United States Patent [19] **Kojima**

[11] **4,320,510** [45] **Mar. 16, 1982**

[54] ERROR DATA CORRECTING SYSTEM

[75] Inventor: Tadashi Kojima, Yokosuka, Japan

[73] Assignee: Tokyo Shibaura Denki Kabushiki Kaisha, Japan

[21] Appl. No.: 116,555

[22] Filed: Jan. 29, 1980

[30] Foreign Application Priority Data

Jan. 31, 1979 [JP] Japan 54-10101

Attorney, Agent, or Firm—Finnegan, Henderson, Farabow, Garrett & Dunner

[57] ABSTRACT

An input data signal, in which n data words W_1 to W_n and two check words P and Q are treated as one data block, is processed by P and Q decoding circuits. The decoded data S_1 and $T^{i-(n+1)}S_2$ from the decoding circuits are added to each other in an adder to generate $S_1 + T^{i(n+1)}S_2$ which is in turn selected by a gate circuit in accordance with a selection signal. The selection signal is supplied from an M matrix generator (MG) embodied as a linear feedback shift register for $H(x) = X^m + X^g + 1$. The initial value of the linear feedback shift register is set in accordance with the error word data derived from an error word control circuit and the order of the data to be decoded. The decoded data sequentially selected from the gate circuit are added by an adder to be the data W_{je} to be decoded, while at the same time those are added to the S₁ by an adder to be the data W_{ie} to be decoded. The data W_{je} and W_{ie} is added to the corresponding data words W_i and W_i of the input data signal having passed through a one-block delay circuit by an adder, whereby the error data are corrected.

Ja	in. 31, 197	9 [JP]	Japan 54	4-10102
Ja	in. 31, 197	9 [JP]	Japan 54	
[51]	Int. Cl.	3	G06D	11/10
[52]	U.S. C	l .		371/38
[58]	Field o	f Search		39, 40
[56]		Re	eferences Cited	· · · ·
	Ū	.S. PAT	ENT DOCUMENTS	
	3,629,824	12/1971	Bossen	371/38
	3,697,948	10/1972	Bossen	371/38
, ··	3,766,521	10/1973	Carter et al.	371/38
	3,868,632	2/1975	Hong et al.	371/38
	4,160,236	7/1979	Oka et al	371/37
	4,242,752	12/1980	Herkert	371/37

Primary Examiner—Charles E. Atkinson

4 Claims, 12 Drawing Figures

IN . . .

.

. .

U.S. Patent 4,320,510 Mar. 16, 1982 Sheet 1 of 7

F I G. 4

2ړ

F I G. 5

.

· -.

U.S. Patent Mar. 16, 1982

50

D L Ц П

Ω

 $\Box O$

Sheet 2 of 7

S

 $\Box \mathbf{G}$

Z

 $\Box O$

4,320,510

· .

U.S. Patent Mar. 16, 1982

22

4,320,510

. . .

.

. · · ·

.

. . .

. . . · · .

.

. . .

.

.

S ≥

M

Ĺ

U.S. Patent Mar. 16, 1982

. •

.

R

Sheet 4 of 7

S M S

M

4,320,510

. · · · · . · · Ϋ.

U.S. Patent Mar. 16, 1982

DR18

4,320,510

Sheet 5 of 7

. .

.

. · . .

U.S. Patent Mar. 16, 1982

Sheet 6 of 7

4,320,510

.

•

•

. .

.

.

.

.

.

. ·

.

. .

ERROR DATA CORRECTING SYSTEM

FIELD OF THE INVENTION

The invention relates to an error data correcting system adaptable for a system for transmitting, recording and reproducing digitized information signals by PCM (pulse code modulation), for example, and, more particularly, to improvements over an M matrix genera- 10 tor used in the error data correcting system.

BACKGROUND OF THE INVENTION

In an error data correcting system of this type, which has been proposed heretofore in this field, n data words 15 Wl to Wn each containing m bits additionally include a first check code

generated by adding the bits corresponding to the data words and another check code

$$\left(Q = \sum_{r=1}^{n} oT^{(n+1)-r} Wr\right)$$

 $P = \sum_{r=1}^{n} o Wr$

4,320,510

generated by adding the bits corresponding to the signals formed through the operation by an auxiliary matrix (T) of a polynomial $X^m + X^g + 1$, and wherein error

$$\left(P=\sum_{r=1}^{n}oWr\right)$$

as the sum of bits corresponding to the data words and a second check code

$$\left(Q=\sum_{r=1}^{n}oT^{(n+1)-r}Wr\right)$$

as the sum of the bits corresponding to the signals generated through the operation of a polynomial $X^m + X^g + 1$ by an auxiliary matrix (T). The error data correcting system can correct the error words up to two words by using an M matrix generator for decod- ³⁵ ing.

A ROM (read only memory) has generally been used for the M matrix generator for decoding, because of the time restriction in the decoding process.

words are corrected by using an M matrix generator for decoding. In such a system, a linear feedback shift register for $H(x) = X^m + X^g + 1$ is used for the M matrix generator for decoding. An initial data generator circuit sets the initial value of the linear feedback shift register to values necessary for decoding a specific data of the data to be decoded (a1, a2, \ldots a_g, \ldots a_m) or the values obtained by shifting the former values by one shift position in the reverse direction by the linear feedback shift 25 register. By shifting the shift register in such a manner, the contents left therein are sequentially outputted and employed as selection signals from the linear feedback shift register, starting from the initial value or the value after an initial reverse shift. 30

Such an arrangement obviates the necessity of providing a larger-capacity ROM, address counters, etc., as in the conventional system and permits the provision of a simpler, high-speed, LSI version of a system with a drastic decrease in the number of elements.

BRIEF DESCRIPTION OF THE DRAWINGS

Other objects and features of the invention will be apparent from the following description taken in con-40 nection with the accompanying drawings, in which: FIGS. 1 to 3 illustrate schematic diagrams of shift registers useful in explaining the principle of the data correcting system of the present invention; FIGS. 4 and 5 illustrate schematic diagrams for ex-45 plaining the principle of an error data correcting system according to the present invention;

In the case of an audio PCM recorder known as a record/reproduction system, for example, one word includes 12 to 16 bits, generally. If the error data correcting system is applied to such a system, the memory capacity of the ROM used must be considerably large 45 and an address counter to control the ROM is further needed. The overall system accordingly is complicated in the circuit construction. Additionally, the number of components necessary when the circuit is fabricated by LSI technology, is enormous. 50

OBJECTS AND SUMMARY OF THE INVENTION

Accordingly, an object of the invention is to provide an error data correcting system which uses as an M ⁵⁵ matrix generator for decoding, a linear feedback shift register of $H(x) = X^m + X^g + 1$ allowing a reduction of the size of the system and high-speed processing of data. Another object of the invention is to provide an error data correcting system with an M matrix generator for decoding which permits a greater decrease in the number of elements necessary for an LSI version of the circuit.

FIG. 6 shows a block diagram of an error data correcting system according to the present invention;

FIG. 7 shows a block diagram of an M matrix genera-50 tor for decoding and a decoding section used in the circuit shown in FIG. 6; and

FIGS. 8 to 12 show block diagrams of other examples of M matrix generators for decoding.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The principle of an error data correcting system involved in the present invention will first be described. It is assumed that n data words and two parity check 60 codes are expressed below and each data word is comprised of m bits.

According to the invention, there is provided an 65 error data correcting system in which a group of n data words Wl to Wn each including m bits has additionally a check code

 $W1, W2, \ldots Wn$ P, QData wordsCheck words

Here codes P and Q of the check words are expressed

by

 $P = \sum_{r=1}^{n} o Wr = W1 \oplus W2 \oplus \dots \oplus Wn$ $Q = \sum_{r=1}^{n} o T^{(n+1)-r}Wr$ (1)
(2)

 $= T^n W_1 \oplus T^{n-1} W_2 \oplus T^{n-2} W_3 \ldots \oplus T W_n$

3

The parity check matrix of those codes is

W_j+W_{je} and therefore if W_{ie} and W_{je} are decoded, the ith and jth words W_i and W_j may be decoded.
In this way, the correct original data words W_i and W_j may be decoded through the decoding of W_{ie} and
⁵ W_{je}. The system according to the present invention to be described below relates mainly to the generation of

Wie and W_{je} .

Another decoding method may be considered. That is, when S₁ and S₂ are evaluated, information words are not all added together, but only the data words other than the error words are added together and W_i and W_j are directly decoded with the definitions $S'_1 = W_i \bigoplus W_j$ and $S'_2 = T^{(n+1)-i}W_i \bigoplus T^{(n+1)-j}W_j$.

¹⁵ The former decoding method in which the error data word is corrected with the definition

where T is a Q generator matrix and I is a unit matrix. This will be further described. Rewriting the equations (1) and (2), we have

$$P \bigoplus_{r=1}^{n} o W_r = 0$$

$$Q \bigoplus_{r=1}^{n} o T^{(n+1)-r}W_r = 0$$

When the ith and jth data are dropped, the solutions 25 of the equations (3) and (4) are not "0" but syndromes S_1 and S_2 given by equations (5) and (6). Assume again that the original data words are expressed by $W_1, W_2, ..., (W_i) ..., (W_j) ..., W_n$ and the data words of which the ith and the jth data are dropped are expressed by W'_1 , 30 $W'_2..., (W'_i) ..., (W'_j) ..., W'_n$, and that $W'_i = W_i + W_{ie}$, $W'_j = W_j + W_{je}$, and W' = W.

$$P + \sum_{r=1}^{n} o Wr = S_1$$

(4)

(5) 35

40

65

(6)

$$Q + \sum_{r=1}^{n} o T^{(n+1)-r}W_r = S_2,$$

will further be described in detail. In the description to be given, it is assumed that there are six data words in a group of N words, that each word includes 4 bits, and that the T matrix is given by

$$P \bigoplus_{r=1}^{n} \sum_{r=1}^{n} o W_r = S_1$$
$$Q \bigoplus_{r=1}^{n} \sum_{r=1}^{n} o T^{(n+1)-r}W_r = S_2$$

 $\sum_{r=1}^{\infty} r = 1$

Further

$$P \oplus \sum_{r=1}^{n} o W_r = W_{ie} \oplus W_{je} = S_1$$

$$Q \oplus \sum_{r=1}^{n} T^{(n+1)-k} W_r = T^{(n+1)-i} W_{ie} \oplus T^{(n+1)-j} W_{je}$$

$$= S_2$$
(7)
(8)

From the equation (7), we have

 $W_{ie} = S_1 \oplus W_{je} \tag{9}$

putting the equation (9) into the equation (8), we have

 $S_2 = T^{(n+1)-i} (S_1 \oplus W_{je}) \oplus T^{(n+1)-j} W_{je}$ (10)

This equation can be rewritten as

 $T^{i-(n+1)}S_2 = S_1 \oplus W_{je} \oplus T^{i-j}W_{je}$ (11)

 $S_1 \oplus T^{i-(n+1)} S_2 = W_j \oplus T^{i-j} W_j = (I \oplus T^{i-j}) W_j$ (11')

This matrix is an auxiliary matrix of a polynomial $1+x+x^4$. Accordingly, if B=TA, the signals of the respective 4 bits are

b1 = a4, $b2 = a1 \oplus a4$, b3 = a2, b4 = a3

Such a T matrix operation will be understood when considering Galois field $GF(2^4)$ formed by a polynomial ⁴⁵ ring with $F(x)=x^4+x+1$ as a modulus polynomial.

 $x^4 + x + 1 = 0, x^4 = x + 1$

 $T = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$

 $x(a1+a2x+a3x^{2}+a4x^{3}) = a1x+a2x^{2}+a3x^{3}+a4x^{4}$ $^{4}=a4+(a1+a4)x+a2x^{2}+a3x^{3}$

From the above-mentioned equations, it is seen that b1=a4, b2=a1+a4, b3=a2, and b4=a3.

Such an operation may be performed by using a shift register arranged in the form of a polynomial as shown in FIG. 1.

When data A is first loaded into the shift register and it is shifted by one, the T matrix of the data A is operated. When the data A is shifted by n the matrix be- $60 \mod T^n A$.

and hence

$$W_{je} = (I \oplus T^{i-j})^{-1} (S_1 \oplus T^{i-(n+1)}S_2)$$
(12)

$$W_{ie} = S_1 \oplus W_{je} \tag{13}$$

As seen from the equations (12) and (13), the data dropped may be decoded by using the syndromes S_1 and S_2 . The data words, when decoded, are $W_i + W_{ie}$ and

The check codes P and Q of the data words W_1 to W_6 thus obtained are

$$P = \sum_{r=1}^{6} o \ W_r = W_1 \oplus W_2 \oplus \ldots \oplus W_6$$
(14)
$$Q = \sum_{r=1}^{6} o \ T^{7-i} W_r = T^6 W_1 \oplus T^5 W_2 \ldots \oplus T W_6$$
(15)

Here, the P code is formed by addition of bits corresponding to the respective words W_1 to W_6 . The addition is represented by \oplus , the ring addition exclusive OR of the corresponding bits, that is to say, the addition of mod 2. The Q code is generated by the data matrix 5 operated by the shift register shown in FIG. 1.

In the correcting method as described above, data errors occurring in up to two words in the data words W₁ to W₆, will not prevent data words W₁ to W₆ may be completely decoded.

From the equations (12) and (13), we have

 $W_{ie} = S_1 \oplus W_{je}$

 $W_{je} = (I \oplus T_{i-j})^{-1} (S_1 \oplus T^{i-7} S_2)$

4,320,510 $S_1 = W_{1e} \oplus W_{2e}$ $S_2 = T^6 W_{1e} \oplus T^5 W_{2e}$ $S'_4 = a_4 \oplus b_4, h_4 = a_2 \oplus a_1 \oplus a_4 \oplus b_3 \oplus b_2$ $S'_3 = a_3 \oplus b_3$, $h_3 = a_1 \oplus a_3 \oplus b_2 \oplus b_1 \oplus b_4$ $S'_2 = a_2 \oplus b_2$, $h_2 = a_4 \oplus a_2 \oplus b_1 \oplus b_3$ $S'_1 = a_1 \oplus b_1, h_1 = a_3 \oplus a_2 \oplus b_4 \oplus b_3$ (17) $_{15}$ $T^{i-7}S_2$ obtained is

when $S1 \oplus T^{i-7}S2 = m$, the equation (17) is rewritten as below

 $W_{ie} = (I \oplus T^{i-j})^{-1} (S_1 \oplus T^{i-7} S_2) = Mk \cdot m$

where

 $M_k = (I \oplus T^{-k})^{-1}$

In the equation (19), k=j-i25 When there are six data words, Mk includes M1 to M5.

It is for this reason that an M matrix generator is generally used for decoding Wi and Wj. Commonly, such data have not had predictable values and a restriction has been placed on the decoding process. For this 30 reason, it is common practice that the matrix has been stored in a ROM.

The operation of T^{-n} may be made by inverting the shift register shown in FIG. 1 in its connection, and shifting the one n times. When the T matrix is used as an 35auxiliary matrix of the polynomial $1+x+x^4$, M₁ to M₅ are

 $T^{i-7}S_2 = T^{-6}S_2 = T^{-6}(T^6W_{1e} \oplus T^5W_2) = W_{1e} \oplus T^{-1}$

Therefore, if (18) 20

(16)

(19)

 $T^{-6}S_2 = [l_1, l_2, l_3, l_4]$

 $T^{-6}S_2 = W_{1e} \oplus T^{-1}W_{2e}$ $l_4 = a_4 \oplus b_1$

 $l_3 = a_3 \oplus b_4$

 $l_2 = a_2 \oplus b_3$

 $l_1 = a_1 \oplus b_2 \oplus b_1$

Let us obtain m, i.e. $S_1 + T^{-6}S_2$. $S_1 \oplus T^{-6}S_2 = W_{1e} \oplus W_{2e} \oplus T^{-1}W_{2e} = W_{2e} \oplus T^{-1}W_{2e}$

 $S_1 \oplus T^{-6}S_2 = W_{2e} \oplus T^{-1}W_{2e}$

 $m_4 = b_4 \oplus b_1$

 $m_3 = b_3 \oplus b_4$

 $m_2 = b_2 \oplus b_3$

 $m_1 = b_1 \oplus b_2 \oplus b_1$

 $M_{4}\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}, M_{5}\begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}, M_{5}\begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}, M_{5}\begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}, M_{5}\begin{bmatrix} m = [m_{1}, m_{2}, m_{3}, m_{4}]].$ From the equation (18), $W_{2e} = Mk \cdot m$

The actual flow of the decoded data will now be further described in detail. Assume now that data words 50 W_1 to W_2 of the W_1 to W_6 are erroneous. Since i=1 and j=2, k=1 by the equation k=j-i. First

 $W_{2e} = M_1(S_1 \oplus T^{-6}S_2)$ $W_{1e} = S_1 \oplus W_{2e}$

and if

 $W_{2e} = (I \oplus T^{-1})^{-1} (S_1 \oplus T^{-2} S_2)$

Here M₁ of the M matrix is used for $(1 \oplus T^{-1})^{-1}$. When m_1 to m_3 of those m_4 to m_1 are all summed,

55 $\sum_{r=1}^{3} m_r = b_3 \oplus b_4 \oplus b_2 \oplus b_3 \oplus b_2 = b_4$

Accordingly, b₄ may be decoded. Similarly, b_3 is decoded by m_1 and m_2 ; b_2 by m_1 ; b_1 by 60 m1 to m4. $W_{2e} = M \cdot m$ and M is already known as de-

 $S_1 = [S'_1, S'_2, S'_3, S'_4]$

 $S_2 = [h_1, h_2, h_3, h_4]$

 $W_{1e} = [a_1, a_2, a_3, a_4]$

 $W_{2e} = [b_1, b_2, b_3, b_4]$

we have

scribed above. Therefore, by multiplying M₁ by m, W_{2e} may be decoded.

Before proceeding with the description of M_1 to M_5 , the operation of the Galois field will be described. Also 65 in this case, the Galois field $GF(2^4)$ is formed by the polynomial ring of which the modulus polynomial is

 $F(x) = x^4 + x + 1$. The expression of the Galois field $GF(2^4)$ is tabulated in the following table.

denear coupling	Vector	
of 1, α , α^2 , α^3	expression	5
0	0000	
1	1000	
α	0100	
α^2	0010	
α^3		10
$1 + \alpha$		
$\alpha + \alpha^2$		
$\alpha^2 + \alpha^3$	0011	
$1 + \alpha + \alpha^3$	1101	
$1 + \alpha^2$	1010	
$\alpha + \alpha^3$	-	15
$1 + \alpha + \alpha^2$		10
$\alpha + \alpha^2 + \alpha^3$	0111	
$1 + \alpha + \alpha^2 + \alpha^3$	1111	
1 $a^2 + a^3$	1011	
$1 + \alpha^3$	1001	
	0 1 a^2 a^3 1 + a $a + a^2$ $a^2 + a^3$ 1 + a $1 + a^2$ $a + a^3$ $1 + a^2 + a^3$ $1 + a + a^2$ $a + a^2 + a^3$ $1 + a + a^2 + a^3$	of 1, α , α^2 , α^3 expression 0 0000 1 1000 α 0100 α^2 0010 α^3 0001 $1 + \alpha$ 1100 $\alpha + \alpha^2$ 0110 $\alpha + \alpha^2$ 0110 $\alpha + \alpha^2$ 0111 $1 + \alpha$ $+ \alpha^3$ $1 + \alpha$ $+ \alpha^3$ $1 + \alpha^2$ 1010 $\alpha + \alpha^3$ 0101 $1 + \alpha + \alpha^2$ 1110 $\alpha + \alpha^2 + \alpha^3$ 0101 $1 + \alpha + \alpha^2 + \alpha^3$ 0111

When considering this in the Galois field $GF(2^4)$ with the modulus polynomial of $F(x) = x^4 + x^3 + 1$,

8

$$S_{1} + T^{i-7}S_{2} = m_{4} + m_{3}x + m_{2}x^{2} + m_{1}x^{3} = \beta_{i}$$
(24)

$$W_{je} = (I + \beta^{k})^{-1}\beta_{i}$$
(25)
when $k = 1$,

$$(1 \oplus \beta^{k})^{-1} = \frac{1}{1+x} = \frac{x^{4} + x^{3}}{x+1} = x^{3}$$
(25)

$$W_{je} = x^{3}(m_{4} + m_{3}x + m_{2}x^{2} + m_{1}x^{3})$$
(26)

$$= m_{4}x^{3} + m_{3}x^{4} + m_{2}x^{5} + m_{1}x^{6}$$
(26)

$$= m_{4}x^{3} + m_{3} + m_{3}x^{3} + m_{2} + m_{2}x + m_{2}x^{3} + m_{1} + m_{1}x + m_{1}x^{2} + m_{1}x^{3}$$
(26)

In the table, α is a root in the Galois field GF(2⁴) of $x^4 + x + 1$. As seen from the vector expression, the multiplication of α^i by α is performed in a manner that the vector expression of α^i is set in the circuit shown in 25 FIG. 2 and is shifted by one time. Accordingly, the multiplication of α^i by α^j is made by shifting it j times.

A circuit for effecting a division by α , that is, the circuit for effecting α^{-1} , may be realized by inverting the circuit in FIG. 2 in its connection. Here, if 30 $x^4+x+1=0$ and x=1/y, we have $y^{-4}+y^{-1}+1=0$ if it is multiplied by y^4 ,

 $y^4 + y^3 + 1 = 0$ (20) In this version of the equation, apparently, $\alpha^{15} = \alpha^0$. Further, $\alpha(1+\alpha^3)=\alpha+\alpha^4=1$ and, therefore, it is seen that α^{-1} is equal to α^{14} . If a dividend $\alpha^i = (a_1, a_2, a_3, a_4) = a_1 + a_2x + a_3x$ - $^{2}+a_{4}x^{3}$,

45

(23)

Rewriting this into a linear coupling of the Galois field with the modulus polynomial of $F(x) = x^4 + x + 1$, we have

$$W_{je} = (m_1 + m_2 + m_3 + m_4) + m_1 x + (m_1 + m_2) x^2 + (m_1 + m_2 + m_3) x^3$$
(27)

It is seen that the equation (27) is equal to the M₁ matrix (or the vector diagram) of the M matrix. Similarly, when k=2,

$$(1 + \beta^2)^{-1} = \frac{1}{x^2 + 1} = \frac{1^2}{x^2 + 1} = \frac{x^4 + x^3}{(x + 1)} \cdot \frac{x^4 + x^3}{(x + 1)} = x^3 \cdot x^3 = 1 + x + x^2 + x^3$$
(28)

When the vector at this time is obtained, it is equal to the M_2 matrix of the M matrix.

When k=1, the multiplication of x^3 is made in $F(x) = x^4 + x^3 + 1$. To be specific, $S_1 + T^{i-7}S_2$ is set in the circuit of FIG. 3 at an inverse position and it is shifted three times. The signal remaining in the shift register

$$\alpha^{i}a^{-1} = (a_{1} + a_{2}x + a_{3}x^{2} + a_{4}x^{3})(1 + x^{3})$$

$$= a_{1} + a_{2}x + a_{3}x^{2} + a_{4}x^{3} + a_{1}x^{3} + a_{2}x^{2} + a_{3}x^{5} + a_{4}x^{6} = (a_{1} + a_{2}) + a_{3}x + a_{4}x^{2} + a_{1}x^{3}$$

$$(21)$$

$$= a_{4}x^{6} = (a_{1} + a_{2}) + a_{3}x + a_{4}x^{2} + a_{1}x^{3} + a_{4}x^{2} + a_{4}x^{3} + a_{4}x^{2} + a_{4}x^{3} + a_{4}$$

When $F(x) = x^4 + x^3 + 1$ is a modulus polynomial, $x^4 = 1 + x^3$

$$\alpha^{i}a^{-1} = \beta_{i}\beta = (a_{4} + a_{3}x + a_{2}x^{2} + a_{1}x^{3})x$$

$$= a_{4}x + a_{3}x^{2} + a_{2}x^{2} + a_{1}x^{4}$$

$$= a_{1} + a_{4}x + a_{3}x^{2} + (a_{1} + a_{2})x^{3}$$
(22) 5(

As seen from the above, the division is made by the inversion of the circuit. The circuit divided by α is shown in FIG. 3.

In view of the above-mentioned points, the M matrix in the equation (18) will be described.

after the shifting three times is W_{ie} . When k=2, the shift register is shifted six times. In investigating the Galois field $GF(2^4)$ with the 40 modulus polynomial of $F(x) = x^4 + x + 1$, from the equa-

tion (23), we have

b . .

$$W_{je} = (I \oplus T^{i-j})^{-1} (m_1 + m_2x + m_3x^2 + m_4x^3)$$
(29)

$$= (1 + \alpha^{-1})^{-1} (m_1 + m_2x + m_3x^2 + m_4x^3)$$

$$= (1 + 1 + x^3)^{-1} (m_1 + m_2x + m_3x^2 + m_4x^3)$$

$$= (x^3)^{-1} (m_1 + m_2x + m_3x^2 + m_4x^3)$$

$$= \frac{(x^4 + x)^3}{(x)^3} (m_1 + m_2x + m_3x^2 + m_4x^3)$$

$$= (1 + x + x^2 + x^3) (m_1 + m_2x + m_3x^2 + m_4x^3)$$

$$= (m_1 + m_2 + m_3 + m_4) + m_1x + (m_1 + m_2)x^2 + (m_1 + m_2 + m_3)x^3$$

Accordingly, the equation (29) is equal to the equation (27).

In other words, $(S_1 \oplus T^{i-7}S_2) = (m_1, m_2, m_3, m_4)$ is set in the shift register shown in FIG. 2 and $(1+x+x^2=\alpha^{12})$ is shifted therein 12 times. At this time, the data left in the shift register is W_{je} , as seen from the above-mentioned table.

 $W_{je} = (1 \oplus T^{i-j})^{-1} (S_1 \oplus T^{i-7} S_2)$

where

 $S_1 + T^{i-7}S_2 = (m_1, m_2, m_3, \dots)$ $m_4) = m_1 + m_2 x + m_3 x^2 + m_4 x^3$

In this case, i and j each range from 1 to 6 and accordingly i - j = -1 to -5.

As seen from the foregoing description, the decoding may be performed on the basis of the polynomial which the matrix T depends on. Accordingly, it is evident that the decoding may be made by the shift register connected in the polynomial manner.

As seen from the foregoing description, it is apparent (24) 65 that the vector space in the Galois field GF(2⁴) with the modulus polynomial of $F(x) = x^4 + x + 1$ develops the T matrix, the M_1 to M_5 matrixes and a T^{-1} matrix to be described later.

In the operation of T^{-1} , $F(x) = x^4 + x^3 + 1$ is used and this is a reciprocal polynomial for $F(x) = x^4 + x + 1$. Further, it is evident that the view of the position of the original data is merely inverted.

Further, it is apparent that, when each data is comprised of 4 bits, the polynomial is of the fourth degree, and when the operation circuit is implemented by a shift register decoding the polynomial requires 15 shift operations. That is, the operation of two elements a and b allows the maximum 15 shifts when the operation cir-10 cuit is a shift register.

Moreover, when the operation circuit is embodied as shift registers, if the degree of the polynomial is large, it is necessary to shift the shift register by 2^{12} to 2^{14} , so that the decoding operation takes a long time. When data is transmitted by PCM or the like, time for the decoding processing is limited. It is for this reason that the M matrix for decoding, such as the M₁ to M₅ matrixes, are loaded into a ROM (read only memory) and are sequentially read out to select the signal $S_1+T^{j-(n+1)}S_2$ and decode it. A ROM capable of adequately performing in this manner is a physically large hardware element.

signal for the b_3 and a_1 combination to that for the b_4 and a_2 combination.

10

In this manner, the column b_3 is obtained. Similarly, the column b_2 may be obtained.

This relation may be expressed in terms of a circuit, as illustrated in FIG. 5. This circuit is a linear feedback shift register of $H(x) = x^4 + x + 1$.

In the circuit of FIG. 5, when 0001 is set in the shift register and is shifted four times, the vectors thereof are tabulated below.

	a1 a2 a3 a4
b1' 4 shift	0011
b2' 3 shift	1001
b3' 2 shift	0 1:0 0
h / 1 .L.M.	0 0 1 0

The explanation to follow is how a data correcting 25 method is applied to an error data correcting system according to the present invention.

As described above, the check code Q depends on the auxiliary matrix of the polynomial $X^m + X^g + 1$. It is also seen from the foregoing description that the M matrix 30 to be corrected is on the space vector generated in the Galois field (2^m) with the polynomial of $x^m + x^g + 1$. For this reason, with the initial value set to a given value, the M matrix for decoding is generated by an M matrix generator implemented by a linear feedback shift regis- 35 ter designed to output $H(x) = X^m + X^g + 1$. However, to perform the matrix operation, the data generated by the linear feedback shift register must have already been generated.

64' 1 shift 00100001

Comparing this with the T matrix rewritten as mentioned above, only the columns b_1' and b_1 are different from each other. Since the signal for the b_2 and a_4 is the sum of the signals for the b_4 and a_5 , and b_1 and a_3 combinations, the signal for the b_1 and a_3 combination must be the sum of the signals for the b_4' and a_3 combination and the b_2' and a_4 combination. Accordingly, it is evident that the column b_1 may be obtained by adding b_1' and b_4' .

With respect to the development of vectors, the same thing is true for the selection matrix for the M matrix decoding, except for the initial value.

When the order of the decode is not considered, there is no need for the addition of b_1 ' and b_4 ' if the column b_1 is set as the initial value.

FIG. 6 shows a block diagram of an error data correcting system based on the principle as described above. A data input signal to be corrected is applied to an input terminal (IN) of the error data correcting system. In the data input signal, n data words and two check words expressed by W_1 to W_n are used as one block and each word is comprised of 4 bits. The data input signal is supplied to a P decoder (11) and a Q decoder (12), which operate in bit parallel and word serial modes. Upon receipt of the data input signal, the P decoder (11) produces the syndrome (S_1) and the Q 45 decoder (12) produces $T^{i-(n+1)}S_2$. The P decoder (11) is comprised of a register (111) for performing an addition (exclusive OR) as described above and a buffer (112). The Q decoder (12) is comprised of a register (121) for performing an addition (exclusive OR) attendant with the matrix operation as described above and a 50 buffer (122). The S₁ and $T^{i-(n+1)}S_2$ values decoded and generated are both applied to an adder (A-1) where they are added to each other. The added data is sequentially selected from a gate circuit (G-1) by a selecting signal produced from an M matrix generator (MG) comprised of a linear feedback shift register to be described later. The M matrix generator is controlled by an error word control circuit (EC), and the output of the matrix generator and the adder A-1 are added by an adder (A-2), so that W_{je} is decoded and generated. W_{je} is generally shifted in bit serial format.

This will be described in detail by rewriting the T 40 matrix as below.

In the T matrix thus rewritten, column a employs 50 $F(x)=x^4+x+1$ as a modulus polynomial. Accordingly, in the circuit shown in FIG. 4, only the register 1 is set to "1" and then when it is shifted by one, the column a_1 is generated. Similarly, the column a_2 is generated for two shifts; the column a_3 is generated for three shifts; 55 the column a_4 is generated for four shifts.

Let us consider a signal at the cross-point of b_3 and a_4 . The signal at this cross-point corresponds to that at the cross-point of b_2 and a_3 . The signal at the cross-point of b_2 and a_3 corresponds to the sum of the signals at the 60cross-points b_4 and a_2 and b_1 and a_2 . The signal at the cross-point of b_1 and a_2 corresponds to that at the crosspoint of b_4 and a_1 . Therefore, the signal at the crosspoint of b_3 and a_4 corresponds to the sum of the signals at the cross-points b_4 and a_1 and b_4 and a_2 . Similarly, the 65 signal for the b_3 and a_3 combination corresponds to that for the b_4 and a_4 combination; the signal for the b_3 and a_2 combination to that for the b_4 and a_3 combination; the

In this case, if $S_1 \oplus T^{i-(n+1)}S_2 = (m_1, m_2, m_3, m_4)$, when j-i is 1, the M matrix generator MG produces an M₁ matrix selection signal in the M matrix. The lowermost row of the M₁ matrix and $S_1 + T^{i-(n+1)}S_2$ are multiplied by the gate circuit (G-1), so that $m_1 \times 1 = W_1$, $m_2 \times 1 = W_2$, $m_3 \times 1 = W_3$, $M_4 \times 0 = 0 = W_4$. W₁ to W₄ are

11

all sum by the adder (A-2) and the summed is transferred to a serial-to-parallel converter (SIPO) where b_4 of the W_{je} is decoded.

Then, the M matrix generator (MG) produces the second row 1100 from the bottom of the matrix and b_3 5 of the W_{je} is decoded. Subsequently, b_2 and b_1 of the W_{je} are decoded through a similar procedure.

 W_{je} after decoding and generating is added to S_1 in the adder (A-3), so that the W_{ie} is decoded and generated. In this case, S_1 is applied to the adder (A-3), 10 through a gate circuit (G-2) enabled by a signal derived from the error control circuit (EC).

Part of the input data signal is directly applied to an adder (A-4) through a delay circuit (DL) after a delay of one data block. When the input data signal has no 15 error, the decoding section produces "0". In this case, the input data signal is derived directly from the output terminal (OUT). When the first error word, W_{ij} is received, the decoded W_{ie} is transferred to an adder (A-4), so that the 20 correct data W_i is reproduced and derived from the output terminal (OUT). When the second error word W'_{i} is received, the gate circuit (G-2) is disabled and therefore the addition of S_1 is not performed in the adder (A-3), so that W_{je} is transferred directly to the 25 adder (A-4). As a result, the correct data W_i is reproduced and derived from the output terminal (OUT). As recalled, W_{ie} and W_{je} designate the dropped or missing ith and jth data words. Accordingly, through the above-mentioned operation, the data words W_1 to 30 W_n including such error data are correctly decoded. The error word control circuit (EC) controls the M matrix generator (MG) in such a way that the interval between the error words, i.e., the information k (=j-i), is checked and the M matrix is produced corresponding 35 to the interval checked. This may easily be realized by detecting a cyclic redundancy check signal appended to the input data signal by a cyclic redundancy check code generating circuit including a shift register functioning as an error pointer. In addition to the k data and a gate 40 signal (GS), the error word control circuit (EC) produces a clock pulse (Cp), a preset pulse (Pr), and a gate control signal (CG), which are used in embodiments to be described later. Such a pulse generating function may be accomplished by using a known pulse generat- 45 ing device. An embodiment of the M matrix generator (MG) and the decoding section will be described in detail referring to FIG. 7. It will expressly be understood that, in the description to follow, the T matrix is treated as an auxil- 50 iary matrix for the polynomial $x^4 + x + 1$, and the data words W_1 to W_n comprise six data words each including 4 bits. The ith and jth data words are dropped, i.e. in error. An initial data generating circuit 22 including an inverter (I_1) and OR circuits (OR_1) to (OR_3) checks the 55 interval k (=j-i) between the dropped data words W_i to W_i . When k = 1, the initial data generating circuit 22 sets 1111 in flip-flops FF_1 to FF_4 of a linear feedback shift register 21 for the M matrix generator (MG) as the initial data state. When k=2, it sets 1010 into the same 60 flip-flops. As shown, the linear feedback shift register 21 is comprised of the flip-flops FF₁ to FF₄ and an exclusive OR gate, EX-OR₁. Similarly, a selection signal necessary to decode the data word W_1 is set in the flipflops. Every time a clock pulse Cp is received, the flip-flops FF_1 to FF_4 produce signals to select the data words W_4 , W_3 and W_2 .

12

The selection of the data word W_{je} from $S_1 + T^{i-7}S_2$ applied from the adder (A₁) by this signal is performed by AND gates G₁₁ to G₁₄ corresponding to the gate circuit (G-1). The output signals from the gates are added by the exclusive OR gates, EX-OR₂ to EX-OR₄ to decode the data W_{je} in a bit serial manner.

The decoded data is transferred to flip-flops FF_a to FF_b comprising the serial input parallel output converter (SIPO) and as it is shifted four times, to generate the data word W_{je} .

In FIG. 7, Pr is a signal to preset the initial value (a selection signal to the uppermost row, or W_1 , of the M matrix 3 of the M matrix in this embodiment) at the first stage of the decoding operation. Cp is a clock pulse for reading out W_1 , W_4 , W_3 and W_2 and is set in the flipflops FF_1 to FF_4 as a selection signal to decode W_1 by the first preset signal Pr. At an instant that the first clock pulse Cp sets W_1 to the flip-flop FF_a , it is changed into a selection signal to decode W_4 in the FF₁ to FF₄. When the flip-flops second pulse Cp sets W_1 in the flip-flop FF_b and the W_4 in the flip-flop FF_a , the contents of the flip-flops FF_1 to FF₄ simultaneously change the selection signal to decode W_3 . Subsequently, W_3 and W_2 are set into the flip-flops FF_a to FF_d , so that the decoding data are set therein by four clock pulses Cp such as $FF_a(W_2)$, $FF_b(W_3)$, $FF_c(W_4)$ and $FF_d(W_1)$. Explanation will be given about the decoding of the error data components W_{2e} and W_{5e} of the $W_{2'}$ and $W_{5'}$ as specific examples. In this case, the error words are the second and fifth words, so that k=j-i=3. Further, $m_1 = 1, m_2 = 1, m_3 = 1$ and $m_4 = 0$. Firstly, the flip-flops FF_1 to FF_4 are set to the values $FF_1=1$, $FF_2=0$, $FF_3=0$ and $FF_4=1$, through the inverter (I_1) and the OR circuits OR_1 to OR_3 by the preset signal (Pr), although the preset data control signals 1, 2, 4 and 5 are "0" and only the signal 3 is "1". The contents of the flip-flops FF_1 to FF_4 are transferred as inputs to first terminals of the corresponding gate circuits (G_{11}) to (G_{14}) also receiving at second terminals m_1 to m₄ of the $S_1 \oplus T^{i-7}S_2$ lines, respectively.

Here, the G₁₁ output is $m_4 \times FF_1 = "0" \times "1" = 0$; the G₁₂ output is $m_3 \times FF_2 = 1 \times 0 = 0$; the G₁₃ output is $m_2 \times FF_3 = 1 \times 0 = 0$; the G₁₄ output is $m_1 \times FF_4 = 1 \times 1 = 1$. The output signals of G₁₁ to G₁₄ are all added, by the exclusive OR gate EX-OR₄.

Accordingly, under this condition, when the clock pulse Cp is received, the flip-flop FF_a is set to "1" and simultaneously the flip-flops FF_1 to FF_4 are set to "1", "1", "0" and "0". The signals of the m_4 to m_1 and FF_1 to FF₄ are transferred to the gates G_{11} to G_{14} , so that the gate EX-OR₄ produces an output "1". When the clock pulse Cp is received again, the flip-flop FF_a stores "1" and "1" as previously stored in FF_a before it is set is transferred to the flip-flop FF_b . Simultaneously, the flip-flops FF₁ to FF₄ are set to 0110. Similarly, the gate EX-OR₄ produces an output signal "0". Then, the next clock pulse Cp sets the FF_a to "0" and the FF_b and FF_c to "1". As a result, FF_1 to FF_4 are 1011 and the gate EX-OR₄ becomes "0". When the next Cp appears, the data is transferred to the FF_a , so that FF_a to FF_d are set to 65 0011. In other words, $W_1=1$, $W_2=0$, $W_3=0$ and $W_4 = 1$ and this state expressly indicates the W_{5e} itself. As seen from the circuit of FIG. 6, in decoding the data word W_2 the W_2' , W_{5e} and S_1 are added by the gate

circuit (G-2) and the adders (A-3) and (A-2). As previously stated, $S_1 = W_{2e} \oplus W_{5e}$

13

 $W_{2e} = S_1 \oplus W_{5e}$ = [0011] \oplus [1001] = [1010]

With this contents, we have

 $W_2 = W_2' \text{ and } W_{2e}$ = [1000] + [1010] = [0010]

Additionally, the data word W₅ is

shift register in FIG. 5 is shifted four times. Accordingly, the data words W_4 to W_2 are decoded but the data word W_1 is not decoded since the signal b_1 to decode W_1 is not generated.

14

In this embodiment, when the third shift pulse Cp is generated, the gate control signal CG is made "1" and the initial value data b₄ is added to the D input of the flip-flops FF₁ to FF₄ through the AND gates G_a to G_d, thereby to produce the b₁. By using the b₁, W₁ is decoded.

In this way, the data words W_4 , W_3 and W_1 are decoded subsequently.

The explanation to follow is for a process to decode 15 only the error components W_{j2} and W_{j5} of the data words W_{2}' and W_{5}' . In this case, the error words are the second and fifth words, k=j-i=5-2=3.

 $W_5 = W_5' + W_{5e}$ = [1110] + [1001] = [0111]

In this way, the original signal W_2 and W_5 may be de-²⁰ coded. The number of the data words and the number of bits of one word may be properly selected. For example, the circuit construction required when a data word comprises 14 bits is illustrated in FIG. 8. The circuit shown in FIG. 8 may be considered as a simple exten-²⁵ sion of that of FIG. 7.

In the foregoing description, the initial value of the linear feedback shift register 21 is set with the data a_g of the data to be decoded $a_1, a_2, a_3, \ldots a_g \ldots a_n$. However, when the initial value is set with the data a_1 and the shift 30 direction of the shift register is reversed, the decoded data are obtained in the order of $a_1, a_2, \ldots, a_{g-1}, a_{g+1}$. $\ldots a_m, a_g$.

The major feature of this embodiment resides in that the data are decoded in the order of a_g , a_m , a_{m-1} , ... $a_{g+1}, a_{g-1} \dots a_2, a_1$ or in the reverse order, or that, to obtain the column b_1 , the b_1 row (= a_g) or the b_2 row is set as the initial value of the linear feedback shift register 21, without adding b_1' and b_4' . Another embodiment of the invention will be de- 40 scribed referring to FIG. 9. The assumption similar to that of FIG. 7 is also employed in this embodiment. As shown, a linear feedback shift register 31 for the M matrix generator (MG) is comprised of flip-flop circuits FF1 to FF4, exclusive OR circuits EX-OR1, and EX- 45 OR₅ to EX-OR₈ and AND gates G_a - G_d . An initial data generator circuit 32 is comprised of inverters I_1 and I_2 , and OR circuits OR₂ and OR₃. Depending on the data k(=j-i) applied from the error word control circuit (EC), the initial data generator circuit 32 sets a selection 50 signal to decode the data word $W_4(W_n)$ in the linear feedback shift register 31 as the initial value, by signals d₁ to d₄. In this case, the setting of the initial value is of course made by a preset signal Pr. The initial value set is 0111 when k = 1; it is 1101 when k = 2; it is 1100 when 55 k=3. Similarly, a selection signal to decode W₄ is set. Every time the clock pulse Cp is supplied, the flipflops FF₁ to FF₄ produce signals corresponding to the data words W_4 to W_2 .

When k=3, only the line 3 is "1" and the remaining lines are "0". Accordingly, 1100 are set in the flip-flops FF₁ to FF₄ by a preset signal Pr. The outputs of the flip-flops FF₁ to FF₄ and the signals m₄ to m₁ of the $S_1 \oplus T^{i-7}S_2$ are ANDed together by gates $G_{11}-G_{14}$. As a result, the output of G_{11} is $m_4 \times FF_1 = 0 \times 1 = 0$; the output of G_{12} is $m_3 \times FF_2 = 1 \times 1 = 1$; the output of G_{13} is $m_2 \times FF_3 = 1 \times 0 = 0$; the output of G_{14} is $m_1 \times FF_4 = 1 \times 0 = 0$. When the outputs G_{11} to G_{14} are all summed by the gates EX-OR₂ to EX-OR₄. $0 \oplus 1 \oplus 0 \oplus 0 = 1$ and therefore the data word W₄ is produced. When the clock pulse Cp is received, the flipflops FF₁ to FF₄ are 0110. During this the signal CG is "0".

In other words, the Q output signal of FF_1 shifted to FF_2 ; the Q output signal of FF_2 is shifted to FF_3 is shifted; the Q output signal of FF_3 to FF_4 ; the result of the addition of the Q outputs signals of FF_3 and FF_4 is shifted to FF_1 .

As a result, the outputs of those flip-flops FF_1 to FF_4 and the signals m_4 to m_1 are ANDed together and the results of the ANDed ones are summed to be "0", so that W₃ generated.

In response to this signal, the selection to decode W_{je} 60 from the $S_1 \oplus T^{i-7}S_2$ is performed by the AND gates G_{11} to G_{14} corresponding to the gate circuit (G-1). The output signals of those gates are summed by the exclusive circuits EX-OR₂ to EX-OR₄ corresponding to the adder circuit (A-2), with the result that the data W_{je} is 65 decoded into bit serial data.

Similarly, in response to the clock pulse Cp, the flipflops FF_1 to FF_4 are 1011 and are ANDed together with the signals m₄ to m₁ so that the result of the addition of those ANDed ones becomes "0" and the word W₂ is generated. Then, every time the clock pulse Cp is received, the signal CG is made "1".

In response to the clock pulse Cp, the addition of the initial data set in the flip-flops FF₃, FF₄ and FF₁, $1\oplus 1\oplus 1=1$, is set in the flip-flop FF₁. The addition of the output data of the flip-flop FF₁ and the initial data of the flip-flop FF₂, i.e. $1\oplus 1=0$, is set in the flip-flop FF₂. The addition of the output data of the flip-flop FF₂ and the initial value of the flip-flop FF₃, $0\oplus 0=0$, is set in the flip-flop FF₃. The addition of the output data of the flip-flop FF₃, $1\oplus 0=0$, is set in the flip-flop FF₃. The addition of the output data of the flip-flop FF₄, i.e. $1\oplus 0=1$, is set in the flip-flop FF₄. Through those setting of the flip-flops, the flip-flops FF₁ to FF₄ are **1001**.

In this case, however, the linear feedback shift register 31 produces the vector values obtained when the

Those output signals of the flip-flops and the signals m_4 to m_1 are ANDed together and summed to be "1", so that the data word W_1 is sent out. In this way, $W_4=1$, $W_3=0$, $W_2=0$ and $W_1=1$ as the data word W_{5e} is generated.

As seen from FIG. 6, the decoding of W_2 is realized by the addition of W_{5e} , W_2' and S_1 . Since $S_1 = W_{2e} \oplus W_{5e}$,

15

 $W_{2e} = S_1 \oplus W_{5e}$ = [0011] \oplus [1001] = [1010]

Hence

 $W_2 = W_2' \oplus W_{2e}$ = [1000] \oplus [1010] = [0010]

The signal W₅ is

 $W_5 = W_5' \oplus W_{5e}$

4,320,510

16

However, in this case, the linear feedback shift register 41 produces the vector values when the shift register shown in FIG. 5 is shifted four times. Accordingly, the (W_4) to (W_2) are decoded but the (W_1) is not decoded 5 since the (b_1) to decode the (W_1) is not generated.

The embodiment described above does not produce the output signal from the exclusive OR gate (EX-OR₄) directly, but the output of gate EX-OR₄ is supplied to the flip-flops (FF_a) to (FF_c). The exclusive OR gate 10 (EX-OR₁₉) adds the output of EX-OR₄ and FF_c to decode W₁.

The flip-flops (FF_a) to (FF_c) are cleared simultaneously with the setting of the initial values of the flipflops (FF₁) to (FF₄). The linear feedback shift register 15 41 generates the signal (b_1') , not the signal (b_1) to decode (W_1) , after the selection signals to decode (W_4) , (W_3) and (W_2) are generated. The addition of (W_1') and (W_4) selected and decoded by (b_1') is equivalent to decoding (W_1) by adding (b_1') and (b_4') . By adding (W₄) and (W₁') left in the flip-flop (FF_c) by the exclusive OR gate (EX-OR₁₉), even when the linear feedback shift register 41 produces (b_1') , (W_1) is decoded, so that, as a whole, (W_4) , (W_3) , (W_2) and (W_1) are decoded in this order. The decoding of the error data components W_{2e} and W_{5e} of the W_2' and W_5' will now be described. Since the error words are the second and fifth words, k=5-2=3, only the line 3 of the initial preset data of the FF_1 to FF_4 is "1". The remaining lines are "0", 30 $FF_1=1$, $FF_2=1$, $FF_3=0$ and $FF_4=0$. This state of those flip-flops is set up by the preset signal Pr. At the same time, the flip-flops FF_a to FF_c are cleared. Here, since $m_1 = 1$, $m_2 = 1$, $m_3 = 1$, and $m_4 = 0$, the output of gate G_{11} is $m_4 \times FF_1 = 0 \times 1 = 0$; the output of gate G_{12} is $m_3 \times FF_2 = 1 \times 1 = 1$; the output of gate G_{13} is $m_2 \times FF_3 = 1 \times 0 = 0$; the output of gate G₁₄ is $m_1 \times FF_4 = 1 \times 0 = 0$. Those outputs are all added,

 $= [1110] \oplus [1001] \\= [0111]$

In this way, the original signals W_2 and W_5 may be decoded.

In the embodiment shown in FIG. 9, the number of ²⁰ the data words and the number of the bits of one word may properly be selected as required. An example when one word is comprised of 14 bits is illustrated in FIG. **10**. As shown, the circuit construction of the FIG. **10** is a mere extension of the circuit construction shown in FIG. 9.

In the above-mentioned embodiment, the initial value of the linear feedback shift register **31** is set with the data a_m of those data to be decoded $a_1, a_2, a_3, \ldots a_g, \ldots$. a_n . However, when the initial value is set with the data a_1 and the shift direction of the shift register is reversed, the decoded data are obtained in the order of a_1, a_2, a_3, \ldots

 $...a_{g-1}, a_{g+1}, ...a_m, a_g.$

The major feature of this embodiment resides in that $_{35}$ the data are decoded in the order of, a_m , a_{m-1} , $\ldots a_{g+1}$, a_g , a_{g-1} , $\ldots a_2$, a_1 or in the reverse order. To obtain the column b_1 , b_1' and b_4' are added and a_m or a_1 is set with the initial value of the linear feedback shift register **31**. Referring now to FIG. **11**, there is shown another 40 embodiment of the error data correcting system according to the invention. The assumption similar to that of FIG. **7** is also employed in this embodiment.

As shown, a linear feedback shift register 41 for the M matrix generator (MG) is comprised of flip-flops 45 (FF₁) to (FF₄) and an exclusive OR circuit (EX-OR₁). An initial data generator circuit 42 is comprised of inverters (I_1) and (I_2) and the OR circuits (OR_2) and (OR₃). Depending on the data k (=j-i) applied from the error data control circuit (EC) shown in FIG. 6, a 50 selection signal to decode $W_4(W_n)$ is set as the initial value by signals d_1 to d_4 in the linear feedback shift register 41. The setting of the shift register 41 is of course made by the preset signal (Pr). The preset signal (Pr) is used to set the initial value in flip-flops (FF_a) to 55 (FF_c) to be described later and clears the flip-flops. The initial value set in the flip-flops is 0111 when k = 1; it is 1101 when k=2; it is 1100 when k32 3. Similarly, a selection signal to decode the signal W₄ is set therein.

 $0+1\oplus 0\oplus 0=1$, and the result of the addition is delivered to the gate EX-OR₁₉. Here, the flip-flop FF_c is "0" and therefore "1" of the W₄ is generated first. In this condition, when the clock pulse Cp comes in, the output of the gate EX-OR₄ is set in the flip-flop FF_a while at the same time the flip-flops FF₁ to FF₄ are set to **0110**, respectively.

Those output signals are similarly applied to the gates G_{11} to G_{14} to select the signals m_4 to m_1 . Since they are added, the output of gate EX-OR₄ becomes $0\oplus 1\oplus 1\oplus 0=0$. The output signal is added to the output ("0") of the flip-flop FF_c, so that $W_3=0\oplus 0=0$ is sent out. With the next clock pulse Cp, FF_a=0 and FF_b=1, so that FF₁ to FF₄ are 1011: Similarly, those outputs are transferred to the gates G_{11} to G_{14} where they are ANDed with the signals m_4 to m_1 . The outputs of the AND gates G_{11} -G₁₄ are all added. Here, the output of the exclusive OR gate EX-OR₄ is $0\oplus 0\oplus 1\oplus 1=0$. This signal is added to the output (0) of the flip-flop FF_c, $0\oplus 0=0$, and the result of the addition is generated as W_2 .

When the clock pulse Cp sets the FF_a to FF_c to 0, 0 and 1, FF_a=0, FF_b=0 and FF_c=1, the flip-flops FF₁ to FF₄ are immediately set to 0101, respectively. Those outputs are transferred to the gates G₁₁ to G₁₄ where they are ANDed with the signals m_4 to m_1 . The outputs of the AND gates G_{11} — G_{14} added, $0 \oplus 1 \oplus 0 \oplus 1 = 0$. In other words, the output of the gate EX-OR₄ becomes "0". As a result of the addition of the output "0" of the gate EX-OR₄ and the output "1" of the flip-flop FF_c, the gate EX-OR₁₉ produces $0 \oplus 1 = 1$, i.e. W₁. In this way,

Every time the clock pulse (Cp) comes in, the flip- 60 flops (FF₁) to (FF₄) produce signals (W₄) to (W₂). The selection of the data W_{je} from the S₁+ T^{i-7} S₂ by this signal is made by the AND gates (G11) to (G14) corresponding to the gate circuit (G-1). The addition of the output signals from the AND gates (G1) to (G4) is 65 made by the exclusive OR gate (EX-OR₂) to (EX-OR₄) corresponding to the adder (A-2), so that the data (W_{je}) is decoded in a bit serial manner.

10

 $W_4=4$, $W_3=0$, $W_2=0$, and $W_1=1$, as W_{5e} , are decoded.

As seen from FIG. 6, to decode W_2 , W_{5e} and S_1 are first summed to give W_{2e} . Next, W_{2e} is summed with W_2' to give W_2 . Since $S_1 = W_{2e} \oplus W_{5e}$,

 $W_{2e} = S_1 \oplus W_{5e}$ = [0011] \oplus [1001] = [1010]

From this, we have

 $W_2 = W_2' \oplus W_{2e}$ = [1000] \oplus [1010] = [0010]

18

number of the components needed is considerably reduced. Accordingly, the error data correcting circuit with the linear feedback shift register realized by the invention has such excellent features.

What is claimed is:

and a Q check code

1. An error data correcting system in which a group of n data words (W_1) through (W_n) each including m bits has associated therewith a P check code

 $P = \sum_{r=1}^{n} W_r$

The signal W₅ is given

 $W_5 = W_5' \oplus W_{5e}$ = [1110] \oplus [1001] = [0111]

In this way, the original signals W₂ and W₅ are decoded. In the embodiment of FIG. 11, the number of the data words and the number of bits of one word may properly be selected as required. An example of the circuit construction when 14 bits are used for one word is illustrated in FIG. 12. As seen from the figure, the circuit construction shown in FIG. 12 is a mere expansion of the circuit shown in FIG. 11.

In the embodiment shown in FIG. 11 or FIG. 12, the initial value of the linear feedback shift register 41 is set with the data a_m of those data to be decoded a_1 , a_2 , a_3 , $\ldots a_g, \ldots a_n$. However, when the initial value is set with the data a₁ and the shift direction of the shift register is reversed, the decoded data are obtained in the order of $a_1, a_2, a_3, \ldots a_{g-1}, a_{g+1}, \ldots a_m, a_g$ The major feature of this embodiment resides in that in order to obtain the column b_1 for decoding the data in the order of a_m , a_{m-1} , $\ldots a_{g+a}$, a_g , a_{g-1} , $\ldots a_2$, a_1 or in the reverse order, W_1' and W_4 are added in place of the data word W_i . addition of b₁' and b₄' to obtain equivalently W₁, and a_m or all is set with the initial value of the linear feedback shift register 41. The M matrix generator for decoding using the linear feedback shift register is applicable for the system for directly decoding W_i and W_i without adding all of the data words. The error data correcting circuit is well adapted for a system for transmitting, recording or reproducing digitized information signals by PCM, for example. It is evident that the invention is applicable for other suitable digital systems within the scope of the invention. As described above, according to the invention, in constructing the M matrix generator for decoding, a large capacitive ROM is not needed and hence the M matrix generator thus constructed is simple in construction and exhibits high speed in data processing. Further, direction. when the matrix is fabricated by LSI technology, the

 $\left(Q = \sum_{r=1}^{n} T^{(n+1)-r}W_r\right)$

the system being capable of correcting erroneous data words W_{ie} and W_{je}, the system comprising:
first means for decoding said P check code to generate a first syndrome data word S₁;
second means for decoding said Q check code to generate a second syndrome data word S₂;
first means for summing corresponding bits in said syndrome data words S₁ and S₂ to produce a syndrome sum data word;

M matrix generator means for generating an M matrix corresponding to $M(x) = X^m + X^g + 1$;

means for controlling said M matrix generator means to produce M matrix selector signals;

second means for summing said syndrome sum data word and said M matrix selector signal to generate a first intermediate data word W_{ic} ;

third means for summing W_{je} and S_1 to generate a second intermediate data word, W_{ic} ; and means for combining (1) the data words W_{je} and W_{jc} to produce corrected data word W_j , and (2) the data words W_{ie} and W_{ic} to produce the corrected data word W_j .

2. A data correcting system according to claim 1 wherein said M matrix generator means comprises a linear feedback shift register.

3. A data correcting system according to claim 2 wherein said controlling means includes means for setting said linear feedback shift register to a value corresponding to the difference in relative positions i, j of said erroneous data words W_{ie} and W_{je} respectively, in said group of n data words.

4. A data correcting system according to claim 2 wherein said linear feedback shift register has a forward shift direction and a reverse shift direction and wherein said controlling means includes means for establishing an initial value in said linear feedback shift register by shifting the contents thereof one position in said reverse direction.