POST-UPDATE
state at the completion of step B,

(E) during the POST-UPDATE state, marking all
inserted entires as being part of the present data-
base and erasing all entries marked for deletion,

(F) in response to a query received during the POST-
UPDATE state, returning only entires that match
the query and are marked as being part of either the
present or the new data structure, and

(G) setting the state parameter to a NON-UPDATE
state at the completion of the POST-UPDATE
State.

4. The invention of claim 3 further comprising the
step of performing step B at a low priority relative to
the performing of step C.

o>. The invention of claim 3 further comprising the
step of performing step E at a low priority relative to
the performing of step F.

6. A method of controlling query and update process-
ing in a database system, comprising the steps of

setting a system state parameter to a NON-UPDATE
state after the completion of a first database update
transaction,

setting the state parameter to an UPDATE state at
the beginning of a second update transaction,

responsive to insert commands in the second transac-
tion, inserting a new database record into the data-
base for each insert command and simultaneously
setting a code field associated with the new record
to a first value,

responsive to each delete command in the second
transaction, setting the_associated code field of an
identified record to be deleted to a second value,

setting the state parameter to a POST-UPDATE
state at the completion of the last two steps,

during the post-UPDATE state, for each record
identified in the second transaction, deleting the
record if its associated code field is set to the sec-
ond value and otherwise changing the value of the
code field to a third value,

setting the state parameter to the NON-UPDATE
state at the completion of the last step,

In response to a databaseé query identifying match
criteria of a record to be accessed, rejecting the
query operation unless the system state parameter
1s set to the NON-UPDATE state and the associ-
ated code field of any record satisfying the match
criteria is set to the third value, or the state parame-
ter 1s set to the UPDATE state and the associated
code field of any record satisfying the match crite-
r1a is set to the second or third values, or the state
parameter 1s set to the POST-UPDATE state and
the associated code field of any record satisfying

the match criteria is set to the first or third values.
* 3 L * x

	Front Page
	Drawings
	Specification
	Claims

