United States Patent [11] Patent Number: 4,627,020

Anderson et al. 451 Date of Patent: Dec. 2, 1986
54 H R ROTATING A Y
[54] I;:,EIG];;) D FOR ROTATING A BINAR OTHER PUBLICATIONS
, Morrin, ‘“Rotation of Images Using Contour Com-
[75] Inventors: Karen L Anﬂer?on, Peekskill; pressed Data”, IBM Technical Disclosure Bulletin, vol.
Frederick C. Mmtzer., Shru‘_b Oak; 18, #8, Jan. 1976, pp. 2640-2642.
Gerald Goertzel, White Plains; Joan | | |
L. Mitchell, Ossining, all of N.Y. Primary Examiner—David Y. Eng
Attorney, Agent, or Firm—George E. Clark; Thomas P.
[73] Assignee: International Business Machines Dowd
Corporation, Armonk, N.Y.
pOTRHOT [57] ABSTRACT
[21] Appl. No.: 567,214 A method for rotating an image by 90 degrees includes
[22] Filed: Dec. 30, 1983 the steps of: storing the image in a raster format ar-
ranged in r rows by ¢ columns, image information In
[51] Imt. Cl4 ..o, GO6F 7/00; GO6F 15/62; each row being stored in a number of bytes, each byte
GO6K 9/36 having b bits, there being c¢/b bytes in each row of the
[52] US.CL .o, 364/900; 382/46 raster format; moving a block of the image into a tempo-
[58] Field of Search 382/46; 340/727, 728; rary storage, there being r rows by v columns in the
364/200 MS File, 900 MS File block; separating each image block into groups of bytes
, of rotatable size; determining for each group if all bits
[56] References Cited are the same value; rotating each group that does not
U.S. PATENT DOCUMENTS have all bits the same value; storing each rotated group
4168.488 9/1979 Evans 340/727 in an output area of the raster storage; repeating the
4245321 171981 Gennetten ...omn. 3407727 8bOVe steps for all remaining blocks of the image.
4,267,555 5/1981 Boyd et al. ..oooovveeeerreririennns 340/727
4,271,476 6/1981 Lotspiechccoieiniinninnnn, 382/46 18 Claims, 8 Drawing Figures

8x8 Bit Rotation Calculation for One Nibble

& & @ = m w i B v g S W E W E E % % o g

¥

0 x X X XiX X X X x [1lx x x x x xi 40
Ixxxx ExOxxxxxxéoo
2 X X X XiX X X X! x| 1] x x x x x x: 40
I X X X XiX X X X! 40 00 40 Q0 §x0xxxxxx§00
4 x X X XiX X X X! XX x K KK XX

5 X X X XiX X X X: X X X X X X X X
5xxxx§xxxx§ X X X X X X X X

7 X X X XiX X X X! X X X X X X X X

U.S. Patent Dec. 2, 1986 Sheet10of6 4,627,020

in situy rotation

F1G. 1

1mage

Cecwamaa iw bytes~===--- > | | <=mmee- ow bytes=-~~--- >|
------------------------ | B Ot R
criginal containing | | cutput !
| image | I containing |
N PE P | | | image |
r | orig. | | | |<==escec-=>] |
| | image | I | = | =mmm—e—-- |
= |eememnee- I I l I rotd I |
|<e=mc--e>] l : | image |
R R R | N PR |
| |
R CRCRREe TR |
R T EETP— l
I —— | t
] |
| 1 rctated | |eeemeeceeeaa- |
|| imzge | | F' G 3
[} | | original | | .
| leemeemeaaas | image | |
| | |
l containing et |
l |
| |

4,627,020

Sheet 2 of 6

U.S. Patent Dec. 2, 1986

Uuo

I E

v Ol

Isse1dwiod puodseg dwa) uoissesdwiods ysu4 dwe| ebow] puibiio

NN\
NSNS
/4///\\
077
\\\\\\\\\\\\\\\\\
llnll
HERERER

n |

4,627,020

Sheet 3 of 6

U.S. Patent Dec. 2, 1986

X X X X X X X X X X X X' X
X X X X X X X X wxxxxwx
X X X X X X X X X X X X! X
XXX X X X X X XX X xix
XXX X x[g] X 00 O 00 OF X X X xi X
PX X X X x x| r|x: X X X XX
X X X X X X|gfx: e|qo} dn)o00j X
wxxxxxxﬁxm . X

G "Ol

I 3N B E Ex B B = 495 B N OB v =

llllllllllllllllll

X w X X X X X X

X ¢ X X X X X X
X w X X X X X X

9|qQIN SUQ 40§ UOHDINDID) UOHDIOY }1g 8XY

O~ NMTTU O~

4,627,020

Sheet 4 of 6

U.S. Patent Dec. 2, 1986

OLOLOLOL
OLoL10to0
OL0L0001

01010000
01000101
01000100
0100000l
01000000
000L0LOL
00010100
000L0001
00010000
00000101
00000100
00000001
00000000

2194

02020202

02020200

02402000¢

02020000

02000202

02000200
02000002

02000000

00020202

00020200

0002000¢

00020000

00000202

00000200

0000000¢
00000000

[AR]

9 914

OvOvOvOV
0vO¥0v00
OvOv000F
0v0¥0000
Ov000+0F
Ov000¢00
0¥00000¢?
0¥000000
000¢v0¢+0OY
000¥0¥00
000¥000Y
000¥0000
00000vOY
00000¥00
00000007F
00000000

LG4

08080808

08080800

08080008

08080000

08000808

08000800
08000008
08000000

00080808

00080800

00080008

00080000

00000808

00000800
00000008
00000000

0194

0
30
ao
20
a0
VO
60
80
L0
90
SO
140
€0
Ay,
10
00

(lIowioepoxay) uolpjoy g 8xg 40} sa|gp| dnxoon

Sheet 5 of 6 4,627,020

Dec. 2, 1986

U.S. Patent

LO1OLOLO
10101000
10100010
10100000
1000LOILO
10001000
10000010
10000000
O0LOLOLO
00101000
00100010
00100000
00001010
00001000
00000010
00000000

Z194

, Ol
¢0202020 ryovovovo
¢0202000 yOo¥yO¥000
¢0200020 yOv000FO0
c0200000 YO+ 00000
€0002020 v000+0¥0
¢0002000 ¥000+000
0000020 ¥00000+%0
¢0000000 ¥0000000
00202020 00¥0¥0v0
00202000 00¥0+000
00200020 00¥000+v0
00200000 00¥00000
00002020 0000v0+0
00002000 0000+000
00000020 000000¥%0
00000000 00000000

9194 Si9¢

(lowioapoxay) uoiypjoy

80808080
80808000
80800080
80800000
80008080
80008000
80000080
80000000

00808080

00808000
00800080
00800000
00008080
00008000
00000080
00000000

viqi

10
310
do
J0
80
VO
60
80
LO
90
SO
140
¢0
cO
10
00

8 8x8 40} ss|gp] dnxooT

U.S. Patent Dec. 2, 1986 Sheet 6 of 6 4,627,020

S

_-ﬂJ

ety —hirruiil

9C9898F 8

08080808
04000000
00000000
00000000

o O
(\] o
o O
) e
- -
O e
QO
-

-~ 80808080
- 00000040

-l

FI1G.8

'-I-. - am mFg & a - & ik o - o - W >- e mEmaE ok lw oEm
* I * ’ F " e I I 1 b : i Il L
' ' 1 1 ' 1 ; ’ X) + " ¢ '
OO = OO OO O Ot o o]
i) ' A
¢ ' ‘ ‘ ' ! ' ' ' ¢ ' ' . ! ¢ ’
| 1 %) i '
I ' ¥ ' y ¥ ¥ ¥ 1
i i " " § :' ' t ' ' i "
:-—*.D.O.—':—':D:DID: IaNoNeoNeIF HelleNe)
N) I ¢ ' ' ' ¥ ! \ ‘ ' I : '
' M 1 | | * t $ # 4 ‘ ; | t | i
! 1 1 " 1
- T = O 0O T e O O O

h*—_*——**m--.-— - ----—-L—-h———-b. i 1 3 : :

b i

4
' ' " I I I I I ' [| $ } I ' "

oioi0ioioioimix: oloioi~|~ioioio

origina

000000 — - 000~ ~ 000!

1 ' 1 ' ' ’ !
. |
O OO0 0O e el eiaitall o Heleoy
,]

‘ J‘ w M MM
L oOoOom

rotated 90 degrees

Rotation of an 8x8 Bit Block
|

 1able 5

3

80000080 =
40000000 =~
20000000 =
10000000 =
08000000 -
04000000 -
02020202 -

-
w—
-
-
-
oy
-

FF03038

+ Ul

4,627,020

1

METHOD FOR ROTATING A BINARY IMAGE

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to digital image pro-
cessing methods and more particularly to methods for
image rotation.

2. Description of the Prior Art

The following are systems representative of the prior
art.

U.S. Pat. No. 3,976,872 shows a method of rotation of
an image by 90 degrees among other functions per-
formed. However, the patent does not show a method
for rotating an image by 90 degrees which includes
testing groups of bits in the image to determine whether
the group of bits is all the same value as does the present
invention.

U.S. Pat. No. 3,968,475 shows a digital processor for
extracting data from a binary image in which the image
is divided into an array of sample areas each sample area
containing an array of binary data spaces. Although the
patent demonstrates image rotation by any one of a
number of predetermined angles, the patent does not
show a method for rotating an image by 90 degrees
either clockwise or counterclockwise including testing
the sample group to determine if all bits of the sample
group are the same as does the method according to the
present invention.

U.S. Pat. No. 4,052,699 relates to an image processing
systemn wherein video data is stored in a matrix having
n rows and n columns. The image 1s rotated 90 degrees
in a piece-meal fashion by vertically accessing word by
word video data previously stored as horizontal words.
However, the method and apparatus of the patent do
not test the group of words to be rotated to determine if
all bits in the group are the same as does the method
according to the present invention.

U.S. Pat. No. 4,168,488 shows hardware for image
rotation of a word organized image buffer where the
buffer is divided into a number of square sections each
storing a portion of the full image. Although the patent
shows apparatus for image rotation through an angle of
90 degrees, the patent does not show a method which
includes testing a subimage to determine if all bits in the
subimage are the same value as does the method accord-
ing to the present invention.

U.S. Pat. No. 4,225,929 relates to a code converter
including means for rotating an image about a center
point. The patent does not include testing of bits in a
subimage to determine if all bits are the same as does the
method according to the present invention.

U.S. Pat. No. 4,271,476 relates to apparatus for rotat-
ing horizontal scan format images into vertical scan
format images for printing or other processing. The
patented apparatus divides the image into a number of
sections and then rotates each section in sequence. The
patent does not show a method including testing each
section to determine if all bits are the same as does the
method according to the present invention.

EPO published patent application no. 081,096 relates
to an image rotation control circuit for controlling
printing of an image on a printer. The published control
circuit does not store the entire display but merely a
single line at a time which is converted from a horizon-
tal line to a vertical line or vice versa for printing. The
publication does not show a method for rotating an
image by 90 degrees including testing a portion of the

10

15

20

25

30

35

40

45

50

535

65

2

image to determine if all bits representing picture ele-
ments are the same as does the method according to the
present invention.

An article in the IBM Technical Disclosure Bulletin,
Vol. 18, No. 8, January 1976, p. 2640 shows a method
for rotation of images using contour compressed data.
However, the article does not include testing portions
of an image to determine if all bits are the same as does
the method according to the present invention.

An article in the IBM Technical Disclosure Bulletin,
Vol. 13, No. 11, April 1971, p. 3267 shows a method for

performing a fast transformation of axes on two dimen-
sional binary images. The article does not include test-
ing portions of an image to determine if all bits are the
same as does the method according to the present in-
vention.

An article in the IBM Technical Disclosure Bulletin,
Vol. 18, No. 8, January 1976 at page 2633 shows a shift
register system for image orientation which among
other functions rotates an image in 4 X 4 arrays of char-
acters. The article does not include testing portions of
an image to determine if all bits are the same as does the
method according to the present invention.

The prior art discussed above does not teach nor
suggest the present invention as disclosed and claimed

herein.
SUMMARY OF THE INVENTION

Therefore, it is an object of the present invention to
rotate an image by a method including the steps of:
storing the image in a raster format arranged in r rows
by ¢ columns, image information in each row being
stored in a number of bytes, each byte having b bats,
there being c/b bytes in each row of the raster format;
moving a block of the image into a temporary storage,
there being r rows by v columns in the block; separating
each image block into groups of bytes of rotatable size;
determining for each group if all bits are the same value;
rotating each group that does not have all bits the same
value; storing each rotated group in an output area of
the raster storage; repeating the above steps for all re-
maining blocks of the image.

It is another object of the present invention to rotate
an image as above by a method further including the
step of: moving remaining bytes to fill the space vacated
by the removed image block if the image 1s to be rotated
in situ.

Accordingly, 2 method for rotating an image by 90
degrees includes the steps of: storing the image 1n a
raster format arranged in r rows by c columns, image
informatin in each row being stored in a number of
bytes, each byte having b bits, there being c¢/b bytes in
each row of the raster format; moving a block of the
image into a temporary storage, there being r rows by v
columns in the block; separating each image block nto
groups of bytes of rotatable size; determining for each
group if all bits are the same value; rotating each group
that does not have all bits the same value; storing each
rotated group in a output area of the raster storage;
repeating the above steps for all remaining blocks of the
image.

The foregoing and other objects, features and advan-
tages of the invention will be apparent from the more
particular description of the preferred embodiments of
the invention, as illustrated in the accompanying draw-
ing.

4,627,020

3
BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 1s a schematic diagram of in situ rotation ac-
cording to the present invention.

FIG. 2 is a schematic diagram of not in situ rotation
according to the present invention.

FIG. 3 is a schematic diagram of rotation of subim-
ages according to the present invention.

FIG. 4 is a schematic diagram of byte rearrangement
for image rotation according to the present invention.

FIG. 5 is a schematic diagram of rotation of a nibble
by the method of the present invention.

FIG. 6 is a first group of look up tables for rotation of
an 8X8 block of an image in accordance with the
method of the present invention.

FIG. 7 is a second group of lock up tables for rotation
of an 8 X8 block of an image in accordance with the
method of the present invention.

FIG. 8 is a diagram of the method for rotating an
8 8 bit block in accordance with the method of the
present invention.

In the drawing, like elements are designated with
similar reference numbers, and identical elements in
different specific embodiments are designated by identi-
cal reference numbers.

DESCRIPTION OF PREFERRED
EMBODIMENTS OF THE INVENTION

The method according to the present invention ro-
tates an image clockwise or counterclockwise ninety
degrees. Images are considered to exist in storage read-
ing from left to right across the rows, from the top of
the image to the bottom. Rotation may be performed in
situ, or the output image may occupy separate storage
which does not overlap the storage occupied by the
original image. It is possible to extract a rectangular
portion of a larger image, rotate it, and store it as a
portion of another larger image, if desired. The present
method performs an in situ rotation if the calling routine
supplies the same address for the original and output
images; if the output image address is not equal to the
original image address, then the rotation 1s not per-
formed in situ, the input image is not altered by the
rotation, and the original and output images are not
permitted to overlap. The two basic types of rotation
are illustrated in FIG. 1 and FIG. 2.

In the example shown in FIG. 1, the rotated image
occupies the storage which contained the original
image before rotation. For this type of rotation, the
number of rows (r) must be a multiple of eight, since the
bits in a vertical column are packed into bytes by the
rotation and a row of the output image must not end
with a fraction of a byte.

In the example of FIG. 2, the original and rotated
images occupy separate areas in storage. The original
image is not altered by the rotation operation. If the
number of rows is not a multiple of eight, the night edge
of the rotated image will be filled out to a byte bound-
ary with zeroes. The original and rotated images may
not be wider than their respective containing images
(although they may be the same width). If the area of
storage between the first and last bytes (inclustve) of the
original image overlaps the area of storage between the
first and last bytes (inclusive) of the output image, the
widths of the original and output containing images
must be equal.

10

13

20

25

30

35

45

50

53

65

4

In the example of FIG. 3, the original and rotated
images are assumed to be part of the same containing
image.

The program embodying the present mmvention re-
quires a single parameter PARM which gives the ad-
dress of a list of six parameters controlling the rotation.
These parameters are stored in a 24-byte buffer; all
parameters are full 4 byte words. FIXED(31) specifies a
4 byte value; PTR(31) indicates variables which will be
addresses. The six parameters are:

DCL

PARM PTR(31); DCL
1 LIST BASED(PARM),

2 INIMAGE PTR(31),

2 OUTIMAGE PTR(31),

2 IROWS FIXED(31),

2 ICOLS FIXED(31),

2 IWID FIXED(31),

2 OWID FIXED(31):

INIMAGE —Pointer to the first byte (i.e. the upper
left-hand corner byte) of the original image.

OUTIMAGE —Pointer to the location where the first
byte of the output image is to be stored.

IROWS —Number of lines in the original image. (Cor-
responds to “r’ in FIGS. 1, 2, and 3.)

ICOLS —Number of (byte) columns in the original
image. (Corresponds to “c” in FIGS. 1, 2, and 3.

IWID —Number of (byte) columns in the image of
which the original image is a part. If IWID =0, the
width of the original image (ICOLS) is substituted for
IWID. (IWID corresponds to “iw” in FIGS. 1, 2, and
3)

OWID —Number of (byte) columns in the image of
which the output image is a part. If OWID =0, the
width of the output image (the integer quotient of
(IROWS +7)/8) is substituted for OWID. (OWID
corresponds to “ow” in FIGS. 1, 2, and 3.)

The problem considered here is that of rotating a
binary image in storage clockwise or counterclockwise
by ninety degrees. The rotation algorithm proposed
uses a novel combination of techniques (such as a fast
rotation algorithm for an eight by eight bit umt and
exploitation of the fact that a binary image typically
includes large areas containing only zero (white) pic-
ture elements) to produce code which is significantly
(four to 12 times) faster than current methods.

We describe the counterclockwise case in detail; the
required modifications for the clockwise case are sum-
marized at the end of this specification. The bits making
up the image are assumed to be stored packed eight to a
byte. Since bit operations are computationally expen-
sive, the image is divided into eight by eight bit blocks.
The bits in an eight by eight bit block may be rotated
relatively efficiently; the blocks are rearranged in stor-
age to complete the rotation process. The image rota-
tion may take place in situ, or the output image may be
constructed in an area of storage which does not over-
lap with the input image.

The block rearrangement for in situ rotation proceeds
as illustrated in FIG. 4. The first 32 bytes of each row of
the input image are copied into temporary storage. (The
number 32 is arbitrary; it controls the amount of tempo-
rary storage required to perform the algorithm.) The
remaining bytes in each row of the input image are
“moved up” in storage, filling in the space left by the
removal of the first 32 bytes of each row and leaving a

4,627,020

S

space at the end of the input image which will accom-
modate the data from the temporary buffer which must
be moved into it. This empty space is cleared (for rea-
sons explained below) and the data from the temporary
storage area is rotated and stored in the empty space,
producing the last 256 lines of the output image. (Since
the rotation of the image is counterclockwise, the data
from the left edge moves to the bottom of the image; 32
bytes, or 256 bits, of data was taken from each row, so
that 256 lines of output are produced.)

Next, the next 32 bytes from each row are copied into
temporary storage, and the remaining data in the rows
of the input image are compressed as before. The 256
lines of output image already produced are not dis-
trubed. An empty space now exists immediately before
the last 256 lines of the output image; this area is cleared
and the data from the temporary buffer are rotated into
it.

This process continues until no data is left in the input
image. The size of a row of the original image need not
be a multiple of 32; if it is not, the last rotation operation
acts on only the number of leftover bytes which were in
the input 1image.

If the input and output images do not occupy the
same storage, the output image may be cleared before
the rotation begins. Successive groups of 32 bytes from
each row are copied into temporary storage for process-
ing, but the input image is not compressed after each
copy operation; it is left intact. Since the input image
does not have to be compressed, this type of rotation is
slightly faster than in situ rotation.

Rotation of the bits in the individual eight by eight bit
blocks occurs as the data from temporary storage are
rotated into their final positions in the output array. The
data in the temporary storage area are processed in
four-byte-wide columns. (The case in which the number
of bytes of data in each row is not a multiple of four is
treated separately but the process is essentially the
same.) Eight lines of the input image are processed at a
time. The basic problem is thus to take a four by eight
byte (32 by 8 bit) image, rotate the four eight by eight
blocks within it, and position them in the output array.

The first step in the process is to determine whether
all of the bits in the 32 by 8 bit block are zero. In this
case, no processing is necessary, since the output from
the rotation will be a block of zeroes, and the area in the
output array where the rotated block would be stored
has already been zeroed. Recognizing that no process-
ing is necessary for this case is an important element in
gaining speed in the algorithm, since most of the execu-
tion time would normally be spent in the rotation of the
eight by eight bit blocks, and the case where a 32 by 8
bit block contains entirely of zeroes occurs for from
approximately one-third of the image (for kanji or dense
text) to over four-fifths of the image {for some drawings
and relatively sparse text, e.g. memos).

If a 32 by 8 bit block contains some nonzero bits, it 1s
broken up into four eight by eight bit blocks. Each of
these blocks is then checked to see if it consists entirely
of zeroes; if it does, it can be skipped as described above.
Otherwise the block is rotated using the algorithm illus-
trated in FIG. 5. This algorithm is described in more
detail below. Briefly, the eight bytes are broken up into
nibbles, which are used to index into a set of lookup
tables shown in FIGS. 6 and 7. These tables are con-
structed so that when the values locked up for the low-
or high-order nibbles are summed, the result gives the
first or last four bytes in the rotated block. See FIG. 8.

10

15

20

235

30

35

40

45

30

33

60

65

6

In addition to rotating an entire image, this algorithm
may be used to extract a rectangular portion of one
image and rotate it into a rectangular portion of another
image. This is done by skipping over the data in the
portions of the rows of the input image which are not
part of the area to be rotated, and by similarly leaving
an appropriate amount of space between the rows of the
output image. This type of rotation cannot convemently
be performed in situ by this algorithm; our implementa-
tion allows it only when the input and output images are
separate.

In order to perform a clockwise rotation, we would
simply perform the copy/compress process moving
from right to left rather than from left to right (i.e. copy
the last 32 bytes from each line into temporary storage
at each stage), rotate the data from temporary storage
into the output image so that the rightmost (rather than
the leftmost) eight by eight bit blocks are rotated to the
bottom of the output image, and change the loockup
tables used in the rotation of eight by eight bit blocks to
produce a clockwise rather than a counterclockwise
rotation.

The program embodying the present invention re-
quires an area of storage to contain its variables. These
variables are as follows: |

Variables in storage shared by all procedures

oftset from
beginning
name type of storage
inimage PTR(31))
immageb FIXED(8) 0
outimage PTR(31) 4
outimageb FIXED(B) 4
1Irows FIXED(32) 8
icols FIXED(32) 12
iwid FIXED(32) 16
owid FIXED(32) 20
ctemp PTR(31) 24
svb PTR(31) 2R
b(ix PTR(31) 32
bOiim PTR(31) 36
tindex PTR(31) 40
P PTR(31) 44
ncecols FIXED(32) 48
owid?2 FIXED(32) 352
owid3 FIXED(32) 56
owid4 FIXED{32) 60
owid3S FIXED(32) 64
owid6 FIXED(32) 68
owid?7 FIXED{(32) 72
owid8 FIXED(32) 76
ocols FIXED{32) &0
Orows FIXED(32) B84
tsize FIXED(32) 88
ttail FIXED{(32) 92
X FIXED{(32) 96
ccols FIXED{(32) 100
bite FIXED(32) 104
t FIXED{32) 108
x1(8) FIXED(8), 112
indexed
ill FIXED(32) 112
121 FIXED{32) 116
xu(8) FIXED(8), 120
indexed
ilu FIXED{(32) 120
12u FIXED{(32) 124
whole FIXED(32) 128
wholel) FIXED(8) 128
wholel FIXED(8) 129
whole2 FIXED(8) 130
whole3l FIXED(8) 131
W FIXED(32) 132
whb(FIXED(8) 132
wbl FIXED(8) 133

4,627,020

7
-continued
Variables in storage shared by all procedures

offset from

beginning
name type of storage >
wb? FIXED(8) 134
whb3 FIXED(8) 135
isflag FIXED(8) 136
resflag FIXED(8) 137
ut0(16) FIXED(32) 140
intl(16) FIXED(32) 204
fut2(16) FIXED(32) 268
ut3(16) FIXED(32) 332
lutd(16) FIXED(32) 396
tuts(16) FIXED(32) 460
lut6(16) FIXED(32) 524 15
iut7(16) FIXED(32) 588

tempbuf(N) FIXED{32) 652 (N < 64*(irows+7)/8)

Variables based on the pointer *'b(0” 20
name type offset from b0
bx(228) FIXED(B), indexed 0
w(FIXED(32) 0
wl FIXED{32) 32
w2 FIXED(32) 64 25
w3 FIXED32) 06
w4 FIXED{32) 128
w3 FIXED(32) 160
w6 FIXED(32) 192
w7 FIXED(32) 224

—_— X

_ Variable based on the pointer “bl1™

8

Since the language in which this program is written
employs forward Polish notation, an end-of-statement
symbol (such as the *;”" in PL/I) ts unnecessary in most
cases. Statements may extend ov.. inultiple lines.

All array indices are expressed as offsets in bytes from
the beginning of the array.

The following subroutines are assumed to be avail-
able:

procedure copvcompr;

bO=inimage

b1=b0

nccols=-ccols x

p=addr tempbuf

if nccols>0

begin
if p<etemp

call copy(p,bl,32)
bl=+bl x
call copy(b0O,bl,nccols)
b0=+b0 nccoils

bl=+bl nccols

name type offset from bl
by(8*owid) FIXED(RB),indexed 0 3
The lookup tables lut0, lutl, . . . lut7 are initialized
with the following hexadecimal values:
40
lutO: 00000000 BODOODOO 00800000 80800000
00008000 80008000 00808000 80808000
00000080 80000080 00800080 80800080
00008080 80008080 OOBOSOSO 80808080
lutl: 00000000 40000000 00400000 40400000 45
00004000 40004000 00404000 40404000
00000040 40000040 00400040 40400040
00004040 40004040 00404040 40404040
lut2: 00000000 20000000 00200000 20200000
00002000 20002000 00202000 20202000
00000020 20000020 00200020 20200020 50
00002020 20002020 00202020 20202020
tutd: 00000000 10000000 00 100000 10100000
00001000 10001000 00101000 10101000
00000010 10000010 00100010 10100010
00001010 10001010 00101010 10101010
lut4: 00000000 08000000 OOOBOO0O 08080000
00000800 08000800 00080800 08080800 97
00000008 08000008 00080008 O80R0008
00000808 08000808 00080808 08080308
lut5: 00000000 04000000 00040000 04040000
00000400 04000400 00040400 04040400
00000004 04000004 00040004 04040004
00000404 04000404 00040404 04040404 60
Juté: 00000000 02000000 00020000 02020000
00000200 02000200 00020200 02020200
00000002 02000002 00020002 02020002
00000202 02000202 00020202 02020202
lut?: 00000000 01000000 00010000 01010000
00000100 01000100 DO01010C 01010100 65
0000000! 01000001 0001000 01010001
0000010¢ 01000101 00010101 01010101

p=+p 32

repeat

end

end

call zero(b0,tsize)

else

begin

if p<etemp

call copy(p,bl,32)
bl=+bl ccols
p=+p 32

repeat

4,627,020

9 10
end bl=-bl sl]l owid 5
end tindex=bl
5
call zero(inimage,*ccols irows) begin
end b0#+b0 256
10
end if bO-~<etemp leave end
procedure copy3Z; bi=+bl 1

15
whole=or or or or or or or w0 wl w2

w3 wié w5 wb w/

bl=inimage

inimage=+inimage X

b0ix=b0

bi=tindex

if whole=0
p=addr tempbuf 20
repeat
begin
& end
Lf p<etem | r 25
R d svb=bl
call ,bl,32
:a cOPYLP : if whole3=0 goto byteZ end
bl=+bl iwid | 30
. wb0=bx (003)
=+p 32
PR wb1l=bx(035)
repeat
d 3 wb2=bx(067)
end wb3=bx (099)
end o ill=and X'3C3C3C3C' (sll w 2)
- if ttail-= ilu=and X'3C3C3C3C' (srl w 2)
call zero(etemp,ttail) s Wb0=bx(131)
end wbl=bx(163)
end wbh2=bx(195)
50
procedure pr32; wb3=bx(227)
b0lim=-+addr tempbuf x 256 i2l=and X'3C3C3C3C' (sll w 2)
335
b0ix=-addr tempbuf 260 j2u=and X'3C3C3C3C' (srl w 2)
begin w=+++++++1ut0(x1(0)) lutl(xl(1l))
60
b0=+b0ix 4 Tut2(x1(2)) lut3(x1(3))
if b0-<b0lim leave end lut4d (x1(4)) 1lut5(x1(5))
65

lutb(x1(6)) lut7(x1(7))

by (0) =wb0

11
by(owid) =wbl

by (owid2)=wb2

by(owid3)=wb3

w=+++++++1ut0(xu(0)) lutl(xu(l))
Iut2(xu(2)) lut3(xu(3))
lut4 (xu(4)) JutdS(xu(s5))
luté6(xu(6)) lut7(xu(7))

by (owid4 y=wb0

by (owid5)=wbl

by (owid6)=wb2

by (owid7)=wb3

label bvtel

bi=+bl owid8

if whole2=0 goto bytel end

wb0=bx(002)

wbl=bx(034)

wb2=bx (066)

wb3=bx (098)

ill=and X'3C3C3C3C' (sll w 2)

ilu=and X'3C3C3C3C' (srl w 2)

wb0O=bx(130)

wbl=bx(162)

wb2=bx(194)

wb3=bx(226)

i21=and X'3C3C3C3C’

(sl]l w 2)

iZ2u=and X'3C3C3C3C' (srl w 2)

w=++++++1ut0(x1(0)) Iutl(x1(1))
let2(x1(2)) lut3(x1(3))

lut4d (x1(4)) lut5(x1(5))

4,627,020

5

10

15

20

25

30

35

43

30

35

65

12
lut6(x1(6)) 1lut7(x1(7))

by(0) =wbO

by (owid) =wbl

by (owid2)=wb2

by (owid3)=wb3

W=+ 1ut0(xu(0)) lutl(xu(1))
lut2(xu(2)) lut3(xu(3))
lut4(xu(4)) luts(xu(5))
luté(xu(6)) lut7(xu(7))

by (owid4)=wb0

by (owid5)=wbl

by (owid6)=wbZ2

by (owid7)=wb3

.abel bytel

bl=+bl owid8

if wholel=0 goto byte0 end
wbO0=bx (001)

wbl=bx(033)

wb2=bx{065)

wb3=bx (097)

ill=and X'3C3C3C3C' (sll w 2)
ilu=and X'3C3C3C3C' (srl w 2)
?b0=bx(129)
ﬁb1=bx(161)
wb2=bx(193)
wbh3=bx(225)
i21=and X'3C3C3C3C' (sll w 2)
i2u=and X'3C3C3C3C' (srl w 2)

w=+++++++1ut0(x1(0)) lutl(x1(1))

13
lut2(x1(2)) lut3(x1(3))

lut4(x1(4)) lut5(x1(51)
Tut6 (x1(6)) lut7(x1(7))

by (0) =wb0

by(cwid) =wbl

by(owid2)=wb2

by(owid3)=wb3

w=+++++++1ut0(xu(0)) luti(xu(l))
lut2(xu(2)) lut3(xu(3))
lutd (xu(4)) lutd(xu(sd))
luté(xu(6)) lut7(xu(7))

by (owid4)=wb0

by({owid5)=wbl

by(owid6)=wb2

by (owid7)=wb3

lLabel byteD

if whole(=0

bl=svb

" repeat

end

bl=+bl owid8

wbO0=bx (000)

wbl=bx(032)

wb2=bx (064)

wb3=bx(096)

ill=and X'3C3C3C2Z" (s11 w 2)

ilu=and X'3C3C3C3C' (srl w 2)

wb0=bx(128)

wbl=bx{(160)

4,627,020

10

15

25

30

35

45

30

33

65

wb2=bx(192)

wb3=bx(224)

i21=and X '3C3C3C3C'

i2u=and X'3C3C3C3C’

w=+++++++1ut0(x1(0))
lut2(x1(2))
luté4 (x1(4))

lute (x1(6))

by (0) =wb0
by(owid) =wbl
by(owid2)=wb2

by (owid3)=wb3

w=+++++++1ut0(xu(0))
lut2(xu(25)
luté (xu(4))

Iutb6(xu(6))

by (owidé4)=wb0
by (owid5)=wbl
by(owid6)=wb2
by(owid7)=wb3
bl=svb

repeat

end

repeat

end

end

14

procedure pr32last;

(sll w 2)

(srl w 2)

hutl(x1(1))
lut3(x1(3))
Iut5(x1(5))

lut7(x1(7))

lutl(xu(l))
Iut3(xu(3))
lut>3(xu(5))

lut7(xu(7))

b0=+-addr tempbuf 256 X

bl=-ocutimage 1

4,627,020

15 16
begin i2l=and X'3C3C3C3C" (s1l w 2)
bO0=+b 256 i2u=and X'3C3C3C3C' (srl w 2}
5
if bO-<etemp leave end w=+++H++++1utO0(x1(0)) lutl(x1(1))
h1=+h1 1 lut2(x1(2)) lut3(x1(3))
10
whole=or or or or or or or wl wl w2 Tuté '
ole~or or or ¢ utd(x1(4)) lut5(x1(5))
lut6(x1(6
(f wholes) utb(x1(6)) lut7({x1(7))
by (0) =wbU
repeat
by(owid) =wbl
end
by (cwid?)=wb2
svb=b1|

by (owid3)=wb3

25 w=4++++++1ut0
if resflag 11t 3 ut0(xu(0)) lutl(xu(l))

lut |
if resflag=2 utz(xu(2)) lut3(xu(3))

30 lut4 4
goto lbytelx uté(xu(4)) lut5(xu(5))

e lut6(xu(6)) lut7(xu(7))

goto lbyteox 35 bYCOWid4)=WbO

by (owid5)=wbl
end
by(owidé)=wb2
end 40
by(owid7)=wb3

if whole2=0 goto lbytel end .
Yabel lbytel

wb0=bx (002) 45 leeb] .
= owi

wb1=bx (034) label lbytelx

wb2=bx (066) > if wholei=0 goto lbytel end
wb3=bx (098) wb0=bx (001)

ill=and X'3C3C3C3C' (sll w 2) » wh1=bx (033)

ilu=and X' 3C3C3C3C' (srl w 2) wb2=bx (065)

wb0=bx (130) D wb3=bx (097)

wbl=bx(162) ill=and X'3C3C3C3C' (s11 w 2)
we 2=bx (194) 65 {lu=and X'3C3C3C3C' (srl w 2)

wb3=bx(226) wb0=bx(129)

17
wbl=bx(161)

wb2=bx(193)
wb3=bx (225)
i2l=and X'3C3C3C3C' (sll w 2)

i2u=and X'3C3C3C3C' (srl w 2)

W=HHHF1ut0 (x1(0)) lutl(x1(1))

Iut2(x1(2)) lut3(x1(3))
lutd (x1(4)) lut5(x1(5))
Juté(x1(6)) 1ut7(x1(7))
by (0) =wb(
by(owid) =wbl
by (owid2)=wb2
by(owid3)=wb3
w=+++++++1ut0(xu(0)) lutl(xu(l))
lut2(xu(2)) lut3(xu(3))
Iut4 (xu(4)) lutdS(xu(s5))
luté(xu(€)) lut?(xu(7))
by (owid4)=wb0
by(owid5)=wbl
by (owid6)=wb2
by(owid7)=wb3
label 1byteO
if whole0=0
bl=svb
repeat

end

bl=+bl owid8

label lbvteOx

4,627,020

10

15

20

23

30

33

45

50

53

65

18
wbO=bx (000)

wbi=bx(032)

wb2=bx (064)

wb3=bx (096)

ill=and X'3C3C3C3C' (sll w 2)

ilu=and X'3C3C3C3C' (srl w 2)

wb0=bx(128)

wbl=bx (160)

wb2=bx(192)

-WE3=bx(224)

i21=and X'3C3C3C3C' (s1] w 2)

i2u=and X'3C3C3C3C" (srl w 2)

w=+++++++1ut0(x1(0)) lutl(x1l(1l))
lut2(x1(2)) lut3(x1(3))
lut4(x1(4)) lutS5(x1(5))
lut6(x1(6)) lut7(x1(7))

by (0) =wbO

by(owid) =wbl

bv({owid2)=wb2

by (owid3)=wb3

w=+++++++1ut0(xu(0)) lutrl(xu(l))
lut2(xu(2)) lut3(xu(3))
veb(xu(4)) lutb(xu(s))
lutb(xu(6)) lut7(xu(7))

by (owid4)=wbO

by (owid5)=wbl

by (owid6)=wb2l

by (cwili7)=wb3

bl=svb

4,627,020

19 20
repeat . b0=+b0 owid
end t=-¢ 1 &
5
end repeat
procedure turn90cc(argpt); and
10
("argpt'' gives the address of the end
argument buffer)
call copy(addr inimage,argpt,24) end
135
inimageb=0 tsize=sll irows 5
outimageb=0 ccols=icols
20
orows=sll icols 3 tindex=-+outimage “owid orows 1
ocols=sra +irows 7 3 etemp=+addr tempbuf tsize
if iwid=0 25 owid2=*owid 2
iwid=icols owid3=owid 3
end 30 owid4="owid 4
if owid=0 owid5="owid 5
owid=ocols 35 owidb=*owid 6
end owid7=*owid 7
if outimage=inimage 40 Owid8=*owid 8
isflag=1 resflag=0
else 45 begin
isflag=0 if ccols=0 leave end
ttail=sll -sll ocois 3 irows 5 50 if ccols>32
bO=outimage x=32
if owid=ocols else
53
call zero(b0,*ocols orows) x=ccols
else end
60
=0T OWS if isflag=l
begin call copycompr
63
if t->0 leave end else

call zero(bO,ocols) call copy32

4,627,020

21

end
resflag=expl and x 3

x=and x &

if x-=0
call pr32

end

if resflag-=0

call pr3Zlast
leave
end
ccols=-ccols X
repeat
end

end

Thus, while the invention has been described with
reference to preferred embodiments thereof, it will be
understood by those skilled in the art that various
changes in form and details may be made without de-
parting from the scope of the invention,
What is claimed 1is:
1. A method for rotating a binary image in place by 90
degrees comprising the steps of:
storing said image in raster form as a sequence of
bytes in an image buffer, said bytes representing
said image in the form of r rows by ¢ columns and
each byte having b bits;

dividing said image vertically into a series of blocks,
each block having r rows;

copying one block of said image bytes into a tempo-
rary storage buffer;

rearranging the uncopied bytes in the image buffer to
make available a region having an area equal to
that of the copied block and at the location in the
image buffer where said copied block will fit atter
rotation, by overwriting a portion of the copied
image bytes with uncopied image bytes;

separating said copied bytes in said temporary storage
buffer into groups of m X m bits for rotation;

transferring each group to the available region of the
image buffer, such that said groups are stored in
rotated raster form; repeating said steps of copying,
rearranging, separating, and transferring on the
successive blocks of said uncopied image bytes to
store said image in said image buffer in rotated
form.

2. A method as in claim 1 wherein said transferring
step COmprises:

determining for each said group if all bits have the

same value;

10

15

20

25

30

35

45

50

35

635

22

copying each group having all bits the same value to
the appropriate locauion in said available region of
said image buffer;

rotating each group that does not have all bits the
same value: and storing each rotated group with
said copied groups in raster form in the appropriate
location in said available region of said image
buffer.

3. A method as in claim 2 wherein said rotating step

comprises the further steps of:

creating a lookup table which takes an index value
and produces an output consisting of the bits of the
index value spaced at intervals of m bits, separated
by bits having the value zero;

dividing said m <X m group of bits to be rotated into
subunits of egual size for use in indexing said
lookup tabie;

applying each said subunit as an index to said lookup
table:

shifting the resulting output values according to the
position of the index subunit in the group of bits to
be rotated;

combining the shifted output values; and

storing the resulting bits as a rotated m X m bit block.

4. A method as in claim 1 wherein said transferring

step comprises:

filling said available region of said image buffer with
bits of a first binary value;

determining for each said group if all bits have said
first binary value;

rotating each group that does not have all bits of said
first binary value; and

storing each rotated group in raster form in the ap-
propriate location in said available region of said

image buffer.
5. A method as in claim 4 wherein said rotating step

comprises the further steps of:

creating a2 lookup table which takes an index value
and produces an output consisting of the bits of the
index value spaced at intervals of m bits, separated
by bits having the value zero;

dividing said m X m group of bits to be rotated into
subunits of equal size for use in indexing said
lookup table;

" applying each said subunit as an index to said lookup

table;
shifting the resulting output values according to the

position of the index subunit in the group of bits to
be rotated;
combining the shifted output values; and
storing the resulting bits as a rotated m X m bit block.
6. A method as in ciaim 1 wherein r equals c.
7. A method as in claim 1 wherein b equals 8 and said

groups comprise 8 by 8 bit blocks.

8. A method as in claim 2 wherein said rotating step

comprises the steps of:

creating a plurality of lookup tables which take an
index value and produce an output consisting of the
bits of the index value spaced at intervals of m bits,
separated by bits having the value zero, and shifted
by differing numbers of bits;

dividing said mxm group of bits to be rotated into
subunits of equal size for use in indexing said
lookup tables;

applying each said subunit as an index to one of said
lookup tables, the table used in each case being
determined by the position of the index subunit in

4,627,020

23

the group of bits to be rotated;
combining the shifted output values; and
storing the resulting bits as a rotated m X m bit block.
9. A method as in claim 4 wherein said rotating step
comprises the steps of:
creating a plurality of lookup tables which take an
index value and produce an cutput consisting of the
bits of the index value spaced at intervals of m bits,
separated by bits having the value zero, and shifted
by differing numbers of bits;
dividing said mXm group of bits to be rotated into
subunits of equal size for use in indexing said
lookup tables;
applying each said subunit as an index to one of said
lookup tables. the table used in each case being
determined by the position of the index subunit 1n
the group of bits to be rotated;
combining the shifted output values; and
storing the resulting bits as a rotated m X m bit block.
10. A system for rotating a binary image by 90 de-
grees in place comprising:
image buffer means for storing said image in raster
form as a sequence of bytes, said bytes representing
said image in the form of r rows by ¢ columns and
each byte having b bits;
means for dividing said image vertically into a series
of blocks, each block having r rows;
a temporary storage buffer;
means for copying one block of said image bytes into
said temporary storage buffer;
means for rearranging the uncopied bytes in sad
image buffer means to make available a region of
the image buffer means, having an area equal to
that of the copied block and at the location in the
image buffer means where said copied block will fit
after rotation; by overwriting a portion of the cop-
ied image bytes with uncopied image bytes,;
means for separating said copied bytes in said tempo-
rary storage buffer into groups of mXm bits for
rotation;
means for transferring each group from said tempo-
rary storage buffer to the available region of the
image buffer means, such that said groups are
stored in rotated raster form in said region; and
means for actuating said copying, rearranging, sepa-
rating, and transferring means to act on the succes-
sive blocks of said uncopied image bytes to rotate
said stored image in said image buffer means.
11. A system as in claim 10 wherein said transferring
means COmprises:
means for determining for each said group if all bits
have the same value:
means for copying each group having all bits the
same value to the appropriate location in said avail-
able region of said image buffer means;
means for rotating each group that does not have all
bits the same value; and
means for transferring each rotated group to storage
with said copied groups in raster form in the appro-
priate location in said available region of said image
buffer means.

12. A system as in claim 11 wherein said rotating
means comprises

a lookunp table which takes an index value and pro-

duces an output consisting of the bits of the index

10

15

20

25

30

35

45

50

55

60

65

24

value spaced at intervals of m bits, separated by bits
having the value zero;

means for dividing said m>Xm group of bits to be
rotated into subunits of equal size for use in index-
ing said lookup table;

means for applying each said subunit as an index to
said lookup table;

means for shifting the resulting output values accord-
ing to the position of the index subunit in the group
of bits to be rotated;

means for combining the shifted output values; and

means for storing the resulting bits as a rotated m Xm
bit block. |

13. A system as i1n claim 11 wherein said rotating

means COmprises:

means for creating a plurality of lookup tables which
take an index value and produce an output consist-
ing of the bits of the index value spaced at intervals
of m bits, separated by bits having the value zero,
and shifted by differing numbers of bits;

means for dividing said mXm group of bits to be
rotated into subunits of equal size for use in index-
ing said lookup table means;

means for applying each of said subunits as an index
to said lookup table means in accordance with the
respective position of the index subunit in the
group of bits to be rotated;

means for combining the shifted output values; and

means for storing the resulting bits as a rotated m Xm
bit block.

14. A system as in claim 10 wherein said transferring

means comprises:

means for filling said available region of said image
buffer with bits of a first binary value;

means for determining for each said group if all bits
have said first binary value;

means for rotating each group that does not have all
bits of said first binary value; and

means for storing each rotated group in raster form in
the appropnate location in said available region of
said image buffer.

15. A system as in claim 14 wherein said rotating
means COmprises:

lookup table means for taking an index value and
producing an output consisting of the bits of the
index value spaced at intervals of m bits, separated
by bits having the value zero;

means for dividing said mXm group of bits to be
rotated into subunits of equal size for use in index-
ing satd lookup table means;

means for applving each saic subunit as an index to
said lookup table means:

means for shifting the resuiting output values accord-
ing to the position of the index subunit in the group
of bits to be rotated:

means for combining the shifted output values; and

means for storing the resulting bits as a rotated m X m
bit block.

16. A system as in claim 14 wherein said rotating
means COmprises:
means for creating a plurality of lookup tables which
take an index value and produce an output consist-
ing of the bits of the index value spaced at intervals
of m bits, separated by bits having the value zero,
and shifted by differing numbers of bits;

4,627,020

25 26
means for dividing said m>Xm group of bits to be means for combining the sl:nifted_ output values; and
rotated into subunits of equal size for use in index- means for storing the resulting bits as a rotated m xX'm
ing said lookup table means; bit block. | | |
means for applying each of said subunits as an index 17. A system as in claim 10 wherelp r equals c.
to said lookup table means in accordance with the 3 18. A system as in claim 10_ wherein n equals 8 and
respective position of the index subunit in the said groups comprise 8 by 8 bit blocks.
group of bits to be rotated; £ * % ¥ %
10
15
20
235
30
35
40
45
50
55
60

65

	Front Page
	Drawings
	Specification
	Claims

