Gass et al.

Patent Number: [11]

4,618,363

Date of Patent: [45]

Oct. 21, 1986

N-PHENYLSULFONYL-N'-[54] TRIAZINYLUREAS Karl Gass, Magden; Werner Föry, Inventors: Basel; Willy Meyer, Riehen; Werner Töpfl, Dornach, all of Switzerland Ciba-Geigy Corporation, Ardsley, Assignee: N.Y. Appl. No.: 458,799 [22] Filed: Jan. 18, 1983 [30] Foreign Application Priority Data [51] Int. Cl.⁴ C07D 401/12; C07D 405/12; A01N 43/70; A01N 43/66 71/92; 544/211; 544/212; 544/206; 544/207; 544/208; 544/209 544/208, 209; 542/413, 427; 71/93, 90 [56] References Cited U.S. PATENT DOCUMENTS

, υ	.D. I.AI	LIVI DOCUMENTO
4,310,346	1/1982	Levitt et al 71/93
4,435,205	3/1984	Reap 71/93
4,500,344	2/1985	
FOR	EIGN P	ATENT DOCUMENTS
0001514	4/1979	European Pat. Off
0001515	4/1979	European Pat. Off
44212	1/1982	European Pat. Off 544/211
44807	1/1982	European Pat. Off.
74282	3/1983	European Pat. Off 544/211
2715786	10/1977	Fed. Rep. of Germany.
1468747	1/1967	France.

Primary Examiner—John M. Ford Attorney, Agent, or Firm-Edward McC. Roberts; Bruce M. Collins; Frederick H. Rabin

ABSTRACT [57]

N-Phenylsulfonyl-N'-pyrimidinylureas and triazinylureas of the general formula

SO₂-NH-CO-NH-
$$\stackrel{R_2}{\sim}$$
 N $\stackrel{R_2}{\sim}$ R₁
 $\stackrel{R_1}{\sim}$ N $\stackrel{R_2}{\sim}$ R₃

and the salts of these compounds with amines, alkali metal bases and alkaline earth metal bases or with quaternary ammonium bases, have good selective herbicidal and plant growth regulating properties when applied pre- and postemergence.

In the formula

R₁ is hydrogen, halogen, nitro, C₁-C₄haloalkyl, C₁-C-4alkyl, C₁-C₄alkoxy, C₂-C₅alkenyl or C₁-C₄alkoxycarbonyl,

 R_2 is C_1 – C_3 alkyl or C_1 – C_3 alkoxy, each unsubstituted or substituted by 1 to 3 halogen atoms,

R₃ is halogen, hydrogen, -NR₄R₅, C₁-C₃alkyl, unsubstituted or substituted by 1 to 3 halogen atoms or C₁-C₄alkoxy, or is C₁-C₃alkoxy, unsubstituted or substituted by methoxy, ethoxy, or 1 to 3 halogen atoms,

R₄ is hydrogen or methyl,

R₅ is hydrogen, C₁-C₂alkyl or methoxy,

A is C₁-C₄alkylene or C₂-C₄alkenylene, each unsubstituted or substituted by C₁-C₄alkyl,

m is 0 or 1,

-N'-

E is nitrogen or the methine group,

X is oxygen, sulfur, —SO— or —SO₂—, and

Q is hydroxyl, cyano or radicals selected from the group consisting of 5- or 6-membered heterocyclic rings and fused homologues, amines, acetals, esters, ketones, phenyls, sulfonic acid and carboxylic acids, which radicals may be further substituted and have functional structures.

26 Claims, No Drawings

N-PHENYLSULFONYL-N'-TRIAZINYLUREAS

The present invention relates to novel N-phenylsulfonyl-N'-pyrimidinyl- and -N'-triazinylureas with herbicidal and plant growth regulating properties, to the preparation thereof, to compositions containing these compounds, and to the use of the novel compounds for controlling weeds, in particular selectively, in crops of useful plants, or for regulating and inhibiting plant 10 growth. The invention further relates to novel phenylsulfonamides obtained as intermediates.

The N-phenylsulfonyl-N'-pyrimidinyl- and -N'-triazinylureas, and salts thereof, have the general formula I

SO₂-NH-CO-NH-
$$\stackrel{R_2}{\sim}$$
 $\stackrel{R_2}{\sim}$ $\stackrel{(I)}{\sim}$ $\stackrel{R_1}{\sim}$ $\stackrel{R_2}{\sim}$ $\stackrel{(I)}{\sim}$ $\stackrel{R_2}{\sim}$ $\stackrel{(I)}{\sim}$ $\stackrel{R_3}{\sim}$ $\stackrel{R_3}{\sim}$

wherein

R₁ is hydrogen, halogen, nitro, C₁-C₄haloalkyl, C₁-C₋4alkyl, C₁-C₄alkoxy, C₂-C₅alkenyl or C₁-C₄alkoxyy yearbonyl,

R₂ is C₁-C₃alkyl or C₁-C₃alkoxy, each unsubstituted or substituted by 1 to 3 halogen atoms,

R₃ is halogen, hydrogen, —NR₄R₅, C₁-C₃alkyl, unsubstituted or substituted by 1 to 3 halogen atoms or C₁-C₄alkoxy, or is C₁-C₃alkoxy, unsubstituted or substituted by methoxy, ethoxy, or 1 to 3 halogen atoms,

R₄ is hydrogen or methyl,

R₅ is hydrogen, C₁-C₂alkyl or methoxy,

A is C_1 - C_4 alkylene or C_2 - C_4 alkenylene, each unsubstituted or substituted by C_1 - C_4 alkyl,

m is 0 or 1,

E is nitrogen or the methine group,

X is oxygen, sulfur, —SO— or —SO₂,

Q is hydroxyl, cyano, —NR₆R₇, —SO₂—R₈, —C-(OR₁₀)₂—R₁₁, C₂-C₄alkoxyalkoxy,

R₁₃, R₁₄, —CO—B, —CO—B', —C(B'')=N—OH, —C(B'')=N—(O)_p—C₁-C₄-alkyl, —C(B'')-=N—(O)_p—C₃-C₅-alkenyl, —Y—SO₂—R_a, —Y—CO—R_b, —Y—CO—NR_cR_d or is a 5- or 6-membered 60 heterocyclic ring or a fused homologue thereof, each linked through a carbon atom to the bridge —X—A_m— or, if the heterocyclic ring contains nitrogen, is also bound through a nitrogen atom, and which is unsubstituted or mono- to trisubstituted by halogen, 65 cyano, nitro, C₁-C₄alkyl, C₁-C₄alkoxy, C₁-C₄alkylhio, C₂-C₅alkenyl, C₁-C₄haloalkyl, C₁-C₄alkoxycarbonyl, —NR₁₅R₁₆ or —SO—NR₁₇R₁₈,

B is $-NR_{19}R_{20}$, $-NR_{21}-NR_{22}R_{23}$, $-Y-R_{24}$, R_{25} or R_{26} ,

B' and B" are each C₁-C₆alkyl or C₃-C₆alkenyl, each unsubstituted or substituted by cyano, hydroxyl, —NR₃₃R₃₄, —SO₂—NR₃₅R₃₆, —SO₂—C₁—C₄-alkyl, —SO₂—C₂—C₄alkenyl or —SO₂—Ar or —CO—G,

n and p are 0 or 1,

R₆ and R₇, each independently of the other, are hydrogen, C₃-C₆cycloalkyl, C₃-C₆alkenyl, C₃-C₆alkynyl, or C₁-C₆alkyl, unsubstituted or substituted by C₁-C₄alkoxy, or both together are an alkylene chain which may be substituted by alkyl and/or interrupted by oxygen, sulfur, —NH— or —N(C₁-C₄alkyl)—,

15 R₈ is phenyl or phenyl substituted by halogen, cyano, C₁-C₄alkyl, C₁-C₄alkoxy, C₁-C₄alkylthio, C₂-C₅alkenyl, C₁-C₄haloalkyl, C₁-C₄alkoxycarbonyl, —NR₂7R₂₈, —SO₂NR₂9R₃₀, or is —NR₃1R₃₂, or with the proviso that m is 0, is also hydrogen, C₃-C₆alkynyl, or C₁-C₆alkyl or C₃-C₆alkenyl, each unsubstituted or substituted by cyano, hydroxyl, C₁-C₈alkoxy, C₁-C₆alkylthio, —NR₃3R₃₄, —SO₂-NR₃5R₃₆, —SO₂-C₁C₄alkyl, —SO₂-C₂-C₄alkenyl, —SO₂Ar or —CO—G,

R₁₀ is hydrogen, C₃-C₆alkynyl, phenyl or phenyl substituted by halogen, nitro, cyano, C₁-C₄alkyl, C₁-C₄alkoxy, C₁-C₄alkylthio, C₂-C₅alkenyl, C₁-C₄haloalkyl, C₁-C₄alkoxycarbonyl, —NR₃₇R₃₈, —SO₃H or —SO₂—NR₃₉R₄₀, or is C₁-C₆alkyl, C₃-C₆cycloalkyl or C₃-C₆alkenyl, each unsubstituted or substituted by cyano, hydroxyl, C₁-C₆alkoxy, C₁-C₆alkylthio, —NR₄₁R₄₂, —SO₂—NR₄₃R₄₄, —SO₂—C₁-C₄alkyl, —SO₂—C₁-C₄alkenyl, —SO₂—Ar or —CO—G,

R₁₃ is phenyl or phenyl substituted by halogen, nitro, cyano, C₁-C₄alkyl, C₁-C₄alkoxy, C₁-C₄alkylthio, C₂-C₅alkenyl, C₁-C₄haloalkyl, C₁-C₄alkoxycarbonyl, —NR₄₅R₄₆, —SO₃H or —SO₂NR₄₇R₄₈,

R₁₄ is C₃-C₆cycloalkyl, unsubstituted or substituted by halogen or C₁-C₄alkoxy,

40 R_a and R_b are each C₃-C₆cycloalkyl, C₃-C₆alkenyl, C₃-C₆alkynyl or are C₁-C₆alkyl, unsubstituted or

substituted by C₁-C₄alkoxy, Y is oxygen or sulfur and

G is C₁-C₄alkoxy, C₁-C₄alkylthio, C₃-C₅alkenyloxy, C₃-C₅alkenylthio, C₁-C₃alkyl, C₃-C₆alkenyl, —NR₄9R₅₀, phenyl or phenyl which is mono- or disubstituted by cyano, nitro, halogen, C₁-C₃haloalkyl, C₁-C₄alkoxy, C₁-C₄alkylthio or C₁-C₄alkyl, and R₁₁, R₁₂ and R₂₄ have the same meaning as R₁₀,

50 R₂₅ and Ar have the same meaning as R₁₃,

R₂₆ has the same meaning as R₁₄,

R_c, R₁₅, R₁₇, R₁₉, R₂₁, R₂₂, R₂₇, R₂₉, R₃₁, R₃₃, R₃₅, R₃₇, R₃₉, R₄₁, R₄₃, R₄₅, R₄₇ and R₄₉ have the same meaning as R₆; R_d, R₁₆, R₁₈, R₂₀, R₂₃, R₂₈, R₃₀, R₃₂, R₃₄, R₃₆, R₃₈, R₄₀, R₄₂, R₄₄, R₄₆, R₄₈ and R₅₀ have the same meaning as R₇, with the proviso that Q is only hydroxyl if m is 1 and the bridge A contains at least 2 carbon atoms, and Q is only —NR₆R₇, —Y—SO₂—R_a, —Y—CO—R_b, —Y—CO—NR_cR_d, C₂-C₄alkoxyalkoxy or R₁₃ if m is 1, and that one of the radicals R₂ or R₃ is a halogen-substituted methoxy group if R₈ is C₁-C₄alkyl or C₁-C₄alkyl which is substituted by halogen or methoxy or is phenyl or phenyl which is substituted by methyl, methoxy, trifluoromethyl or nitro.

Herbicidally active ureas, triazines and pyrimidines are generally known in the art. Arylsulfamoylheterocyclylaminocarbamoyl compounds with herbi-

3

cidal and plant growth-regulating action have recently been described, for example in European patent publications 1514 and 1515, U.S. Pat. No. 4,127,405, German Offenlegungsschrift 2 715 786 or French patent specification 1 468 747.

In the above definitions, alkyl denotes straight-chain or branched alkyl, e.g. methyl, ethyl, n-propyl, isopropyl, the four isomers of butyl, n-amyl, isoamyl, 2-amyl, 3-amyl, n-hexyl or isohexyl.

Alkoxy denotes methoxy, ethoxy, n-propoxy, isopro- 10 poxy and the four butoxy isomers, and is, in particular, methoxy, ethoxy or isopropoxy.

Alkylthio is e.g. methylthio, ethylthio, n-propylthio, isopropylthio and n-butylthio, with methylthio and ethylthio being preferred.

Examples of alkenyl radicals are vinyl, allyl, isopropenyl, propen-1-yl, buten-1-yl, buten-2-yl, buten-3-yl, isobuten-1-yl, isobuten-2-yl, penten-1-yl, penten-2yl, penten-3-yl and penten-4-yl, with vinyl, allyl and penten-4-yl being preferred.

Alkylsulfonyl is e.g. methylsulfonyl, ethylsulfonyl, n-propylsulfonyl and n-butylsulfonyl, with methylsulfonyl and ethylsulfonyl being preferred.

Halogen in the above definitions by itself and in haloalkyl is fluorine, chlorine and bromine, with fluorine 25 and chlorine being preferred.

Substituted alkyl or alkenyl radicals are those radicals which carry one or more of the cited substituents, preferably one such substituent. Where these radicals are substituted by halogen atoms, preferably several hydro- 30 gen atoms, and optionally even all hydrogen atoms, of the alkyl or alkenyl radicals are replaced by halogen.

Within the definition of alkoxycarbonyl fall such radicals as —COOCH₃, —COOC₂H₅, —COO—CH(CH₃)₂, —COO—CH₂—CH₂—CH₃, 35—COO—(CH₂)₃—CH₃, —COO—CH₂—CH(CH₃)₂, —COO—CH(CH₃)—C₂H₅ and —COO—C(CH₃)₃.

Within the scope of this invention, 5- to 6-membered heterocyclic rings will be understood as meaning the following unsaturated heterocycles as well as the partially or completely hydrogenated and fused homologues thereof, e.g. furan, pyrane, thiophene, triazole, pyridine, pyrroline, oxazole, isooxazole, thiazole, isothiazole, thiadiazole, oxathiole, pyrrole, imidazole, pyrazole, pyrimidine, pyridazine, symmetrical striazines, oxdiazole, oxazine, furazane, pyridine-N-oxide, thiophene-S-oxide, benzthiophene, benzofuran, isobenzofuran, chromene, chromane, indole, isoindole, indazole, quinoline, isoquinoline, phthalazine, quinoxaline, quinozoline, quinoline, so thoxy or dinoxy or a straight

The invention also comprises the salts which the compounds of formula I are able to form with amines, alkali metal and alkaline earth metal bases or with quaternary ammonium bases.

Preferred salt-forming alkali metal and alkaline earth metal hydroxides are the hydroxides of lithium, sodium, potassium, magnesium or calcium, most preferably of sodium or potassium.

Examples of suitable salt-forming amines are primary, 60 secondary and tertiary aliphatic and aromatic amines such as methylamine, ethylamine, propylamine, isopropylamine, the four isomeric butylamines, dimethylamine, diethylamine, diethylamine, dipropylamine, disopropylamine, di-n-butylamine, pyrrolidine, piperi- 65 dine, morpholine, trimethylamine, triethylamine, tripropylamine, quinuclidine, pyridine, quinoline and isoquinoline. Preferred amines are ethylamine, propyla-

mine, diethylamine or triethylamine, with isopropylamine and diethanolamine being most preferred.

Examples of quaternary ammonium bases are, in general, the cations of haloammonium salts, e.g. the tetramethylammonium cation, the trimethylbenzylammonium cation, the triethylbenzylammonium cation, the tetraethylammonium cation, the trimethylethylammonium cation, and also the ammonium cation.

Preferred compounds of the formula I are those in which either

- (a) X is oxygen,
- (b) R₁ is hydrogen or
- (c) the substituent $-X-A_m-Q$ is in the 2-position to the sulfornyl group or

(d) R_2 and R_3 together contain at most 4 carbon atoms. Further preferred compounds of the formula I are those in which X is oxygen and R_1 is hydrogen, the substituent $-X-A_m-Q$ is in the 2-position to the sulfonyl group and R_2 and R_3 together contain not more than 4 carbon atoms.

Among these last mentioned compounds, those compounds are particularly preferred in which A is a C₁-C-2alkylene bridge, m is 1, E is the methine group and Q is cyano or C₁-C₄alkoxycarbonyl.

As a preferred subgroup of the formula I, those compounds also merit attention in which R₁ is hydrogen or chlorine or methyl bound in the 5-position, R₂ is methyl or methoxy, R₃ is methyl, methoxy, chlorine, difluoromethoxy, dimethylamino or ethoxy, X is oxygen, A is a direct bond or a straight chain or branched C₁-C-5alkylene bridge or a propylene bridge, and Q is cyano, ethoxycarbonyl, methoxycarbonyl, acetyl, benzoyl, methylsulfonyl, hydroxyl, dimethylcarbamoyl, propylsulfonyl, 3,5-dichloropyrid-2-yl, 2,2-dichlorocyclopropyl, isobutyroyl, pyrid-2-yl, pyrid-3-yl, pyrid-4-yl, methylsulfonyloxy, acetoxy, oxiranyl, tetrahydrofuran-2-yl, tetrahydrofuran-3-yl, 2-methyl-1,3-dioxolan-2-yl, 2,2-dimethyl-1,3-dioxolan-4-yl, 1-hydroxyiminoethyl, 1-ethoxyiminoethyl, 1-allyloxyiminoethyl, methoxyethoxy, 1-propyliminoethyl, 1,3-dioxolan-2-yl, 5-ethyl-2methyl-1,3-dioxolan-2-yl, 2-methyl-2-oxiranyl, 3-methyl-2-oxiranyl, 2-isopropyl-1,3-dioxolan-2-yl, 1-ethoxyimino-isobutyl, dimethylamino or N-methylcar-

Most preferred, however, is the subgroup of compounds of the formula I, wherein R₁ is hydrogen or methyl bound in the 5-position, R₂ is methyl or methoxy, R₃ is methyl, methoxy, chlorine, difluoromethoxy or dimethylamino, X is oxygen. A is a direct bond or a straight chain or branched C₁-C₃alkylene bridge and Q is cyano, ethoxycarbonyl, methoxycarbonyl, acetyl, benzoyl, methylsulfonyl, hydroxyl, dimethylcarbamoyl, propylsulfonyl, 3,5-dichloropyrid-2-yl, 2,2-dichlorocyclopropyl, isobutyroyl, pyrid-2-yl, pyrid-3-yl, pyrid-4-yl, methylsulfonyloxy, acetoxy, oxiranyl, 2-methyl-1,3-dioxolan-2-yl, 1-hydroxyiminoethyl, 1-ethoxyiminoethyl, 1-allyloximinoethyl, methoxyethoxy or N-methylcarbamoyloxy.

Preferred individual compounds are:

N-(2-oxiranylmethoxyphenylsulfonyl)-N'-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)urea,

N-(2-oxiranylmethoxyphenylsulfonyl)-N'-(4-methoxy-6-methylpyrimidin-2-yl)urea,

N-(2-oxiranylmethoxyphenylsulfonyl)-N'-(4'-ethoxy-6-methyl-1,3,5-triazin-2-yl)urea,

N-(2-oxiranylmethoxyphenylsulfonyl)-N'-(4-difluoromethoxy-6-methyl-pyrimidin-2-yl) urea,

4

N-(2-methoxyethoxymethoxyphenylsulfonyl)-N'-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)urea, and N-(2-methoxyethoxymethoxyphenylsulfonyl)-N'-(4-difluoromethoxy-6-methylpyrimidin-2-yl)urea.

The process for obtaining the compounds of formula I is carried out in an inert organic solvent.

In a first process, the compounds of the formula I are obtained by reacting a phenylsulfonamide of the formula II

$$R_1$$
 SO_2-NH_2
 $X-A_m-Q$
 (II)

wherein A, R₁, Q, X and m are as defined for formula I, in the presence of a base, with an N-pyrimidinyl- or N-triazinylcarbamate of the formula III

$$\begin{array}{c|c}
 & R_2 \\
 & R_2 \\
 & R_3
\end{array}$$
(III)

wherein E, R₂ and R₃ are as defined for formula I.

In a second process, compounds of formula I are obtained by reacting a phenylsulfonylisocyanate or phenylsulfonylisothiocyanate of the formula IV

$$R_1 - SO_2 - N = C = O$$

$$X - A_m - Q$$
(IV)

wherein A, R_1 , Q, m and X are as defined for formula I, $_{50}$ optionally in the presence of a base, with an amine of the formula V

$$R_2$$
 (V) 55

 $N \longrightarrow E$,

 R_2
 E
 $N \longrightarrow E$
 R_3

wherein E, R₂ and R₃ are as defined for formula I.

In a further process, the compounds of formula I are obtained by reacting a sulfonamide of the formula II above, optionally in the presence of a base, with an isocyanate or isothiocyanate of the formula VI

wherein E, R₂ and R₃ are as defined for formula I.

Finally, the compound of formula I can also be obtained by reacting a N-phenylsulfonylcarbamate of the formula VII

wherein A, R₁, Q, m and X are as defined for formula I, with an amine of the formula V above.

If desired, the ureas of formula I can be converted into basic addition salts with amines, alkali metal hydroxides or alkaline earth metal hydroxides or with quaternary ammonium bases. This conversion is carried out e.g. by reacting the compounds of formula I with the equimolar amount of a base and removing the solvent by evaporation.

Some of the starting materials of the formulae II, IV and VII are novel and can be prepared by the following methods.

The novel sulfonamides of formula II used as intermediates are obtained from the corresponding anilines by diazotisation and replacement of the diazo group, with sulfur dioxide, in the presence of a catalyst such as copper(I) chloride, in hydrochloric acid or acetic acid, and reacting the resultant phenylsulfonyl chloride with ammonium hydroxide solution.

O- or S-alkylation or O- or S-alkenylation of hydroxyor thiophenylsulfonamides with the corresponding halides or sulfuric acid esters or which corresponding
activated alkenyl or alkynyl componds by 1,2-addition,
or by reaction of ortho-halophenyl-sulfonamides with
metal alcoholates or mercaptides and, if desired, by
oxidation thereof e.g. with periodates or peracids, to
give the corresponding sulfoxides and sulfones.

Ortho-substituted hydroxyphenylsulfonamides or substituted ortho-hydroxyphenylsulfonamides of the formula VIII

$$R_1$$
 SO_2NH_2
 $N'-H$
(VIII)

wherein R₁ is as defined for formula I and X' is oxygen or sulfur, are described as starting materials for specific sulfonamide representatives of the formula II in European patent application 44807.

Some of the compounds of formula II used as intermediates are novel and have been specially developed

for the synthesis of compounds of the formula I. The novel intermediates of the narrower subformula IIa

$$R_1$$
 SO_2-NH_2
 $X-A_m-Q$
(IIa)

wherein R_1 , A, m, X and Q are as defined for formula I, with the proviso that R_1 is not hydrogen if the radical $-X-A_m-Q$ is benzyloxy, constitute a further object of the present invention.

The phenylsulfonylisocyanates of the formula IV, 15 which are also novel, may be obtained by reacting the sulfonamides of the formula II with phosgene, in the presence of butyl isocyanate in a chlorinated hydrocarbon, at reflux temperature. Similar reactions are described in "Recent Methods of Preparative Organic 20 Chemistry", Vol. VI, 211–229, Academic Press, New York and London.

The novel isothiocyanates of the formula IV are obtained by treating the sulfonamides of formula II with carbon disulfide and potassium hydroxide and subsequently reacting the dipotassium salt with phosgene. Such processes are described in Arch. Pharm. 299, 174 (1966).

The novel N-phenylsulfonyl carbamates of the formula VII are obtained by reacting the sulfonamides of 30 the formula II with diphenyl carbamate in the presence of a base. Similar processes are described in Japanese patent specification 61 169.

The starting materials of the formulae III, V and VI are known or they may be prepared by known methods. 35

Isocyanates of the formula VI may be prepared by reacting amines of the formula V with oxalyl chloride in a chlorinated hydrocarbon as solvent. Amines of the formula V are known and some are commercially available, or they can be prepared by known methods, q.v. 40 "The Chemistry of Heterocyclic Compounds", Vol. XIV, Interscience Publishers, New York, London.

It is expedient to carry out the reactions for obtaining compounds of formula I in aprotic, inert organic solvents such as methylene chloride, tetrahydrofuran, ace- 45 tonitrile, dioxan or toluene.

The reaction temperatures are preferably in the range from -20° to $+120^{\circ}$ C. The reactions are normally slightly exothermic and can be carried out at room temperature. To shorten the reaction time or also to 50 initiate the reaction it is expedient to heat the reaction mixture briefly to boiling point. The reaction times can also be shortened by addition of a few drops of a base or isocyanate as catalyst.

The final products can be isolated by concentrating 55 the reaction mixture and/or removing the solvent by evaporation, and by recrystallising or triturating the solid residue in a solvent in which it is poorly soluble, such as an ether, an aromatic hydrocarbon or a chlorinated hydrocarbon.

The compounds of formula I are stable compounds, and no protective measures are required for handling them.

When used in low rates of application, the compounds of formula I have good selective growth-inhibit- 65 ing and selective herbicidal properties which make them most suitable for use in crops of useful plants, especially in cereals, cotton, soybeans, maize and rice.

In some cases damage is also caused to weeds which have up to now have only been controlled with total herbicides.

In addition, the compounds of formula I have pronounced plant growth regulating properties which can lead to an increase in the yield of cultivated plants and harvested crops. Further, many compounds of formula I have a plant growth inhibiting action which is dependent on concentration. The growth of both monocots and dicots is inhibited.

Thus, for example, the compounds of formula I selectively inhibit the growth of leguminosae which are frequently planted as cover crops in tropical regions, so that, while soil erosion between cultivated plants is prevented, the cover crops are unable to compete with the cultivated plants.

In many cultivated plants inhibition of vegetative growth permits more plants to be sown in a crop area, so that a higher yield may be obtained per unit of area. A further mechanism of yield increase using growth regulators resides in the fact that nutrients are able increasingly to promote flower formation and fruiting, whilst vegetable growth is restricted.

Inhibition of the vegetative growth of monocot plants, e.g. grasses or cereals, is sometimes desirable and advantageous. Such a growth inhibition is of economic interest, inter alia, in respect of grasses, as the frequency of cutting in flower gardens, parks, sports fields or road shoulders can thereby be reduced. Of importance too is the inhibition of growth of herbaceous and ligneous plants on road shoulders and near transmission lines, or generally in areas in which strong growth is undersirable.

The use of growth regulators for inhibiting the growth in height of cereals is also important, as shortening the stalks diminishes or completely eliminates the dager of lodging before harvesting. In addition, growth regulators are able to bring about a strengthening of the stalks in crops of cereals and this too counteracts lodging.

Further, the compounds of formula I are suitable for preventing stored potatoes from seeding. During winter storage, potatoes often develop sprouts which result in shrinkage, weight loss, and rot.

When the compounds of formula I are applied in higher rates of application, all tested plants are so damaged in their development that they wither.

The mode of action of these compounds is unusual.

Many are translocatable, i.e. they are absorbed by the plant and transported to other parts of it where they then deploy their action. The unusual feature of the compounds is that they do not only take the path through the vascular bundle in the ligneous part from the roots to the leaves, but can also be translocated through the sieve tubes in the bast part of the leaves back into the roots. Thus, for example, it is possible to damage perennial weeds to the roots by surface treatment. Compared with other herbicides and growth regulators, the novel compounds of the formula I are effective even when used in very low rates of application.

The invention also relates to herbicidal and plant growth-regulating compositions which contain a novel compound of the formula I, and also to methods of controlling weeds pre- and postemergence and of inhibiting the growth of monocots and dicots, especially grasses, tropical cover crops and tobacco plant suckers.

The compounds of the formula I are used in unmodified form or, preferably, together with the adjuvants conventionally employed in the art of formulation, and are therefore formulated in known manner of emusifiable concentrates, coatable pastes, directly sprayable or 5 dilutable solutions, dilute emulsions, wettable powders, soluble powders, dusts, granulates, and also encapsulations in e.g. polymer substances. As with the nature of the compositions, the methods of application, such as spraying, atomising, dusting, scattering or pouring, are 10 chosed in accordance with the intended objectives and the prevailing circumstances.

The formulations, i.e. the compositions containing the compound (active ingredient) of the formula I and, where appropriate, a solid or liquid adjuvant, are pre- 15 pared in known manner, e.g. by homogeneously mixing and/or grinding the active ingredients with extenders, e.g. solvents, solid carriers and, where appropriate, surface-active compounds (surfactants).

Suitable solvents are: aromatic hydrocarbons, prefer-20 ably the fractions containing 8 to 12 carbon atoms, e.g. xylene mixtures or substituted naphthalenes, phthalates such as dibutyl phthalates or dioctyl phthalate, aliphatic hydrocarbons such as cyclohexane or paraffins, alcohols and glycols and their ethers and esters, such as 25 ethanol, ethylene glycol monomethyl or monoethyl ether, ketones such as cyclohexanone, strongly polar solvents such as N-methyl-2-pyrrolidone, dimethyl sulfoxide or dimethyl formamide, as well as epoxidised vegetable oils such as epoxidised coconut oil or soybean 30 oil; or water.

The solid carriers used e.g. for dusts and dispersible powders, are normally natural mineral fillers such as calcite, talcum kaolin, montmorillonite or attapulgite. In order to improve the physical properties it is also 35 possible to add highly dispersed silicic acid or highly dispersed absorbent polymers. Suitable granulated adsorptive carriers are porous types, for example pumice, broken brick, sepolite or bentonite; and suitable nonsorbent carriers are materials such as calcite or sand. In 40 addition, a great number of preganulated materials of inorganic or organic nature can be used, e.g. especially dolomite or pulverised plant residues.

Depending on the nature of the compound of the formula I to be formulated, suitable surface-active compounds are nonionic, cationic and/or anionic surfactants having good emulsifying, dispersing and wetting properties. The term "surfactants" will also be understood as comprising mixtures of surfactants.

Suitable anionic surfactants can be both water-soluble 50 soaps and water-soluble synthetic surface-active compounds.

Suitable soaps are the alkali metal salts, alkaline earth metal salts or unsubstituted or substituted ammonium salts of higher fatty acids (C_{10} – C_{22}), e.g. the sodium or 55 potassium salts of oleic or stearic acid, or of natural fatty acid mixtures which can be obtained e.g. from coconut oil or tallow oil. Mention may also be made of fatty acid methyl laurin salts.

More frequently, however, so-called synthetic sur- 60 factants are used, especially fatty sulfonates, fatty sulfates, sulfonated benzimidazole derivatives or alkylaryl-sulfonates.

The fatty sulfonates or sulfates are usually in the form of alkali metal salts, alkaline earth metal salts or unsub- 65 stituted or substituted ammonium salts and contain a C₈-C₂₂ alkyl radical which also includes the alkyl moiety of acyl radicals, e.g. the sodium or calcium salt of

lignosulfonic acid, of dodecylsulfate or of a mixture of fatty alcohol sulfates obtained from natural fatty acids. These compounds also comprise the salts of sulfuric acid esters and sulfonic acids of fatty alcohol/ethylene oxide adducts. The sulfonated benzimidazole derivatives preferably contain 2 sulfonic acid groups and one fatty acid radical containing 8 to 22 carbon atoms. Examples of alkylarylsulfonates are the sodium, calcium or triethanolamine salts of dodecylbenzenesulfonic acid, dibutylnaphthalenesulfonic acid, or of a naphthalenesulfonic acid/formaldehyde condensation product. Also suitable are corresponding phosphates, e.g. salts of the phosphoric acid ester of an adduct of p-nonylphenol with 4 to 14 moles of ethylene oxide or phospholipids.

Non-ionic surfactants are preferably polyglycol ether derivatives of aliphatic or cycloaliphatic alcohols, or saturated or unsaturated fatty acids and alkylphenols, said derivatives containing 3 to 30 glycol ether groups and 8 to 20 carbon atoms in the (aliphatic) hydrocarbon moiety and 6 to 18 carbon atoms in the alkyl moiety of the alkylphenols.

Further suitable non-ionic surfactants are the water-soluble adducts of polyethylene oxide with polypropylene glycol, ethylenediamine propylene glycol and alkylpolypropylene glycol containing 1 to 10 carbon atoms in the alkyl chain, which adducts contain 20 to 250 ethylene glycol ether groups and 10 to 100 propylene glycol ether groups. These compounds usually contain 1 to 5 ethylene glycol units per propylene glycol unit.

Representative examples of non-ionic surfactants are nonylphenolpolyethoxyethanols, castor oil polyglycol ethers, polypropylene/polyethylene oxide adducts, tributylphenoxypolyethoxyethanol, polyethylene glycol and octylphenoxyethoxyethanol. Fatty acid esters of polyoxyethylene sorbitan and polyoxyethylene sorbitan trioleate are also suitable non-ionic surfactants.

Cationic surfactants are preferably quaternary ammonium salts which contain, as N-substituent, at least one C₈-C₂₂-alkyl radical and, as further substituents, lower unsubstituted or halogenated alkyl, benzyl or lower hydroxyalkyl radicals. The salts are preferably in the form of halides, methylsulfates or ethylsulfates, e.g. stearyltrimethylammonium chloride or benzyldi(2-chloroethyl)ethylammonium bromide.

The surfactants customarily employed in the art of formulation are described e.g. in the following publications: "McCutcheon's Detergents and Emulsifiers Annual", MC Publishing Corp., Ridgewood, N.J., 1979; Sisley and Wood, "Encyclopedia of Surface Active Agents", Chemical Publishing Co. Inc., New York, 1964.

The pesticidal formulations usually contain 0.1 to 95%, preferably 0.1 to 80%, of a compound of the formula I, 1 to 99.9% of a solid or liquid adjuvant, and 0 to 25%, preferably 0.1 to 25%, of a surfactant.

Preferred formulations are composed in particular of the following constituents (% = percentage by weight):

SOLUTIONS

active ingredient: 1 to 30%, preferably 5 to 20% solvent: 99 to 0%, preferably 95 to 0% surfactants: 1 to 99%, preferably 0 to 95%

EMULSIFIABLE CONCENTRATES

active ingredient: 1 to 20%, preferably 5 to 10% surfactant: 5 to 30%, preferably 10 to 20% liquid carrier: 50 to 94%, preferably 70 to 85%

20

35

DUSTS

active ingredient: 0.1 to 10%, preferably 0.1 to 1% solid carrier: 99.9 to 90%, preferably 99.9 to 99%

SUSPENSION CONCENTRATES

active ingredient: 5 to 75%, preferably 10 to 50% water: 94 to 25%, preferably 90 to 30% surfactant: 1 to 40%, preferably 2 to 30%

WETTABLE POWDERS

active ingredeint: 0.5 to 90%, preferably 1 to 80% surfactant: 0.5 to 20%, preferably 1 to 15% solid carrier: 5 to 95%, preferably 15 to 90%

GRANULATES

active ingredient: 0.5 to 30%, preferably 3 to 15% solid carrier: 99.5 to 70%, preferably 97 to 85%.

Whereas commercial products will be preferably formulated as concentrates, the end user will normally employ dilute formulations. The formulations can be diluted to a concentration as low as 0.001%. The rates of application are normally 0.01 to 10 kg a.i./ha, preferably 0.025 to 5 kg a.i./ha.

The compositions can also contain further ingredients such as stabilisers, antifoams, viscosity regulators, binders, adhesives, as well as fertilisers or other active compounds, in order to attain special effects.

PREPARATORY EXAMPLES

Example 1

(a) 2-(1-Methoxycarbonylethoxy)benzenesulfonamide

34.6 g of 2-hydroxybenzenesulfonamide and 55.3 g of potassium carbonate are added to 800 ml of acetonitrile. With efficient stirring, 33.4 g of methyl 2-bromopropionate are added dropwise over 10 minutes and the suspension is then heated for 5 hours to 45° C. After the reaction mixture has cooled, the precipitated salts are isolated and the filtrate is concentrated in vacuo. The residue is recrystallised from ethanol, affording 41.8 g of 2-(1-methoxycarbonylethoxy)benzenesulfonamide with a melting point of 140°-142° C.

(b) 2-(1-Methoxycarbonylethoxy)benzenesulfonyl isocyanate

A mixture of 12.9 g of 2-(1-methoxycarbonylethoxy)-benzenesulfonamide, 4.9 g of n-butylisocyanate and 0.1 g of diazabicyclooctane and 130 ml of xylene is refluxed for 30 minutes. Then 10 g of phosgene are passed into the solution at the same temperature over 90 minutes. Excess phosgene is expelled with nitrogen and the solution is then cooled and concentrated in vacuo, affording 17.7 g of 2-(1-methoxycarbonylethoxy)benzenesulfonyl isocyanate in the form of a brownish oil which can be further used without purification.

(c)

N-[2-(1-Methoxycarbonylethoxy)phenylsulfonyl]-N'- (4,6-dimethylpyrimidin-2-yl)urea (compound 104)

With stirring, a solution of 8.8 g of 2-(methoxycarbonylethoxy)benzenesulfonyl isocyanate in 40 ml of absolute tetrahydrofuran is adeed dropwise to a solution of 3.1 g of 2-amino-4,6-dimethylpyridine and 0.1 g of diazabicyclooctane in 50 ml of tetrahydrofuran. In the course of this addition the temperature of the solution rises from 20° to 25° C. After stirring for 3 hours at room temperature, the solvent is stripped off and the residue is crystallised from ethyl acetate, affording 5.2 g of N-[2-(1-methoxycarbonylethoxy)phenylsulfonyl]-N'-(4,6-dimethylpyrimidin-2-yl)urea with a melting point of 200°-203° C.

Example 2

2-Oxiranylmethoxyphenylsulfonamide

To a mixture of 15.3 g of 3-chloroperbenzoic acid in 270 ml of absolute methylene chloride are added 14.2 g of 2-allyloxyphenylsulfonamide over 2 minutes. The solution is then heated to reflux for 3 hours, cooled, and then washed three times with saturated sodium carbonate solution and once with water. The organic phase is dried and concentrated, affording 11.9 g of 2-oxiranylmethoxyphenylsulfonamide with a melting point of 132°-133° C.

Example 3

(a)

2-(2-Methyl-1,3-dioxolan-2-yl-methoxy)phenylsulfonamide

A mixture of 4.58 g of 2-(2-propanon-1-yloxy)phenyl-sulfonamide, 2 ml of ethylene glycol, 0.02 g of p-tol-uenesulfonic acid and 30 ml of toluene is heated for 7 hours to reflux while simultaneously separating the water of reaction. The cooled solution is taken up in 80 ml of ethyl acetate and the organic phase is washed with saturated sodium bicarbonate solution and water, dried and concentrated, affording 5 g of 2-(2-methyl-1,3-dioxolan-2-yl-methoxy)phenylsulfonamide in the form of a yellow viscous oil which can be further used without purification.

(b)

N-[2-(2-Methyl-1,3-dioxolan-2-yl-methoxy)phenylsul-fonyl]-N'-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)urea

2.73 g of N-(2-methoxy-6-methyl-1,3,5-triazin-2-yl)-O-phenylcarbamate are added to 2.73 g of crude 2-(2-methyl-1,3-dioxolan-2-yl-methoxy)-phenylsulfonamide and 1.56 ml of 1,8-diazabicyclo(5.4.0)undec-7-ene in absolute dioxan. The mixture is stirred for 1 hour at 20°-25° C. and then a mixture of 15 ml of water and 5 ml of 2N hydrochloric acid is added. The precipitate is isolated and washed with ether, affording 4 g of the title compound with a melting point of 135°-136° C.

The intermediates of the formula I and final products of the formula I listed in the following tables are obtained in corresponding manner:

TABLE 1

$$SO_2-NH_2$$
 $X-A_m-Q$

No.	A	Q	X	m	m.p. (°C.)
1	-CH ₂ -	CN	0	1	192-195°
2	$-CH_2-$	-COOC ₂ H ₅	О	1 -	119-121°
3	$-CH_2-$	—CH ₃	0	1	174-176°
4	$-CH(CH_3)-$	-COOCH ₃	Ō	. 1	140-142°
5	-CH(CH ₃)	-COOC ₂ H ₅	ŏ	1	
6	$-CH_2-$	$-C_6H_5$	O.	1 .	
7	$-CH_2$	$4-CH_3-C_6H_4-$	Ö	1	
•	O112	+ C113 C0114	O	•	
8	-CH ₂ -		Ō	1 :	
	O112	O —	O	,	•
		O —	· · ·		
9	-CH ₂ -	$-co-ch_3$	O	1	153-154°
10	$-CH_2-$	$-CO-C_6H_5$	O	1 .	180-181°
11	$-CH_2-CH_2-$	-CN	Ö	1	
12	$-CH_2-CH_2-$	-cooch ₃	Ō	1	
13	$-CH_2-CH_2-$	$-CO-C_6H_5$	Ö	1	
14		$-SO_2-CH_3$	0	0	134-136°
A T .	· · · · · · · · · · · · · · · · · · ·	30 ₂ C11 ₃	0	U	124-120
15	-CH ₂			1	111°
	Ori _Z	CI			
		C l			
•					
16	$-CH_2-CH_2-$	-OH	0	1	100-101°
17	—CH ₂ —	$-CH(OC_2H_5)_2$	O	1	
18	-CH=CH-	-CO-CH ₃	О	1	
19	$-CH_2-$	$-PO(OC_2H_5)_2$, O	1	
20	-CH ₂ -	$-PO(OH)_2$	О	1	
		_			
21	-сн ₂ -	Br	О	1	•
		N 连		•	· ·
		—N			
	•				
	•			•	· .
		Br Br		•.	
				·	· · .
22	$-CH_2-$	Ci	0	1	
		N N			
•		/ '\			
	•	—N			
	-				•
		Cl			
			•		
23	-CH ₂ -	Br	0	. 1	
			O	•	
		N N			
		174			
	•				
					·.
		Cl Cl			
	·				
24	$-CH_2-$	CH(CH ₃) ₃	О	1	
		N —			
		N			
					•

TABLE 1-continued

$$SO_2-NH_2$$
 $X-A_m-Q$

$$-CH_2 -N$$
 0
 1

$$-CH_2-$$

30
$$Cl$$
 $N=N$

$$SO_2-NH_2$$
 $X-A_m-Q$

$$N(CH_3)_2$$

$$Cl \qquad 0 \qquad 0$$

$$N \qquad N$$

$$N \qquad Cl$$

$$N \qquad Cl$$

TABLE 1-continued

$$SO_2-NH_2$$
 $X-A_m-Q$

		\sim \sim \sim \sim			
No.	A	Q	X	m	m.p. (°C.)
71	$-(CH_2)_3-$	-COOC ₂ H ₅	0	1	100-101°
72	$-CH(C_2H_5)-$	-COOC ₂ H ₅	O	1	105-106°
73	$(X)-CH_2-CH=CH-(Q)$	-COOCH ₃	0	1	162-165°
				•	
74	$-CH_2-$	CH ₃	Ο	1 -	oil
		0 0			
					. •
					•
	· .				
75	CH ₂	$-C(CH_3)=N-OH$	0	. 1	191–192°
76	-CH ₂ -	$-C(CH_3)=N-OC_2H_5$	0	1	120-121°
77 7 0	-CH ₂ -	$-C(CH_3)=N-O-CH_2-CH=CH_2$	0	1	124-126°
78 79	-CH ₂ -	$-O(CH_2)_2-OCH_3$	0	1	80–84°
19	CH ₂	$-C(CH_3)=N-C_3H_7-n$	O		78~80°
80	-CH ₂ -		O	1	78-80°
			Ü	•	70 00
		0 0			
•					
		CH ₃ CH ₃			
81	-CH ₂	H	0	1	oil
	·	<u> </u>			
		O >			
82	-CH ₂ -	CH-	O	1	oil
		0			
		\			· .
		C_2H_5			
83	-CH ₂ -		^	. 1	102-103°
0.5	C11 2	CH ₃	O		102-103
		0			
84	-CH ₂ -	CH ₃	Q	1	111-112°
		0			
85	—Сна	ATT	0	. 1	oil
6.7	CII	CH ₃	O	1	Oil
		C_3H_7-n			
86	—CH ₂ —	CH ₃	O	1	107-109°
					
		1 1			
	, .	0 0			
		$H_{3}C$ CH_{3}			
		5-			
87	$-CH_2-CH_2-$	2-pyridyl	O	0	
	· . · · · · · · · · · · · · · · · · · ·	•			
88	$-CH_2-$	CH ₃	Ο	1	

$$SO_2-NH_2$$
 $X-A_m-Q$

No. A Q X m m.p. (°C.)

89 -CH₂- O 1 149-150°

TABLE 2

 R_1 SO_2-NH_2 $X-A_m-Q$

20

$$R_1$$
 SO_2
 NH_2
 $X-A_m-Q$

TABLE 2-continued

•

25	No.	A	Q	R_1	m.p. X m (°C.)	
	92	-CH ₂ -	-CN	5-C1	O 1	
		− СН ₂ −	-COOCH ₃	5-F	O 1	

TABLE 3

SO₂-NH-CO-NH-
$$\stackrel{R_2}{\sim}$$
N $\stackrel{R_2}{\sim}$
N $\stackrel{R_2}{\sim}$
N $\stackrel{R_3}{\sim}$

N .T	A			_	_	_		m.p.
No.		Q	X	m R ₁	R ₂	R ₃	E	(°C.)
101	-CH ₂	-CN	О	1	CH ₃	CH ₃	CH	175- 178°
102	-CH ₂ -	-COOC ₂ H ₅	0	1	CH ₃	CH ₃	CH	153
103	-CH ₂ -	-COOCH ₃	O	1	CH ₃	CH ₃	СН	154° 194–
104	-CH(CH ₃)-	-COOCH ₃	О	1	CH ₃	CH ₃	СН	196° 200–
105	-CH(CH ₃)-	COOCH ₃	0	1	CH ₃	OCH ₃	СН	203° 180–
106	-CH(CH ₃)-	-COOCH ₃	О	1	CH ₃	OCH ₃	N	182° 165–
107	-сн(сн ₃)-	-COOCH ₃	O	1	OCH ₃	OCH ₃	N	167° 163–
108	-CH(CH ₃)-	-COOCH ₃	О	1	OCH ₃	OCH ₃	СН	165°
109	—CH(CH ₃)—	-COOCH ₃	0	1	OCH ₃	$-N(CH_3)_2$	N	175- 176°
110	$-CH(CH_3)-$	-COOCH ₃	0	1	OCH_3	Cl	CH	
111	CH ₂	CN	0	1	CH ₃	OCH ₃	CH	168- 170°
112	CH ₂	-CN	0	1	OCH ₃	OCH ₃	CH	180- 181°
113	-CH ₂ -	-CN	0	1	CH ₃	OCH ₃	N	188- 190°
114	CH ₂	-CN	O	1	OCH ₃	OCH ₃	N	188°
	$-CH_2$	-CN	ŏ	1	OCH ₃	$-N(CH_3)_2$		> 220°
	-CH ₂ -	-COOC ₂ H ₅	ŏ	1	OCH ₃	$-N(CH_3)_2$		/ 220
	$-CH_2^-$	-COOC ₂ H ₅	Ŏ	1	OCH ₃	OCH ₃	N	157-
118	-CH ₂	-COOC ₂ H ₅	0	1	OCH ₃	OCH ₃	СН	159° 160-
				•	_	_	-11	162°
119	-CH ₂ -	-COOC ₂ H ₅	0	1	OCH ₃	CH ₃	CH	164 165°
								103

SO₂-NH-CO-NH-
$$\begin{pmatrix} N \\ N \end{pmatrix}$$
 $\begin{pmatrix} R_2 \\ N \end{pmatrix}$
 $\begin{pmatrix} N \\ N \end{pmatrix}$
 $\begin{pmatrix} R_2 \\ N \end{pmatrix}$
 $\begin{pmatrix} N \\ R_3 \end{pmatrix}$
 $\begin{pmatrix} X - A_m - Q \end{pmatrix}$

No.	A	Q	X	m	R ₁	R ₂	R ₃	E	m.p. (°C.)
120	-CH ₂ -	-COOC ₂ H ₅	0	1		OCH ₃	CH ₃	N	136- 137°
	-CH ₂ -	-COOC ₂ H ₅	0	1	•	OCH ₃	OCH ₃	N	15,
122 123		-SO ₂ CH ₃	0	0		OCH ₃	OCH ₃	N	
123	—CH ₂ —	-SO ₂ CH ₃ -CO-CH ₃	0	0		OCH ₃ CH ₃	OCH ₃ OCH ₃	CH CH	
	$-CH_2$	-CO-CH ₃	ŏ	1		CH ₃	OCH ₃	N	163-
						_		- '	165°
126	-CH ₂ -	-CO-CH ₃	0	1		OCH ₃	OCH ₃	N	•
127 128	-CH ₂ CH ₂	-CO-CH ₃ -CO-CH ₃	0	1	•	OCH ₃	OCH ₃	CN	
129	$-CH_2$	-CO-CH5	0	1		OCH ₃ OCH ₃	$-N(CH_3)_2$ $-N(CH_3)_2$	N N	
130	$-CH_2$	$-CO-C_6H_5$	ŏ	i		OCH ₃	OCH ₃	N	
131	$-CH_2$	$-CO-C_6H_5$	О	1		OCH_3	OCH ₃	CH	
132	-CH ₂ -	$-CO-C_6H_5$	0	. 1		OCH_3	CH_3	CH	
133	-CH ₂ -	$-CO-C_6H_5$	О	1.		OCH ₃	CH ₃	N	180-
134	$-CH_2-CH_2-$	OH	0	1		OCH ₃	OCH ₃	СН	184° 137–
				•.			OCII	· ·	139°
135	$-CH_2-CH_2-$	OH	O	. 1		CH ₃	OCH ₃	N	155°
									(de-
136	$-CH_2-CH_2-$	-O-CO-CH ₃	O	1		CH ₃	OCH ₃	N.	comp.) 157°
150	CIIZ CIIZ	O CO CII3	O			CHI	OCH3	14	(de-
	•	•	·				•		comp.)
137	$-CH_2-CH_2-$	-O-CO-NH-CH ₃	0	1		CH ₃	OCH ₃	N	176-
138		-CO-N(CH-)				CU.	OCU	CITT	177°
130		$-\text{CO-N(CH}_3)_2$	O .	0		CH ₃	OCH ₃	CH	191- 192°
139	$-CH_2-CH_2-$	$-N(CH_3)_2$	О	. 1		OCH_3	OCH ₃	CH	>250°
140	$-(CH_2)_3-$	-CN	O	1		OCH_3	CH ₃	N	165°
141	$-cH_2$	COOCH ₃	O	1		OCH_3	CH ₃	N	178-
142	-CH ₂ -	-COOCH ₃	O	1		OCH ₃	$-N(CH_3)_2$	N	179° 186–
				•		OCII	14(C113)2		187°
143	$-CH_2-$	$-CO-N(CH_3)_2$	• 0	1		OCH ₃	OCH ₃	CH	144-
144	CH ₂	— CO C .TT	•			0.077	~ 1	~TT	147°
1-4-4	Cn ₂	$-CO-C_6H_5$	О	1		OCH ₃	Cl	CH	168- 173°
145	$-CH_2-$	$-CO-C_6H_5$	O	1		OCH ₃	$-N(CH_3)_2$	N	200-
									205°
1.4.4	·	~ 1		^	:	0.011	C) T T		100
146			0	0		OCH ₃	CH ₃	N	187– 189°
									107
		N —	• .						
147	CTT					0.011			
147	CH ₂	Cl	. 0	.1		OCH ₃	CH ₃	N	140° C.
	•				. 1				
					•				
	. ·	Cl							
148	-CH ₂ -	$-CO-N(CH_3)_2$	0	1		OCH ₃	CH ₃	N	164-
									166°
149	· ·	$-SO_2-CH_3$	О	0		OCH_3	OCHF ₂	CH	155-
150	· · · · · · · · · · · · · · · · · · ·	$-SO_2-C_3H_7-n$	О	0		OCH ₃	OCHF ₂	CH	165° 189-
150		302 C311/ II	U	U,	•	OCH3	OCHF2	CH	191°
151	$-CH_2-CH_2-$	$-o-so_2-cH_3$. 0	1		OCH_3	CH_3	N	181-
1.00	CIT			۰					182°
152	$-CH_2-CH_2-$	-O-CO-CH ₃	S	1		OCH ₃	CH ₃	N	137- 130°
153	$-CH_2-CH_2$	$-O-CO-CH_3$	SO ₂	. 1		OCH ₃	CH ₃	N	139° 105-
			- - L					·	107°
154	CH ₂	4-pyridyl	О	1		OCH_3	CH ₃	N	204- 205°

SO₂-NH-CO-NH-
$$\stackrel{R_2}{\sim}$$
N
 $\stackrel{R_2}{\sim}$
N
 $\stackrel{R_2}{\sim}$
N
 $\stackrel{R_2}{\sim}$
N
 $\stackrel{R_2}{\sim}$
N
 $\stackrel{R_2}{\sim}$
R₃

No. A		Q	•	X	m R ₁	R ₂	\mathbf{R}_3	E	m.p. (°C.)
155 — CH ₂ —		3-pyridyl		0	1	OCH ₃	CH ₃	СН	189-
156 —CH ₂ —		2-pyridyl		О	1	OCH ₃	CH ₃	СН	190° 190-
157 —CH ₂ —		3-pyridyl		О	1	OCH ₃	CH ₃	N	193° 185–
158 —CH ₂ —		2-pyridyl		О	1	OCH ₃	CH ₃	N	187° 185–
159 —CH ₂ —		-CO-C ₃ H ₇ i		О	1	OCH ₃	CH ₃	CH	186° 122–
160 —		2-pyridyl		0	_	OCH ₃	CH ₃	CH	130°
161 —		2-pyridyl		O	0	OCH_3	OCH_3	CH	
162 —		2-pyridyl		O	0	OCH_3	CH_3	N	
163 —		2-pyridyl		О	0	OCH_3	OCH_3	N	
$164 - (CH_2)_3 -$		-COOC ₂ H ₅		О	1	CH ₃	OCH_3	N	128-
`		2 2				J		- '	130°
$165 - (CH_2)_3 -$	•	-COOC ₂ H ₅		O	1	CH_3	OCH_3	CH	150
105 (CII2)3					1	•	_		
$166 - (CH_2)_3 -$		$-COOC_2H_5$		О	1	CH_3	$OCHF_2$	CH	
$167 - (CH_2)_3 -$	•	-COOC ₂ H ₅		О	1	OCH_3	OCH_3	N	
$168 - (CH_2)_3 -$	•	-COOC ₂ H ₅		О	1	OCH_3	OCH_3	CH	
169. $-CH(C_2H)$		-COOC ₂ H ₅		O	1	CH ₃	OCH ₃	N	118-
107, 011(0211	<i>.</i> ,	00002113		O	•	CIII	OCITY	14	120°
170 $-CH(C_2H)$	s) 	-COOC ₂ H ₅		0	1	CH_3	OCH ₃	CH	120
	•	<u></u>			1	_	•		
171 — CH(C ₂ H		-COOC ₂ H ₅		O	1	OCH_3	OCH_3	CH	
$-CH(C_2H)$		-COOC ₂ H ₅		O	1	OCH_3	OCH_3	N	
173 (X)— CH_2	-CH=CH-(Q)	-COOCH ₃		О	1	CH_3	OCH_3	N	152-
						_			154°
174 (X)—CH ₂ -	-CH=CH-(Q)	-COOCH ₃		0	1	CH_3	OCH_3	CH	
		-COOCH ₃			1	•	•		
		•		0	1	CH ₃	OCHF ₂	CH	
	· •	-COOCH ₃		O	1	CH_3	OC_2H_5	N	
177 (X)— CH_2	-CH=CH-(Q)	-COOCH ₃		О	1	CH_3	CH_3	CH	
178 $-CH_2-$		oxiranyl		Ο	1	CH_3	CH_3	CH	
179 $-CH_2^-$		oxiranyl		0	1 '	CH ₃	OCH ₃	N	123°
180 —CH ₂ —				-	1	_	F -		
180 —C112—		oxiranyl		О	1	CH ₃	OCH ₃	CH	154 155°
181 —CH ₂ —		oxiranyl		O	1	CH ₃	OC_2H_5	N	175
102 — CII	·	•			1	•			
182 —CH ₂ —		oxiranyl		О	1	CH_3	$OCHF_2$	CH	114-
				_	-				116°
183 — CH_2 —		oxiranyl		0	1	OCH_3	OCH_3	CH	
184 —CH ₂ —		oxiranyl		Ο	1	OCH_3	OCH_3	N	
185 — CH ₂ —		oxiranyl		0	1	CH ₃	CH ₃	CH	
186 —CH ₂ —		oxiranyl		S	1	CH ₃	OCH ₃	N	
187 —CH ₂ —	•				1	_	-		
107 —CI12—		oxiranyl		S	1	CH ₃	OCH ₃	CH	
188 —CH ₂ —		tetrahydrofuran-2-yl		O	1	CH_3	OCH_3	CH	141-
400				_				_	143°
189 —CH ₂ —		tetrahydrofuran-2-yl		O	1	CH_3	OCH_3	N	155-
400		.		_	_				156°
190 $-CH_2-$		tetrahydrofuran-2-yl		О	1	CH_3	$OCHF_2$	CH	158–
404		· · · · · · · · · · · · · · · · · · ·		_	_			_	159°
191 $-CH_2-$	•	tetrahydrofuran-2-yl		О	1	CH_3	OC_2H_5	CH	
192 $-CH_2-$		tetrahydrofuran-2-yl		0	1	OCH_3	OCH_3	CH	
193 $-CH_2^-$		tetrahydrofuran-2-yl		0	1	OCH ₃	OCH ₃	N	
-				~	-			- 1	
194 —CH ₂ —		CH ₃		О	. 1	OCH ₃	OCH ₃	N	
		0 0		-					
195 —CH ₂ —		CH ₃		О	1	OCH ₃	OCH ₃	СН	
		0 0							

 R_2

			SO ₂ -NH-CO-NH	— E					
			$X-A_m-Q$	R_3					
	No. A		Q	X m R ₁	R ₂	R ₃	m.p. E (°C.)		
	196 —CH ₂ —		CH ₃	O 1	CH ₃	OCH ₃	CH		
	197 —CH ₂ —		CH ₃	O 1	CH ₃	OCH ₃	N 158- 160°		· .
	198 —CH ₂ —		CH ₃ O	O 1	CH ₃	OCHF ₂	CH		
	199 —CH ₂ —		CH ₃	O 1	OCH ₃	OCH ₃	CH		
									· · · · · · · · · · · · · · · · · · ·
	200 —CH ₂ —		CH ₃ O O	O 1	OCH ₃	OCH ₃	N	· · · · · · · · · · · · · · · · · · ·	
	201 — CH ₂ —		$-C(CH_3)=N-OH$	O 1	OCH ₃	CH ₃	N 171- 172°		· · · · ·
	202 — CH ₂ — 203 — CH ₂ — 204 — CH ₂ — 205 — CH ₂ — 206 — CH ₂ —		$-C(CH_3)=N-OH$ $-C(CH_3)=N-O-CH_2-CH=CH_2$ $-C(CH_3)=N-O-CH_2-CH=CH_2$ $-C(CH_3)=N-O-CH_2-CH=CH_2$ $-C(CH_3)=N-O-CH_2-CH=CH_2$	O 1 O 1 O 1 O 1 O 1	OCH ₃ CH ₃ CH ₃ CH ₃	CH ₃ OCHF ₂ OCH ₃ OCH ₃	CH CH CH CH N 152-		
	207 — CH ₂ — 208 — CH ₂ — 209 — CH ₂ — 210 — CH ₂ — 211 — CH ₂ — 212 — CH ₂ —		$-C(CH_3)=N-O-CH_2-CH=CH_2$ $-C(CH_3)=N-O-CH_2-CH=CH_2$ $-C(CH_3)=N-O-CH_2-CH=CH_2$ $-C(CH_3)=N-OC_2H_5$ $-C(CH_3)=N-OC_2H_5$ $-C(CH_3)=N-OC_2H_5$	O 1 O 1 O 1 O 1 O 1 O 1 O 1	OCH ₃ OCH ₃ CH ₃ CH ₃ CH ₃	OCH ₃ OCH ₃ CH ₃ CH ₃ OCH ₃	154° N CH CH CH CH N 149-		
	213 — CH ₂ — 214 — CH ₂ — 215 — CH ₂ — 216 — CH ₂ — 217 — CH ₂ — 218 — CH ₂ — 219 — CH ₂ —		$-C(CH_3)=N-OC_2H_5$ $-C(CH_3)=N-OC_2H_5$ $-C(CH_3)=N-OC_2H_5$ $-O-(CH_2)_2-OCH_3$ $-O-(CH_2)_2-OCH_3$ $-O-(CH_2)_2-OCH_3$ $-O-(CH_2)_2-OCH_3$ $-O-(CH_2)_2-OCH_3$	O 1 O 1 O 1 O 1 O 1 O 1 O 1 O 1 O 1 O 1	CH ₃ OCH ₃ OCH ₃ OCH ₃ CH ₃	OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃	CH CH N N CH CH CH N 135		
	220 —CH ₂ —		$-O-(CH_2)_2-OCH_3$	O 1	CH ₃	OCHF ₂	136° CH 104-		
	221 — CH ₂ — 222 — CH ₂ —		$-C(CH_3)=N-C_3H_7-n$ $-C(CH_3)=N-C_3H_7-n$	O 1 O 1	CH ₃ CH ₃	OCH ₃ OCH ₃	106° CH N		
	223 —CH ₂ —			O i	CH ₃	OCH ₃	N 127- 131°		
			0 0				131		
			CH ₃ CH ₃				•		
•		. •				· · ·			

232 —CH₂—

 CH_3

 $OCHF_2$

CH 75-78°

156°

CH

 \mathbf{N}

 OCH_3

OCH₃

 CH_3

 CH_3

 R_2

E

TABLE 3-continued

 $-C(C_3H_7-i)=N-OC_2H_5$

 $-C(C_3H_7-i)=N-OC_2H_5$

 $-CH_2-$

 $247 - CH_2 -$

		SO ₂ —NH—CO—NH-	~	E				
				R_3				
		$X - A_m - Q$						
No.	A	Q	X	m R _I	R ₂	R ₃	E	m.p. (°C.)
248	-СН3-	$-C_3H_7-i$	0	1	CH ₃	OCH ₃	N	
249	-СH ₂ -	C_3H_7 —i	Ο	1	CH ₃	OCH ₃	CH	
		0 0						
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274	-CH ₂ -CH ₂ CH ₂ -CH ₂ -	-O-CO-CH ₃ -O-SO ₂ -CH ₃ -O-SO ₂ -CH ₃ -O-SO ₂ -CH ₃ -O-SO ₂ -CH ₃ -O-CO-C ₂ H ₅	000008888888888000000000000000000000000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃ CH ₃ CH ₃ CH ₃ OCH ₃ CH ₃ OCH ₃ CH ₃	OCH ₃ OCH ₃ OCH ₃ OCH ₇ CH ₃ OCH ₃	CHUCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	119-
283 284		tetrahydrofuran-3-yl tetrahydrofuran-3-yl	0	0	CH ₃ CH ₃	OCH ₃ OCH ₃	N CH	120°
285		tetrahydrofuran-3-yl	S	0	CH ₃	OCH ₃	N	
286 287	— -СH ₂ —	tetrahydrofuran-3-yl thien-2-yl	SO ₂ O	0 1	CH_3 CH_3	OCH_3 OCH_3	N N	194-
288	-CH ₂ -	thien-2-yl	О	1	CH ₃	OCH ₃	СН	195° 207– 208°
289	-CH ₂ -	thien-2-yl	Ο	1	CH ₃	OCHF ₂	CH	185- 186°
290	CH ₂	thien-2-yl	0	1	CH ₃	CH ₃	СН	186° 195– 197°
291 292	—СH ₂ — —СH ₂ —	thien-2-yl thien-2-yl	0 0	1	CH_3 OCH_3	OC_2H_5 OCH_3	N N	
	-CH ₂ -	thien-2-yl	ō	1	OCH ₃	OCH ₃	CH	

								- N	R		•		
	· .			_ x-	$A_m - Q$: 3				
				•		·							
No.	A		Q				X	m	R ₁	R ₂	R ₃	E	m.p. (°C.)
294	-сн ₂ -			CH ₃			0	1		CH ₃	OCH ₃	N	151-
	· .		. 0				•						152°
			H ₂ C-L	L	H2								
205				•	· - ,								
295	-СH ₂ -			CH ₃			О	1		CH ₃	OCH ₃	CH	147- 148°
•			0	0	•							·	
			H ₃ C	CI	H ₃								
296	CH ₂			CH ₃		•	0	1		CH_3	OCHF ₂	СН	133-
<i>:</i> .			0	0									136°
				1	. •					· ·			· · · · · · · · · · · · · · · · · · ·
			H ₃ C	CI	H13	·						. •	
297	-сн ₂ -			CH ₃			О	1	CH ₃	CH ₃	•	CH	
		· .	Ο	0						· .			
		•	H ₃ C	CI	Н3	<i>.</i>		·			•	· · · · · · · · · · · · · · · · · · ·	
298	-CH ₂ -			• (3)	•		0	1	CH ₃	OC ₂ H ₅		СН	
				CH ₃	·		O	•	CII	002115	•	CII	
			O 1	O 1							•	· · · ·	
			H ₃ C	CI	H3								
299	-CH ₂ -			CH ₃	·		О	1	OCH ₃	OCH ₃		CH	
	•		0	0							· . ·		
			H ₃ C	CI	H3	· .							
200					·5		_		OCII	OOH		.	•
300	CH ₂ -			CH ₃		· .	0	1	OCH ₃	OCH ₃		N	
·		•	0	0		·							
			H ₃ C	CI	H ₃						•		
301	-CH ₂ -		 (CH ₃	· ·		0	1	OCH ₃	OCH ₃		N	
			0	0									
			<u>.</u>	. 1		•							
				C ₃ H ₇ r	1 :								
302	CH ₂	•		CH ₃			Ο	1	OCH ₃	OCH ₃		CH	•
	· ·	•	0	0							·		
					1							•	
303	CH ₂	•		СН3			0	1	CH ₃	OCH ₃		СН	142-
	-			- 113			-	-	J	·J			143°

SO₂-NH-CO-NH
$$=$$
 E

 $=$ N

 $=$ R₂
 $=$ N

 $=$ R₃
 $=$ R₃

									m.p.
No.	A	Q	X	m	R ₁	R ₂	R ₃	E	(°C.)
305	-CH ₂	CH_3 C CH_3 C	Ο	1	CH ₃	OCHF ₂		СН	108- 112°
306	-CH ₂ -	CH ₃ O O	Ο	1	CH ₃	CH ₃		СН	108- 110°
307	~-CH ₂ ~~	CH ₃ O O	Ο	1	CH ₃	CH ₃		СН	167– 168°
308	CH ₂	H ₃ C CH ₃ CH ₃ O O	Ο	1	CH ₃	OCH ₃		СН	153- 154°
309	-CH ₂ -	H ₃ C CH ₃ CH ₃ O O	Ο	1	CH ₃	OCH ₃		N	137- 139°
310	-CH ₂ -	H ₃ C CH ₃ CH ₃ O O	O	1	CH ₃	OCHF ₂		CH	138- 140°
311	-CH ₂	H ₃ C CH ₃ CH ₃ O O	Ο	1	OCH ₃	OCH ₃		N	
.312	CH ₂	H ₃ C CH ₃ CH ₃ O O				OCH ₃		N	

SO₂-NH-CO-NH-
$$\stackrel{R_2}{\sim}$$
 $N \stackrel{R_2}{\sim}$
 $N \stackrel{R_3}{\sim}$

No. A	Q	X	m	R_1	\mathbf{R}_2	\mathbb{R}_3	E	m.p. (°C.)
313 —CH ₂ —	<u></u>	0	1	OCH ₃	OCH ₃		N	
	-CH ₃			·	•			
		· .				•		
	N —						. •	
314 —CH ₂ —	<u>* </u>	0	- 1	OCH ₃	OCH ₃		СН	
	-CH ₃							
	N =				· .			
315 —CH ₂ —	p	0	1	CH ₃	OCH ₃		CH	
_								
	CH ₃					• .		:
	N =					. :	•	
316 —CH ₂ —		Ο	1	CH ₃	OCH ₃		N	
310 C11 2			•	C11 3	OCII	•	.41	•
	-CH ₃						•	
	N =							
217				CII	OCUE		CII	
317 —CH ₂ —		•		CH ₃	OCHF ₂		CH	
	CH ₃							
	N =							·
		· ·						
318 —CH ₂ —		Ο	l	CH ₃	CH ₃	· 	CH	
	-CH ₃							
	N =					· ·	•	
						•		
319 — CH ₂ — CH ₂ —	2-pyridyl	0	1	CH ₃	OCH ₃ OCH ₃		N CH	
$320 - CH_2 - C$	2-pyridyl 2-pyridyl	0	1	CH ₃ CH ₃	OCH ₃		CH	
322 $-CH_2-CH_2-$	2-pyridyl	Ο	. 1	CH ₃	CH ₃		CH	
$323 - CH_2 - CH_2 -$	2-pyridyl	. 0	1	-	OCH ₃	·	CH	:
324 —CH ₂ —CH ₂ —	2-pyridyl	. · · · O	1	OCH3	OCH ₃	•	N	
325 —CH ₂ —		Ο	1	CH ₃	OCH ₃	· .	N	128-
						· · · · ·		130°
	\							
	0						· ·	· ·
326 —CH ₂ —		0	1	CH ₃	OCH ₃		СН	154-
					•			155°
•								
	o —							
327 —CH ₂ —	· · · · · · · · · · · · · · · · · · ·	· O	1	CH ₃	OCHF ₂	· · · · · · · · · · · · · · · · · · ·	СН	122-
••• ·								125°
	-()							

$$\begin{array}{c|c}
 & R_2 \\
 & N \\
 & E \\
 & N \\
 & R_3 \\
 & X-A_m-Q
\end{array}$$

60

TABLE 4

SO₂-NH-CO-NH-
$$\stackrel{R_2}{\sim}$$
 $\stackrel{R_2}{\sim}$ $\stackrel{R_2}{\sim}$ $\stackrel{R_1}{\sim}$ $\stackrel{R_2}{\sim}$ $\stackrel{R_3}{\sim}$ $\stackrel{R_3}{\sim}$

No.	A	Q	X	m	\mathbf{R}_1	R_2	R ₃	E	m.p. (°C.)
402 403	-CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ -	-COOCH ₃ -CN	O O S	1 1 1	5-CH ₃ 5-Cl 5-Cl	OCH_3	CH ₃ OCH ₃		192-195° 178-180°

FORMULATION EXAMPLES

Example 4

Formulation examples for solid active ingredients of the 40 ___ formula I (throughout, percentages are by weight)

(a) Wettable powders	(a)	(b)	(c)	
active ingredient	20%	60%	0.5%	
sodium lignosulfonate	5%	5%	5%	
sodium laurylsulfate	3%			
sodium diisobutylnaphthalene- sulfonate	-	6%	6%	
octylphenol polyethylene glycol ether (7-8 moles of ethylene oxide)	·	2%	2%	
highly dispersed silicic acid	5%	27%	27%	
kaolin	67%		******	
sodium chloride			59.5 <i>%</i>	

The active ingredient is thoroughly mixed with the adjuvants and the mixture is thoroughly ground in a suitable mill, affording wettable powders which can be diluted with water to give suspensions of the desired concentration.

(b) Emulsifiable concentrate	(a)	(b)
active ingredient	10%	1%
octylphenol polyethylene glycol ether (4-5 moles of ethylene oxide)	3%	3%
calcium dodecylbenzenesulfonate	3%	3%
castor oil polyglycol ether	4%	4%
(36 moles of ethylene oxide)		

-continued

(b) Emulsifiable concentrate	(a)	(b)
cyclohexanone	30%	10%
xylene mixture	50%	79%
		جي خوار في المراجع الم

Emulsions of any required concentration can be obtained from this concentrate by dilution with water.

	(c) Dusts	(a)	(b)
50	active ingredient	0.1%	1%
	talcum	99.9%	
	kaolin		99%

Dusts which are ready for use are obtained by mixing. The active ingredient is thoroughly mixed with the 55 the active ingredient with the carriers, and grinding the liuvants and the mixture is thoroughly ground in a mixture in a suitable mill.

(d) Extruder granulate	(a)	(b)	
active ingredient	10%	1%	
sodium lignosulfonate	2%	2%	
carboxymethylcellulose	1%	1%	
kaolin	87%	96%	

The active ingredient is mixed and ground with the adjuvants, and the mixture is subsequently moistened with water. The mixture is extruded and then dried in a stream of air.

(e) Coated granulate	
active ingredient	3%
polyethylene glycol 200	3%
kaolin	94%

The finely ground active ingredient is uniformly applied, in a mixer, to the kaolin moistened with polyethylene glycol. Non-dusty coated granulates are obtained in this manner.

(f) Suspension concentrate	(a)	(b)	1.
active ingredient	40%	5%	13
ethylene glycol	10%	10%	
nonylphenol polyethylene glycol	6%	1%	
ether (15 moles of ethylene		•	
oxide)			
sodium lignosulfonate	10%	5%	20
carboxymethylcellulose	1%	1%	
37% aqueous formaldehyde solution	0.2%	0.2%	
silicone oil in the form of a 75%	0.8%	0.8%	
aqueous emulsion			
water	32%	77%	24

The finely ground active ingredient is intimately mixed with the adjuvants, giving a suspension concentrate from which suspensions of any desired concentration can be obtained by dilution with water.

(g) Salt solution	·
active ingredient	5%
isopropylamine	1%
octylphenol polyethylene glycol	3%
ether (78 moles of ethylene oxide)	
water	91%

BIOLOGICAL EXAMPLES

Example 5

Preemergence herbicidal activity

Plastic pots are filled with expanded vermiculite (density: 0.135 g/cm³, water absorbing capacity: 0.565 1/1). After the non-adsorptive vermiculite has been saturated with an aqueous emulsion in deionised water which contains the test compound in a concentration of 50 70.8 ppm, seeds of the following plants are sown on the surface: Nasturtium officinalis, Agrostis tenuis, Stellaria media and Digitaria sanguinalis. The pots are then kept in a climatic chamber at 20° C., an illumination of about 20 lux and a relative humidity of 70%. During the ger- 55 minating phase of 4 to 5 days, the pots are covered with lightpermeable material and watered with deionised water to increase the local humidity. After the 5th day, 0.5% of a commercial liquid fertiliser (Greenzit ®) is added to the water. The test is evaluated 12 days after sowing and the activity on the the plants is assessed according to the following rating:

- 1: plants have not emerged or are totally withered
- 2-3: very pronounced activity
- 4-6: medium activity
- 7-8: weak activity
- 9: no activity (as untreated controls).

Test plant Compound	Nasturtium	Stellaria	Agrostis	Digitario
101	2	3	2	3
102	3	5	- 5	3
104	2	4	3	3
105	2	5	2	4
113	1	2	1	1
114	1	1	1	. 1
115	2	. 2	1	2 .
133	1	5	2	4
135	. 1	1	1	. 1
136	1	2	1	2
137	2	2	2	2 %
138	1	2	1	2
146	2	2	2	-2
147	2	2	2	4
148	3	6	4	5
150	2	7	. 2	6
151	2	2	2	2
152	1	. 2	1	2
153	2	2	2	2

Example 6

Postemergence herbicidal action (contact action)

A number of weeds and cultivated plants, both monocots and dicots, are sprayed postemergence, in the 4- to 6-leaf stage, with an aqueous dispersion of test compound at a rate of application of 0.5 kg a.i./ha, and then kept at 24°-26° and 45-60% relative humidity. The test is evaluated 15 days after treatment. In this test, the herbicidal action on plants treated with compounds of the formula I is marked in comparison with untreated controls (rating 1 to 5, mainly 1 to 3).

Example 7

Growth inhibition of tropical cover crops

The test plants (Psophocarpus palustris and Centrosema pubescens) are reared until fully grown and then cut back to a height of 15 cm. The plants are sprayed 7 days later with an aqueous emulsion of the compound to be tested. The test plants are kept at 70% relative humidity and 6000 lux artificial light for 14 hours per day, at day temperature of 27° C. and night temperatures of 21° C. The test is evaluated 4 weeks after application by assessing and weighing the new growth compared with controls and by determining the phytotoxicity.

In this test a marked reduction in new growth of the plants treated with compounds of the formula I is observed (less than 20% of the new growth of untreated control plants).

Example 8

Growth regulation of soybeans

Soybeans of the "Hark" variety are sown in plastic containers in an earth/peat/sand mixture (6:3:1). The containers are put into a climatic chamber and the plants develop to the 5-6 trefoil leaf stage after about 5 weeks by optimum control of temperature, light, fertiliser addition, and watering. The plants are then sprayed with an aqueous mixture of a compound of the formula I until thoroughly wetted. The concentration of test compound is up to 100 g a.i./ha. Evaluation is made about 5 weeks after application. Compared with untreated controls, the compounds of the formula I mark-

edly increase the number and weight of the harvested siliques on the leading shoot.

Example 9

Growth inhibition of cereals

Summer barley (Hordeum vulgare) and summer rye (Secale) are sown in sterilised soil in plastic beakers in a greenhouse and watered as required. The cereal shoots are treated about 21 days after sowing with an aqueous spray mixture of a compound of the formula I. The concentration is up to 100 g of active ingredient per hectare. Evaluation of the growth of the cereals is made 21 days after application. Compared with untreated controls, the new growth of the treated plants is markedly reduced (60-90% of controls) and in some plants the diameter of the stalks is increased.

Example 10

Growth inhibition of grasses

A mixture of the process Lolium perenne, Poa pratensis, Festuca ovina, Dactylis glomerata and Cynodon dactylon is sown in plastic dishes filled with an earth/peat/sand mixture (6:3:1), in a greenhouse, and watered as required. The emergent grasses are cut back weekly to 25 a height of 4 cm above the soil and, about 50 days after sowing and 1 day after the last cut, are sprayed with an aqueous spray mixture of a compound of the formula I. The concentration of test compound corresponds to a rate of application of 100 kg per hectare. The growth of 30 the grasses is assessed after 21 days. Compared with untreated controls, the reduction in new growth effected by the compounds of formula I is in the region of 10-30%.

Example 11

Test of selectivity in preemergence application

Seeds of dicot and monocot weeds and cultivated plants are sown in a greenhouse in pots of 11 cm diameter. Immediately afterwards the surface of the soil is treated with an aqueous dispersion or solution of the test compound. Concentrations of 0.500, 0.125 and 0.030 kg a.i./ha are employed. The pots are then kept in the greenhouse at 22°-25° C. and 50-70% relative humidity. The test is evaluated after 3 weeks and the activity is determined in accordance with the same rating as in Example 5.

Activity rate of application in kg a.i./ha	Con	npound	125	Со	mpound	134	50
Test plant	0.500	0.125	0.030	0.500	0.125	0.030	_
barley	5	7	8				-
wheat	8	9	9	5	7	8	55
Alopecurus myos.	2	3	6	2	2	4	
Echinochloa c.g.	2	5	9	2	3	4	
Rottboellia ex.	. 2	2	4	2	4	6	
Cyperus escul.	3	3	4	2	4	5	
Abutilon	2	3	7	2	2	3	
Sida spinosa	2	3	4		_		60
Xanthium Sp.	2	2	3	2	5	8	
Amaranthus ret.	2	2	2		_		
Chenopodium Sp.	2	3	6	2	3	3	
Ipomoea	1	2	4	2	4	6	
Sinapis	2	3	7	2	2	3	
Chrysanthe leuc.	2	2	3	_	<u></u>	_	65
Galium aparine	2	5	8	3	4	4	
Viola tricolor	2	2	3	3	3	4	

Example 12

Test of selectivity in postemergence application

Following the test procedure of Example 6, a large number of plants are treated with different concentrations of test compound. Evaluation is made in accordance with the rating of Example 5.

Activity rate of application in kg a.i./ha	Cor	npound	125	Co	mpound	134
Test plant	0.500	0.125	0.030	0.500	0.125	0.030
wheat	8	9	9	4	8	9
Alopecurus myos.	2	3	5	3	5	8
Echinochloa c.g.	2	5	7	2	3	4
Rottboellia ex.	3	4	7	3	4	5
Cyperus escul.	3	4	6	3	3	4
Abutilon	2	2	4	3	3	4
Xanthium Sp.	1	1	2	2	2	4
Chenopodium Sp.	2	4	6	3	3	4
Ipomoea	2	3	3	5	7	7
Sinapis	2	2	2	3	3	3

We claim:

1. A compound selected from the group consisting of a sulfonylurea of the formula:

wherein

35

R₁ is hydrogen, halo, nitro, alkyl of 1 to 4 carbon atoms, haloalkyl of 1 to 4 carbon atoms, alkoxy of 1 to 4 carbon atoms, alkenyl of 2 to 5 carbon atoms, or alkoxycarbonyl of 1 to 4 carbon atoms in the alkoxy group;

R₂ is alkyl or alkoxy, each of 1 to 3 carbon atoms, unsubstituted or substituted with 1 to 3 halogen atoms;

R₃ is halo, hydrogen, unsubstituted alkyl of 1 to 3 carbon atoms, alkyl of 1 to 3 carbon atoms substituted with alkoxy of 1 to 4 carbon atoms or with 1 to 3 halogen atoms, unsubstituted alkoxy of 1 to 3 carbon atoms, alkoxy of 1 to 3 carbon atoms substituted with methoxy, ethoxy or 1 to 3 halogen atoms, or —NR₄R₅ in which R₄ is hydrogen or methyl and R₅ is hydrogen, methyl, ethyl or methoxy; and

Q is a heterocyclic ring selected from the group consisting of (i) a saturated ring of 3 to 6 members containing one or two nonadjacent oxygen atoms as the hetero atoms, which ring is unsubstituted or substituted with one to three alkyl groups, each of 1 to 3 carbon atoms, (ii) pyridyl, unsubstituted or substituted with chloro or methyl, or (iii) thienyl; and

A is a direct bond, alkylene of 1 to 4 carbon atoms or alkenylene of 2 to 4 carbon atoms; and

the alkali metal, alkaline earth metal, and organic amine salts thereof.

2. A compound according to claim 1 wherein R₁ is hydrogen, methyl or chloro; R₂ is methyl or methoxy;

R₃ is methyl, methoxy, chloro, difluoromethoxy, ethoxy or dimethylamino; and A is alkylene of 1 to 3 carbon atoms.

- 3. A compound according to claim 1, wherein R₁ is hydrogen.
- 4. A compound according to claim 1, wherein the substituents R₂ and R₃ together contain at most 4 carbon atoms.
- 5. A compound according to claim 2 wherein Q is oxiranyl; 2-methoxyoxiran-2-yl; 3-methyloxiran-2-yl; 10 2-yl)urea. tetrahydrofuran-2-yl; tetrahydrofuran-3-yl; 1,3-dioxolan-2-yl; 2-methyl-1,3-dioxolan-2-yl; 2-isopropyl-1,3dioxolan-2-yl; 2,2-dimethyl-1,3-dioxolan-4-yl; or 2methyl-5-ethyl-1,3-dioxolan-2-yl.
- 6. A compound according to claim 2 wherein Q is 15 pyrid-2-yl, pyrid-3-yl, pyrid-4-yl, 3,5-dichloropyrid-2-yl, or thien-2-yl.
- 7. The compound according to claim 5 which is N-(2oxiranylmethoxyphenylsulfonyl)-N'-(4-methoxy-6methyl-1,3,5-triazin-2-yl)urea.
- 8. The compound according to claim 5 which is N-(2oxiranylmethoxyphenylsulfonyl)-N'-(4-ethoxy-6-methyl-1,3,5-triazin-2-yl)urea.
- 9. The compound according to claim 5 which is N-[2-(tetrahydrofuran-3-ylmethoxy)phenylsulfonyl]-N'-(4methoxy-6-methyl-1,3,5-triazin-2-yl)urea.
- 10. The compound according to claim 5 which is N-[2-(tetrahydrofuran-2-ylmethoxy)phenylsulfonyl]-N'-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)urea.
- 11. The compound according to claim 5 which is 30 N-[2-(pyrid-4-ylmethoxy)phenylsulfonyl]-N'-(4-N-[2-(2-methyl-1,3-dioxolan-2-ylmethoxy)phenylsulfonyl]-N'-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)urea.
- 12. The compound according to claim 5 which is N-[2-(2,2-dimethyl-1,3-dioxolan-4-ylmethoxy)phenylsulfonyl]-N'-(4-methoxy-6-methyl-1,3,5-triazin-2yl)urea.
- 13. The compound according to claim 5 which is N-[2-(2-methyl-4-ethyl-1,3-dioxolan-2-ylmethoxy)phenylsulfonyl]-N'-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)urea.
- 14. The compound according to claim 5 which is N-[2-(2,4,5-trimethyl-1,3-dioxolan-2-ylmethoxy)-

- phenylsulfonyl]-N'-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)urea.
- 15. The compound according to claim 5 which is N-[2-(2-methyl-4-propyl-1,3-dioxolan-2-ylmethoxy)phenylsulfonyl]-N'-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)urea.
- 16. The compound according to claim 5 which is N-[2-(2,2,4-trimethyl-1,3-dioxolan-4-ylmethoxy)phenylsulfonyl]-N'-(4-methoxy-6-methyl-1,3,5-triazin-
- 17. The compound according to claim 5 which is N-[2-(3-methoxyoxiran-2-ylmethoxy)phenylsulfonyl]-N'-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)urea.
- 18. The compound according to claim 5 which is N-[2-(2-methyloxiran-2-ylmethoxy)phenylsulfonyl]-N'-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)urea.
- 19. The compound according to claim 5 which is N-[2-(pyran-2-ylmethoxy)phenylsulfonyl]-N'-(4methoxy-6-methyl-1,3,5-triazin-2-yl)urea.
- 20. The compound according to claim 6 which is N-[2-(3,5-dichloropyrid-2-yloxy)phenylsulfonyl]-N'-(4methoxy-6-methyl-1,3,5-triazin-2-yl)urea.
- 21. The compound according to claim 6 which is N-[2-(pyrid-2-ylmethoxy)phenylsulfonyl]-N'-(4-25 methoxy-6-methyl-1,3,5-triazin-2-yl)urea.
 - 22. The compound according to claim 6 which is N-[2-(pyrid-3-ylmethoxy)phenylsulfonyl]-N'-(4methoxy-6-methyl-1,3,5-triazin-2-yl)urea.
 - 23. The compound according to claim 6 which is methoxy-6-methyl-1,3,5-triazin-2-yl)urea.
 - 24. The compound according to claim 6 which is N-[2-(thien-2-ylmethoxy)phenylsulfonyl]-N'-(4methoxy-6-methyl-1,3,5-triazin-2-yl)urea.
- 25. A herbicidal and growth-regulating composition 35 comprising an effective amount of a compound according to claim 1 and a carrier therefor.
- 26. The method of suppressing the growth of plants which comprises applying to the plants or to the envi-40 rons of their growth an effective amount of a compound according to claim 1.