—_—rLiri—-

United States Patent [

Marro et al.

[54]
[73]

[73]

[21]
[22]

[63]

[51]
[52]
[58]

[56]

[11] 4,305,124
451 Dec. 8, 1981

PIPELINED COMPUTER 4,041,461 8/1977 Kratzetal .ccocovveerreennene. 364/200
_ : 4,079,456 3/1978 Lunsfordetal. 364/200
Inventors: Daniel J. Marro; David B. Schuck, 4,112,489 9/1978 Wo0Od ..oovvverver i 364/200
both of Escondido, Calif. 4,135,242 1/1979 Wardetal. ...ocoooveveereennnn., 364,200
Assignee: NCR Corporation, Dayton, Ohio 4,149,242 471979 PIrZ ..cooivviiiniirernenenneenrnnenn, 3647200
Primary Examiner—Gareth D. Shaw
Appl. No.: 79,027 i’
‘pp Assistant Examiner—C. T. Bartz
Filed: Sep. 26, 1979 Attorney, Agent, or Firm—J}. T. Cavender; Edward
Dugas; Arthur A. Sapelli
Related U.S. Application Data
PP [57] ABSTRACT
Continuation of Ser. No. 913,996, Jun. 9, 1978, aban- L) ,
doned. A pipelined computer which executes high level lan-
Int. C1.: guage instructions is disclosed. The pipelined computer
Jt:‘, Cl *************************************** Gﬂ;;?é % includes a memory for storing the high level language
R P e . instructions therein. A plurality of microprogrammed
Fieid of Search ... 364/200 M5 File, 900 MS File 4,41 computers are coupled in parallel to the memory,
References Cited and are also intercoupled via an interlocking bus. The
U.S. PATENT DOCUMENTS fnicroprc{grammed computers, In conjuncti:cm with ?he
interlocking bus, form a pipeline for executing the high
3,462,744 8/1963 Tomasulo et al.o....... 364/200 1evel language instructions. Each of the computers is a
3,614,742 10/1971 Watsoncooiiceciiiinriieinan 364,200 I ; bl £ the pineli
3,713,107 171973 Barsamianoo.....o..oo.. 364,200 Separately microprogrammable stage ol the pipeline.
3,771,137 11/1973 Barner et al. covvevvrvenrrensrneens 364,200
3949379 4/1976 Balloooeirveirireceri 364/200 3 Claims, 7 Drawing Figures
MEMQORY

COMMAND
FETCH | 51
COMPUTER BASIC
SETUP

' COMPUTER

T F NN

SETUP
COMPUTER] . ‘

; EXECUTE

U.S. Patent Dec. 8, 1981 Sheet 1 of 4 4,305,124

. 14
EXTENDED
COMMAND ST | | cOMPUTER '
FETCH =

COMPUTER! | ,7 BASIC |27 1 | .
5 \| Serur EXECU_;I'ER

— COMPUTER COMPUTE

C Tla | e 3

FIG. | ‘ : "

19—~" - |

] FIG. 2
e~ 30— e 3 3| ——]

op [Fa[A2] 1 [T |Re[B2[8 [op[Ra[A2[A [or[RalA2]A)

WB/ DWB ., A WB/DWB ., {WB/DWB |
32 _
33— | 34— |
_ pafeagendaad [T] | [[Pei[eezjeeaeer]
[R4+A2A| 16, 3 [RE]+BZB,
TABLE | - COMPUTER Il TABLE 2 - COMPUTER 12

FETCH UP TO FOUR D [] . A A
SEQUENTIAL CMDS. COMPUTE |Rp 2 A

FETCH ALT. CMD. 1 ea [R] t BBy
F BRANCH CMD, | COMPUTE |78 c”

HOLDS [RB] + BB, FOR SuB-
| SEQUENT SINGLE STG. CMDS.

SWITCH TO ALT. CMD | EXECUTES ALL BRANCH
IF BRANCH OCCURS CMDS. DIRECTLY

TABLE 3 - COMPUTER I3 TABLE 4 — COMPUTER |4
RECEIVE ADDRESSES OF

FETCH ONE WORD OF AA | opERANDS FROM REG. 22/23

"FETCH ONE OR TWO FETCH AND EXECUTE

WORDS OF BB REMAINING OPERANDS

GENERATE BYTE POINTERS | SET FLAGS IN REG. 24

ALIGN. CMDS. IN REG, 20

4,305,124

Sheet 2 of 4

U.S. Patent Dec. 8, 1981

PSS | 17
CRIEXA | m
(%0.9.9.5%%% =T
DEP
4
34

'.lr -
h) P
D qeb 02 v
£ MdNN THYAN
el | d

THYAW
dJdWOO
r (-

h

oiv
HdNOD

%
K e a0
1 TYVAN | 940D
1] _
w 20t
8 dWO0D

bl

4,305,124

Sheet 3 of 4

U.S. Patent Dec. 8, 1981

vi

19

SWSor> ruo

L.

iyl

Gl

o
e
P~

oy ags |y wmyr b e Fa i I i . . Tnimis b =P =P T L P LT || e

— . ;;w:m_o -
- o 80 = €00V |
) sng - | _ _
sng -~ | "HAaso
.rn__OOE .E P2S
3 4ASD
5) 1&& 26—~ Hasd
a::a)
¢S 40SD
———— IVHILI
h ' | Ou.r.. . _ - =
[131Hs _““"— B _
19
D29 "
¢l l Hummzuhz_
93 | .
0
3109 9% 3 - TOHINOD
. g YVSD
G 9l _

B R N I

U.S. Patent Dec. 8, 1981 Sheet 4 of 4 4,305,124

FIG. 6
«——— COMP B ———»f«——— MVARL——

M2 M3 M4 MDS

cg C9 CIO, 6 M]
80O

M2 M3 M4

c8 , C9 ,ClO , M
81—

M2 M3

13

a5 MIS Ul uz U3 U4 Ud
TIME — [55 qu

CLOCK - 00 ‘ 75b

CLOCK

BUFFER 20

4,305,124

1

PIPELINED COMPUTER

This i1s a continuation, of application Ser. No.
913,996, filed June 9, 1978, now abandoned.

BACKGROUND OF THE INVENTION

The disclosed invention relates to digital computers,
and more particularly to the architecture thereof. Many
types of digital computers exist in the prior art. Basi-
cally however, the architecture for these computers can
be classified into two categories. One category includes
those computers which are totally hardwired and have
no control store memory, while the other category
includes those computers which are microprogrammed
and have a control store memory.

Computers which do not have a control store mem-
ory have an architecture which is highly irregular. This
18 because these computers consist solely of a plurality
of logic gates and flip-flops which are interconnected in
multiple complex combinations. The multiple combina-
tions are necessary if the computer is to execute an
entire instruction set. A problem with these computers
1s that as the instructions set grows in size, so does the
complexity of the interconnection between the gates
and flip-flops which comprise the machine. This makes
them difficult to design and difficult to maintain.

In comparison, processors which have a control store
are relatively regular in structure. Basically, the control

store provides a means for storing therein thousands of 30

relatively simple microcommands. The hardwired logic
gates and flip-flops in these computers execute these
relatively simple commands. Since the commands are
relatively simple, so is the logic required to implement
them. Conversely, the microcommands are arranged in
complex programs in the control store, and the pro-
grams execute higher level language instructions for the
computer user. That is, each command of the high level
language 1s implemented by a program of multiple mi-
croinstructions within the control store of the com-
puter.

One problem however, with some computers having
a control store ts that their operation is undesirably
slow. To overcome this problem, some prior art com-
puters having a control store implement their microin-
structions in a hardwired pipeline. Basically, this pipe-
line consists of several hardwired stages; and each stage
performs a portion of the microcommand. This archi-
tecture decreases the execution time of the microcom-
mands, since it provides a means for executing the mi-
crocommands in an overlapped fashion, For example, in
a two stage pipeline, one stage of the pipeline will be
executing one microcommand while the other stage of
the pipeline will be fetching the next microcommand to
be executed. A problem with these computers however,
1s that each of the stages are comprised of hardwired
special purpose logic which increases the complexity
and irregularity of the machine.

A technique for increasing the speed of operation
even further in a computer having a hardwired pipeline
is to increase the complexity of the microcommands
themselves. That is, as each microcommand is made to
do more things, a smaller number of them are required
to be combined to form the programs which execute the
instructions of the higher level language. Accordingly,
the high level language instructions execute faster. A
probiem with this approach however, is that as the
microinstructions become more complex, so does the

3

10

15

20

235

33

45

30

33

65

2

hardware which 1s required to implement them. As a
result, a computer having both a hardwired pipeline and"
a complex microinstruction set no longer resembles a
regular structure. Instead it is often more complex than
a completely hardwired computer.

It 1s therefore one object of the invention to provide
an tmproved architecture for a digital computer.

Another object of the invention is to provide a pipe-
hned computer having stages which consist of the same
identical hardware.

Another object of the invention is to provide a pipe-
lined computer having stages which are separate micro-
programmed computers.

Another object of the invention is to provide a pipe-
lined computer having stages which individually are
pipelined computers.

Still another object of the invention is to provide a
pipelined computer having stages which individually
are comprised of microprogrammed computers with
writable control stores.

SUMMARY OF THE INVENTION

These and other objects are accomplished in accor-
dance with the invention by a pipelined computer
wherein each stage of the pipeline is a micropro-
grammed digital computer. That is, each stage is “com-
puterized”, in effect a computerized computer. A mem-
ory holds the high level language instructions which are
to be performed by the pipelined computer. The plural-
ity of digital computers which comprise the stages cou-
ple to the memory and are intercoupled to each other
through an interlocking bus. These computers and bus
form the pipeline for executing the high level language
instructions. In one embodiment, the computers of each
stage have the same identical hardware. Also, prefera-
bly, each of these computers includes its own hardwired
pipehne for executing their respective microprograms.
Also preferably, the control store of each of these com-
puters is writable. This enables multiple sets of micro-
programs to be stored therein to execute corresponding
sets of the high level language instructions with no
change in hardware.

DESCRIPTION OF THE DRAWINGS

Specific embodiments of the invention, as well as
other features and advantages thereof, will best be un-
derstood by reference to the following detailed descrip-
tion when read in conjunction with the accompanying
drawings wherein: |

FIG. 1 1s a block diagram of a pipelined computer
constructed according to the invention.

FIG. 2 15 a diagram illustrating a format of one high
level language instruction set which is executed by the
pipelined computer of FIG. 1.

FI(. 3 is a set of tables listing tasks which the various
computers perform within the pipelined computer of
FI1G. 1.

FIG. 4 s a timing diagram illustrating the overlap
operation of the pipeline of the pipelined computer of
FiG. 1.

FIG. § 1s a block diagram of a hardwired three stage
pipeline microprogrammed digital computer which
comprises one of the microprogrammable stages of the
pipelined computer of FIG. 1.

FIG. 6 is a timing diagram illustrating the operation
of the hardwired pipeline of the computer of FIG. § in
conjunction with the microprogrammed stages within
the pipelined computer of FIG. 1.

4,305,124

3

FIG. 7 i1s a detailed logic diagram of one preferred
embodiment of the interlocking bus in the computerized
computer of FIG. 1.

DETAILED DESCRIPTION

A preferred embodiment of a pipelined computer
constructed according to the invention will now be
described 1n conjunction with FIG. 1. This embodiment
includes a digital memory 10 for storing therein pro-
grams comprised of high level language instructions.
Also included are a plurality of microprogrammed digi-
tal computers 11-14 having respective control store
memories 11a-14a for their microprograms. Computers
11-14 also respectively have interfaces 15-18 to mem-
ory 10. An interlocking bus 19 intercouples computers
11-14 to form a pipeline for executing the high level
language instructions in memory 10. Each of the com-
puters 11-14 is a separately microprogrammable stage
of this pipeline.

Basically, this pipeline operates as follows. Computer
11 executes its microprogram in control store 1lg,
which operates to fetch the high level language instruc-
tions from memory 10. These fetched instructions also
are aligned in a predetermined format and loaded into
registers 20 in pipeline 19 under microprogram control.
Computer 12 executes tts microprogram in control store
122, which operates to receive the aligned instructions
from register 20 and calculate the memory addresses of
the operands for these instructions. The calculated ad-
dresses are also loaded into register 21 under microcode
control.

Computer 13 executes its microcode in control store
13z to receive the addresses from register 21, and fet-
ches from memory 10 a portion of the operands which
are indicated by the addresses. These operands and
corresponding addresses are loaded into a register 22
within bus 19. Computer 14 execuies microcode In con-
trol store 14a to receive the operand and addresses in
register 22, and performs operations on the operand as
specified by the high level language instruction. Com-
puter 14 also fetches from memory 10 any remaining
portions of the operand and performs thereon the oper-
ation specified by the high level language instruction.

Also included 1n the illustrated preterred embodiment
are registers 23, 24 and 25. Register 23 1s included
within bus 19 to provide a means for computer 12 to
transfer the calculated operand addresses of the high
level language instructions directly to computer 14. In
operation, computer 12 sends the results of its process-
ing of the high level language instruction either to com-
puter 13 or computer 14 dependmg on the particular
high level instruction that is being processed. Register
24 and 25 provide a means whereby computers 14 and
12 respectively can indicate the results of their opera-
tion to computers lying upstream in the pipeline. These
results are indicated by various flags and branch control
imformation for example. The precise tasks performed
by computers 11-14 and the information which they
transfer via registers 20-25 will be explained in greater
detail in conjunction with FIG. 3.

In one preferred version of the FIG. 1 embodiment,
computers 11-14 each consist of the same identical
hardware. That 1s, computers 11-14 differ only in their
respective microprograms. Accordingly, this version
has an extremely regular architecture. It also increases
the volume of the single computer that 1s used for each
of the stages by a factor of four over the volume of the
pipelined computer. This increased volume translates to

10

13

20

23

30

33

40

45

>0

35

635

4

a reduced cost for the pipelined computer. Also, the
regularized structure decreases the complexity of the
pipelined computer, which makes for ease of design and
maintenance.

Also preferably, each of the computers 11-14 execute
their respective microprograms in their own internal
pipeline. That 1s, computers 11-14 preferably each in-
clude a plurality of hardwired execution stages whick
are interconnected in a pipeline. The pipeline within
computer 11 executes the microprograms m control
store 11a of computer 11; the pipeline in computer 12
executes the microprograms in control store 12z of
computer 12; etc. Any number of stages may comprise
the respective pipelines within computers 11-14. For
example, computers 11 and 14 may each include a three
stage pipeline while computers 12 and 13 may each
include a two stage pipeline. At the same time of course,
computers 11-14 each form one stage of the pipelined
computer having higher level language instructions in
memory 10.

In addition, control stores 11a-14a preferably are
each writable control stores. That 1s, modifiable micro-
programs can be stored therein. This provides a means
whereby one set of microprograms can be stored in
control stores 11a-14a during one time interval to exe-
cute one set of high level language instructions; whitle a
second set of microprograms can be stored in control
stores 11a-14a¢ during a second time interval to execute
a corresponding second set of high level language in-
structions.

A format for one set of high level language instruc-
ticns, and thetr associated operands, which i1s suitable
for being processed by the disclosed pipelined computer
15 1llustrated in FIG. 2. These instructions are the ma-
chine language of a Century 100 processor as described
in the publication entitled “615-100 Functional Specifi-
cation” from NCR Corporation. Basically, these high
level language instructions have a double stage format
30 and a single stage format 31. Double stage commands
30 include eight bytes of information which are indi-
cated in FIG. 2 by the squares labeled OP through BI1.
Single stage command 31 includes four bytes of infor-
mation as indicated in FIG. 2 by the squares labelled OP
through Al.

In formats 30 and 31, the symbol OP represents one of
the following operation codes: Pack, Unpack, Add
Unsigned, Subtract Unsigned, Add Binary, Subtract
Binary, Branch Overflow, Branch Less, Branch On
EQual, Branch Less Or Equal, Branch Greater, Branch
Less Or Greater, Branch Greater Or Equal, Branch
Unconditionally, Move A Right To Left, Compare
Binary, Repeat, and Wait. All of these instructions pass
through the stages of the pipeline formed by computers
11 and 12. The Add Binary, Subtract Binary, Move A
Right To Left, and Compare Binary mstructions also
pass through computers 13 and 14. In comparison, the
Pack, Unpack, Add Unsigned, Subtract Unsigned in-
structions pass through computer 14 but bypass com-
puter 13.

Each of the above described operation codes can be
incorporated into the double stage format 30 or the
single stage format 31. Single stage format commands
have a B address equal to the B address which results
from execution of the preceding command. For exam-
ple, the B address which results from execution of a
Binary Compare command i1s the same as i1ts imtial B
address. Accordingly, one task which computer 12
performs 1s to save fields T-B1 of a double stage com-

L L .. T - .
| * R) TT—— T T TR T T) —— e, = = e = e e T

———_—————————— T — ————— ———— " = —~

4,305,124

S

mand and use them to form the B address for subsequent
single stage commands.

Each of the above described operation codes may
also be aligned in memory 10 on a double word bound-
ary, or a word boundary. This is indicated at 32 in FIG.
2. Computer 11 has the task of fetching the commands
from memory 10, and shifting them so that they are all
aligned in register 20 in standard format regardless of
how they are aligned in memory 10,

The operands 33 and 34 on which instructions 30 and
31 operate are also illustrated in FIG. 2. The T field
indicates the length of operands 33 and 34. Operand 33
i1s addressed by the fields RA, A2, and Al; while oper-
and 34 1s addressed by the fields RB, B2, and B1. RA
and RB indicate index registers. Basically, operand 33 is
addressed by the contents of index register RA plus the
quantity A2A1 as indicated at 35, while operand 34 is
addressed by the contents of index register RB plus
B2B1 as indicated at 36. Various modifications to this
addressing are described in the above cited publication
on the Century 100.

FI1(G. 3 illustrates how the multiple tasks which con-
stitute execution of the high level language instructions
of FIG. 2 are partitioned among computers 11-14. As
indicated in Table 1, computer 11 pre-fetches up to four
sequential high level language instructions from mem-
ory 10. If one of these is a branch instruction, computer
11 pre-fetches both alternative instructions that may be
executed depending on whether or not the branch is
taken. These pre-fetched instructions are aligned into a
single predetermined format, and loaded sequentially
into register 20. Computer 11 also monitors the state of
register 23 to determine if a branch is or is not taken. In
response thereto, computer 11 loads the correct alterna-
tive instruction into register 20.

Computer 12 receives the instructions which are
loaded into register 20. Subsequently, it computes the
addresses of the operands for these instructions. That is,
it computes the contents of index register RA plus
A2A1; and computes the contents of index register B
plus B2B1. If register 20 holds a single stage command,
then computer 12 calculates the address that results
from execution of the preceding command and tacks
that on as the B address for the single stage command.

In addition, computer 12 directly executes all branch
instructions. It does this by testing the flags in register
24 1n accordance with the operation code of the particu-
lar branch instruction, and by setting the state of regis-
ter 25 to indicate that the branch condition either was or
was not met. For OP codes which are not a branch,
computer 12 passes the calculated operand addresses
into either register 21 or 23 in accordance with the

3

10

i3

20

25

30

35

435

particular OF code as previously described in conjunc-

tion with FIG. 2.

The function performed by computer 13 during the
processing of the Add Binary, Subtract Binary, Move A
Right To Left, and Compare Binary instructions is
listed in Table 3. First, computer 13 receives the infor-
mation loaded by computer 12 into the register 21.

33

Subsequently, computer 13 prefetches one word of the 66

A operand. If the bytes therein are not aligned on a

word boundary, computer 13 performs neo shifting of

the alignment. Computer 13 also pre-fetches either one
or two words of the B operand as is required to have at
least as many bytes of the B operand pre-fetched as
there are byies of the A operand pre-fetched. The pre-
fetched operands, and the A and B addresses, are then
loaded into register 22 along with several pointers indi-

65

6

cating the byte alignment of the A and B operands

within the pre-fetched words.

As per TABLE 4, computer 14 receives the addresses
and operands from register 22 or 23 depending upon the
particular high level language instruction being per-
formed. Any remaining portion of the operands are
fetched by computer 14. The operands are also operated
on by computer 14 in accordance with the operation
code. For some instructions, computer 14 sets flags in
register 24 to indicate the resuits of the operation. These
flags are utilized by computer 12 during branch com-
mands as described above.

A timing diagram illustrating how computers 11-14
perform each of their assigned tasks in a pipeline fashion
1s contained in FIG. 4. This figure illustrates the execu-
tion of the commands Compare Binary, Move A Right
To Left, Unpack, and Branch On Equal as an example.
Specifically, the sequence 40a, 4056, and 40c¢ illustrates
how computers 11-14 process the Compare Binary
instruction. Similarly, the sequence 41a, 414, and 41c
itlustrates how computers 11-14 process the Move A
Right To Left instruction. Both of these instructions of
the high level language utilize all four stages of the
pipeline.

In comparison, the sequence 42z and 42b illustrates
how the Unpack command is performed by computers
11-14. As illustrated, only three stages of the pipeline
are required to perform this command. Also in compari-
son, the sequence 43q and 435 illustrates how the
Branch On Equal command is performed by computers
11-14. As illustrated, this command utilizes only com-
puters 11 and 12. Computer 11 fetches and aligns the
Branch On Equal command, determines that a Branch
command has been fetched, and in response thereto
fetches two alternate commands. One of the alternate
commands will be performed if the Branch condition
fails; while the other alternative commands will be per-
formed if the Branch condition is met. Computer 12
tests the flag in register 24 and selects one of the alter-
nate commands based on the result of the test. This is
indicated at 44a. After one of the aiternate commands
has been selected, it proceeds through the pipeline in
the normal fashion as indicated at 44 and 44c.

Due to the pipelined interconnection of computers
11-14, the execution of the high level language instruc-
tion i1s overlapped in time. This overlapping is clearly
Hlustrated in FIG. 4. For example, at time instant 45,
computers 11-14 respectively are performing portions
of the Branch On Equal instruction, the Unpack instruc-
tton, the Move A Right To Left instructions, and the
Compare Binary instruction. At the same time, each of
the computers 11-14 preferably have their own internal
hardwired pipeline which is operating to perform their
respective microprograms. This point is described in
greater detail in conjunction with FIGS. § and 6.

When one stage of the pipeline formed by computers
11-14 needs data from the preceding stage and that data
is not available, the stage which needs the data enters
into a freeze state until the data is available. This is
indicated at 46 and 47 in FIG. 4. Specifically, the freeze
state at 46 1llustrates the condition where computer 13
has finished processing its portion of the Move A Right
To Left command and is waiting for the next command
for which it has tasks to perform. In this illustrated
example, this command is the second alternative of the
branch command.

Similarly, the freeze state at 47 illustrates the case
where computer 11 waits for computer 12 to determine

4,305,124

7

which alternative of a branch condition 1s to be exe-
cuted. Subsequent to that determination, computer 11
continues in its normal fashion to pre-fetch up to four
sequential commands along the branch path which was
taken. One preferred embodiment of bus 19 which 1im-
plements this freeze function 1s illustrated and described
in conjunction with FIG. 7.

Referring now to FIG. 5, there 1s illustrated a block
diagram of a computer which suitably may be used as
each of the computers 11-14. That is, four of the com-
puters of FIG. § are included within the pipelined com-
puter of FIG. 1. The computer of FIG. § has its own
three stage pipeline. These are termed the Fetch stage,
the Interpret stage, and the Execute stage. Each of these
stages are implemented by hardwired logic. This logic
is defined in great detail in the publication “56-101 Pro-
cessor Sub-system Functional Specification” from NCR
Corporation.

Basically, the Fetch stage includes a control store
address register and branch control logic 30, a control
store memory 51, and control store data registers
52a-52¢. These registers are partitioned to receive vari-
ous portions of the microcommands which are read
from control store memory 51. For example, register
52a receives and decodes a portion of the microcom-
mands which addresses a register storage unit 60 within
the Interpret stage.

The Interpret stage of the pipeline also includes a
multiplexer 61, and buffer registers 62a-62¢. Registers
62a and 625 form inputs to byte and bit shifting logic 70
which lies within the Execute stage. Registers 62¢ and
624 form inputs to an arithmetic logic unit 71 within the
Execute stage. And register 62¢ forms an input to jump
test logic and modify logic 72 within the Execute stage.
The Execute stage also includes a buffer register 73 for
the register storage unit 60. It further includes memory
interface registers 74. Registers 74 couple via leads 15 to
memory 10 as was previously described 1n conjunction
with FIG. 1.

A bus 73 interconnects units 71-74 and registers
20-2§ of FIG. 1. For example, bus 7§ of computer 12
couples to registers 20, 21, 23, 24, and 28. Similarly, bus
78 of computer 13 couples to registers 21 and 22. Addi-
tional details of the lines and signals within bus 7§ are
described in conjunction with FIG. 7.

Referring now to FIG. 6, there is illustrated the de-
tailed timing of how the multiple pipelines within the
pipelined computer of FIG. 1 interact with each other.
Transition 416 in FIG. 6 corresponds to transition 414
and the timing diagram of FIG. 4. Near this transition,
computer 13 operates on the Compare Binary command
and the Move A Right To Left command. Simulta-
neously, computer 12 operates on the Move A Right To
Left command and the Unpack command.

In FIG. 6, reference numerals 80-82 respectively
refer to the microinstructions in the Fetch stage, the
Interpret stage, and the Execute stage of computer 13.
Similarly, reference numerals 83-85 respectively refer
to the microcommands tn the Fetch stage, the Interpret
stage, and the Execute stage of computer 12. Also, the
mnemonics M1, M2, etc. refer to the first, second etc.
microcommand of the program, in the corresponding
stage, for the Move A Right To Left command; the
mnemonics Ul, U2, etc. refer to the first, second, etc.
microcommand of the programs for the Unpack com-
mand: and the mnemonics C8, C9 and C10 refer to the
eighth, ninth and tenth microcommand of the programs
for the Compare Binary command.

10

15

20

25

30

35

45

50

53

65

8

At the previously described time instant 45 for exam-
ple, the Fetch stage, the Interpret stage, and the Exe-
cute stage of computer 13 respectively operate on the
fourth, third, and second microcommands in control
store 13a¢ which performs a portion of the Move A
Right To Left command. Simulianecusly, the Fetch
stage, the Interpret stage, and the Execute stage of
computer 12 respectively operate on the sixth, fifth, ani
fourth microcommand in control store 12a which per-
forms a portion of the Unpack command. Similarly, at a
time instant 86, the Fetch stage of computer 13 operates
on the second microcommand of the Move A Right To
Left command; the Execute stage of computer 13 oper-
ates on the tenth microcommand of the Compare Bi-
nary instruction; and the Execute stage of computer 12
operates on the second microcommand of the Unpack
instruction. Also at time instants 45 and 86, the pipelines
within computers 11 and 14 are operating in a similar
overlapped fashion.

The details of the interlocking bus 19 which intercon-
nect computer 11-14 will now be described in conjunc-
tion with FIG. 7. This figure is a detailed logic diagram
of buffer 20. The other buffer registers 21-25 are of
stmilar structure—the only difference being the number
of information bits which is contained in the particular
buffer register.

These bits are held in a register 90. Register 90 is a
triggerable D-type register having a plurality of inputs
which are loaded from bus 78z in computer 11 and
unloaded to bus 75a in computer 12. ADDR signals on
bus 755 are utilized to load register 90 and to test regis-
ter 90 to determine if it i1s full or empty. To this end,
signals ADDR couple to a decoder 91. Decoder 91
operates to select a particular binary code and indicates
the presence of that code by a logic level on lead 92.
Lead 92 couples to a logical AND gate 93 which oper-
ates to set a flip-flop 94 when it is empty; and to load
register 90 through an AND gate 95.

A control signal Xout on a lead within bus 754 is an
additional enabling signal which is connected to AND
gate 93. Signal Xout indicates when computer 11 is
executing a microcommand which loads the data on bus
75a into a register as spectfied by the ADDR code on
bus 756.

An AND gate 96 generates a signal FREEZE on
another lead within bus 78b. This FREEZE signal is the
logical AND of the FULL signal from flip-flop 94, the
address detect signal on lead 92, and the Xout signal. It
operates to halt computer 11 when it attempts to load a
full register 90,

Similarly, an AND gate 97 provides a FREEZE
signal for computer 12 which enables the pipeline in
computer 12 to stop when it requests data from an
empty register 90. This FREEZE signal 1s generated on
a lead within bus 7586 in computer 12. The inputs to gate
97 are generated by a decoder 98 which decodes
ADDR signals on bus 754 in computer 12, the empty
side of flip-flop 94, and an Xin signal on a lead within
bus 786 in computer 12. The Xin signal indicates that
computer 12 is requesting data to be put onto bus 75 by
the register indicated by the ADDR signals. In compar-
ison, when computer 12 requests data from a full regis-
ter 90, the pipeline in computer 12 does not stop. In-
stead, it proceeds to take data from register 90. An
AND gate 99 is provided to force flip-flop 94 to the
EMPTY state after this data transfer occurs.

Timing signals are also provided for synchronizing
all of the above described operations. These signals are

4,305,124

9
called CLOCK and CLOCK'. An inverter 100 gener-
ates signal CLOCK' from signal CLOCK. Suitably,
these signals are square waves with a 50 NS period.
Also, a RESET signal and a NAND gate 101 are in-
cluded to initialize flip-flop 94 to an EMPTY state
whenever the entire system is reset.

This completes the disclosure of the embodiment of
FIG. 1. It should be pointed out however, that many
modifications and changes may be made to the FIG. 1
embodiment without departing from the nature and
spirit of the invention. For example, the pipelined com-
puter of FIG. 1 may be scaled up to include additional
ones of the computers 11-14 within the interlocking
interface 19, or it may be scaled down to include as few
as two of the computers 11-14. Basically, as the number
of computers is increased, the amount of overlap in the
pipeline increases. Conversely, as the number of com-
puters is decreased, the amount of overlap in the pipe-
line decreases. The tasks which each stage of the pipe-
line must perform may be assigned various ways as was
described in conjunction with FIG. 3.

As another alternative, the pipelined computer of
F1G. 1 may be expanded to include one or more hard-
ware assist units. For example, a special hardwired
assist unit which does high speed multiples and high
speed divides may couple to computer 14. In operation,
computer 14 would pass the operands to the hardware
assist unit and receive the result therefrom. As another
example, the hardware assist unit could couple directly
between computers 12 and 13 to perform the extended
set-up. In this configuration, only computers 11, 12 and
14 would be microprogrammed. This configuration
would be attractive if the logic required to do the as-
signed tasks were relatively simple.

As still another variation to the pipelined computer of
F1IG. 1, additional levels of buffering may be included in
the interlocking bus 19. That is, multiple registers 90
may be interconnected in stacks between computers
11-14. In this embodiment, control logic similar to that
tllustrated in FIG. 7 would generate a suitable
FREEZE signal to indicate when the stack was full or
empty. The stack could suitably be constructed out of
commercially available stack chips, such as an 8X03
chip from Signetics for example.

Accordingly, since many changes and modifications
can be made to the disclosed embodiments without
departing from the nature and spirit of the invention, it
1s to be understood that the invention is not limited to
said embodiments, but is defined by the appended
claims.

We calim:

1. In a pipelined computer, having a memory means
tor storing programs of high level language instructions

10

i5

20

25

30

35

40

43

55

65

10

and a plurality of microprogrammed digital computer
means wherein each one of said plurality of micropro-’
grammed digital computer means forms a stage of said
pipelined computer, said pipelined computer having
n-stages, and wherein each of said plurality of micro-
programmed digital computer means is coupled to said
memory means, an interlocking bus, comprising:

(n-1) buffer means, each one of said buffer means
coupled between consecutive ones of said plurality
of microprogrammed digital computer means for
providing a predetermined level of buffering there-
between, sard buffer means also comprising;

{a) a register means for holding a quantum of data
therem, said register means having an input termi-
nal adapted to receive said quanium of data and
naving an output terminal adapted to transmit said
quantum of data, wherein said input terminal is
operatively connected to one of said plurality of
microprogrammed digital computer means and
said output terminal is operatively connected to the
next consecutive stage of said plurality of micro-
programmed digital compuier means; and

(b) synchronizing means, operatively connected be-
tween the same consecutive stages of said micro-
programmed digital computer means as said regis-
ter means, and further operatively connected to
sald register means, said consecutive stages of said
plurality of microprogrammed digital computer
means being an i*-stage and an (i+ 1)-stage, said
synchronizing means having a first and second
output terminal for transmitting a halt control sig-
nal, said first output terminal operatively con-
nected to the i*-stage of said microprogrammed
digital computer means and said second output
terminal operatively connected to the (i + 1)-stage
ot said microprogrammed digital computer means,
said synchronizing means cooperating with said
register means, for halting said {i + 1)-stage of said
microprogrammed digital computer means when
attempting to read said register means if said regis-
ter means is empty or for halting said i"-stage of
said microprogrammed digital computer means
when attempting to load said register means if said
register means s full.

2. An immterlocking bus, according to claim 1, further

comprising at least one register means for transmitting
said quantum of data to a non-consecutive stage of said

microprogrammed digital computer means.
3. An interlocking bus, according to claim 2, wherein
sald register means comprises a triggerable D-type reg-

ister,
b | » o »

	Front Page
	Drawings
	Specification
	Claims

