	nited S mbaugh, J	tates Patent [19]	[11] [45]	Patent Number: Date of Patent:	4,634,684 Jan. 6, 1987		
[54]	STRONTI	UM ALUMINOSILICATE GLASS TES FOR FLAT PANEL DISPLAY	[56] References Cited U.S. PATENT DOCUMENTS				
[75]	Inventor:	William H. Dumbaugh, Jr., Painted Post, N.Y.	4,180, Primary 1	,117 8/1976 Reade,618 12/1979 Alpha et al Examiner—Mark L. Bell Agent, or Firm—C. S. Jan	501/69		
[73]	Assignee:	Corning Glass Works, New York, N.Y.	[57]	ABSTRACT			
[21]	Appl. No.:	790,369	panel dispolysilico	ntion is concerned with the play devices wherein a firm is grown on a substrate	ilm of large crystal. More particularly,		
[22]	Filed:	Oct. 23, 1985	the substr	nt invention is drawn to surate is prepared from a stress consisting essentially, in	rontium aluminosili-		
[51] [52]				2% SrO, 9–12% Al ₂ O ₃ , a	-		
[58]	•	arch 501/69		2 Claims, No Draw	ings		

STRONTIUM ALUMINOSILICATE GLASS SUBSTRATES FOR FLAT PANEL DISPLAY DEVICES

BACKGROUND OF THE INVENTION

Two recent technological advances have made large, flat-panel display devices a distinct practical possibility:
(1) the preparation of liquid crystals exhibiting improved characteristics; and (2) the production of a surface layer of fine-grained polysilicon.

The development of liquid crystals has progressed to the point where miniature color television receiver sets have been produced from them and much larger information display panels are technically possible. Liquid crystals inherently demonstrate slow responses to electrical signals and, therefore, a "switch" to rapidly respond to an electrical stimulus is required to set up an active matrix display. The thin film transistor (TFT) performs that function.

It is well-known that a TFT can be fabricated from single crystal silicon; however, by the very nature of single crystal silicon, there is a limitation on the size of a TFT that can be fashioned therefrom. It has been discovered that a fine-grained polysilicon layer which 25 has been deposited onto a substrate can be recrystallized to large-grained polysilicon by scanning with a heat source such as a laser. It has been observed that a TFT prepared from large-grained polysilicon evidences only slight deterioration in electrical characteristics when 30 compared with those displayed by a TFT fabricated from single crystal silicon, and operates very satisfactorily in multiplexing a liquid crystal display.

A large-grained polysilicon active matrix display requires a substrate which is transparent, flat, smooth, 35 inert, compatible with silicon, in terms of thermal expansion, and capable of withstanding processing temperatures of at least 850° C. Accordingly, a glass will meet those requirements if it is free from alkali metal ions, it displays a linear coefficient of thermal expansion 40 $(25^{\circ}-300^{\circ} \text{ C.})$ of approximately $30-40\times10^{-7}/^{\circ}\text{C.}$, and an annealing point of at least 850° C. and, preferably, greater than 875° C. In order to utilize the glass sheet forming method described in U.S. Pat. No. 3,338,696, the glass must exhibit a liquidus viscosity of at least 45 100,000 poises, preferably over 250,000 poises. Also, transparent, homogeneous glasses with annealing points in the vicinity of 900° C. are very difficult to obtain by melting batches at temperatures no higher than about 1800° C. 1800° C. represents the practical limit for melt- 50 ing materials in contact with platinum-rhodium and most refractories used in an oxidizing atmosphere. Finally, to permit glass forming to be carried out utilizing conventional equipment and techniques, a liquidus temperature of no more than about 1400° C. is highly pre- 55 ferred.

Therefore, the primary objective of the present invention is to prepare transparent, homogeneous glasses demonstrating a linear coefficient of thermal expansion $(25^{\circ}-300^{\circ} \text{ C.})$ of about $30-40\times10^{-7}/^{\circ}\text{C.}$, an annealing 60 point of at least 850° C., a liquidus temperature no higher than about 1400° C., a liquidus viscosity of at least 100,000 poises, and which can be melted at temperatures not exceeding about 1800° C.

SUMMARY OF THE INVENTION

I have found that glasses satisfying that objective can be prepared from a narrow range of essentially alkali

metal oxide-free glasses within the ternary SrO—Al-2O3—SiO2 system having compositions consisting essentially, expressed in terms of mole percent on the oxide basis, of about 9-12% SrO, 9-12% Al₂O₃, and 77-82% SiO₂. The limits of those components regimes are extremely critical. To illustrate, where the level of SrO is too high, the annealing point falls below the desired target and the linear coefficient of thermal expansion may be raised to an unacceptably high value. Conversely, when the SrO content is too low, the glass becomes very difficult to melt and/or the liquidus temperature is raised to an unacceptable level. Al₂O₃ concentrations lower than those specified lead to annealing points that are too low. Al₂O₃ contents greater than those specified result in undesirably high liquidus temperatures. When the amount of SiO₂ exceeds the prescribed maximum, the glasses become too difficult to melt; at SiO₂ levels below the stated minimum, either the annealing point becomes too low or the liquidus temperature becomes too high.

Whereas a precise conversion of composition ranges expressed in mole percent to ranges in weight percent is not possible, an approximation of the ternary system expressed in weight percent comprises about 13–18% SrO, 13–18% Al₂O₃, and 66–72% SiO₂.

Minor substitutions of MgO, CaO, ZnO, La₂O₃, and MnO for SrO in the ternary system undesirably affect the linear coefficient of expansion and/or the annealing point and/or the liquidus temperature of the glass. Therefore, only very small additions of those materials can be tolerated when the desired glass properties are to be maintained. Strong fluxes such as the alkali metal oxides will desirably be essentially absent.

The substitution of BaO for part of the SrO causes a slight rise in the linear coefficient of expansion and has the very desirable capability of reducing the liquidus temperature without adversely affecting the viscosity of the glass to any substantial extent. Hence, the substitution of BaO for SrO does not alter the annealing point appreciably. That capability of BaO is of practical significance in that, by balancing the SrO and BaO concentrations, the coefficient of thermal expansion can be varied and carefully controlled. Whereas substitutions of BaO for SrO up to 8 mole percent, preferably no more than about 6 mole percent, can be useful, volatilization of BaO is a recognized problem when melting temperatures of 1800° C. are employed. SrO is much less subject to volatilization at 1800° C.

Furthermore, and even more importantly from the standpoint of glass melting, the inclusion of large amounts of BaO leads to the development of seeds in the glass. For example, where BaO is substituted in total for SrO, it is virtually impossible to produce at melting temperatures no higher than 1800° C. a glass containing no more than a few seeds. In contrast, laboratory experience has demonstrated that essentially seed-free glasses can be prepared from glasses within the above-described ranges of the ternary system SrO—Al-2O3—SiO2. Accordingly, whereas the incorporation of BaO can impart useful properties to the glass, its presence can lead to environment polluting volatilization and renders the glass more difficult to melt to good quality.

PRIOR ART

Kh. Sh. Iskhakov, "Region of Glass Formation in a Strontium Oxide-Aluminum Oxide-Silicon Dioxide

System", *Uzb. Khim. Zh.* 15 [1], 10–12 (1971) describes the preparation of glasses composed, in mole percent, of 25–60% SrO, 5–30% Al₂O₃, and 35–65% SiO₂ by melting at 1500°–1550° C. for 1–1.5 hours. The SrO contents are quite apparently far removed from those of the present invention.

Kh. Sh. Iskhakov, "Properties of Glasses in the Strontia-Alumina-Silica System", Uzb. Khim. Zh., 15 [2], 79-81 (1971) discusses several physical properties determined on glasses having compositions within the ranges of the above Iskhakov literature reference. It was observed that the glasses manifested coefficients of thermal expansion of $64-97\times10^{-7}$ /°C. It was stated that as the SrO content is raised, the coefficient of thermal expansion rises.

G. I. Zhuravlev, A. I. Kuznetsov, T. I. Semenova, and N. G. Suikovskaya, Glass, USSR SU870,365, Jan. 7, 1984, discloses the preparation of glasses demonstrating higher softening points and special electrical resistivities containing, in weight percent, 25–35% SrO, 11–20% Al₂O₃, and 41–63% SiO₂. The SrO and SiO₂ levels are generally higher and lower, respectively, when compared with their concentrations in the present inventive glasses.

G. I. Zhuravlev, V. A. Malov, A. I. Kuznetsov, and T. I. Draunina, "Application of Dispersed Glass of Silicon Dioxide-Aluminum Oxide-Strontium Oxide System on a Niobium Substrate by Electrophoretic 30 Deposition", Zh. Prikl. Khim. (Leningrad) 54 [7] 1601-4 (1981) describes the application of a protective electric insulating coating on niobium parts of high pressure lamps through electrophoretic deposition of glass having a composition within the ranges disclosed in the 35 above Zhuravlev et al. literature reference.

U.S. Pat. No. 4,180,618 reports the fabrication of electronic devices comprises of a thin film of silicon deposited upon a substrate, wherein the substrate is composed of a glass consisting essentially, in weight percent, of 55-75% SiO₂, 5-25% Al₂O₃, and at least one alkaline earth oxide selected from the group in the indicated proportions of 9-15% CaO, 14-20% SrO, and 18-26% BaO. The CaO and BaO contents are higher 45 than can be tolerated in the present inventive glasses. Whereas the broad ranges of SrO, Al₂O₃, and SiO₂ overlap those of the inventive glasses, there is no recognition of the matrix of superior properties which can be secured from compositions coming within the narrowly 50 circumscribed ranges of the present invention; nor is there a working example provided which falls within the limits of the present inventive glasses.

RELATED APPLICATION

U.S. application Ser. No. 790,370, filed concurrently herewith by me under the title BARIUM AND/OR STRONTIUM ALUMINOSILICATE CRYSTAL-CONTAINING GLASSES FOR FLAT PANEL DISPLAY DEVICES, discloses glasses within a narrow range of glasses within the BaO and/or SrO—Al-2O₃—SiO₂ system, viz., glasses consisting essentially, in mole percent on the oxide basis, of about 2-6% BaO and/or SrO, 18-26% Al₂O₃, and 68-80% SiO₂, which, 65 when heat treated, are subject to the growth in situ of extremely fine-grained crystals. The resultant products exhibit annealing points in excess of 900° C.

DESCRIPTION OF PREFERRED EMBODIMENTS

Table I records a number of glass compositions, expressed in terms of mole percent on the oxide basis, illustrating the parameters of the instant invention. The actual batch ingredients can comprise any materials, either the oxides or other compounds, which, when melted together, will be converted into the desired oxides in the proper proportions. In the laboratory work described below, the batch materials consisted of high purity sand, Al₂O₃, SrCO₃, BaCO₃, MgO, CaO, ZnO, MnO, and La₂O₃.

The batch materials were compounded, ballmilled to assist in achieving a homogeneous melt, and charged into platinum or platinum-rhodium crucibles. Those batches containing 77% SiO₂ and less could be melted at 1600°-1650° C. for 4-16 hours in an electrically-heated furnace. The batches of higher SiO₂ contents were melted at 1700°-1800° C. for 16 hours in a gas-oxygen fired furnace. In each case, the melts were cast into an iron mold to form circularly-shaped slabs having a diameter of about 12" and a thickness of about 0.75", and those slabs immediately transferred to an annealer. Table IA reports the compositions of Table I in terms of weight percent on the oxide basis.

·		TABI	LE I			
	1	2	3	4	5.	6
SiO ₂	80	80	80	80	80	80
Al ₂ O ₃	10	10	10	10	10	10
SrO	10	8	6	8	6	4
MgO		2	4			_
CaO		_		2	4	
BaO						6
	7	8	9	10	11	12
SiO ₂	80	80	80	80	80	80
Al ₂ O ₃	10	10	10	10	10	10
Al ₂ O ₃ SrO	8	6	8	6	8	6
ZnO	2	. 4	_			
LaO _{1.5}	· 	_	2	4		
MnO		_		· 	2	4
	13	14	15	16	17	18
SiO ₂	80	80	80	80	80	79
Al ₂ O ₃ SrO	10	10	10	10	10	10
SrO	8	6	5	4		11
BaO + CaO	2	4	5	6	10	
:	19	20	21	22	23	24
SiO ₂	77	77	77	75	75	75
Al ₂ O ₃	8	10	12	8	10	12
SrO	15	13	11	17	15	13
······································	25	26	27	28	29	30
SiO ₂	73	73	73	70	71	80
Al ₂ O ₃	8	10	12	15	12	7
SrO	19	17	15	15	17	13
	31	32	33	34	35	36
SiO ₂	78	76	80	79	78	7 7
Al ₂ O ₃	9	11	8	9	10	11
SrO	13	13	12	12	12	12
	37	38	39	40	41	42
SiO ₂	82	81	80	78	82	81
Al ₂ O ₃	7	8	9	10	8	9
SrO	11	11	11	11	10	10
:	43	44	45	46	47	48
SiO ₂	79	78	77	83	82	81
Al ₂ O ₃ SrO	11	12	13	8	9	10
SrO :	10	10	10	9	9	9
	49	50	51	52	53	54
SiO ₂	80	79	78	84	83	82
•						

Al ₂ O ₂	11	TABLE I-continued Al ₂ O ₃ 11 12 13 8 9								
Al ₂ O ₃ SrO	9	9	9	8	8	. 8				
	55	- 56	57							
SiO ₂	83	80	80			•				
Al ₂ O ₃	10	10	10							
SrO	7 .	3	2							
BaO	· ·	7	8							

	•	TA	BLE I	4		•	1
	1	2	3	4	5	6	
SiO ₂	70	71.3	72.7	71.0	72.0	67.1	
Al_2O_3	14.9	15.2	15.4	15.1	15.3	14.3	
SrO	15.1	12.3	9.4	12.3	9.3	5.8	1
MgO	_	1.2	2.5	 .			1
CaO	_	·····		1.6	3.4		
BaO	· · · · · · · · · · · · · · · · · · ·					12.8	
	7	8	9	10	.11	12	_
SiO ₂	70.5	70.9	70.5	71.1	70.7	71.4	_
Al ₂ O ₃	15.0	15.1	15.0	15.1	15.0	15.2	2
SrO	12.2	9.2	12.2	9.2	12.2	9.2	
ZnO	2.3	4.8			_	_	
LaO _{1.5}		_	2.3	4.6	<u>·</u>		
MnO		. .			2.1	4.2	_
	13	14	15	16	17	18	_ 2
SiO ₂	69.0	68.0	67.6	69.9	65.3	68.7	
Al ₂ O ₃	14.7	14.5	14.3	14.9	13.9	14.8	
SrO	11.9	8.8	7.3	6.0		16.5	
BaO + CaO	4.4	8.7	10.8	9.2	20.8	·	_
	19	20	21	22	23	24	_ _ 3
SiO ₂	66.1	66.1	66.3	63.6	63.6	63.8	J
Al ₂ O ₃	11.7	14.6	17.3	11.5	14.4	17.1	
SrO	22.2	19.3	16.4	24.9	22.0	19.1	_
	25	26	27	28	29	30	_
SiO ₂	61.1	61.2	61.4	57.8	58.9	70.0	3
Al ₂ O ₃	11.4	14.2	16.8	20.8	16.7	10.4	
SrO	27.5	24.6	21.8	21.4	24.4	19.6	_
	31	32	33	34	35	36	
SiO ₂	67.4	64.9	70.1	68.8	67.5	66.2	
Al ₂ O ₃	13.2	15.9	11.9	13.3	14.7	16.1	
SrO	19.4	19.2	18.0	17.9	17.8	17.7	_ 4
· · · · · · · · · · · · · · · · · · ·	37	38	39	40	41	42	_
SiO ₂	72.6	71.3	70.0	68.4	72.7	71.3	·
Al ₂ O ₃	10.5	12.0	13.4	14.9	12.0	13.5	
SrO	16.9	16.7	16.6	16.7	15.3	15.2	
	43	44	45	46	47	48	- 4 -
SiO ₂	68.7	67.6	66.3	74.0	72.6	71.3	
Al ₂ O ₃	16.3	17.4	18.8	12.1	13.6	15.0	
SrO	15.0	15.0	14.9	13.9	13.8	13.7	_
	49	50	51	52	53	54	- . 5
SiO ₂	70.0	68.9	67.6	75.4	74.0	72.7	- 5
Al ₂ O ₃	16.4	17.5	18.9	12.2	13.7	15.1	٠.
SrO	13.6	13.6	13.5	12.4	12.3	12.2	_
	55	56	57		·		_
SiO ₂	74.0	66.7	66.2				_
Al ₂ O ₃	15.2	14.1	14.0)
=	163 []	A 2	20				
SrO BaO	10.8	4.3 14.9	2.9 16.9				

Table II records a number of physical properties measured on the above glasses. The annealing point 60 (Ann. Pt.) and strain point (Str. Pt.) in terms of °C. were determined in accordance with the beam bending method described in ASTM C598; the linear coefficient of thermal expansion (Coef. Exp.) in terms of $\times 10^{-7}$ /°C. over the range of 25°-300° C. was ascer-65 tained in accordance with ASTM E228 utilizing a fused silica dilatometer; the internal liquidus temperature (Liquidus) in terms of °C. was determined by placing

the glass in a platinum boat, introducing the boat into a furnace having a temperature gradient spanning the liquidus temperature, and maintaining the boat in that furnace for 24 hours; the viscosity of the glass at the liquidus (Liq. Vis.) in terms of 10⁵ poises was delineated by using a rotational viscometer while cooling the glass at 2° C./minute; the D.C. resistivity (Log ρ at 250° C. and 350° C.) in terms of ohm-cm, dielectric constant (Die. Con.) at ambient temperatures and 1 KHz, and the 10 loss tangent (Loss Tan.) at ambient temperature and 1 KHz were defined following the techniques set out in ASTM D150, D257, and C657; and the chemical durability of the glass upon individual exposures to 5% aqueous HCl for 24 hours, to 5% aqueous NaOH for 6 hours, and to 0.02N aqueous Na₂CO₃ for 6 hours, each exposure being made at 95° C. and each loss being reported in terms of mg/cm², was ascertained on polished plates of glass both in terms of visual appearance (Appear.) and in terms of weight loss (Wt. Loss). With respect to appearance, N.C. indicates no change, S. Frost means slight frosting, and S. Haze reflects slight haze.

Glasses 19-28 were melted for 16 hours at 1650° C. in an electrically-fired furnace. Glasses 25 and 26 were clear, viscous, and free from seeds; glasses 20, 22, and 24 were clear, but quite seedy; and the remainder of the glasses contained some seeds and were clear. The rest of the exemplary compositions were melted in a gas-oxygen furnace for 16 hours at 1800° C. At SiO₂ levels up to 81 mole percent, the glasses were clear, viscous, and free from seeds. At a concentration of 82 mole percent SiO₂, the glasses were clear, extremely viscous, and surprisingly, free from seeds. At a content of 83 mole percent SiO₂, the glasses appeared to be clear, but so viscous that they barely moved, and contained some seeds.

T	\mathbf{A}	BL	E	H
	_		-	

	1	2	3	4	5	6
Ann. Pt.	892	863	848	880	871	888
Str. Pt.	839	848	791	822	812	827
Coef. Exp.	36.2	31.9	27.8	34.0	33.9	36.9
Liquidus	1363	1408	1427	1428	1446	1319
Liq. Vis.	1.1	· 	<u>·</u>	<u>·</u>		14
Log ρ	•					
250	12.74				_	11.97
350	10.76			<u> </u>	_	10.09
Die. Con.	5.43	_	_			6.00
Loss Tan.			-	· 	 .	0.0022
5% HCl	•					
Appear.	N.C.		_	_		N.C.
Wt. Loss	0.02			_	_	0.01
5% NaOH						0.01
Appear.	S. Haze				_	S. Frost
Wt. Loss	1.2	_	·	·		1.3
0.02N Na ₂ CO ₃	1.5					1.0
	NC					C · Uana
Appear. Wt. Loss	N.C. 0.02		_	_		S. Haze
** t. LOSS	0.02					0.02
	7	8	9	10	11	12
Ann. Pt.	846	821	870	861	857	841
Str. Pt.	789	763	811	804	799	785
Coef. Exp.	30.2	26.5	33.3	32.0	31.7	27.8
Liquidus	1408	1443	1418	1436	1486	1417
	13	14	15	16	- 17	18
Ann. Pt.	888	890	880	871	873	884
Str. Pt.	829	828	816	811	810	826
Coef. Exp.	36.6	36.0	37.2	34.5	39.3	38
Liquidus	1414	1387	1375	1399	1336	1365
	19	20	21	22	23	24
Ann. Pt.	809	848	901	794	829	880

TABLE II-continued								
Str. Pt. Coef. Exp. Liquidus	755 45.1 1320	790 41.2 1346	837 37.0 1375	743 48.3 1301	769 44.3 1313	820 41.2 1426		
	25	26 .	27	28	29	30		
Ann. Pt. Str. Pt. Coef. Exp. Liquidus	785 736 51.6 1209	807 750 48.0 1289	849 797 44.1 1433	885 832 43.9 1573	820 772 48.3 1421	811 758 38.1 1441		
Ann. Pt. Str. Pt. Coef. Exp. Liquidus	865 804 37.0 1369	 39.5 1418	834 778 38.4 1408	893 832 35.3 1382	855 796 38.6 1359	 798 41.2 1411		
	37	38	39	40	41	42		
Ann. Pt. Str. Pt. Coef. Exp. Liquidus	843 781 36.1 1486	863 800 35.4 1457	869 809 36.4 1384	884 822 37.1 1423	857 798 35.5 1427	896 824 33.7 1400		
	43	44	45	46	47	48		
Ann. Pt. Str. Pt. Coef. Exp. Liquidus	856 803 40.4 1387	889 831 33.1 1390	877 818 31.6 1446	904 841 30.4 1457	900 839 34.1 1461	896 834 32.1 1445		
A D+	893	50	884	908	907	901		
Ann. Pt. Str. Pt. Coef. Exp. Liquidus	834 — 1381	827 31.8	826 30.4 1487	846 29.4 1436	846 27.4 1460	838 31.3 1461	<	
	55	56	57				· ············	
Ann. Pt. Str. Pt. Coef. Exp. Liquidus	897 835 27.1 1450	887 824 38.0 1315	885 822 38.0 1342		-		•	

A conjunctional study of Tables I and II clearly illustrates the criticality of maintaining the SrO, Al₂O₃, and

SiO₂ concentrations within the prescribed ranges of the ternary system to prepare glasses capable of being melted at temperatures no higher than about 1800° C., and which demonstrate annealing points of at least 850° C., linear coefficients of thermal expansion over the temperature range of 25°-300° C. of about $30-40\times10^{-7}$ °C., liquidus temperatures not exceeding about 1400° C., and liquidus viscosities of at least 100,000 poises. That study also indicates the generally unfavorable effects which the inclusion of MgO, CaO, ZnO, La₂O₃ and/or MnO can have upon the resulting glasses with respect to the above properties. In contrast, the addition of BaO can be useful in reducing the liquidus temperature without significantly affecting the viscosity of the glass, but care must be exercised in such additions because of volatilization of BaO and the development of seeds in the glass.

I claim:

1. A clear, transparent, homogeneous strontium aluminosilicate glass capable of being melted at temperatures no higher than about 1800° C. which exhibits an annealing point greater than 875° C., a linear coefficient of thermal expansion over the temperature range of 25°-300° C. of about 30-40×10-7/°C., a liquidus temperature not exceeding about 1400° C., and a liquidus viscosity of at least 1×10⁵ poises, said glass being essentially free from alkali metal oxide, MgO, CaO, ZnO, La₂O₃, and MnO, and consisting essentially, expressed in terms of mole percent on the oxide basis, of about

9-12% SrO,

9-12% Al₂O₃,

77-82% SiO₂.

2. A glass according to claim 1 wherein up to 8 mole percent BaO is substituted for SrO.

* * * *

<u>4</u>0

45

50

55

60