United States Patent [19]

Nüsslein et al.

- [54] 1,3,4-THIADIAZOLE-2-CARBOXYLIC ACID DERIVATIVES, PROCESS FOR MAKING THE SAME AND FUNGICIDAL AND NEMATOCIDAL COMPOSITIONS **CONTAINING SAME**
- Inventors: Ludwig Nüsslein; Dietrich Baumert; [75] Ernst A. Pieroh, all of Berlin, Fed. Rep. of Germany
- Schering Aktiengesellschaft, Berlin [73] Assignee:

[57] ABSTRACT

1,3,4-thiadiazole-2-carboxylic acid derivatives of the formula

[11]

[45]

4,279,907

Jul. 21, 1981

and Bergkamen, Fed. Rep. of Germany

[21] Appl. No.: 157,635

Jun. 6, 1980 Filed: [22]

Related U.S. Application Data

[62] Division of Ser. No. 101,061, Dec. 6, 1979.

[30] **Foreign Application Priority Data** Dec. 7, 1978 [DE] Fed. Rep. of Germany 2853196 [51] [52] 424/270 [58]

References Cited [56] FOREIGN PATENT DOCUMENTS

2253863 5/1974 Fed. Rep. of Germany 548/136 2612761 10/1976 Fed. Rep. of Germany 548/136

Primary Examiner-Alton D. Rollins

wherein

- R is C_1 -C₆-alkyl, C_2 -C₆-alkenyl, C_2 -C₆-alkinyl or C_3-C_6 -cycloalkyl,
- R_1 is C_1 -C₆-alkoxycarbonyl, aminocarbonyl, C_1 -C₈alkylaminocarbonyl, C_3 - C_6 -cycloalkylaminocarbonyl, di-C₁-C₈-alkylaminocarbonyl, cyclohexylmethylaminocarbonyl, alkoxyalkylaminocarbonyl, morpholinocarbonyl, pyrrolidinocarbonyl, piperidinocarbonyl or cyano, and n is 0.1 or 2.

The compounds wherein n is 1 or 2 have both a high fungicidal and nematocidal activity. The compounds in which n is 0 are the starting products or intermediate products in making the compound in which a sulfory or sulfinyl group is present (n=1 or 2) but have also nematocidal properties of their own. All compounds of the invention avoid the undesirable environmental properties and other shortcomings of the prior art products, particularly those of the broadly used mercury compounds.

. . · ·

.

•

1,3,4-THIADIAZOLE-2-CARBOXYLIC ACID DERIVATIVES, PROCESS FOR MAKING THE SAME AND FUNGICIDAL AND NEMATOCIDAL **COMPOSITIONS CONTAINING SAME**

This is a division of application Ser. No. 101,061, filed Dec. 6, 1979.

BACKGROUND OF THE INVENTION

The invention relates to 1,3,4-thiadiazole-2-carboxylic acid derivatives.

Compounds for use against phytopathogenic fungi are already known. Compounds in use of this kind are for instance manganeseethylene-bisdithiocarbamate (U.S. Pat. No. 2,504,404), N-trichloromethylmercaptotetrahydro-phthalimide and N-trichloromethylmercapto-phthalimide (U.S. Pat. No. 2,553,770, U.S. Pat. No. 2,553,771, U.S. Pat. No. 2,553,776), tetra-20 chloroisophthalodinitrile (U.S. Pat. No. 3,290,353, U.S. Pat. No. 3,331,735) as well as mercury-organic compositions.

horticulture for treatment of the soil or for application to the leaves, etc.

The compounds of the invention wherein n is 1 or 2 have a superior activity against a large number of nox-

- ious fungi such as for instance Pythium ultimum, Penicillium digitatum, Botrytis cinerea, Alternaria solani, Fusarium avenaceum, Tilletia caries, Helminthosporium gramineum, Ustilago avenae, Piricularia oryzae and others.
- The nematocidal activity is also effective against 10 many genera of nematodes, for instance Meloidogyne sp., Rotylenchus, Pratylenchus, Tylenchorhynchus and others.

In the above formula I, R should preferably be 15 methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec.butyl, tert.-butyl, pentyl, isopentyl, neopentyl, hexyl, isohexyl, 2-propenyl, 2-propinyl, cyclopropyl and cyclohexyl. R₁ preferably should be methoxycarbonyl, ethoxycarbonyl, aminocarbonyl, methylaminocarbonyl, butylaminocarbonyl, dimethylaminocarbonyl, cyclopropylaminocarbonyl, propylaminocarbonyl, isopropylaminocarbonyl, (N-butyl-N-methyl)-aminocarbonyl, (2-methoxyethyl)-aminocarbonyl, (3-methoxypropyl)-aminocarbonyl and cyano. The compounds of the invention can either be used individually or intermixed with each other or intermixed with other active agents. If desired, other fungicidal, nematocidal or insecticidal compounds or other pesticides may be used depending on the specific purpose. The compounds may be used in the form of compositions such as powders, dusting agents, granulates, solutions, emulsions or suspensions. There should then be 35 added liquid and/or solid carrier materials or diluents and if desired surface active agents.

Agents for simultaneous use against nematodes and pathogenic soil fungi are likewise known, for instance 25 sodium N-methyldithiocarbamate (British Pat. No. 789,690).

The object of the present invention is to provide agents of superior activity or other superior properties which have simultaneously fungicidal and nematocidal 30 effects.

ESSENCE OF THE INVENTION

The compounds of the invention have the formula

Suitable liquid carrier materials are water, mineral oils, or other organic solvents such as xylene, chlorobenzene, cyclohexanol, dioxane, acetonitrile, acetic 40 ester, dimethylformamide, isophoron and dimethylsulfoxide.

$$R = S(O)_n = C \qquad C = R_1$$

wherein

R is C_1 -C₆-alkyl, C_2 -C₆-alkenyl, C_2 -C₆-alkinyl or C_3-C_6 -cycloalkyl,

 R_1 is C_1-C_6 -alkoxycarbonyl, aminocarbonyl, C_1-C_8 alkylaminocarbonyl, C_3 - C_6 -cycloalkylaminocarbonyl, $di-C_1-C_8$ -alkylaminocarbonyl, cyclohexylmethylaminocarbonyl, alkoxyalkylaminocarbonyl, morpholinocarbonyl, pyrrolidinocarbonyl, piperidinocarbonyl or cyano and

n is 0, 1 or 2.

The compounds of the invention wherein n is 1 or 2 have a surprisingly broad spectrum of activity against phytopathogenic fungi, superior to prior art agents of 55 the type above listed. They also have a good compatibility with agricultural plants and an adequate duration of their activity. They have furthermore the advantage that they are also effective against nematodes in which case they can be used, contrary to the prior art nemato- 60 by up to 20% by weight of surface active agents. cidal compounds, without a waiting time between their use and the planting period because of their high plant compatibility. Thus, they permit a problem-free action against pests. A further advantage is that compared to the toxicologically objectionable mercury compounds 65 they are environmentally acceptable.

As solid carrier materials there may be used lime, kaolin, chalk, talc, attaclay and other clays as well as natural or synthetic silicic acid.

If surface active agents are added they may for instance be salts of lignosulfonic acids, salts of alkylated benzoesulfonic acids, sulfonic acid amides and their salts, polyethoxyamines and alcohols.

If the agents are used for seed treatment there may be added dyestuffs in order to give the treated seed mate-50 rial a distinct coloration.

The fraction of the active agent or agents can be varied within a broad range. The particular concentration of the agents depends mainly on the amount of agent actually employed. For instance the total compositions may contain about 1 to 95% by weight, preferably 20 to 50% by weight, of active agent or agents and about 99 to 5% by weight of liquid or solid carrier materials. Part of the carrier materials may be replaced The compositions may be applied in conventional form, for instance by spraying, dusting, fogging, gasifying, smoke formation, spreading, pouring or otherwise.

Due to these properties the compounds of the invention can be used both in agricultural operations and in

PROCESS OF MAKING THE PREFERRED COMPOUNDS

The compounds of the invention wherein n is 1 or 2 can be formed in various ways.

(A) Compounds of the formula

in which R and R₁ have the same meaning as in the above formula I and n is 0, are treated with oxidizing ¹⁰ agents, preferably organic hydroperoxides, per-acids or inorganic oxidizing agents, in equimolar amounts dissolved in an inert solvent.

(B) Compounds of the invention wherein R_1 is a carboxylic acid amide residue can be made by reacting the compounds of the above formula II wherein, however, R_1 is C_1-C_6 -alkoxycarbonyl with a suitable amine followed by treatment with an oxidizing agent as under A. (C) If the compounds of formula I are intended to be of the type wherein R_1 is cyano they can be made by treating compounds of the above formula II wherein R_1 is aminocarbonyl with a dehydration agent followed by treatment with an oxidizing agent as described above at A. (D) If the compounds of the invention are intended to be of the type wherein R_1 is a carboxylamide residue they can be made by reacting compounds of the formula I

II. PROCESS FOR MAKING THE COMPOUNDS USED AS STARTING PRODUCTS BUT ALSO AS FINAL PRODUCTS (n=0)

The compounds of the formula I wherein n is 0 and which have not been disclosed heretofore can be made as follows:

Compounds of the formula

 R_1' —CO—NH—NH₂

4,279,907

35

Π

in which R_1' is C_1 - C_6 -alkoxycarbonyl are reacted with carbon disulfide in the presence of a base so as to form a compound of the formula

 R_1' --CO--NH--NH--CS--S⁽⁻⁾Me⁽⁺⁾.

 R_1 "-CO-NH-NH₂,

wherein R_1'' constitutes a carboxylic amide residue as listed with carbondisulfide in the presence of a base so as to form a compound of the formula

 $R_1''-CO-NH-NH-CS-S^{(-)}Me^{(+)}$.

The latter product is then reacted with an alkylating agent to form a compound of the formula

The latter reaction product is then reacted with a dehydration agent so as to form a compound of the formula

The latter compounds are subjected to the action of an alkylating agent, if desired in the presence of a base. 30 There are thus formed the desired compounds of the formula

The latter may be further reacted with suitable amines

R₁"--CO---NH---NH---CS---S---R

whereupon it is treated with a dehydration agent and an oxidizing agent in order to obtain the desired compounds of the invention.

(E) If compounds are wanted of the type of formula ⁴⁵ I in which R_1 is a carboxylic acid residue, the proceeding could be as follows: a compound of the formula

 $H_2N-NH-CS-S^{(-)}Me^{(+)}$

is reacted with an alkylating agent to form a compound of the formula

 H_2N —NH—CS—S—R.

The latter reaction product is then treated with a compound of the formula

R₁—CO—CO—Cl

in which R_1 is C_1 - C_6 -alkoxycarbonyl so as to form a

40 to form compounds of the formula

In all of these formulas R and R₁ have the meaning as in formula I unless otherwise indicated, Me⁽⁺⁾ is the cation
of an inorganic or organic base and R₁" is a carboxylic amide residue or a cyano group.

III. DETAILS OF THE PROCESS OF MAKING

In order to make the compounds of the invention in 55 which in the general formula I n=1 there may be used as oxidizing agents organic hydroperoxides such as tert.-butylhydroperoxide, or per-acids, such as mchloroperbenzoic acid, or N-halogeno acid amides like N-bromosuccinimide. Inorganic oxidizing agents, such 60 as hydrogen peroxide and sodium metaperiodate may also be used. Preferably two oxidation equivalents of the oxidizing agents or a small excess are employed per mol of thio compound at temperatures of about 0° to 60° C.

in which K_1 is C_1 - C_6 -alkoxycarbonyr so as to form a carboxylic acid derivative of the above formula II, the reaction being carried out under dehydrating conditions. The last obtained reaction product is then treated with an oxidizing agent as stated above at A. 65

In all these compounds R and R_1 have the meaning as in Formula I except as stated and $Me^{(+)}$ is a cation of an organic or inorganic base. In order to make the compounds of the formula I in which n is 2 it is possible in addition to the just named oxidizing agents to use also agents such as chlorine, potassium permanganate, chromic acid and their salts or

nitric acid and the temperature range of 0° to 120° C. Preferably, there are used four oxidation equivalents or a slight excess above it per mol of thio compound. In other words; there are used about twice the amount of oxidizing agents as employed for the above-described ⁵ sulfoxidation as in the case where n is 1.

The reaction in general can be carried out at temperatures between -30° and 120° C. These temperatures should be used during the oxidation reactions.

For the synthesis of the compounds of the invention 10the reactants are used in about equimolar amounts. This is otherwise in case of the dehydration reaction in which a large excess of the water extracting agent is preferred. As reaction media there may be used solvents which ¹⁵ are inert towards the reactants. They may be used as such or in mixture with water. Their selection depends on conventional considerations having in mind the specific purpose of the reaction. As solvents or suspension 20 agents there may be used: carboxylic acids such as acetic acid, carboxylic amides, such as dimethylformamide; carboxylic acid nitriles, such as acetonitrile; alcohols, such as methanol; ethers, such as dioxane, and many others.

ice water and subjected to removal by suction of the precipitated compound.

Yield: 17.8 g (78% of the theoretical value); M.p.: 116° C.

EXAMPLE 2

5-ethylsulfinyl-1,3,4-thiadiazole-2-carboxamide

38 g of 5-ethylthio-1,3,4-thiadiazole-2-carboxamide
are dissolved at 40° C. in 400 ml of glacial acetic acid
and are then slowly reacted with 22.6 ml of a 30%
hydrogen peroxide upon stirring. The solution is kept
for another 3 hours at the same temperature. At the end
of this period the oxidation is sufficiently complete not
to require any further addition of heat. After standing
overnight the reaction mixture is stirred into two liters
of icewater resulting in the precipitation of a solid material which is removed by suction and recrystallized

If it is considered advisable there may be used as inorganic or organic bases, oxides and hydroxides of the alkali or alkali earth metals, for instance sodium or potassium hydroxide or tertiary amines, such as triethylamine or N,N-dimethylaniline.

Suitable alkylating agents are for instance alkyl halides, preferably iodides and bromides, as well as esters of sulfuric acid, such as dimethylsulfate or esters of aromatic sulfonic acids, such as methyltosylate.

Suitable dehydration agents are particularly inor- 35 ganic agents, such as mineral acids, for instance concentrated sulfuric acid or polyphosphoric acid, inorganic halides, for instance, phosphorus pentachloride, phosphorus trichloride, titanium tetrachloride and many others. Also organic agents may be used such as carbox- 40 ylic acid chlorides, for instance acetylchloride, carboxylic acid anhydride, such as trifluoroacetic acid anhydride, carbodiimides, such as dicyclohexylcarbodiimide and many others. The isolation of the formed compounds of the invention may be carried out by distilling 45 off the solvent at atmospheric or reduced pressure or by precipitation with water or a slightly polar organic solvent such as diethylether or by crystallization.

Yield: 15.2 g (37% of the theoretical value); M.p.: 103° C.

EXAMPLE 3

5-methylsulfonyl-1,3,4-thiadiazole-2-carboxamide

9.3 g of 5-methylthio-1,3,4-thiadiazole-2-carboxamide were dissolved at 80° C. in 50 ml acetic acid and were reacted with 18 ml of 30% hydrogen peroxide upon stirring so as to permit to keep the solution during boiling under reflux. After the addition is complete the 30 boiling was continued for 30 minutes. After cooling to room temperature the reaction product precipitated. It was removed by suction and dried.

Yield: 7.3 g (67% of the theoretical value); M.p.: 185° C.

EXAMPLE 4

5-isopropylsulfonyl-1,3,4-thiadiazole-2-carbonitrile

PREFERRED EMBODIMENTS OF THE INVENTION

Examples for compounds wherein n is 1 or 2: The following examples will illustrate the making of compounds of the invention as shown in Formula I wherein n is 1 or 2.

EXAMPLE 1

5-ethylsulfonyl-1,3,4-thiadiazole-2-carboxylic acid ethylamide 40 ml of 30% hydrogen peroxide were added dropwise under stirring at 70° C. to a solution of 46.0 g of 5-isopropylthio-1,3,4-thiadiazole-2-carboxamide in 250 ml of glacial acetic acid. This caused the solution to boil. Then 40 ml of perhydrol were furthermore added causing the reaction solution to remain boiling without addition of any heat. The mixture was then subjected to stirring for another 30 minutes whereupon it was cooled which caused the reaction product to crystallize out at 30° C. By adding icewater the precipitation was completed. The crystallate was removed by suction and dried in a vacuum.

Yield: 45.0 g (86% of the theoretical amount); M.p.: 162° C.

EXAMPLE 5

5-methylsulfonyl-1,3,4-thiadiazole-2-carbonitrile

A mixture of 20 ml titanium tetrachloride in 50 ml carbon tetrachloride was added dropwise at 0° to 5° C. upon stirring to 350 ml tetrahydrofuran. Subsequently, 2-methylsulfonyl-1,3,4-thiadiazole-2-carboxamide was 60 added in batches at room temperature in an amount of 20.7 g. After continued stirring for 1 hour a solution of 50 ml triethylamine in 50 ml tetrahydrofuran was dropped into the mixture within a period of 60 minutes. The mixture was then reacted with 50 ml water, the 65 total mixture was extracted with chloroform and the organic phase was dried over magnesium sulfate and the solvent was distilled off in a vacuum. The residue was taken up in acetic acid ethylester, subjected to boiling

•

A solution of 20.0 g of 5-ethylthio-1,3,4-thiadiazole-2carboxylic acid ethylamide in 70 ml of acetic acid is heated to 80° C. When this temperature is reached 31.3 g of a 30% concentration of aqueous hydrogen peroxide are added dropwise resulting in boiling of the solution. 65 When no more heat development is observed the solution is subjected to another hour of reflux boiling whereupon it is cooled to room temperature, stirred in

with activated carbon, filtered and concentrated. The residue was crystallized from chloroform/tetrahydrofuran (3:1).

7

Yield: 9.1 g (48% of the theoretical value); M.p.: 173°–175° C.

EXAMPLE 6

5-methylsulfonyl-1,3,4-thiadiazole-2-carboxylic acid ethylester

21.4 g of powdered potassium permanganate was ¹⁰ introduced into a solution of 20.4 g of 5-methylthio-1,3,4-thiadiazole-2-carboxylic acid ethylester in 100 ml acetic acid and 40 ml water in a manner that the temperature of the solution rose to 70° C. To complete the reaction the mixture was stirred for another 30 minutes. Thereafter, the manganese dioxide which precipitated at 10° was reduced with a solution of 19 g sodium metabisulfite in 100 ml water while cooling with ice. Upon addition of 500 ml water the desired compound precipi- $_{20}$ tated. It was removed by suction, dried and recrystallized from isopropylether. Yield: 9.4 g (40% of the theoretical value); M.p.: 48° С.

907 	
-continued	
Compound	Physical constants
5-methylsulfonyl-1,3,4-thiadiazole-	
2-carboxylic acid-methylester	M.p.: 95° C.
5-ethylsulfonyl-1,3,4-thiadiazole-	
2-carboxylic acid-propylamide	M.p.: 105° C.
5-ethylsulfonyl-1,3,4-thiadiazole-	20. 1.5210
2-carboxylic acid-(N-butyl,N-methyl)-	n _D ²⁰ : 1,5310
amide 5-ethylsulfonyl-1,3,4-thiadiazole-2-	
carboxylic acid-(2-methoxyethyl)-amide	M.p.: 77° C.
5-ethylsulfonyl-1,3,4-thiadiazole-2-	
carboxylic acid-(3-methoxypropyl)-amide	M.p.: 71° C.
5-ethylsulfonyl-1,3,4-thiadiazole-2-	*
carboxylic acid-isopropylamide	M,p.: 85° C.
5-ethylsulfonyl-1,3,4-thiadiazole-	•
2-carboxylic acid-allylamide	M.p.: 61° C.
S-ethylsulfonyl-1 3 4-thiadiazole-	•

EXAMPLE 7

5-methylsulfonyl-1,3,4-thiadiazole-2-carboxylic acid-cyclohexylmethylamide

20.3 g of 5-methylthio-1,3,4-thiadiazole-2-carboxylic acid cyclohexylmethylamide were dissolved in 130 ml 30 acetic acid and 25 ml water. 16 g pulverized potassium permanganate was then introduced upon stirring to cause the temperature to increase to 70° C. Thereafter, stirring was continued for 30 minutes. The mixture was cooled and then mixed with 300 ml ice water. The 35 formed manganese dioxide was reduced with a solution of 14.3 g sodium metabisulfite in 100 ml water. The precipitated compound was removed by suction and recrystallized from ethanol. Yield: 18.3 g (81% of the theoretical value); M.p.: 40 159° C.

5-ethylsulfonyl-1,3,4-thiadiazole-M.p.: 82° C. 2-carboxylic acid-octylamide 5-ethylsulfonyl-1,3,4-thiadiazole-2-carboxylic acid-N,N-tetramethylene-M.p.: 91° C. amide 5-ethylsulfonyl-1,3,4-thiadiazole-2carboxylic acid-(N,N-3-oxapentamethy-M.p.: 83° C. leneamide 5-ethylsulfonyl-1,3,4-thiadiazole-2-M.p.: 97° C. carboxylic acid-cyclooctylamide 5-propylsulfonyl-1,3,4-thiadiazole-M.p.: 38° C. 2-carboxylic acid-ethylester 5-propylsulfonyl-1,3,4-thiadiazole-M.p.: 83° C. 2-carbonitrile 5-propylsulfinyl-1,3,4-thiadiazole-M.p.: 69° C. 2-carbonitrile 5-ethylsulfinyl-1,3,4-thiadiazole-M.p.: 78° C. 2-carbonitrile 5-methylsulfonyl-1,3,4-thiadiazole-**M.p.:** 137° C. 2-carboxylic acid-ethylamide 5-methylsulfonyl-1,3,4-thiadiazole-M.p.: 108° C. 2-carboxylic acid-isopropylamide 5-methylsulfonyl-1,3,4-thiadiazole-M.p.: 115° C. 2-carboxylic acid-propylamide 5-methylsulfonyl-1,3,4-thiadiazole-M.p.: 95° C. 2-carboxylic acid-butylamide 5-methylsulfinyl-1,3,4-thiadiazole-M.p.: 95° C. 2-carboxylic acid-propylamide 5-methylsulfinyl-1,3,4-thiadiazole-M.p.: 88° C. 2-carboxylic acid-butylamide 5-propylsulfonyl-1,3,4-thiadiazole-M.p.: 105° C. 2-carboxylic acid-ethylamide 5-propylsulfonyl-1,3,4-thiadiazole-M.p.: 103° C. 2-carboxylic acid-propylamide 5-propylsulfonyl-1,3,4-thiadiazole-M.p.: 70° C. _____ 45 _2-carboxylic_acid-allylamide n_D^{20} : 1,5168 5-sec.-butylsulfonyl-1,3,4-thiadiazole-2-carboxylic acid-ethylester 5-sec.-butylsulfonyl-1,3,4-thiadia-M.p.: 127° C. zole-2-carboxamide 5-methylsulfinyl-1,3,4-thiadia-M.p.: 68° C. zole-2-carboxylic acid-allylamide 50 5-sec.-butylsulfinyl-1,3,4-thiadia-M.p.: 87° C. zole-2-carboxamide 5-sec.-butylsulfonyl-1,3,4-thiadia-M.p.: 57° C. zole-2-carbonitrile 5-propylsulfonyl-1,3,4-thiadiazole-M.p.: 79° C. 2-carboxylic acid-isopropylamide 55 5-propylsulfonyl-1,3,4-thiadiazole-M.p.: 88° C. 2-carboxylic acid-butylamide 5-methylsulfonyl-1,3,4-thiadiazole-M.p.: 72° C. 2-2-carboxylic acid-allylamide 5-propylsulfinyl-1,3,4-thiadiazole-M.p.: 75° C. 2-carboxylic acid-ethylamide 5-propylsulfinyl-1,3,4-thiadiazole-2-60 M.p.: 67° C. carboxylic acid-propylamide 5-propylsulfinyl-1,3,4-thiadiazole-2-M.p.: 73° C. carboxylic acid-allylamide 5-propylsulfinyl-1,3,4-thiadiazole-2-🔆 M.p.: 76° C. carboxylic acid-isopropylamide 5-methylsulfinyl-1,3,4-thiadiazole-2-65 M.p.: 63° C. carboxylic acid-(2-methoxyethyl)-amide

In an analogous manner to the Examples 1 to 7 the following specific compounds were made:

Compound	Physical constants
5-ethylsulfonyl-1,3,4-thiadiazole-	· · · · · · · · · · · · · · · · · · ·
2-carboxamide	M.p.: 143° C.
5-ethylsulfonyl-1,3,4-thiadiazole-	
2-carbonitrile	M.p.: 87° C.
5-isopropylsulfonyl-1,3,4-thiadiazole-	•
2-carbonitrile	M.p.: 78° C.
5-methylsulfonyl-1,3,4-thiadiazole-	•
2-carboxylic acid methylamide	M.p.: 135° C.
5-methylsulfonyl-1,3,4-thiadiazole-	•
2-carboxylic acid-dimethylamide	M.p.: 91° C.
5-isobutylsulfonyl-1,3,4-thiadiazole-2-	• ;
carboxamide	M.p.: 125° C.
5-ethylsulfonyl-1,3,4-thiadiazole-	•
2-carboxylic acid-methylamide	M.p.: 169° C.
5-ethylsulfonyl-1,3,4-thiadiazole-	
2-carboxylic acid-dimethylamide	M.p.: 58° C.

5-propylsulfonyl-1,3,4-thiadiazole-2-carboxamide

5-propylsulfonyl-1,3,4-thiadiazole-2-carboxylic acid-methylamide 5-ethylsulfonyl-1,3,4-thiadiazole-2-carboxylic acid-butylamide 5-ethylsulfonyl-1,3,4-thiadiazole-2-carboxylic acid-ethylester 5-ethylsulfonyl-1,3,4-thiadiazole-2-carboxylic acid-cyclopropylamide

M.p.: 153° C. M.p.: 148° C. M.p.: 77° C. M.p.: 55° C. M.p.: 135° C.

5-methylsulfonyl-1,3,4-thiadiazole-2carboxylic acid-(2-methoxyethyl)-amide 5-methylsulfonyl-1,3,4-thiadiazole-2-

M.p.: 80° C.

9	4,2	.17,	907 10	
-continued			-continued	
Compound	Physical constants	-	Compound	Physical constants
carboxylic acid-(3-methoxypropyl)-amide	M.p.: 97° C.	- 5	5-isopropylsulfonyl-1,3,4-thiadiazole-	
5-methylsulfinyl-1,3,4-thiadiazole-2- carboxylic acid-(3-methoxypropyl)-amide	M.p.: 71° C.		2-carboxylic acid-secbutylamide 5-isopropylsulfinyl-1,3,4-thiadiazole-	M.p.: 92° C.
5-methylsulfinyl-1,3,4-thiadiazole-2- carboxylic acid-ethylamide	М.р.: 118° С.		2-carboxylic acid-methylamide	M.p.: 184 (decomposed
5-methylsulfinyl-1,3,4-thiadiazole-2- carboxylic acid-isopropylamide	M.p.: 77° C.	10	5-isopropylsulfinyl-1,3,4-thiadiazole- 2-carboxylic acid-ethylamide	M.p.: 118° C.
5-methylsulfonyl-1,3,4-thiadiazole-2- carboxylic acid-cyclopropylamide	M.p.: 171° C.		5-(2-propenylsulfinyl)-1,3,4-thiadia- zole-2-carboxylic acid-methylamide	M.p.: 125° C.
5-methylsulfinyl-1,3,4-thiadiazole-2- carboxylic acid-cyclopropylamide	M.p.: 149° C.		5-methylsulfonyl-1,3,4-thiadiazole- 2-carboxylic acid-N-ethyl-N-butylamide	n _D ²⁰ : 1,5312
5-methylsulfonyl-1,3,4-thiadiazole-2- carboxylic acid-N,N-trimethylenamide	M.p.: 144° C.		5-isopropylsulfinyl-1,3,4-thiadiazole- 2-carboxylic acid-propylamide	M.p.: 84° C.
5-methylsulfinyl-1,3,4-thiadiazole-2- carboxylic acid-N,N-trimethylenamide	м.р.: 135° С.	15	5-isopropylsulfonyl-1,3,4-thiadiazole- 2-carboxylic acid-isopropylamide	M.p.: 84° C.
5-propylsulfonyl-1,3,4-thiadiazole-2- carboxylic acid-secbutylamide	M.p.: 45° C.		5-isopropylsulfonyl-1,3,4-thiadiazole- 2-carboxylic acid-dimethylamide	M.p.: 82° C.
5-propylsulfonyl-1,3,4-thiadiazole-2-	M.p.: 45°C. M.p.: 75°C.		5-butylsulfonyl-1,3,4-thiadiazole- 2-carboxylic acid-methylamide	M.p.: 146° C
carboxylic acid-dimethylamide 5-butylsulfonyl-1,3,4-thiadiazole-2-	•	20	5-butylsulfonyl-1,3,4-thiadiazole-	-
carboxamide 5-butylsulfinyl-1,3,4-thiadiazole-2-	M.p.: 135° C.		2-carboxylic acid-ethylamide 5-butylsulfonyl-1,3,4-thiadiazole-	M.p.: 87° C.
carboxamide 5-butylsulfonyl-1,3,4-thiadiazole-2-	M.p.: 105° C.		2-carboxylic acid-propylamide 5-butylsulfonyl-1,3,4-thiadiazole-	M.p.: 101° C
carbonitrile 5-isobutylsulfonyl-1,3,4-thiadiazole-2-	M.p.: 43° C.	25		M.p.: 63° C.
carbonitrile 5-propylsulfonyl-1,3,4,-thiadiazole-2-	M.p.: 72° C.	-	2-carboxylic acid-isopropylamide 5-butylsulfinyl-1,3,4-thiadiazole-	M.p.: 99° C.
carboxylic acid-hexylamide 5-isopropylsulfonyl-1,3,4-thiadiazole-	M.p.: 75° C.		2-carboxylic acid-methylamide 5-butylsulfinyl-1,3,4-thiadiazole-	M.p.: 112° C
2-carboxylic acid-cyclohexylmethylamide 5-isopropylsulfinyl-1,3,4-thiadiazole-	M.p.: 134° C.	30	2-carboxylic acid-ethylamide	M.p.: 72° C.
2-carboxylic acid-cyclohexylmethylamide 5-propylsulfinyl-1,3,4-thiadiazole-2-	M.p.: 139° C.	30	2-carboxylic acid-propylamide 5-butylsulfinyl-1,3,4-thiadiazole-	M.p.: 84° C.
carboxylic acid-butylamide 5-propylsulfinyl-1,3,4-thiadiazole-2-	M.p.: 64° C.	.	2-carboxylic acid-(2-methoxyethyl)-amide 5-butylsulfinyl-1,3,4-thiadiazole-	M.p.: 54° C.
carboxylic acid-secbutylamide 5-propylsulfinyl-1,3,4-thiadiazole-2-	M.p.: 60° C.		2-carboxylic acid-isopropylamide 5-methylsulfonyl-1,3,4-thiadiazole-	M.p.: 57° C.
carboxylic acid-hexylamide 5-propylsulfinyl-1,3,4-thiadiazole-2-	M.p.: 68° C.	35	2-carboxylic acid-N-butyl-N-methylamide 5-methylsulfonyl-1,3,4-thiadiazole-	n _D ²⁰ : 1,5330
carboxylic acid-dimethylamide	M.p.: 64° C.		2-carboxylic acid-N-isobutyl-N-methyl-	n _D ²⁰ : 1,5291
5-methylsulfinyl-1,3,4-thiadiazole-2- carbonitrile	M.p.: 114° C.		5-methylsulfonyl-1,3,4-thiadiazole- 2-carboxylic acid-N,N-diethylamide	M.p.: 98° C.
5-methylsulfinyl-1,3,4-thiadiazole- 2-carboxamide	M.p.: 163° C.	40	5-secbutylsulfonyl-1,3,4-thiadiazole- 2-carboxylic acid-methylamide	M.p.: 150° C
5-isopropylsulfinyl-1,3,4-thiadiazole- 2-carboxamide	M.p.: 135° C.		5-secbutylsulfonyl-1,3,4-thiadiazole- 2-carboxylic acid-ethylamide	M.p.: 79° C.
5-isopropylsulfinyl-1,3,4-thiadiazole-	(decomposed)		5-cyclohexylsulfonyl-1,3,4-thiadiazole- 2-carboxamide	M.p.: 176° C
2-carbonitrile 5-pentylsulfonyl-1,3,4-thiadiazole-	n _D ²⁰ : 1,5812	45		M.p.: 140° C
2-carboxylic acid-ethylester 5-pentylsulfonyl-1,3,4-thiadiazole-	n _D ²⁰ : 1,5130		5-methylsulfonyl-1,3,4-thiadiazole- 2-carboxylic acid-N,N-dipropylamide	M.p.: 55° C.
2-carbonitrile 5-hexylsulfonyl-1,3,4-thiadiazole-	M.p.: 51° C.		5-secbutylsulfonyl-1,3,4-thiadiazole- 2-carboxylic acid-cyclopropylamide	M.p.: 95° C.
2-carbonitrile 5-pentylsulfonyl-1,3,4-thiadiazole-	M.p.: 39° C.	50	5-pentylsulfinyl-1,3,4-thiadiazole- 2-carbonitile	M.p.: 65° C.
2-carboxamide 5-hexylsulfonyl-1,3,4-thiadiazole-	M.p.: 151° C.	50	5-hexylsulfinyl-1,3,4-thiadiazole- 2-carbonitrile	M.p.: 57° C.
2-carboxamide 5-propylsulfonyl-1,3,4-thiadiazole-	M.p.: 139° C.		5-pentylsulfonyl-1,3,4-thiadiazole- 2-carboxylic acid-methylamide	M.p.: 126° C
2-carboxylic acid-N,N-trimethyleneamide 5-butylsulfonyl-1,3,4-thiadiazole-	M.p.: 127° C.		5-hexylsulfonyl-1,3,4-thiadiazole- 2-carboxylic acid-methylamide	M.p.: 120° C
2-carboxylic acid-N,N-trimethyleneamide	M. p.: 102° C.	55	5-cyclohexylsulfinyl-1,3,4-thiadiazole-	-
5-butylsulfinyl-1,3,4-thiadiazole- 2-carbonitrile 5. athylaulfonyl 1,3,4 thiadiazolo	M.p.: 68° C.		2-carbonitrile 5-secbutylsulfonyl-1,3,4-thiadiazole- 2 carborylic coid (2 methoryethyl) amide	M.p.: 87° C.
5-ethylsulfonyl-1,3,4-thiadiazole- 2-carboxylic acid-N,N-trimethyleneamide	M.p.: 107° C.		2-carboxylic acid-(2-methoxyethyl)-amide 5-secbutylsulfinyl-1,3,4-thiadiazole-	n_D^{20} : 1,5357
5-isopropylsulfonyl-1,3,4-thiadiazole-			2-carboxylic acid-methylamide	M.p.: 115° C

•

•

.

2-carboxylic acid-methylamide 5-isopropylsulfonyl-1,3,4-thiadiazole-2-carboxylic acid-ethylamide 5-isopropylsulfonyl-1,3,4-thiadiazole-2-carboxylic acid-isopropylamide 5-isopropylsulfonyl-1,3,4-thiadiazole-2-carboxylic acid-propylamide 5-isopropylsulfonyl-1,3,4-thiadiazole-2-carboxylic acid-butylamide 5-isopropylsulfonyl-1,3,4-thiadiazole-2-carboxylic acid-butylamide 5-isopropylsulfonyl-1,3,4-thiadiazole-2-carboxylic acid-butylamide

-

2-carboxylic acid-methylamide M.p.: 207° C. 60 5-sec.-butylsulfinyl-1,3,4-thiadiazole-2-carboxylic acid-ethylamide M.p.: 131° C. 5-pentylsulfonyl-1,3,4-thiadiazole-2-carboxylic acid-ethylamide M.p.: 111° C. 5-hexylsulfonyl-1,3,4-thiadiazole-2-carboxylic acid-ethylamide 65 5-pentylsulfinyl-1,3,4-thiadiazole-M.p.: 94° C. 2-carboxylic acid-ethylamide M.p.: 72° C. 5-hexylsulfinyl-1,3,4-thiadiazole-2-carboxylic acid-ethylamide M.p.: 92° C. 5-methylsulfinyl-1,3,4-thiadiazoleм.р.: 115 С. n_D²⁰: 1,5580 M.p.: 90° С. M.p.: 67° С. M.p.: 75° С. M.p.: 75° С. ÷ ,

	4.2	279.	907	
11	-) -		12	
-continued			-continued	
Compound	Physical constants		Compound	Physical constants
2-carboxylic acid-N,N-diethylamide 5-secbutylsulfonyl-1,3,4-thiadiazole-	n _D ²⁰ : 1,5650	5	2-carboxylic acid-cyclopropylamide 5-hexylsulfinyl-1,3,4-thiadiazole-	M.p.: 90° C.
2-carboxylic acid-isopropylamide 5-secbutylsulfinyl-1,3,4-thiadiazole- 2-carboxylic acid-cyclopropylamide	М.р.: 77° С. п _D ²⁰ : 1,5671		2-carboxylic acid-(2-methoxyethyl)- amide 5-hexylsulfonyl-1,3,4-thiadiazole-	M.p.: 57° C.
5-pentylsulfonyl-1,3,4-thiadiazole- 2-carboxylic acid-propylamide 5-pentylsulfonyl-1,3,4-thiadiazole-	M.p.: 86° C.	10	2-carboxylic acid-cyclopropylamide 5-hexylsulfinyl-1,3,4-thiadiazole- 2-carboxylic acid-(3-methoxypropyl)-	M.p.: 83° C.
2-carboxylic acid-isopropylamide 5-pentylsulfonyl-1,3,4-thiadiazole-	M.p.: 95° C.		amide	M.p.: 53° C.
2-carboxylic acid-cyclopropylamide 5-pentylsulfonyl-1,3,4-thiadiazole-	M.p.: 106° C.		The compounds of the invention	on are colorless and
2-carboxylic acid-butylamide 5-pentylsulfonyl-1,3,4-thiadiazole-	M.p.: 92° C.	15	non-smelling oils or crystalline be good solubility in polar organic solv	
2-carboxylic acid-secbutylamide	M.p.: 89° C.		vlic acid amides, for instance dime	

5-pentylsulfonyl-1,3,4-thiadiazole-2-carboxylic acid-isobutylamide 5-pentylsulfinyl-1,3,4-thiadiazole-2-carboxylic acid-propylamide 5-pentylsulfinyl-1,3,4-thiadiazole-2-carboxylic acid-isopropylamide 5-pentylsulfinyl-1,3,4-thiadiazole-2-carboxylic acid-allylamide 5-pentylsulfinyl-1,3,4-thiadiazole-2-carboxylic acid-cyclopropylamide 5-pentylsulfinyl-1,3,4-thiadiazole-2-carboxylic acid-butylamide 5-pentylsulfinyl-1,3,4-thiadiazole-2-carboxylic acid-sec.-butylamide 5-pentylsulfinyl-1,3,4-thiadiazole-2-carboxylic acid-isobutylamide 5-cyclopentylsulfonyl-1,3,4-thiadiazole-2-carboxylic acid-methylamide 5-cyclopentylsulfonyl-1,3,4-thiadiazole-2-carboxylic acid-ethylamide 5-sec.-butylsulfinyl-1,3,4-thiadiazole-2-carboxylic acid-(2-methoxyethyl)-amide 5-sec.-butylsulfonyl-1,3,4-thiadiazole-2-carboxylic acid-(3-methoxypropyl)-amide 5-cyclopentylsulfonyl-1,3,4-thiadiazole-2-carboxylic acid-propylamide 5-cyclopentylsulfonyl-1,3,4-thiadiazole-2-carboxylic acid-isopropylamide 5-cyclopentylsulfonyl-1,3,4-thiadiazole-2-carboxylic acid-cyclopropylamide 5-cyclopentylsulfonyl-1,3,4-thiadiazole-2-carboxylic acid-butylamide 5-cyclopentylsulfonyl-1,3,4-thiadiazole-2-carboxylic acid-dimethylamide 5-pentylsulfonyl-1,3,4-thiadiazole-2carboxylic acid-dimethylamide 5-pentylsulfonyl-1,3,4-thiadiazole-2carboxylic acid-(3-methoxypropyl)-amide 5-hexylsulfonyl-1,3,4-thiadiazole-2carboxylic acid-propylamide 5-hexylsulfonyl-1,3,4-thiadiazole-2carboxylic acid-isopropylamide 5-hexylsulfonyl-1,3,4-thiadiazole-2carboxylic acid-(2-methoxyethyl)-amide 5-hexylsulfonyl-1,3,4-thiadiazole-2-carboxylic acid-(3-methoxypropyl)amide 5-cyclopentylsulfinyl-1,3,4-thiadiazole-2-carboxylic acid-methylamide

M.p.: 106° C. M.p.: 79° C. M.p.: 61° C. M.p.: 74° C. M.p.: 90° C. 25 M.p.: 85° C. M.p.: 59° C. M.p.: 80° C. 30 M.p.: 203° C. M.p.: 115° C. n_D²⁰: 1,5519 35 n_D^{20} : 1,5324 M.p.: 95° C. M.p.: 77° C.

boxylic acid nitriles, for instance acetonitrile, and alcohols such as methanol. They are less soluble in hydrocarbons, for instance hexane, and halogenated hydrocarbons, for instance dichloromethane. They are insoluble in water.

Examples illustrating the starting products and compounds of the invention wherein n=0

The following examples illustrate the making of the compounds of the invention coming under formula I wherein n=0. These compounds are starting products or intermediate products for making the compounds of the invention in which n is 1 or 2. However, in view of their partial nematocidal properties they may also be used directly as nematocides in agriculture and horticulture.

EXAMPLE 8

(a) 3-(ethoxyoxalyl)-dithiocarbazinic acid, potassium salt

91.5 g of carbon disulfide were added upon stirring to a suspension of 198 g of oxalic acid ethylesterhydrazide

5-cyclopentylsulfinyl-1,3,4-thiadiazole-2-carboxylic acid-ethylamide 5-methylsulfonyl-1,3,4-thiadiazole-2-carboxylic acid-N,N-diisopropylamide

5-sec.-butylsulfinyl-1,3,4-thiadiazole-

		a suspension of 198 g of
M.p.: 90° C.	40	in 11 ethanol while stir
M.p.: 76° C.		10° and 15° C. there was of 98.7 g of 85% conce
M.p.: 56° C.		900 ml ethanol. Stirring the formed salt was extr
M.p.: 61° C.	45	potassium salt was rem
M.p.: 56° C.		ether and dried in a vac Yield: 357 g (97% of
M.p.: 80° C.		160° C.
M.p.: 91° C.	50	(b) 5-thioxo-1,3,4-thi
M.p.: 46° C.		440 g of the product
M.p.: 57° C.		yoxalyl)-dithiocarbazini troduced into 1.2 l cond
M.p.: 168° C.	55	perature of 20°-30° C. J
(decomposed)		compounds was compl
M.p.: 93° C.		overnight the solution vernight the solution vernight the solution vernight water, and washed with water, and
n _D ²⁰ : 1,5240	60	

- 40 in 1 l ethanol while stirring. At a temperature between 10° and 15° C. there was then added dropwise a solution of 98.7 g of 85% concentration potassium hydroxide in 900 ml ethanol. Stirring was continued for 1 hour and the formed salt was extracted with 3 l diethylether. The
 45 potassium salt was removed by suction, washed with ether and dried in a vacuum. Yield: 357 g (97% of the theoretical amount); M.p.:
 - 160° C.
- 50 (b) 5-thioxo-1,3,4-thiadiazoline-2-carboxylic acid ethylester

440 g of the product obtained in (a), that is 3-(ethoxyoxalyl)-dithiocarbazinic acid, potassium salt were introduced into 1.2 l concentrated sulfuric acid at a temperature of 20°-30° C. The mixture was stirred until the compounds was completely dissolved. After standing overnight the solution was stirred in 5 l icewater. The percipitated compound was removed by suction, washed with water, and dried in a vacuum at 40° C.
60 Yield: 163.5 g (48% of the theoretical value); M.p.: 91° C.

2-carboxylic acid-(3-methoxypropyl)amide

5-hexylsulfinyl-1,3,4-thiadiazole-2-carboxylic acid-propylamide 5-hexylsulfinyl-1,3,4-thiadiazole-2-carboxylic acid-isopropylamide 5-hexylsulfinyl-1,3,4-thiadiazole-2-carboxylic acid-(2-propenyl)-amide 5-hexylsulfinyl-1,3,4-thiadiazolen_D²⁰: 1,5489 M.p.: 71° C. M.p.: 61° C. M.p.: 69° C.

(c) 5-ethylthio-1,3,4-thiadiazole-2-carboxylic acid ethylester

99.9 g of ethyliodide were added to a suspension of
121.3 g of the compound obtained in (b), i.e. 5-thioxo1,3,4-thiadiazoline-2-carboxylic acid ethylester in 350
ml ethanol. Thereafter, 64.7 g of triethylamine were

45

4,279,907 added dropwise at a temperature between 20° and 25°

C. while cooling and stirring the mixture. Stirring was then continued for another 2 hours. The mixture was thereafter poured into 1.51 icewater. The precipitating oil was extracted with 300 ml chloroform. The chloro- 5 form phase was separated, twice washed with water and dried on magnesium sulfate. The solvent was distilled off at a reduced pressure.

-13

Yield: 99.3 g (71% of the theoretical value); n_D^{20} : 1,5782.

EXAMPLE 9

5-ethylthio-1,3,4-thiadiazole-2-carboxylic acid ethylamide

54 g of an aqueous 50% ethylamine solution were 15added to 43.7 g of the compound obtained in Example 8(c), that is ethylthio-1,3,4-thiadiazole-2-carboxylic acid ethylester. This caused the temperature to rise to 46° C. The solution was subsequently heated to boiling point for another 15 minutes. It was then cooled to 4° C. and ²⁰ reacted with 50 ml icewater. The precipitated compound was removed by suction. Yield: 30.0 g (69% of the theoretical value); M.p.: 85° С.

14

of 50 ml water the reaction mixture was extracted with chloroform. The extract was dried on magnesium sulfate and the solvent was removed in a vacuum. The residue was taken up in acetic acid ethylester and filtrated off from the insoluble residue. The ester phase was then treated with activated carbon and finally concentrated to dryness in a vacuum.

Yield: 11.1 g (81% of the theoretical amount); M.p.: 118°–120° C.

EXAMPLE 13

5-methylthio-1,3,4-thiadiazole-2-carboxylic acid cyclohexyl methylamide

30.6 g of 5-methylthio-1,3,4-thiadiazole-2-carboxylic acid ethylester as obtained in Example 10, were heated to boiling point for 2 hours with 16.95 g of cyclohexylmethylamine in 150 ml ethanol. The solution was concentrated to 50 ml and the reaction product was precipitated by stirring in ice water. Yield: 35.3 g (87% of the theoretical value); M.p.: 103° C.

EXAMPLE 10

5-methylthio-1,3,4-thiadiazole-2-carboxylic acid ethylester

61 g of dithiocarbazinic acid methylester were dis-30 solved in 400 ml dioxane. By adding dropwise upon stirring 75 g of oxalic acid ethylesterchloride, the temperature was caused to rise to 75° C. At this temperature the solution was subjected to further stirring for 30 minutes. The dioxane was distilled off in a vacuum and 35the oily residue was introduced in 350 ml of concentrated sulfuric acid. To complete the cyclization the reaction solution was kept for another hour at 40° C. and after cooling to room temperature was stirred into 2 l icewater. The precipitated crystals were removed by $_{40}$ suction and recrystallized from cyclohexane.

In a manner analogous to the processes of Examples 8 to 13 the following further starting products or inter-25 mediate products were obtained.

Compound	Physical
Compound	Constants
5-methylthio-1,3,4-thiadiazole-	
2-carboxylic acid methylester	M.p.: 80° C.
5-methylthio-1,3,4-thiadiazole-	. – .
2-carboxylic acid methylamide	M.p.: 128° C.
5-methylthio-1,3,4-thiadiazole-	F
2-carboxylic acid dimethylamide	M.p.: 128° C.
5-ethylthio-1,3,4-thiadiazole-	-
2-carboxamide	M.p.: 162° C.
5-ethylthio-1,3,4-thiadiazole-	-
2-carboxylic acid methylamide	M.p.: 116° C.
	-

Yield: 68.5 g (67% of the theoretical value); M.p.: 46° С.

EXAMPLE 11

5-methylthio-1,3,4-thiadiazole-2-carboxamide

11.8 g of 5-methylthio-1,3,4-thiadiazole-2-carboxylic acid ethylester which is the compound obtained in Example 10, were mixed with 50 ml ethanol and 50 ml of a 25% aqueous ammonia solution whereupon the mix- $_{50}$ ture was heated for 15 minutes on a steam bath. After cooling part of the reaction product precipitated. The precipitation was completed by adding ice water. The precipitate was then removed by suction and dried in a vacuum.

Yield: 8.9 g (88% of the theoretical amount); M.p.: 185° C.

EXAMPLE 12

5-methylthio-1,3,4-thiadiazole-2-carbonitrile

5-ethylthio-1,3,4-thiadiazole-	
2-carboxylic acid dimethylamide	M.p.: 53° C.
5-ethylthio-1,3,4-thiadiazole-	-
2-carboxylic acid cyclopropylamide	M.p.: 91° C.
5-ethylthio-1,3,4-thiadiazole-	-
2-carboxylic acid butylamide	M.p.: 54° C.
5-propylthio-1,3,4-thiadiazole-	•
2-carboxamide	M.p.: 137° C.
5-propylthio-1,3,4-thiadiazole-	-
2-carboxylic acid methylamide	M.p.: 72° C.
5-isopropylthio-1,3,4-thiadiazole-	-
2-carboxamide	M.p.: 154° C.
5-isobutylthio-1,3,4-thiadiazole-	
2-carboxamide	M.p.: 162° C.
5-ethylthio-1,3,4-thiadiazole-2-	
carbonitrile	M.p.: 40° C.
5-propylthio-1,3,4-thiadiazole-2-	
carboxamide	M.p.: 142° C.
5-secbutylthio-1,3,4-thiadiazole-2-	
carboxamide	M.p.: 119° C.
5-methylthio-1,3,4-thiadiazole-2-	
carboxylic acid-propylamide	M.p.: 83° C.
5-methylthio-1,3,4-thiadiazole-2-	
carboxylic acid-butylamide	M.p.: 90° C.
5-methylthio-1,3,4-thiadiazole-2-	
carboxylic acid-allylamide	M.p.: 88° C.
5-methylthio-1,3,4-thiadiazole-2-	

350 ml tetrahydrofuran were added dropwise upon stirring and cooling at a temperature between 0° and 5° C. to a solution of 20 ml titanium tetrachloride in 50 ml carbon tetrachloride. There were then added at first in batches 15.3 g of 5-methylthio-1,3,4-thiadiazole-2-car- 65 boxamide as obtained in Example 11, and thereafter within a period of 1 hour 50 ml triethylamine which had been taken up in 50 ml tetrahydrofuran. After addition

•

carboxylic acid-ethylamide 5-methylthio-1,3,4-thiadiazole-2carboxylic acid-isopropylamide 5-methylthio-1,3,4-thiadiazole-2carboxylic acid-(2-methoxyethyl)-amide 5-methylthio-1,3,4-thiadiazole-2carboxylic acid-(3-methoxypropyl)-amide 5-methylthio-1,3,4-thiadiazole-2carboxylic acid-cyclopropylamide 5-methylthio-1,3,4-thiadiazole-2carboxylic acid-N,N-trimethyleneamide

M.p.: 83° C. M.p.: 101° C. M.p.: 83° C. M.p.: 57° C. M.p.: 130° C.

M.p.: 106° C.

15	4,2	.79
-continued		-
Compound	Physical Constants	-
5-butylthio-1,3,4-thiadiazole-2- carboxamide	M.p.: 165° C.	5
5-hexylthio-1,3,4-thiadiazole-2- carboxamide	M.p.: 150° C.	
5-(2-methyl-2-propenylthio)-1,3,4- thiadiazole-2-carboxylic acid-2- propenylamide	n _D ²⁰ : 1,5793	1
5-(2-methyl-2-propenylthio)-1,3,4- thiadiazole-2-carboxylic acid-iso- propylamide	M.p.: 69° C.	
5-(2-propenylthio)-1,3,4-thiadiazole- 2-(carboxylic acid amide	M.p.: 144° C.	
5-(2-propenylthio)-1,3,4-thiadiazole-2- carboxylic acid-methylamide	M.p.: 87° C.	1.

16 nated hydrocarbons. They are less soluble in hydrocarbons and insoluble in water.

Examples illustrating uses and activities:

The following examples are furnished to illustrate the various uses and the superior fungicidal activity of the compounds of the invention.

EXAMPLE 14

10 Threshold concentration test for use of the compounds against Pythium ultimum

A 20% concentration of certain pulverulent active agents as listed below were mixed in uniform manner into a soil which had been heavily infested by Pythium ultimum. The thus treated soil was then placed into clay dishes of a capacity of 0.5 l earth. Without any interme-M.p.: 70° C. diate time lapse 20 grain of garden peas (Pisum sativum L. convar. medullare Alef.) of the type "Wunder von M.p.: 65° C. Kelvedon" were then seaded into each of the clay 20 M.p.: 95° C. dishes. After a cultivation period of three weeks at 20° to 24° C. in a hothouse the number of sound peas was M.p.: 54° C. determined and a root evaluation was carried out. The active agents amounts and results appear from the foln_D²⁰: 1,5825 25 lowing table. n_D^{20} : 1,5540 The root evaluation was carried out on a scale from 1 to 4 as follows: M.p.: 83° C. 4 = white roots without fungous necrosis; M.p.: 52° C. 3 = white roots, minor fungous necrosis; 2=brown roots, already more pronounced fungous 30 M.p.: 67° C. necrosis; 1=heavy fungous necrosis, roots rotted. M.p.: 79° C. M.p.: 53° C. root Concentra n_D^{20} : 1,5527 -35 evaluanumber tion of . of sound tion agent in n_D^{20} : 1,5762. (1-4) mg/l soil peas Active agent 16 20 mg 5-methylsulfonyl-1,3,4n_D²⁰: 1,5651

5-(2-propenylthio)-1,3,4-thiadiazole-2-carboxylic acid-ethylamide 5-(2-propenylthio)-1,3,4-thiadiazole-2-carboxylic acid-propylamide 5-(2-propenylthio)-1,3,4-thiadiazole-2-carboxylic acid-isopropylamide 5-(2-propenylthio)-1,3,4-thiadiazole-2-carboxylic acid-(2-propenylamide) 5-(2-propenylthio)-1,3,4-thiadiazole-2-carboxylic acid-ethylester 5-butylthio-1,3,4-thiadiazole-2carboxylic acid-ethylester 5-butylthio-1,3,4-thiadiazole-2carboxylic acid-methylamide 5-butylthio-1,3,4-thiadiazole-2carboxylic acid-propylamide 5-butylthio-1,3,4-thiadiazole-2carboxylic acid ethylamide 5-butylthio-1,3,4-thiadiazole-2carboxylic acid-isopropylamide 5-isopropylthio-1,3,4-thiadiazole-2carboxylic acid-butylamide 5-sec.-butylthio-1,3,4-thiadiazole-2-carboxylic acid-ethylester 5-sec.-butylthio-1,3,4-thiadiazole-2-carboxylic acid-methylamide 5-sec.-butylthio-1,3,4-thiadiazole-2-carboxylic acid-ethylamide

5-cyclohexylthio-1,3,4-thiadiazole-2-carboxamide

5-(2-propinylthio)-1,3,4-thiadiazole-2-carboxylic acid-amide

5-pentylthio-1,3,4-thiadiazole-2-carboxylic acid-methylamide 5-hexylthio-1,3,4-thiadiazole-2-carboxylic acid-methylamide 5-sec.-butylthio-1,3,4-thiadiazole-2-carboxylic acid-(2-methoxyethyl)amide

5-sec.-butylthio-1,3,4-thiadiazole2-carboxylic acid-cyclopropylamide
5-pentylthio-1,3,4-thiadiazole2-carboxylic acid-isobutylamide
5-hexylthio-1,3,4-thiadiazole2-carboxylic acid-propylamide
5-sec.-butylthio-1,3,4-thiadiazole2-carboxylic acid-(3-methoxypropyl)amide

5-pentylthio-1,3,4-thiadiazole-2-carboxylic acid-cyclopropylamide 5-(2-propinylthio)-1,3,4-thiadiazole-2-carboxylic acid-ethylester 5-pentylthio-1,3,4-thiadiazole-2-carboxylic acid-(2-propenyl)-amide 5-hexylthio-1,3,4-thiadiazole-2-carboxylic acid-(2-propenyl)-amide 5-hexylthio-1,3,4-thiadiazole-2-carboxylic acid-cyclopropylamide 5-hexylthio-1,3,4-thiadiazole-2-carboxylic acid-cyclopropylamide 5-hexylthio-1,3,4-thiadiazole-2carboxylic acid-(2-methoxyethyl)-amide

п <u>р</u> . 1,5051		thiadiazole-2
M.p.: 158° C.	40	5-methylsulf
M.p.: 180° C.		thiadiazole-2
M.p.: 82° C.		5-ethylsulfor thiadiazole-2
M.p.: 80° C.	45	5-ethylsulfor thiadiazole-2
n _D ²⁰ : 1,5585 M.p.: 50° C.	- - 	5-ethylsulfin thiadiazole-2
M.p.: 80° C.	50	5-isopropyls thiadiazole-2
M.p.: 61° C.		5-isopropyls thiadiazole-2
n _D ²⁰ : 1,5566 M.p.: 87° C.	55	5-methylsul thiadiazole-
M.p.: 57° C.		acid-methyl 5-methylsul thiadiazole-2
M.p.: 60° C.	60	acid-dimeth 5-isobutylsu thiadiazole-
M.n.: 90° C.		maurazoie

65

Summing 1-1,0, T		
ole-2-carboxamide	40 mg	18
	80 mg	20
lsulfonyl-1,3,4-	20 mg	17
ole-2-carbonitrile	40 mg	16
	80 mg	20
ılfonyl-1,3,4-	20 mg	18
ole-2-carboxamide	40 mg	18
· · · · · · · · · · · · · · · · · · ·	80 mg	20
ulfonyl-1,3,4-	20 mg	19
ole-2-carbonitrile	40 mg	20
i Charles in	80 mg	20
ılfinyl-1,3,4-	20 mg	15
ole-2-carboxamide	40 mg	20
	80 mg	20
pylsulfonyl-1,3,4-	20 mg	17
ole-2-carboxamide	40 mg	18
	80 mg	19
pylsulfonyl-1,3,4-	20 mg	18
ole-2-carbonitrile	40 mg	20
	80 mg	19
Isulfonyl-1,3,4-	20 mg	20
ole-2-carboxylic	40 mg	18
hylamide	80 mg	18
Isulfonyl-1,3,4-	20 mg	18
ole-2-carboxylic	40 mg	20
ethylamide	80 mg	18
ylsulfonyl-1,3,4-	20 mg	15
ole-2-carboxamide	40 mg	18
		·

M.p.: 90° C. M.p.: 54° C.

M.p.: 52° C.

These compounds are soluble in carboxylic acids, carboxylic amides, carboxylic acid esters and haloge-

le-2-carboxamide 18 80 mg 20 mg 17 5-ethylsulfonyl-1,3,4thiadiazole-2-carboxylic² 40 mg 15 19 80 mg acid-methylamide 13 20 mg 5-ethylsulfonyl-1,3,4-13 thiadiazole-2-carboxylic 40 mg 15 80 mg acid-dimethylamide¹ 12 5-propylsulfonyl-1,3,4-20 mg 19 thiadiazole-2-carboxamide 40 mg

	17		4,2	79,	907	18	-	
	tinued					. . .		
-000				-		-continued		
Active agent	Concentra- tion of agent in mg/l soil	number of sound peas	root evalua- tion (1-4)	- 5	Active agent	Concentra- tion of agent in mg/l soil	number of sound peas	root evalua tion (1–4)
	80 mg	17	4	-		80 mg	18	4
5-propylsulfonyl-1,3,4-	20 mg	19	4		5-butylsulfinyl-1,3,4-thia-	20 mg	10	1
thiadiazole-2-carboxylic acid-methylamide	40 mg	16 15	4		diazole-2-carboxamide	40 mg	15	4
5-ethylsulfonyl-1,3,4-	80 mg 20 mg	15	. 4		5-methylsulfonyl-1,3,4-thia-	80 mg	19	4
thiadiazole-2-carboxylic	40 mg	16	4	10	diazole-2-carboxylic acid-	20 mg 40 mg	15 15	4
acid-butylamide	80 mg	20	4		ethylamide	80 mg	15	4
5-ethylsulfonyl-1,3,4-	20 mg	15	4		5-methylsulfonyl-1,3,4-thia-	20 mg	15	4
thiadiazole-2-carboxylic	40 mg	16	4		diazole-2-carboxylic acid-	40 mg	18	4
acid-ethylamide	80 mg	16	4		isopropylamide	80 mg	15	4
5-methylsulfinyl-1,3,4-thia-	20 mg	19	4	15	5-methylsulfonyl-1,3,4-thia-	20 mg	15	. 4
diazole-2-carbonitrile	40 mg	20	4.	15	diazone-z-carooxyne aciu-	. 40 mg	15	4
5-ethylsulfinyl-1,3,4-thia-	80 mg 20 mg	20 20	4		propylamide	80 mg	15	4
diazole-2-carbonitrile	40 mg	18	4. 4		5-methylsulfonyl-1,3,4-thia- diazole-2-carboxylic acid-	20 mg	14	2
	80 mg	19	- 4	\$	butylamide	40 mg 80 mg	15 16	4
5-propylsulfinyl-1,3,4-thia-	20 mg	9	1		5-methylsulfinyl-1,3,4-thia-	20 mg	14	4
diazole-2-carbonitrile	40 mg	16	4	20		40 mg	15	4
•	80 mg	18	4		propylamide	80 mg	15	4
5-isopropylsulfinyl-1,3,4-	20 mg	17	3		5-methylsulfinyl-1,3,4-thia-	20 mg	12	2
thiadiazole-2-carbonitrile	40 mg	17	4		diazole-2-carboxylic acid-	40 mg	15	4
5 Sugar land 1 7 4 date	80 mg	19	4		butylamide	80 mg	17	4
5-butylsulfinyl-1,3,4-thia- diazole-2-carbonitrile	20 mg	18	4		5-propylsulfonyl-1,3,4-thia-	20 mg	14	3
Giazoie-z-caroonnine	40 mg 80 mg	- 18 20	4 4	25	•	40 mg	14	4
5-ethylsulfonyl-1,3,4-thia	20 mg	20	4 4		ethylamide	80 mg	14	4
diazole-2-carboxylic acid-	40 mg	19	4		5-propylsulfonyl-1,3,4-thia- diazole-2-carboxylic acid-	20 mg	10	. 1
N,N-trimethylenamide	80 mg	20	4		propylamide	40 mg 80 mg	16 16	4
5-propylsulfonyl-1,3,4-thia-	20 mg	6	1		5-propylsulfonyl-1,3,4-thia-	20 mg	13	4
diazole-2-carboxylic acid-	40 mg	19	4	30	diazole-2-carboxylic acid-	40 mg	15	4
N,N-trimethyleneamide	80 mg	18	4	50	allylamide	80 mg	15	. 4
5-propylsulfonyl-1,3,4-thia-	20 mg	10	1		5-ethylsulfonyl-1,3,4-thia-	20 mg	. 16	3
diazole-2-carboxylic acid-	40 mg	19	3.		diazole-2-carboxylic acid-	40 mg	15	3
(3-chloropropyl)-amide 5-propylsulfinyl-1,3,4-thia-	80 mg 20 mg	19 12	4		isopropylamide	80 mg	16	4
diazole-2-carboxylic acid-	40 mg	12	4 4		5-ethylsulfonyl-1,3,4-thia-	20 mg	11	1
dimethylamide	80 mg	19	· · · · · · · · · · · · · · · · · · ·	35	diazole-2-carboxylic acid-	40 mg	17	4
5-propylsulfonyl-1,3,4-thiadia-	20 mg	17	2		allylamide 5 otherlaulformul 1 2 4 White die	80 mg	16	4
zole-2-carboxylic acid-	40 mg	20	4		5-ethylsulfonyl-1,3,4-thiadia- zole-2-carboxylic acid-	Ų	13	1
dimethylamide	80 mg	19	4		(2-methoxyethyl)-amide	40 mg 80 mg	16 16	4
5-methylsulfonyl-1,3,4-thia-	20 mg	19	4		5-ethylsulfonyl-1,3,4-thia-	20 mg	11	4
diazole-2-carboxylic acid-	40 mg	18	4		diazole-2-carboxylic acid-	40 mg	18	4
allylamide Somethylaulfingel 1,7,4 this	80 mg	18	4	40	(3-methoxypropyl)-amide	80 mg	17	4
5-methylsulfinyl-1,3,4-thia- diazole-2-carboxylic acid-	20 mg	20	4		Comparison compounds	Ŭ		
allylamide	40 mg 80 mg	19 18	4		Manganese ethylene-1,2-	20 mg	1	1
5-ethylsulfonyl-1,3,4-thiadia-	20 mg	10	4.		bis-dithiocarbamate	40 mg	4	1
zole-2-carboxylic acid-tetra-	40 mg	20	4		·	80 mg	11	1
methyleneamide	80 mg	20	4	45	N-trichloromethylmercapto-		1	1
5-propylsulfonyl-1,3,4-thia-	20 mg	9	1	-TJ	tetrahydro-phthalimide	40 mg	2	1
diazole-2-carboxylic acid-	40 mg	20	4			80 mg	8	2
sopropylamide	80 mg	18	4		Control I. (3 times repeated)			
S-propylsulfinyl-1,3,4-thia-	20 mg	15	2		Infested soil; no treatment		1	1
liazole-2-carboxylic acid- allylamide	40 mg	19	4				0	1
5-methylsulfonyl-1,3,4-thia-	80 mg 20 mg	19 Q	4	50	Control II (2 times manual)		U	1
diazole-2-carboxylic acid-	40 mg	20	1 &		Control II. (3 times repeated	U		
(3-methoxypropyl)-amide	80 mg	19	4		Humidified soil	·	18	4
5-methylsulfinyl-1,3,4-thia-	20 mg	18	2				20	4
diazole-2-carboxylic acid-	40 mg	18	4				17	4
ethylamide	80 mg	. 19	4					
5-methylsulfinyl-1,3,4-thia-	20 mg	19	4	55				
diazole-2-carboxylic acid-	40 mg	19	4		EX	XAMPLE 15		
sopropylamide	80 mg	20	4		Threshold concerts	notion tost in	a of E	
5-methylsulfonyl-1,3,4-thiadia-	20 mg	13	1		Threshold concentr		e or rusa	rium
zole-2-carboxylic acid- cyclopropylamide	40 mg	20 20	4 A			avenaceum	-	
Such 1 10 1 1 1 1 1	80 mg	20	4	~~			.1	0 .1

•

·- -

ojotopiopjannac. 5-methylsulfinyl-1,3,4-thiadiazole-2-carboxylic acidcyclopropylamide 5-methylsulfonyl-1,3,4-thiadiazole-2-carboxylic acid-N,N-trimethyleneamide 5-methylsulfinyl-1,3,4-thiadiazole-2-carboxylic acid-N,N-trimethyleneamide 5-butylsulfonyl-1,3,4-thiadiazole-2-carboxamide

4

A 20% pulverulent active agent of the type further 60 identified in the table below was mixed in uniform manner with a soil which had been heavily infested with Fusarium a venaceum. The thus treated soil was then placed into clay dishes of a capacity of 0.5 1 of earth. 65 Each dish was seeded without any intervening time with 20 grains of garden peas (Pisum sativum L. convar. medullare Alef.) of the type "Wunder von Kelvedon". After a cultivation time of 18 days at 20° to 24° C. in a -

10

19

hot house the number of sound peas was determined and a root evaluation was carried out. The active agents employed, the amounts and results appear from the following table.

The root evaluation was carried out on a scale from 1 5 to 4 as follows:

4 = white roots without fungous necroses;

3 = white roots with minor fungous necroses;

2=brown roots already more pronounced fungous necroses;

1 = heavy fungous necroses with roots rotted.

	···	•		-	5-propyIsulfinyl-1,3,4-thia-	25 mg	9	1
	Concentra-		root	_	diazole-2-carboxylic acid-	50 mg	17	4
	tion of	number	evalua-		secbutylamide	100 mg	17	4
		of sound	tion	15	5-propylsulfonyl-1,3,4-	25 mg	14	2
Active agent	mg/l soil	peas	(1-4)		thiadiazole-2-carboxylic	50 mg	16	3
			(1)	-	acid-isopropylamide	100 mg	17	4
5-methylsulfinyl-1,3,4-thia-	25 mg	20	4		5-propylsulfonyl-1,3,4-	25 mg	9	1
diazole-2-carbonitrile	50 mg	18	4		thiadiazole-2-carboxylic	50 mg	16	3
	100 mg	19	4		acid-butylamide	100 mg	17	4
5-methylsulfonyl-1,3,4-thiadia-	25 mg	. 18	4	20	Comparison compound:	U		
zole-carbonitrile	50 mg	. 17	4	20		25 m.a	0	1
	100 mg	19	4		3-trichloromethyl-5-ethoxy-	25 mg	0	1
5-ethylsulfinyl-1,3,4-thia-	25 mg	19	4		1,2,4-thiadiazole	50 mg	0	1
diazole-2-carbonitrile	50 mg	20	4			100 mg	0	1
	100 mg	20	4		Manganese-ethylene-1,2,-	25 mg	0	1
5-ethylsulfonyl-1,3,4-thia-	25 mg	18	4		bis-dithiocarbamate	50 mg	0	l
diazole-2-carbonitrile	50 mg	20	4	25		100 mg	12	1
	100 mg	20	4		Control I. (3 times repeated)			
Surger Maulfined 1.2.4 this	-	19	т 1		Infested soil; no treatment	<u> </u>	0	1
5-propylsulfinyl-1,3,4-thia-	25 mg		т Л		,		0	1
diazole-2-carbonitrile	50 mg	20	4				0	1
	100 mg	19	4		Control II. (3 times repeated)		U	-
5-propylsulfonyl-1,3,4-thia-	25 mg	10	4	10			10	
diazole-2-carbonitrile	50 mg	20	4	30	Humidified soil		18	4
	100 mg	20	4				20	4
5-isopropylsulfinyl-1,3,4-thia-	25 mg	18	4				19	4
diazole-2-carbonitrile	50 mg	19	4					
	100 mg	18	4					
5-isopropylsulfonyl-1,3,4-thia-	25 mg	20	· 4					
diazole-2-carbonitrile	50 mg	20	4	35	EXAMP	'LE 16		
	100 mg	19	4	55		+-i+	aatutia	
5-butylsulfinyl-1,3,4-thia-	25 mg	19	4		Inhibition of fungus in	n a nutrient	solutio)11
diazole-2-carbonitrile	50 mg	19	4		20 ml of a nutrient solution	n of graph i	inice at	nd water
Jiazoie-z-earoomerne	100 mg	19	4					
5-butylsulfonyl-1,3,4-thia-	25 mg	19	т Л		(1:1) were filled into a glass v			
diazole-2-carbonitrile	. –	20	4		were mixed with the pulver	ulent active	e agent	ts which
Jiazoie-2-cai dointi ne	50 mg	20		40	appear from the subsequent			
Seen harderlandformed 1.2.4	100 mg		4		• • • · · · · · · · · · · · · · · · · ·			
5-secbutylsulfonyl-1,3,4-	25 mg	20	4 1		tion was inoculated with co	onidia (spoi	res) or	the test
thiadiazole-2-carbonitrile	50 mg	19	4		fungi.			
	100 mg	20	4		After an incubation time o	f 6 days at 3	21 to 2	3° C. the
5-isobutylsulfonyl-1,3,4-	25 mg	19	4					
thiadiazole-2-carbonitrile	50 mg	20	4	15	fungus development on the s			
	100 mg	19	4	45	tion was evaluated. The test f	fungi used w	vere the	e follow-
5-pentylsulfonyl-1,3,4-	25 mg	20	4		ing: Penicillium digitatum, J			
thiadiazole-2-carbonitrile	50 mg	20	4 1			son yns onre		
	100 mg	19	4		solani, Fusarium avenaceum.			
5-hexylsulfonyl-1,3,4-	25 mg	19	4		The evaluation was carried	d out at a so	ale fro	m 0 to 5
hiadiazole-2-carbonitrile	50 mg	19	4		as follows:			
	100 mg	19	4	50				
5-pentylsulfonyl-1,3,4-thia-	25 mg	9	2	-	0=no fungus growth;	_		
diazole-2-carboxamide	50 mg	16	3		1=isolated fungus colonie	s on the su	rface;	
	100 mg	18	4		2=5 to 10% of the surface			- fungus
5-hexylsulfonyl-1,3,4-	25 mg	7			-		J in	
• • • •	· · · · · · · · · · · · · · · · · · ·	12	1 2		turf;	_		•
hiadiazole-2-carboxamide	50 mg	12	2		3 = 10 to 30% of the surface	ice covered	by the	e fungus
	100 mg	15	3	55	turf;		-	-
5-propylsulfonyl-1,3,4-thia-	25 mg	11	2			1	h 41.	- f
diazole-2-carboxylic acid-	50 mg	17	3		4=30 to $60%$ of the surface	ice covered	by the	e lungus
N,N-trimethyleneamide	100 mg	17	3		turf;			
5-n-butylsulfonyl-1,3,4-thia-	25 mg	5	1		5=60 to 100% of the surface	ace covered	by the	e funous
liazole-2-carboxylic acid-	50 mg	13	2		-		. 0y m	e rungus
N,N-trimethyleneamide	100 mg.	18	3	<u>۲</u> ۵	turf.	_		
5-propylsulfinyl-1,3,4-thia-	25 mg	9	3	60	The active agent concentr	ations in the	e nutrie	ent solu-
• • • • • • • • • • • • • • • • • • •		·						
					tion and the results annear fi	rom the foll	owing	tal

· .

.

.

· · ·

•

	20							
-continued								
Active agent	Concentra- tion of agent in mg/l soil	number of sound peas	root evalua- tion (1-4)					
diazole-2-carboxylic acid-	50 mg	13	4					
isopropylamide	100 mg	16	4					
5-methylsulfinyl-1,3,4-thia-	25 mg	7	2					
diazole-2-carboxylic acid-	50 mg	11	3					
(2-chlorobenzyleamide)	100 mg	18	4					
5-butylsulfonyl-1,3,4-	25 mg	15	2					
thiadiazole-2-carboxamide	50 mg	12	3					
	100 mg	16	4					
5-propylsulfinyl-1,3,4-thia-	25 mg	9	1					
diazole-2-carboxylic acid-	50 mg	17	4					
secbutylamide	100 mg	17	4					
5-propylsulfonyl-1.3.4-	25 mg	14	2					

7

20

acid-isopropylamide	100 mg	17	4
5-propylsulfonyl-1,3,4-	25 mg	9	1
thiadiazole-2-carboxylic	50 mg	16	3
acid-butylamide	100 mg	17	4
Comparison compound:	Ų		
3-trichloromethyl-5-ethoxy-	25 mg	0	1
1,2,4-thiadiazole	50 mg	0	1
	100 mg	0	1
Manganese-ethylene-1,2,-	25 mg	0	1
bis-dithiocarbamate	50 mg	0	1
	100 mg	12	1
Control I. (3 times repeated)	÷		
Infested soil; no treatment		0	1
,,,,,,,	_	0	1
		0	1
Control II. (3 times repeated)			
Humidified soil		18	4
		20	4
	—	19	4

tion and the results appear from the following table.

•	Active agent	Concentration of agent in the nutrient solution	Penicillium digitatum	Botrytis cinerea	Alternaria solani	Fusarium avenaceum
	5-methylsulfonyl-1,3,4-	0.002%	1	1	0	0
	thiadiazole-2-carbonitrile	0.004%	0	0	0	0

21	4,279,907
	-continued

Active agent	Concentration of agent in the nutrient solution	Penicillium digitatum	Botrytis cinerea	Alternaria solani	Fusarium avenaceum
5-ethylsulfonyl-1,3,4-	0.002%	. 0 .	1	0	0
thiadiazole-2-carbonitrile	0.004%	0 · · · ·	0	-0	0
5-isopropylsulfonyl-1,3,4-	0.002%	0	. : •	0	0
thiadiazole-2-carbonitrile	0.004%	0	0	.0	0
5-methylsulfonyl-1,3,4-	· -	-			-
thiadiazole-2-carboxylic	0.002%		1	1	0
acid-methylester	0.004%	0	0	0	0
5-ethylsulfonyl-1,3,4-	· · · ·	· · · · ·		· .	
thiadiazole-2-carboxylic	0.002%	1	2	0	1
acid-ethylester	0.004%	0	0	0	0
5-ethylsulfonyl-1,3,4-		•	· .	·	
thiadiazole-2-carboxylic	0.002%	1	2	1	1
acid-butylamide	0.004%	0	0	0	0
5-isobutylsulfonyl-1,3,4-	0.002%	1	2	0	2
thiadiazole-2-carboxamide	0.004%	0	1	.0	0
N-trichloromethylmer-	0.002%	4	4	4	4
capto-phthalimide	0.004%	4	3	4	4
N-trichloromethylmer-					
capto-tetrahydro-	0.002%	· 4 ·	4	4	4
phthalimide	0.004%	4	4	4	4
Tetrachloroisophthalo-	0.002%	3	- 5	5	4
dinitrile	0.004%	2	4	5	3
Control: untreated		5	5	5	5
nutrient solution	· · ·	· · · · · ·			

EXAMPLE 17

Threshold concentration test with root gall nematodes ³⁰ (Meloidogyne sp.)

20% concentration pulverulent active agents as listed in the table below were mixed in a uniform manner with a soil which has been heavily infested by root gall nema-35 todes. After waiting for 3 days the treated soil was placed in two clay dishes of a capacity of 0.5 liter. 10 grain of cucumber seeds of the type "Guntruud" were placed into each dish. Thereafter, the contents of the dishes were permitted 40 to develop at a temperature of 24° to 27° C. for a time of 28 days in a hothouse. The cucumber roots were then washed out and were examined in a water bath regarding nematode infestation. The reduction of the infestation by the active agents as compared with untreated 45 control material was determined in percentages. The active agents amounts and reduction of infestation appear from the following table. The nematocidal activity was calculated by the formula

EXAMPLE 18

Treatment of barley seeds infested with Helminthosporium gram

Barley seeds which all has a natural infestation by Helminthosporium gram were seeded in plant pots filled with earth and left to germination at a temperature below $+16^{\circ}$ C. Some of the seeds had not been treated, others had been treated with the active agents listed in the table. After emergence, the plants were subjected to illumination for 12 hours per day. After about 5 weeks the infested plants were counted and the total number of plants for each test were also counted. The active agents tested were used as pulverulent compositions. The fungicidal activity was calculated as follows:

 $\frac{A-B}{A} \cdot 100$

In this formula

A=the infestation in the untreated control material and

B = the infestation after treatment.

 $100 - \frac{100 \cdot \text{infestation in treated plants}}{100 - \frac{100 \cdot \text{infestation$ infestation in untreated plants

Active agent	Amount of active agent in grams per 100 kg	% activity
5-methylsulfonyl-1,3,4-	10	95
thiadiazole-2-carboxamide	20	100
	- 50	100
5-ethylsulfonyl-1,3,4-	10	97
thiadiazole-2-carboxamide	20	100
	50	100
5-ethylsulfinyl-1,3,4-	10	99
thiadiazole-2-carboxamide	20	100
	50	100
5-isopropylsulfonyl-1,3,4-	10	
thiadiazole-2-carbonitrile	20	86
	50	97

10

20

50

10

20

50

10

20

50

10

20

	Percentage reduction of infesta at the following agent concent tions given in mg per liter so					
Active agent	200 mg	100 mg	50 mg			
5-methylsulfonyl-1,3,4- thiadiazole-2-carbonitrile	96%	88%	71%			
5-methylthio-1,3,4-thia- diazole-2-carbonitrile	100%	99%	95%			

60 5-methylsulfonyl-1,3,4thiadiazole-2-carboxylic acid-methylamide 5-methylsulfonyl-1,3,4thiadiazole-2-carboxylic acid-dimethylamide 5-isobutylsulfonyl-1,3,4-65 thiadiazole-2-carboxamide

> 5-ethylsulfonyl-1,3,4thiadiazole-2-carboxylic

. • •

	· ·	4,2	.79,	907
. 2	23			24
-cont	inued		-	-continued
	Amount of active agent in grams	• • • •		Amount of active agent in grams
Active agent	per 100 kg	% activity		Active agent per 100 kg % activit
cid-methylamide	50	.97		5-methylsulfinyl-1,3,4-thia-
-ethylsulfonyl-1,3,4-	10			diazole-2-carboxylic acid- 20 97
niadiazole-2-carboxylic	20	94		(2-methoxyethyl)-amide 50 100
cid-dimethylamide	50	100	•	5-methylsulfonyl-1,3,4-thia-10 —
ethylsulfonyl-1,3,4-	10	100		diazole-2-carboxylic acid- 20 92
niadiazole-2-carboxylic	20 50	100 100	10	
cid-ethylamide ethylsulfonyl-1,3,4-	50 10			5-methylsulfinyl-1,3,4- 10 98
iadiazole-2-carboxylic	20			thiadiazole-2-carboxylic 20 99
cid-propylamide	50	92		acid-ethylamide 50 100
ethylsulfonyl-1,3,4-	10			5-methylsulfinyl-1,3,4-thia-
iadiazole-2-carboxylic	20	100		diazole-2-carboxylic acid- 20 96
cid-(N-butyl-N-methyl)-amide	50	100	15	
ethylsulfonyl-1,3,4-	10	100		5-methylsulfinyl-1,3,4-thia-
iadiazole-2-carboxylic	20	99		diazole-2-carboxylic acid- 20 98
cid-(2-methoxyethyl)-amide	50	100		cyclopropylamide 50 99
ethylsulfonyl-1,3,4-thia	10	99		5-methylsulfinyl-1,3,4-thia-
azole-2-carboxylic acid-	20	99	20	diazole-2-carboxylic acid- N N Animathalamenida 50 100
-methoxypropyl)-amide	50	100 95	20	
ethylsulfonyl-1,3,4- iadiazole-2-carboxylic	20	98		5-propylsulfonyl-1,3,4-thia- diazole-2-carboxylic acid- 20
cid-isopropyl-amide	50	100		dimethylamide 50 93
ethylsulfonyl-1,3,4-	10	100		5-butylsulfinyl-1,3,4-thia-
iadiazole-2-carboxylic	20	100		diazole-2-carboxylic acid- 20
cid-allylamide	50	100	- 25	
ethylsulfonyl-1,3,4-	10	98		5-propylsulfinyl-1,3,4-thia-
iadiazole-2-carboxylic	20	100		diazole-2-carboxylic acid- 20 —
cid-N,N-tetramethyleneamide	50	99		secbutylamide 50 94
ethylsulfonyl-1,3,4-thia-	10	99		5-propylsulfinyl-1,3,4-thia-
iazole-2-carboxylic acid-	20	100		diazole-2-carboxylic acid- 20 —
N,N-3-oxapentamethyleneamide) ethylsulfonyl-1,3,4-thia-	50 10	100	30	dimethylamide 50 dimethylamide 100
azole-2-carboxylic acid-	20	<u> </u>		5-methylsulfinyl-1,3,4-thia-
yclooctylamide	50	98		diadiazole-2-carbonitrile 20 —
propylsulfinyl-1,3,4-thia-	10	; /		50 94
iazole-2-carbonitrile	20	87		5-methylsulfinyl-1,3,4-thia-
· · ·	÷ 50	99 .	75	diazole-2-carboxamide 20 —
ethylsulfinyl-1,3,4-thia-	10	98	35	50 100
azole-2-carbonitrile	20	100		5-isopropylsulfinyl-1,3,4-thia-10 —
	50	100		diazole-2-carboxamide 20 —
methylsulfonyl-1,3,4-thia-	10	—		50 100
azole-2-carboxylic acid- hylamide	20	93		5-isopropylsulfinyl-1,3,4-thia- diagola 2 combonitaile
methylsulfonyl-1,3,4-thia-	10	· · · · ·	40	diazole-2-carbonitrile 20 – 50 93
iazole-2-carboxylic acid-	20			Comparison compound
opropylamide	50	· 90		
methylsulfonyl-1,3,4-thia-	10			Methoxyethyl-Hg-silicate 0.2 63
azole-2-carboxylic acid-	20	—		
ropylamide	50	93		1.0 98
methylsulfonyl-1,3,4-thia-	10		45	
azole-2-carboxylic acid-	20			
itylamide methylsulfinyl-1,3,4-thia-	50 10	90 75		EXAMPLE 19
azole-2-carboxylic acid-	20	98		Treatment of oat seeds infested with Tilletia caries
opylamide	50	100		I reatment of oat seeds infested with I filefia carles
methylsulfinyl-1,3,4-thia-	10	67	50	Oat seeds were contaminated with 3 g of the spores
azole-2-carboxylic acid-	20	. 97	50	the stinking smuts (bunt) (Tilletia caries) per kg of se
itylamide	50	100		
secbutylsulfonyl-1,3,4-thia-	10	¥		material. Both untreated and treated grains were the
azole-2-carboxamide	20	. <u> </u>		pressed with their hairy end into Petri dishes filled wi
	50	· 97		moist loam and were incubated at temperature belo
methylsulfinyl-1,3,4-thia-	10	94	55	12° C. for 3 days. The grains were subsequently r
azole-2-carboxylic acid-	20	99	55	moved and the Petri dishes were further incubated wi
lylamide	50	100		
methylsulfonyl-1,3,4-thia- azole-2-carboxylic acid-	10 20	· · · · · · · · ·		the remaining smut spores at about 12° C. After 10 da
azole-2-carooxylic acid- lylamide	20 50	100		the spores were examined regarding germination. The
propylsulfinyl-1,3,4-thia-	10			active agents were employed in the form of pulverule
azole-2-carboxylic acid-	20		60	compositions.
thylamide	50	94		

diazoie z curookyno uola
ethylamide
5-methylsulfonyl-1,3,4-thia-
diazole-2-carboxylic acid-
isopropylamide
5-methylsulfonyl-1,3,4-thia-
diazole-2-carboxylic acid-
propylamide
5-methylsulfonyl-1,3,4-thia-
diazole-2-carboxylic acid-
butylamide
5-methylsulfinyl-1,3,4-thia-
diazole-2-carboxylic acid-
propylamide
5-methylsulfinyl-1,3,4-thia-
diazole-2-carboxylic acid-
butylamide
5-secbutylsulfonyl-1,3,4-thia-
diazole-2-carboxamide
5-methylsulfinyl-1,3,4-thia-
diazole-2-carboxylic acid-
allylamide
5-methylsulfonyl-1,3,4-thia-
diazole-2-carboxylic acid-
allylamide
5-propylsulfinyl-1,3,4-thia-
diazole-2-carboxylic acid-

The fungicidal activity was calculated on the basis of the following formula:

•

ethylamide 5-propylsulfinyl-1,3,4-thiadiazole-2-carboxylic acidpropylamide 5-proptlsulfinyl-1,3,4-thiadiazole-2-carboxylic acidallylamide 5-propylsulfinyl-1,3,4-thiadiazole-2-carboxylic acidisopropylamide

•

65 $100 - \frac{100 \cdot \text{percentage of germination in treated grains}}{\text{percentage of germination in untreated grains}} =$

% activity . . . **.** . . . and the second -. . . •

. . .

				· –	continued	•
	Amount of active agent in grams per 100 kg	% activity	-		Amount of active agent in grams per 100 kg	% activity
Active agent			5	propylamide	50	100
5-ethylsulfonyl-1,3,4-thia-	5	87		5-methylsulfonyl-1,3,4-thia-	10	99.2
diazole-2-carboxamide	10	93		diazole-2-carboxylic acid-	20	100
5-ethylsulfinyl-1,3,4-thia-	20	100		butylamide 5-methylsulfinyl-1,3,4-	50 10	100 99
diazole-2-carboxamide	10	78 96	10	thiadiazole-2-carboxylic	20	100
	20	100	10	acid-propylamide	50	100
5-methylsulfonyl-1,3,4-thia-	5	86		5-methylsulfinyl-1,3,4-	10	99 00 8
diazole-2-carboxylic acid- cyclohexyl-methylamide	10 20	99 100		thiadiazole-2-carboxylic acid-butylamide	20 50	99.8 100
5-ethylsulfonyl-1,3,4-thia-	10	100		5-propylsulfonyl-1,3,4-	10	99.3
diazole-2-carboxylic acid-	20	100	15	thiadiazole-2-carboxylic	20	99.8
methylamide	50	100	15	acid-ethylamide	50	100
5-ethylsulfonyl-1,3,4-thia- diazole-2-carboxylic acid-	10 20	100 100		5-propylsulfonyl-1,3,4- thiadiazole-2-carboxylic	10 20	99.5 99.7
dimethylamide	20 50	100		acid-propylamide	50	100
5-propylsulfonyl-1,3,4-thia-	10	100		5-propylsulfonyl-1,3,4-	10	99.3
diazole-2-carboxamide	20	100	20	thiadiazole-2-carboxylic acid-allylamide	20 50	99.7 100
5-propylsulfonyl-1,3,4-thia-	50 10	100 99.5	20	5-methylsulfinyl-1,3,4-	50 · 10	100 99.2
diazole-2-carboxylic acid-	20	99.5 99.5		thiadiazole-2-carboxylic	20	100
methylamide	50	100		acid-allylamide	50	100
5-ethylsulfonyl-1,3,4-thia-	10	100		5-secbutylsulfonyl-1,3,4- thiadiazole-2-carbonitrile	10 20	75 91
diazole-2-carboxylic acid- butylamide	20 50	100 100	25		50	98
5-ethylsulfonyl-1,3,4-thia-	10	85		5-propylsulfonyl-1,3,4-	- 10	98
diazole-2-carboxylic acid-	20	100		thiadiazole-2-carboxylic acid-isopropylamide	20 50	99.8 100
cyclopropylamide 5-ethylsulfonyl-1,3,4-thia-	50 10	100		5-propylsulfonyl-1,3,4-	10	99.2
diazole-2-carboxylic acid-	20	99.3 100		thiadiazole-2-carboxylic	20	99.7
ethylamide	50	100	30	acid-butylamide	50	100
5-ethylsulfonyl-1,3,4-thia-	10	100		5-methylsulfonyl-1,3,4- thiadiazole-2-carboxylic	10 20	100
diazole-2-carboxylic acid- propylamide	20 50	100 100		acid-allylamide	50	100
5-ethylsulfonyl-1,3,4-thia-	10	98		5-propylsulfinyl-1,3,4-	- 10	_
diazole-2-carboxylic acid-	20	100		thiadiazole-2-carboxylic	20	99.3
(N-butyl-N-methyl)-amide	50	100	.35	acid-propylamide 5-propylsulfinyl-1,3,4-	50 10	100
5-ethylsulfonyl)-1,3,4-thia- diazole-2-carboxylic acid-	10 20	100 100		thiadiazole-2-carboxylic	20	100
(2-methoxyethyl)-amide	50	100		acid-allylamide	50	100
5-ethylsulfonyl-1,3,4-thia-	10	100		5-propylsulfinyl-1,3,4- thiadiazole-2-carboxylic	10 20	100
diazole-2-carboxylic acid-	20	100		acid-isopropylamide	20 50	100
(3-methoxypropyl)-amide 5-ethylsulfonyl-1,3,4-thia-	50 10	100 100	40	5-methylsulfonyl-1,3,4-	10	
diazole-2-carboxylic acid-	20	100		thiadiazole-2-carboxylic acid-(2-methoxyethyl)-amide	20 50	93 100
isopropyl-amide	50	100		5-methylsulfinyl-1,3,4-	10	
5-ethylsulfonyl-1,3,4-thia- diazole-2-carboxylic acid-	10 20	100 100		thiadiazole-2-carboxylic	- 20	100
allylamide	50	100		acid-ethylamide	50	100
5-ethylsulfonyl-1,3,4-thia-	10	91	45	5-methylsulfinyl-1,3,4- thiadiazole-2-carboxylic	10 20	100
diazole-2-carboxylic acid- octylamide	20	93		acid-isopropylamide	50	100
5-ethylsulfonyl-1,3,4-thia-	50 10	98 100		5-methylsulfonyl-1,3,4-	10	
diazole-2-carboxylic acid-	20	100		thiadiazole-2-carboxylic acid-cyclopropylamide	· 20 50	98 100
N,N-tetramethyleneamide	50	100	50	5-methylsulfinyl-1,3,4-	10	
5-ethylsulfonyl-1,3,4-thia- diazole-2-carboxylic acid-	10 20		JU	thiadiazole-2-carboxylic	20	98
(N,N-3-oxapentamethyleneamide		100		acid-cyclopropylamide 5-methylsulfonyl-1,3,4-	50 10	100
5-ethylsulfonyl-1,3,4-thia-	10	100		thiadiazole-2-carboxylic	10 20	<u> </u>
diazole-2-carboxylic acid- cyclooctylamide	20	100		acid-N,N-trimethyleneamide		100
5-propylsulfonyl-1,3,4-thia-	50 10	100 99	55	5-methylsulfinyl-1,3,4-	10	~~
diazole-2-carbonitrile	20	100		thiadiazole-2-carboxylic acid-N,N-trimethyleneamide	20 50	96 100
5 promulaulGard 1 3 4 .1 1	50	100		5-propylsulfonyl-1,3,4-	10	
5-propylsulfinyl-1,3,4-thia- diazole-2-carbonitrile	10 20	99 100		thiadiazole-2-carboxylic	20	100
	20 50	100		acid-dimethylamide 5-butylsulfinyl-1,3,4-	50 10	100
5-ethylsulfinyl-1,3,4-thia-	10	99.8	60	• • • •	20	95
diazole-2-carbonitrile	20	100			50	100
5-methylsulfonyl-1,3,4-thia-	50 10	100 99.2		5-butylsulfonyl-1,3,4- thiadiazole-2-carbonitrile	10	05
diazole-2-carboxylic acid-	20	99.2		magnazore-z-caroonnene	20 50	95 100
ethylamide	50	98		5-isobutylsulfonyl-1,3,4-	10	
5-methylsulfonyl-1,3,4- thiadiazole-2-carboxylic acid-	10	100	65	thiadiazole-2-carbonitrile	20	93
isopropylamide	20 50	- 100 - 100 -		5-propylsulfonyl-1,3,4-	50 10	100
5-methylsulfonyl-1,3,4-thia-	10	99.5		thiadiazole-2-carboxylic	20	100
diazole-2-carboxylic acid-	20	100		acid-hexylamide	50	100

•

.

× .

.

.

-

	•	4,2	79,	907	Q	
	27			. 2	0	
-cc	ontinued		I	100 infectation in tr	eated plants	
	Amount of active agent in grams per 100 kg	% activity	- -	$100 - \frac{100 \cdot \text{infestation in tre}}{\text{infestation in untrea}}$	ted plants $= \%$	activity
5-isopropylsulfonyl-1,3,4-	. 10		5			
thiadiazole-2-carboxylic	20	92			Concentration	
acid-cyclohexylmethylamide	50	97			of active agent	% activi
5-isopropylsulfinyl-1,3,4-	10	<u> </u>	I		(percentages)	70 activi
thiadiazole-2-carboxylic	20 50	100		Active agent		
acid-cyclohexylmethylamide	10		10	5-methylsulfonyl-1,3,4-	0.02	
5-propylsulfinyl-1,3,4-	20	100		thiadiazole-2-carboxamide	0.1	96
thiadiazole-2-carboxylic	50	100		5-methylsulfonyl-1,3,4-	0.02	60
acid-butylamide 5-propylsulfinyl-1,3,4-	10			thiadiazole-2-carboxylic	· 0.1	80
thiadiazole-2-carboxylic	20	100		acid-cyclohexyl-methylamide		
acid-secbutylamide	50	100		5-isopropylsulfonyl-1,3,4-	0.02	
5-propylsulfinyl-1,3,4-	10		15	thiadiazole-2-carboxamide	0.1	40
thiadiazole-2-carboxylic	20	. 100		5-isopropylsulfonyl-1,3,4-	0.02	<u> </u>
acid-hexylamide	50	100		thiadiazole-2-carbonitrile	0.1	94
5-propylsulfinyl-1,3,4-	10			5-methylsulfonyl-1,3,4-	0.00	65
thiadiazole-2-carboxylic	20	100		thiadiazole-2-carboxylic	0.02 0.1	65 91
acid-dimethylamide	50	100	•••	acid-methylamide	0.1	,,
5-methylsulfinyl-1,3,4-	10		20		0.02	91
thiadiazole-2-carbonitrile	20	100		thiadiazole-2-carboxylic	0.02	98
	50	100		acid-dimethylamide 5-isobutylsulfonyl-1,3,4-	0.02	65
5-methylsulfinyl-1,3,4-	10			thiadiazole-2-carboxamide	0.1	90
thiadiazole-2-carboxamide	20	98		5-ethylsulfonyl-1,3,4-	•••	
	50	100	25	thiadiazole-2-carboxylic	0.1	. 90
5-isopropylsulfinyl-1,3,4-	10		25	acid-dimethylamide		
thiadiazole-2-carboxamide	20 50	100		5-ethylsulfonyl-1,3,4-thia-		
et 116	10			diazole-2-carboxylic acid-	0.1	97
5-isopropylsulfinyl-1,3,4-	20	87		butylamide		
thiadiazole-2-carbonitrile	50	100		5-ethylsulfonyl-1,3,4-thia-		
5 toulformul 1 3 A	10		20	diagola 2 carboxylic acid-	0.1	95
5-pentylsulfonyl-1,3,4- thiadiazole-2-carbonitrile	20	 .	30	ethylester		
madiazoie-z-caroominic	50	90		5-ethylsulfonyl-1,3,4-thia-		
5-hexylsulfonyl-1,3,4-				diazole-2-carboxylic acid-	0.1	90
thiadiazole-2-carbonitrile	20			(2-methoxyethyl)-amide		
	50	90		5-ethylsulfonyl-1,3,4-thia-	0.1	07
5-pentylsulfonyl-1,3,4-	10		25	diazole-2-carboxylic acid-	0.1	97
thiadiazole-2-carboxamide	20		35	(3-methoxypropyl)-amide		
	50	80		5-ethylsulfonyl-1,3,4-thia-	0.1	99
5-hexylsulfonyl-1,3,4-	10 .			diazole-2-carboxylic acid-	0.1	,,,
thiadiazole-2-carboxamide	20			isopropylamide		
	50	98		5-propylsulfonyl-1,3,4-thia- diazole-2-carboxylic acid-	0.1	93
5-propylsulfonyl-1,3,4-	10		40	diazole-2-carboxylic acid- ethylester	~~*	
thiadiazole-2-carboxylic	20		40	5-propylsulfonyl-1,3,4-thia-		
acid-N,N-trimethyleneamide	50	100		diazole-2-carbonitrile	0.1	99.5
5-n-butylsulfonyl-1,3,4-	10			5-methylsulfonyl-1,3,4-		
thiadiazole-2-carboxylic	20 50	100		thiadiazole-2-carboxylic	0.1	90
acid-N,N-trimethyleneamide	10			acid-ethylamide		
5-butylsulfinyl-1,3,4- thiadiazole-2-carbonitrile	20		45	$=$ 1 $\frac{1}{1}$ 10 $\frac{1}{1}$ 10 $\frac{1}{1}$ 1 $\frac{1}{1}$ 1 $\frac{1}{2}$ 1 $\frac{1}{1}$ 1 $\frac{1}{2}$		
madiazore-2-caroominne	50	100	- F J	diazole-2-carboxylic acid-	0.1	90
Comparison compound	~~			isopropylamide		
	1.3	90		5-methylsulfonyl-1,3,4-thia-		
methoxyethyl-Hg-silicate	2.6	· 100		diazole-2-carboxylic acid-	0.1	90
	جية ۽ ميد 		-	propylamide		
			50	5-methylsulfonyl-1,3,4-thia-	0.1	90
			50	diazoie-z-carooxyne aciu-	0.1	90
EXA	AMPLE 20			butylamide		
· · · · · · · · · · · · · · · · · · ·	rice condlings infact	ed with		5-propylsulfonyl-1,3,4-thiadia-	0.1	93
Spray treatment of				zole-2-carboxylic acid-	0.1	75
Pirica	ularia oryzae			allylamide 5-secbutylsulfonyl-1,3,4-thia-		
Young rice plants we	re enraved on as to	be drinning	g 55	diazole-2-carbonitrile	0.1	99.5
Toung nee plants we	nt concentrations of	hown in the	יי כ ה	5-propylsulfonyl-1,3,4-thia-	<i></i>	• •
wet with the active age	in concentrations s			diazole-2-carboxylic acid-	0.1	90
subsequent table. After	drying of the spray	aeposits the	C	isopropylamide		
treated plants as well as	the untreated plant	s were inoc	;-	5-methylsulfonyl-1,3,4-thia-		
ulated by enraving of	a suspension of sp	oores (abou	t	diazole-2-carboxylic acid-	0.1	94
maten by shaving th	 1	•				
200000/ml) of the Diri	icularia orvzae (th	e leaf smu	t 60	allylamide		
200000/ml) of the Piri	icularia oryzae (th	e leaf smu	t 6 0	allylamide 5-propylsulfinyl-1,3,4-thia-		

cause), and were incubated in moist condition at a temperature of 25° to 27° C. in a hothouse. After 5 days it was determined which percentage of the leaf surface had been affected by the infestation.

.

The active compounds were employed in the form of 65 pulverulent compositions. From the infestation figures found the fungicidal activity was determined on the basis of the following formula:

٠

5-propylsulfinyl-1,3,4-thiadiazole-2-carboxylic acidethylamide 5-propylsulfinyl-1,3,4-thiadiazole-2-carboxylic acidpropylamide 5-methylsulfonyl-1,3,4-thiadiazole-2-carboxylic acid-(3-methoxypropyl)-amide 5-methylsulfinyl-1,3,4-thia-

90

93

90

0.1

0.1

4,279,907 30 29 -continued -continued Untreated 34.5% infestation Concentration of active agent. % activity (percentages) EXAMPLE 22 90 0.1 diazole-2-carboxylic acidethylamide 5-methylsulfinyl-1,3,4-thia-90 0.1 diazole-2-carboxylic acidisopropylamide 5-propylsulfonyl-1,3,4-thia-10 0.1 93 diazole-2-carboxylic aciddimethylamide 5-butylsulfinyl-1,3,4-thia-**9**3 diazole-2-carboxamide 0.1 5-isobutylsulfonyl-1,3,4-thia-100 0.1 diazole-2-carbonitrile

95

98

90

97

15

20

Seed treatment in open field tests for infestation by Helminthosporium gramineum

Barley seeds which had a natural infestation of Helminthosporium gramineum which causes the streak disease were seeded in open fields. Part of the seeds had been treated with the active agents listed in the table below and another part had been left untreated.

The active agents were used in the form of pulveru-

ulazoic-z-vai ooliiti iic	0.1	
5-propylsulfonyl-1,3,4-thia-		
diazole-2-carboxylic acid-	0.1	
hexylamide		
5-isopropylsulfonyl-1,3,4-thia-		
diazole-2-carboxylic acid-	0.1	-
cyclohexylmethylamide		
Comparison compound		
"Blasticidin-S" (antibiotic from	0.02) •
Streptomyces griseochromogenes)	0.1	

lent compositions. After about 8 months in case of winter barley and after about 3 months in case of summer barely the infested plants were counted and the activity was calculated by the formula

> 100 · infestation of treated seeds = % activity 100 infestation of untreated seeds

EXAMPLE 21

Seed treatment in open field tests regarding infestation by Tilletia caries

1 kg of oat seeds each was contaminated with 5 g of spores of the cause of the stinking smuts disease, Tilletia 3 caries. Part of the seeds was then treated with the active agents listed below in the table and another part was untreated. All the seeds were then planted in open fields.

The active agents were employed in the form of pul-3 verulent compositions. After about 9 months in case of · • · · · 1 _ **F**.

	g active agent/ 100 kg barley	% activity
Active agent	Winter barley	
5-methylsulfonyl-1,3,4-thia-	25	90
diazole-2-carboxamide	50	96
	75	100
•	100	. 100
5-isopropylsulfonyl-1,3,4-	25	
thiadiazole-2-carbonitrile	50	· ·
	75	99
, .	100	100
5-methylsulfonyl-1,3,4-thia-	25	99.5
diazole-2-carboxylic acid-	50	99.5
methylamide	75	100
5-methylsulfonyl-1,3,4-thia-	25	

.

.

diazole-2-carboxylic acid-

dimethylamide

.

•

50

75

98

.

winter oats and after about 4 months in case of summer	
oats the diseased heads were counted and on that basis	
the activity was calculated by the following formula:	

.

• •

ted by the following f	ormula		unnemynamide		
icu oy me ionowing i	ormuia.	40		100	100
		ΨU	5-isobutylsulfonyl-1,3,4-	25	
$100 - \frac{100 \cdot \text{infestation of treated heads}}{100 - \%} = \%$ activity			thiadiazole-2-carboxamide	50	100
intreated heads $=$ % actions and the second secon	ivity			75	100
	•		•	100	100
			5-ethylsulfonyl-1,3,4-thia-	25	<u> </u>
•		15	diazole-2-carboxylic acid-	· 50	100
	·	• 45	methylamide	75	
	or 13 to 1			100	100
100 kg winter oats	% activity	-	5-ethylsulfonyl-1,3,4-thia-	25	
· · · · · · · · · · · · · · · · · · ·	• •		diazole-2-carboxylic acid-	50	99.5
35	100		dimethylamide	75	—
				100	100
1		50	Comparison compound		
	100		Methoxyethyl-Hg-silicate	5.2	100
				2.6	99.4
•	100		Untreated 11.2% infestation		
	100		Active agent	Summer barley	
				25	95
	100	55	• •		100
100	100				100
	~~		5-isopropylsulfonyl-1.3.4-	•	100
5.3	99				99.8
		-			100
summer oats			5-methylsulfonyl-1.3.4-		93
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	• 60	• • • • •		100
		•••	•		100
25	100		-		
50	100		-	•	99.5
					100
25			5-ethylsulfonyl-1.3.4-thia-		
50	100	65	• • • •		100
25		Û)	-		100
50	99		-	25	
			· · ·		99.5
•			diazole-2-carboxylic acid-	50	77.5
	$\frac{\text{of treated heads}}{\text{intreated heads}} = \% \text{ active agent/} \\ \frac{25}{50} \\ 100 \text{ kg winter oats} \\ 25 \\ 50 \\ 100 \\ 25 \\ 50 \\ 100 \\ 5.3 \\ \hline \\ \text{summer oats} \\ 25 \\ 50 \\ 25 \\ 50 \\ 25 \\ 50 \\ 25 \\ \hline \\ \end{bmatrix}$	active agent/ 100 kg winter oats 25 100 50 100 100 100 25 - 50 - 100 100 25 - 50 - 100 100 25 - 50 - 100 100 25 - 50 - 100 100 25 - 50 100 50 100 50 100 25 - 50 100 25 - 50 100 25 - 50 100 25 -		405-isobutylsulfonyl-1,3,4- thiadiazole-2-carboxamideintreated heads= % activityg active agent/ 100 kg winter oats5-ethylsulfonyl-1,3,4-thia- diazole-2-carboxylic acid- methylamide251005010010010025-10010025-10010025-10010025-10010025-50-10010025-50-50-50-50-50-50-50-5110052-53995-isopropylsulfonyl-1,3,4- thiadiazole-2-carboxylic acid-methylamide55-501005110052-531005410055-56-57-58-59100501005010055-56-57-58-59100501005010055-56-57-58-59100501005010050100515-et	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

· .

•		
· · · ·		
. Л	776	11117
	///J	
í de	/ / 7	,907
		• / / /
- 7 -		· · ·
-		•

50

These agents were used in the form of pulverulent compositions. 10 weeks after seeding the diseased pancicles were counted and on this basis the activity was calculated by the formula

$$100 - \frac{100 \cdot \text{infestation (treated)}}{\text{infestation (untreated)}} = \%$$
 activity

and the second second

		•	
		· · ·	
	- `		

10			
10		g active agent/ 100 kg	% activity
	Active agent		
	5-methylsulfonyl-1,3,4-thia-	100	84
1 -	diazole-2-carboxamide	150	90
15	5-isopropylsulfonyl-1,3,4-	100	97
	thiadiazole-2-carbonitrile	150	·

31

.

	g active agent/	·
	100 kg barley	% activity
5-ethylsulfonyl-1,3,4-thia-	25	·
diazole-2-carboxylic acid-	50	
butylamide	100	100
5-ethylsulfonyl-1,3,4-thia-	25	·
diazole-2-carboxylic acid-	50	100
cyclopropylamide	200	100
5-ethylsulfonyl-1,3,4-thia-	25	98
diazole-2-carboxylic acid-	50	99.5
ethylamide	100	100 95
5-ethylsulfonyl-1,3,4-thia-	25	99.3
diazole-2-carboxylic acid-	50	100
propylamide	100	94
5-ethylsulfonyl-1,3,4-thia-	25	· 96.9
liazole-2-carboxylic acid-	50	99.5
N-butyl-N-methyl)-amide	100 25	99.5
5-ethylsulfonyl-1,3,4-thia-		98
liazole-2-carboxylic acid-	50	99.8
(2-methoxyethyl)-amide	100	99.8
5-ethylsulfonyl-1,3,4-thia-	25	9 4 96
liazole-2-carboxylic acid-	50	·
3-methoxypropyl)-amide	100	100
i-ethylsulfonyl-1,3,4-thia-	25	96
liazole-2-carboxylic acid-	50	100
sopropyl-amide	100	99.8
6-ethylsulfonyl-1,3,4-thia-	25	97
liazole-2-carboxylic acid-	50	100
llylamide	100	100
ethylsulfonyl-1,3,4-thia-	25	100
liazole-2-carboxylic acid-	50	100
N,N-tetramethyleneamide	100	
5-ethylsulfonyl-1,3,4-thia-	25	
liazole-2-carboxylic acid-	50 ·	99.3
N,N-3-oxapentamethyleneamide)	100	
5-propylsulfinyl-1,3,4-thia-	25	
liazole-2-carbonitrile	50	99.3
	100	
ethylsulfinyl-1,3,4-thia-	25	
liazole-2-carbonitrile	50	100
	100	<u> </u>
-methylsulfonyl-1,3,4-thia-	25	.
liazole-2-carboxylic acid-	50	100
ethylamide	100 ·	·
5-methylsulfonyl-1,3,4-thia-	25	
liazole-2-carboxylic acid-	50	100
sopropylamide	100	
5-methylsulfonyl-1,3,4-thia-	25	
iazole-2-carboxylic acid-	50	100
propylamide	100	
5-methylsulfonyl-1,3,4-thia-	25	
diazole-2-carboxylic acid-	50	99.3
outylamide	100	. · .
5-methylsulfinyl-1,3,4-thia-	25	_
diazole-2-carboxylic acid-	50	97
propylamide	100	
5-methylsulfinyl-1,3,4-thia-	25	
diazole-2-carboxylic acid-	50	100
-	100	100
outylamide	25	· · ·
5-secbutylsulfonyl-1,3,4-		94
hiadiazole-2-carboxyamide	50	74
	100	
5-methylsulfinyl-1,3,4-thia-	25	100
diazole-2-carboxylic acid-	50	100
allylamide	100	
Comparison compound		
Methoxyethyl-Hg-silicate	10.4	100
	5.2	99.8
Untreated 23.9% infestation		

	Untreated 16.6% infestation	and a second and a s A second a se	
	Methoxyethyl-Hg-silicate	16 satura da la 1	66
	Comparison compound	en e	
20	thiadiazole-2-carboxamide	150	`
20	5-isobutylsulfonyl-1,3,4-	100	87
	methylamide	150	
	diazole-2-carboxylic acid-	100	90
	5-methylsulfonyl-1,3,4-thia-		

EXAMPLE 24

Effects of prophylactic leaf treatment of grapevines in the hothouse against *Plasmopara viticola*

Young grapevine plants having from 5 to 8 leaves 30 were sprayed dripping wet with the concentrations of active agents stated in the table below. After drying of the spray deposit the leaves were sprayed with an aqueous suspension of sporangia of the fungus (about 20,000 35 per ml); the spraying was applied to the bottom side of the leaves. The plants were then immediately incubated in a hothouse at a temperature of 22° to 24° C. and at maximum water saturation in the atmosphere. Beginning with the second day the humidity of the air was 40 reduced for 3 to 4 days to normal level (30 to 70%) saturation) and was then maintained for another day on the level of full saturation. Subsequently, the percentage portion of the fungus infested surface of each leaf was noted and the average per treatment was calculated 45 in order to determine the fungicidal activity. This was done on the basis of the following formula:

 $100 - \frac{100 \cdot \text{infestation (treated)}}{\text{infestation (untreated)}} = \%$ activity

The active compounds were applied in the form of a 20% concentration spray powder.

55	Active agent	Concentration of active agent	% activity
	5-methylsulfonyl-1,3,4-thia-	0.001	76
	diazole-2-carboxylic acid-	0.005	88
	hexahydrobenzylamide	0.025	97
	5-propylsulfonyl-1,3,4-	0.001	
60	thiadiazole-2-carboxamide	0.005	· · 89
	-	0.025	95

Oat seed treatment for Ustilago avenae

EXAMPLE 23

Oat seeds were dipped into a suspension of the spores of *Ustilago avenae* which causes the oat smuts fungus. The seeds were then exposed in a vacuum desiccator 65 several times to a change from atmospheric to subatmospheric pressure. After drying the seeds were treated with the active agents listed in the subsequent table.

5-ethylsulfonyl-1,3,4-thiadiazole-2-carboxylic acidethylamide 5-ethylsulfonyl-1,3,4-thiadiazole-2-carboxylic acid-(N-butyl-N-methyl)-amide 5-ethylsulfonyl-1,3,4-thiadiazole-2-carboxylic acid-

(3-methoxypropyl)-amide

e 🚛 👘 🔿

	33	-,-	,,,		34	
-C	ontinued			-continued		
Active agent	Concentration of active agent	% activity		Active agent	Concentration of active agent	% activity
5-ethylsulfonyl-1,3,4-thia-	0.001			cyclohexylmethylamide	0.025	97
diazole-2-carboxylic acid-	0.005		J	5-propylsulfinyl-1,3,4-thia-	0.001	
isopropyl-amide	0.025	92		diazole-2-carboxylic acid-	0.005	91
5-ethylsulfonyl-1,3,4-thia-	0.001	9 8		butylamide	0.025	99.1
diazole-2-carboxylic acid-	0.005	96		5-propylsulfinyl-1,3,4-thia-	0.001	86
allylamide	0.025	99.4		diazole-2-carboxylic acid-	0.005	92
5-ethylsulfonyl-1,3,4-thia-	0.001		• •	secbutylamide	0.025	92
diazole-2-carboxylic acid-	0.005	_	10	5-propylsulfinyl-1,3,4-thia-	0.001	95
octylamide	0.025	90		diazole-2-carboxylic acid-	0.005	99.1
5-ethylsulfonyl-1,3,4-thia-	0.001	91		hexylamide	0.025	100
diazole-2-carboxylic acid-	0.005	99		5-pentylsulfonyl-1,3,4-thia-	0.001	
N.N-tetramethyleneamide	0.025	100		diazole-2-carbonitrile	0.005	
5-propylsulfinyl-1,3,4-	0.001	100	1 5		0.025	90

40

4,279,907

5-propylsulfinyl-1,3,4thiadiazole-2-carbonitrile

5-ethylsulfinyl-1,3,4thiadiazole-2-carbonitrile

5-methylsulfonyl-1,3,4-thiadiazole-2-carboxylic acidethylamide 5-methylsulfonyl-1,3,4-thiadiazole-2-carboxylic acidisopropylamide 5-methylsulfonyl-1,3,4-thiadiazole-2-carboxylic acidpropylamide 5-methylsulfonyl-1,3,4-thia diazole-2-carboxylic acidbutylamide 5-methylsulfinyl-1,3,4-thiadiazole-2-carboxylic acidpropylamide 5-methylsulfinyl-1,3,4-thiadiazole-2-carboxylic acidbutylamide 5-propylsulfonyl-1,3,4-thiadiazole-2-carboxylic acidpropylamide 5-methylsulfinyl-1,3,4-thiadiazole-2-carboxylic acid.

0.005	100
0.025	100
0.001	89
0.005	96
0.025	100
0.001	
0.005	81
0.025	97
0.001	<u> </u>
0.005	76
0.025	96
0.001	·
0.005	82
0.025	95
0.001	83
0.005	99.1
0.025	99.2
0.001	
0.005	75
0.025	99
0.001	—
0.005	·
0.025	93
0.001	
0.005	
0.025	93
0.001	
0.005	_

90

96

80

90

90

86

93

94

75

90

75

99.8

15	5-hexylsulfonyl-1,3,4-	0.001	
	thiadiazole-2-carbonitrile	0.005	
		0.025	90
	5-hexylsulfonyl-1,3,4-	0.001	
	thiadiazole-2-carboxamide	0.005	.
		0.025	90
20			

EXAMPLE 25

Effects of a prophylactic leaf treatment of tomato plants against *Botrytis cinerea*

Young tomato plants were sprayed dripping wet with the concentrations of the active agents as indicated in the subsequent table. After drying of the spray deposit the treated plants and also untreated control plants were inoculated by spraying with a suspension of spores (about 1 million per ml of fruit juice solution) of *Botrytis cinerea* and were incubated in moist condition in a hothouse at about 20° C. After the collapse of the untreated plants (indicating 100% infestation) the degree of infestation of the treated plants was determined and the fungicidal activity was calculated on the basis of the

diazole-2-carboxylic acid-	0.005
allylamide	0.025
5-methylsulfinyl-1,3,4-thia-	0.001
diazole-2-carboxylic acid-	0.005
(2-methoxyethyl)-amide	0.025
5-methylsulfinyl-1,3,4-thia-	0.001
diazole-2-carboxylic acid-	0.005
ethylamide	0.025
5-methylsulfinyl-1,3,4-thia-	0.001
diazole-2-carboxylic acid-	0.005
isopropylamide	0.025
5-methylsulfinyl-1,3,4-thia-	0.001
diazole-2-carboxylic acid-	0.005
cyclopropylamide	0.025
5-methylsulfonyl-1,3,4-thia-	0.001
diazole-2-carboxylic acid-	0.005
N,N-trimethyleneamide	0.025
5-methylsulfinyl-1,3,4-thia-	0.001
diazole-2-carboxylic acid-	0.005
N,N-trimethyleneamide	0.025
5-propylsulfonyl-1,3,4-thia-	0.001
diazole-2-carboxylic acid-	0.005
dimethylamide	0.025
5-butylsulfonyl-1,3,4-thia-	0.001
diazole-2-carboxamide	0.005
	0.025
5-butylsulfinyl-1,3,4-thia-	0.001
diazole-2-carboxamide	0.005

following	formula
-----------	---------

$$00 - \frac{100 \cdot \text{infestation (treated)}}{\text{infestation (untreated)}} = \%$$
 activity

The active agents were applied in the form of 20% concentration spray powders.

.5		% activity at a con- centration of 0.025
	Active agent	of the active agent
	5-methylsulfonyl-1,3,4-thiadiazole-	
~	2-carboxylic acid-methylamide	78
0	5-propylsulfonyl-1,3,4-thiadiazole-	
	2-carboxyamide	94
	5-propylsulfonyl-1,3,4-thiadiazole-	
	2-carboxylic acid-methylamide	88
	5-ethylsulfonyl-1,3,4-thiadiazole-	
_	2-carboxylic acid-octylamide	87
5	5-ethylsulfonyl-1,3,4-thiadiazole-2	
	carboxylic acid-N,N-tetramethyleneamide	75
	5-ethylsulfonyl-1,3,4-thiadiazole-2-	
	carboxylic acid-cyclooctylamide	93
	5-methylsulfonyl-1,3,4-thiadiazole-2-	
	the set of the set	

76

76

80

75

75

78

5-butylsulfonyl-1,3,4-thiadiazole-2-carbonitrile

5-isobutylsulfonyl-1,3,4-thiadiazole-2-carbonitrile

5-propylsulfonyl-1,3,4-thiadiazole-2-carboxylic acidhexylamide 5-isopropylsulfonyl-1,3,4-thiadiazole-2-carboxylic acid-

100 0.025 0.001 0.005 91 93 0.025 79 0.001 87 0.005 99 0.025 88 0.001 **98** 👘 0.005 100 0.025 0.001 92 0.005

carboxylic acid-propylamide
5-methylsulfonyl-1,3,4-thiadiazole-2carboxylic acid-butylamide
5-propylsulfonyl-1,3,4-thiadiazole-2carboxylic acid-propylamide
5-methylsulfinyl-1,3,4-thiadiazole-2carboxylic acid-ethylamide
5-methylsulfonyl-1,3,4-thiadiazole-2carboxylic acid-cyclopropylamide
5-propylsulfonyl-1,3,4-thiadiazole-2carboxylic acid-hexylamide

-continued				
Active agent	% activity at a con centration of 0.025 of the active agent			
carboxylic acid-butylamide	80			
5-propylsulfinyl-1,3,4-thiadiazole-2-				
carboxylic acid-secbutylamide	80			
5-propylsulfinyl-1,3,4-thiadiazole-2-				
carboxylic acid-hexylamide	80			
5-propylsulfinyl-1,3,4-thiadiazole-				
2-carboxylic acid-dimethylamide	80			
5-pentylsulfonyl-1,3,4-thiadiazole-				
2-carbonitrile	86			
5-hexyIsulfonyl-1,3,4-thiadiazole-				
2-carbonitrile	86			
5-pentylsulfonyl-1,3,4-thiadiazole-				
2-carboxamide	87			
5-hexylsulfonyl-1,3,4-thiadiazole-				
2-carboxamide	87			
5-propylsulfonyl-1,3,4-thiadiazole-				
2-carboxylic acid-N,N-trimethylene-	.			
amide	87			

4,279,907

5

15

36

 \mathbf{N}

EXAMPLE 27

Effects of the treatment of oat seeds against Septoria nodorum

Oat seeds with a natural infestation by Septoria nodorum were treated with the active agents as indicated in the table below. They were then seeded on a moist substrate for germination. As a control untreated seeds $_{10}$ were likewise seeded. At about 6° C. the seed was incubated in an airconditioned chamber until after 4 weeks the proportion of diseased seeds could be determined and the activity of the fungicidal compounds was calculated on the basis of the following formula:

 $100 \cdot \text{fraction of diseased seeds treated} = \%$ activity fraction of diseased seeds untreated 100 -

The active agents were applied in the form of 20% 20 concentration pulverulent compositions.

EXAMPLE 26		Active agent	% activity in case of 50 g active agent/ 100 kg seeds
Treatment of rye seeds against <i>Fusarium nivale</i> Rye seeds with a natural infestation by <i>Fusarium</i> <i>nivale</i> were seeded in earth filled pots and left for germi-	25	5-methylsulfonyl-1,3,4- thiadiazole-2-carboxamide 5-methylsulfonyl-1,3,4-thia-	91
nation at about 6° C. Part of the seeds was treated be- fore seeding with the active agents as appears from the	30	diazole-2-carboxylic acid methylamide 5-ethylsulfonyl-1,3,4-thia- diazole-2-carboxylic acid	93
subsequent table and part was untreated. After emer- gence of the seedlings the plants were illuminated with		methylamide 5-ethylsulfonyl-1,3,4-thiadiazole-	72
artificial light for 12 hours each day. After about 4 weeks the degree of infestation was determined in per-		2-carboxylic acid dimethylamide 5-ethylsulfonyl-1,3,4-thiadiazole-	86
centages. The fungicidal activity was calculated on the	35	2-carboxylic acid propylamide 5-ethylsulfonyl-1,3,4-thiadiazole-	81
basis of the following formula:		2-carboxylic acid (2-methoxyethyl)-amide 5-ethylsulfonyl-1,3,4-thiadiazole-	. 86

2-carboxylic acid (3-methoxypropyl)-

$$00 - \frac{100 \cdot \text{infestation (treated)}}{\text{infestation (untreated)}} = \% \text{ activity}$$

The active agents were used in the form of 20% concentration compositions.

•

.

	Company company	1.3 g active
	2-carboxylic acid allylamide	72
	5-ethylsulfonyl-1,3,4-thiadiazole-	
10	2-carboxylic acid isopropylamide	86
40	5-ethylsulfonyl-1,3,4-thiadiazole-	
	amide	86

		45	Comparison c	ompound	agent/100 kg seeds
Active agent	% activity; amount of active agent: 100 g/100 kg		Methoxyethyl Untreated	-Hg-silicate 75% infested	86
5-methylsulfonyl-1,3,4- thiadiazole-2-carboxamide 5-ethylsulfonyl-1,3,4-	99	50		EXAMPLE	E 28
thiadiazole-2-carboxamide 5-ethylsulfonyl-1,3,4- thiadiazole-2-carbonitrile	99.2 92		Prophylact	tic leaf treatment of a against Venturia i	apples in open field test <i>naequalis</i>
5-ethylsulfinyl-1,3,4- thiadiazole-2-carboxamide 5-methylsulfonyl-1,3,4-	93	55	the agents s	stated in the subseque	aves were treated with ent table until they were
thiadiazole-2-carboxylic acid-methylamide	100		shoots and	also untreated shoc	he spray deposits these ots were inoculated by sion of conidia spores of
5-isobutylsulfonyl-1,3,4- thiadiazole-2-carboxamide 5-ethylsulfonyl-1,3,4-	99.2	60	Venturia in (400,000 sp	naequalis in a 3% aq ores/ml).	ueous glucose solution
thiadiazole-2-carboxylic acid-methylamide 5-ethylsulfonyl-1,3,4-thia-	100		polyethyle	ne bag so as to obtain	oot was covered with a in favorable conditions
diazole-2-carboxylic acid- dimethylamide	100	(7	were remo	ved. The scab infesta	than 48 hours the bags ation of the leaves was stimating the degree of
5-ethylsulfonyl-1,3,4-thia- diazole-2-carboxylic acid- allylamide	. 94	C0	scab cover	age in percentage of	each leaf surface. The was calculated on this

.

basis by the following formula:

4,279,907 37 38 $100 - \frac{100 \cdot \text{fraction of diseased heads treated}}{\text{fraction of diseased heads untreated}}$ $100 - \frac{100 \cdot \text{scab infestation, treated}}{\text{scab infestation, untreated}}$ = % activity = % activity

The active compounds were employed in the form of The active agents were employed as a 50% concen- 5 20% concentration powder compositions. tration spray powder.

	Concentration of active agent		10	-	amount of active agent	% activity	
Active agent	in grams	% activity	- 10	Active agent	in gram/100 kg seeds	winter oats	winter barley
5-isopropylsulfonyl-1,3,4-					36643		Garrey
thiadiazole-2-carbonitrile	0.005	97		5-isopropylsulfonyl-			
	0.025	100		1,3,4-thiadiazole-2-			
5-methylsulfonyl-1,3,4-thia-				carbonitrile	100 ·	70	93
diazole-2-carboxylic acid	0.005	90	15	5-isobutylsulfonyl-			
methylamide	0.025	92		1,3,4-thiadiazole-2-			
5-isobutylsulfonyl-1,3,4-thia-	0.005	87		carboxamide	100	75	79
diazole-2-carboxamide	0.025	95		Untreated		4.33%	1.34%

81

97

85

100

98

94

99

62

86

99

71

90

86

99.7

30

35

40

99.7

diazole-2-carboxylic acid	0.005	
methylamide	0.025	
5-isobutylsulfonyl-1,3,4-thia-	0.005	
diazole-2-carboxamide	0.025	
5-methylsulfonyl-1,3,4-thia-		
diazole-2-carboxylic acid	0.005	
ethylamide	0.025	
5-methylsulfonyl-1,3,4-thia-	,	
diazole-2-carboxylic acid	0.005	
isopropylamide	0.025	
5-methylsulfonyl-1,3,4-thia-		
diazole-2-carboxylic acid	0.005	
propylamide	0.025	
5-methylsulfonyl-1,3,4-thia-		
diazole-2-carboxylic acid	0.005	
butylamide	0.025	
5-methylsulfinyl-1,3,4-thia-		
diazole-2-carboxylic acid	0.005	
propylamide	0.025	
5-methylsulfinyl-1,3,4-thia-		
diazole-2-carboxylic acid	0.005	
butylamide	0.025	
5-methylsulfinyl-1,3,4-thia-		
diazole-2-carboxylic acid	0.005	
isopropylamide	0.025	
Comparison compound		
2.3-dinitrilo-1.4-anthraquinone	0.005	

Without further analysis, the foregoing will so fully 20 reveal the gist of the present invention that others can, by applying current knowledge, readily adapt it for various applications without omitting features that, from the standpoint of prior art, fairly constitute essential characteristics of the generic or specific aspects of 25 this invention.

What is claimed as new and desired to be protected by Letters Patent is set forth in the appended claims:

1. A composition having fungicidal and nematocidal activity comprising as active agent

1,3,4-thiadiazole-2-carboxylic acid derivatives of the formula

2,3-dinitrilo-1,4-anthraquinone

94

0.000

0.025

Untreated 96% infestation

EXAMPLE 29

Treatment of wheat and barley seeds in open field tests against Ustilago nuda

Winter wheat seeds which had been infested with the ⁴⁵ smut cause Ustilago nuda tritici and winter barley seeds infested with Ustilago nuda nuda were treated with the agents listed in the table below and were seeded at seeding time in open fields. As a control untreated seeds $_{50}$ in an amount of about 1 to 95% by weight and a liquid were likewise included in the seed. After eight months the affected heads were counted for each test group and their proportion was calculated in order to find the fungicidal activity by the following formula:

wherein

- R is C_1 - C_6 -alkyl, C_2 - C_6 -Alkenyl, C_2 - C_6 -Alkinyl or C₃-C₆-Cycloalkyl,
- R_1 is C_1 - C_6 -alkoxycarbonyl, aminocarbonyl, C_1 - C_8 alkylaminocarbonyl, C_3 - C_6 -cycloalkylaminocarbonyl, di-C₁-C₈ alkylaminocarbonyl, cyclohexylmethylaminocarbonyl, methoxy- C_2 - C_3 alkylaminocarbonyl, morpholinocarbonyl, pyrrolidinocarbonyl, piperidinocarbonyl or cyano, and n is 0, 1 or 2,

or solid carrier material in an amount of about 99 to 5% by weight which carrier material may be replaced in an amount up to 20% by weight by a surface active agent.

