United States Patent (9

Hunsberger et al.

[54]
[75]

[73)

[21]
[22]

[51]
[52]

[58)

[56]

MICROPROCESSOR SUPPORT SYSTEM

Inventors: Dennis J. Hunsberger, Fair Haven;

Charles E. Nahabedian, Mendham;
Thomas M. Quinn, Little Silver;
James H. VanOrnum, Hazlet, all of

N.J.

Assignee: Bell Telephone Laboratories,
Incorporated, Murray Hill, N.J.

Appl. No.: 952,278

Filed: Oct. 18, 1978

INE. CL2 oerooeeeeireiiesreecerenssirsrestesreans GO6F 11/00

US, CL o eeccinenersnsnans 364/200; 364/900;
371/16

Field of Search 364/200, 900; 235/302,

235/304, 304.1, 304.2; 371/15, 16, 19

References Cited
U.S. PATENT DOCUMENTS

4,084,233 4/1978
4,093,981 6/1978
4,099,234 7/1978
4,100,601 7/1978
4,103,328 7/1978

OTHER PUBLICATIONS
Ritchie and Thompson, The UNIX Time-Sharing Sys-

Handly et al.c.ocoeeiinnnnn. 364/200
McAllister et al.ccevvveee... 3647200
Woods et al. .oooeeeniivenirirecnnn 364/200
Kaufman et al.ccvvevreeeen. 364/200
DalMmassO ...ooveevrerersnsenrsvecrrone 364/200

[11] 4,231,087
[45] Oct. 28, 1980

tem, Communications of the ACM, Jul. 1974, vol. 17,
No. 7, pp. 365-375.

Primary Examiner—Charles E. Atkinson
Attorney, Agent, or Firm—James M. Graziano

[57] ABSTRACT

The disclosed microprocessor support system provides
a total “laboratory” environment for developing and
testing application software as well as for debugging the
microprocessor-based application machine itself. The
microprocessor support system contains a time shared
minicomputer equipped with a full set of peripherals
which functions as the main or operating system. A data
link connects this operating system with test equipment
located at the site of the application machine. This test
equipment consists of a field test unit which provides an
interface between the application machine, a local key-
board terminal and the operating system such that an
engineer at the site of the application machine has ac-
cess through the field test unit to both the microproces-
sor-based application machine and the operating system
with its sophisticated hardware and software resources
to assist in developing and testing application software,
as well as debugging the application machine itself.

18 Claims, 23 Drawing Figures

225 205 - _ _]
- | 221 ; \
OATA ’ RECEIVER COMMO i RN
o MODEM cCT DaSes | COMMON MIMiC
(Fi6. 3) MEMORY MEMORY
2024 o | (FIG lﬁ)_ (FIG i6)
TO | AR i T
MODEM 30 e T -
Fi6. 1) e 1, |
’ “ FTU INTERNAL BUSSES 207
FADB _
. ~p FTU PROGRAM
T 1| "
~ {TADB
; I 209
B FTU o PROCESSOR 210\
ARBITER CCT o 8.9 . APRLICATION
2067 EXTENDED [i
P ot
APPLICATION : TRANSF&HD TRACE r—r MP
| SYSTEM BUSSES | $—ti— PRDM(FRDGRAMMEFI 1.
Fi1G. 13)
FIELD TEST IR
UNIT . 23 1 b
KEYBOARD — SANITY INTER-
TERMINAL — AND I]
—+1— RECEIVER CCT CCT 1/
204 214 (FIG. 6) (F1G. 6) CONTROL
SN ll | 7
< ' J > ElA SEHIAL A & e MA});HCNHEES
INTERFACE 1 ELAPSED TIME '
— CLOCK
(F165.J0.11,12)

4,231,087

Sheet 1 of 17

Oct. 28, 1980

U.S. Patent

0! L [m.t -
- HO1VH¥3INIO
E— —
C T N NIAON O 59@ %mz%
(2 914) N — 43QV0T
Gee 9l _ | N \ﬂ
WNIT Y1YQ | L
Ol _ H31GW3ISSY
HOLYINWIS ﬁ
L | ¥3dWOD
_ - — > doues
| _, —

dALNdWODININ A3¥VYHS FNIL

e/ o

“NOILYO01 3L0W3Y
[91

1’{4

JOVNONY T
RELER Io:aN —=
——————§ O Jp39vL
20!
1
S O
TYNIWY3L
0YvOgAIMN

R IVTEZ_E _\mm_

I\,[Eu

HININYHO0Hd _
W‘E&

Sheet 2 of 17 4,231,087

Oct. 28, 1980

U.S. Patent

9I¢
10¥LNOD

: Hﬁ__m

/N :hm_m
dW

W3LSAS

| NOILYD11ddV

Lo

c 9/

ANDVESIE)

W01 o
dNIL J3Sdv 13 V44 ILNI | L
wmma_.*._/_uﬂﬁE lIII .._,q_muw V13 A||
g0g” _
(9 919) pie 702
197 ¥3In3o3
ANV TYNIWYAL
ALINVS QHVO8A IN
e — LINN
1S31 471315
(€1 919) _
HINWYYO0d WOYd Il S3CSNG IW3ILSAS _
_l aNy . __-NOILYDIddY |
JOVHL HI4SNVYYHL A Q3IGNILX3
€02/ —— e /902
—— 197 Y3LI8YY
(6°8 'SOI3)
¥0SS3004d ™ Nid
602/ aqvL
Awmw_h% I (S‘? 5914)
NYHO0Ud N13 __, .m@q . 43L1eyv
1027 S35SNg TYNHILNI NL4 , — . _
o9l (1 '914)
L g 0S! WIAOW
s / av) . o
(91 914) (91 914) _omn/ v c0c — V
AHOWIN AYOWIN ¢ 9|4
DINIWN NOWWO? _m%_m,_w,_wm 129 K wadon—) %& Arwmv
m_m.m. - L _NN.\ ¢m>_m_..wm_m
_ -

il P —

G027

mmm&.

P Old | G914 | €91

4,231,087

& 9O/S
o< |
=
o GOt
)
15!
¢
N v
A
S0Z
W3ICQOW Ol
- N d3l4IHS
= axl 13A
0 _2;
5
@

(6 014 OL)
874 ¥ 13A31

U.S. Patent
|
|
i'

AQUXY

ax1i

lyvi

J0XY [l

g3l 4iHS QXX)

32

X1
XY

11120

~ ¢ 910
rA01%

€0E
£0-0G \

Sd344Nd
1YNOIL234idId

(8913 01) B
MO/ 1

mo\E

(v 914 01)
011N

104
A 00N
WOY 4

Sheet 4 of 17 4,23 1,087

Oct. 28, 1980

U.S. Patent

UNINS ~— L man 4 %z,zum | L 1iN7s) AG ()
x 1LNDA A || - unansL
NOUN3 e T 50711
L WYYSIa il L MO/13
_ N0] T ELE
LMD N 4300730 {1 eMW3NS
TN HI D2 S SSIWAAY [o ||| RELE
_ siv| | | L
VATOH & -0QV o 167 .
18y” | :'
o ~ Tt
w01 0
201 15vN 88y [z3mwn3 | 68V —— 0o
101 1dvn 9 : 8 v 8
m-oz: Jm,.oﬁ,.
287
66% H34iNd oowomm_mn_dm:m
> |
98 Y — P8y | [«378WN3 L8V 187
g A g | ' -
8P/ Tomwl 60 | [-0p ¥ o]
10-0a|66y ¥3sng | -08a3 00F %&ij
1y ypzy gt 3018vd .. i
£ (91 '914°01)60D L9d1-06d—
Vy 9/

SR EREIRN

10 14Va \
VeV MW3IA 4
mmwA 9ty M
a CEP-1ZV IuNINA
A Gey |
¢ Thay
| x318VYN3 -0QYy
TINDA
140%
MNINSL
107
] ngy| GN3NSL
4 00¥
5 378YN3 EEEIS
| 30 Tuve
dviad 2 LIV I.:zuﬂ
K L ¥
ooy | : D3NS
95
- 1
_.. IGELE
:mm..u|om¢u
gy 900 _
-— | -
] -
gavl do4

sng
W0

NELE

IELE

gdVv

Sheet 5 of 17 4,231,087

Oct. 28, 1980

U.S. Patent

SN 1vO0]T

JINDSI

IR
_ AQHSI i o] =
95" y3llguy 025 LECAR IE.
- &5

.... e -
SN ’ .ﬂ ~ B *Nmm ‘-I M 206 %_Om 01 avi ..,l_._.ZUn_
o ol 80§ 205’ || 1 8Vl
e o) ¢ 90G - ——
0y | |C 21 GVl i
p1EVL| | HOLVYVINOD :
ElLN — 14D « 158 C - (———
¢l avl: . — CP0S gqg ¥300030 7 1 gVl
i _
L TOUINOD AHOWIW DINIW o Mved || sS3uaay glgyl !
- = — - — l..... ll
e - S—————————— ¢ 9/ gol gavl 42

gavs

Sheet 6 of 17 4,231,087

Oct. 28, 1980

U.S. Patent

LINJYID
ALINVS
AN THOVIN

NOILY2I1ddV
OL

ONVS

D140 10H

Sng
J041N0D | HOMHI
INTHOYIN

NOILYDITddV |

| .
ve9-29/

¥<¢9-609

>
<
2-|
SNg SSIAQY Az

ANIHOVYIN Y
NOI LVl 1ddV Q

809-109 _. |

INIHOVIA 4

. NOILYDITddV 3180
1My 3OVIHILNG

— AN TEE e

T

¢G9

<

159
HOIH]

MO/TSL MANIWSL OIS
4O/ ISL * WOVQIOH WO 12 1 vH

o
€99
- 089 c99
: |
cv9 HOLV 1
¢ 104INQD

GIV3 "1Qv-0QV

LINDYID

d3AI303Y ANV TO4LNOD ALINVS

G1gvi-08v]

(dd1- 0941

S
099 C

Sheet 7 of 17 4,231,087

Oct. 28, 1980

U.S. Patent

21907 » LOBM
|
o 3114M 501
A — (
£L10-010Q G0L my: M3
w D SR y 1
0SY| 8300930 | ¢ygy-21qy
NV TD| $534AQY
W8 Z
- ~ o G1SINOY- 8SIWOY
g | ¢
[0-0Q | d4344N4d
sng -
81 vlvQ
| LCJ-00Q
, B) L L HWIN
90!, 2
V=01V 1 433409 {Lav-0QV
NOYd SN
e N o | SS3yaav | ¢
_4 6V-0Y
! (
201 L0l
824~
_ - - s m—— © e—
S EE . S — |1
aQv 4
QYvo8 3Y0LS WVYOOHd N1 3 / 9/

~
o r——
= e —
MJ... — 4313 1HS)
e 608~ JOVAHIIN| . 208 13A31 | 00Xy v02
4.,, VIg3s i NJO JUYNIWY3L
- 10g/131VY_0Nvg R<EN
. INOY 4
ax. e
112t 50
- T
~ W WTGE
- 4] tW_O\Hn_
-
2 e L0-00 | Sy344ng
7 g TVNOILD3Y1Ia1 8
43141 HS » AdUXY
13737 —
- axi | «MO/I3 1 viva
- x40/14 T041NOD
A\ P02 WUNIWYIL | (MW3IN V1V
. y3sn ol MEELE Viinh o
o «VINI)
. || L0-0c 508
e v08 Ildd.._I
S 218 q 4
y Oi lm@u«
GIQY - 0ay !

¢ 13ATT | vJ'H

g 9/ - - "

U.S. Patent
;
z

, 0T 1EvN

LINDYID
4055320484 NLd

231,087

J

4

Sheet 9 of 17

Oct. 28, 1980

U.S. Patent

—
4300230 -
- AO ¢1av-01Qy
a6 HOav|—-
R
1061 HOQY |5 wm%‘
6aveav s -
._qmw_ww _um ao 19
di —
086 L g —
JNINS
y 6Qv-0Qv
. ‘
* !
106 GG-¢€Q
| [LQV-0QV
LngaaINt | |
INI ALIYOIYd l!.ln
L
L~0 13AF — 10-00_|

WVHSI(
wWNOUN

833 L WNOY
wmmu

q4aav

139 0 WOH

4aav

026~

1INJYHID
d055400Hd N1d

4,231,087

I

lllll!
llllllllll.!
.ll..l..l..l.ll.l!
n
- L T LT T 0T
5 Lttt T rrrtrriT o
— b y p b p
..mM Y €d 24 z_m Q@ €0 2¢ x_m G €0 20 Lm ¥Q €0 24 x_m PQ €Q 2¢ «__m Q0 €0 24 vﬂm
7 NVY VY AL VY VY VY £d-0d
[v p I YR | v
1
900 N@,8_ 00 €00l <00l _%o_
S -
QD
o
) 2l O} 4 8
M NOY |
8 193138 XNW — goo XNIA 100
8 g | g g 9|
- _
m aaL-08dL : SIgv1-09Vl
Q LAV -0QV ddvl
a [l!l — L] _
P S A 4 —- L N
. o/ 9/
2.

4,231,087

Sheet 11 of 17

Oct. 28, 1980

(? 914 OL)

U.S. Patent

8__ HIINNOD NWOU |
WO L Q3Sdv 1378
3
J t
101} I
Ik Qv
0QY
o141 [}
- REN
x Y 41l v €3 23 I3 b
v . 1 G-¥q mm ¢d 2¢d 1id X
AVY AV
9011 UM M
£QY-00Y -7 voI-T) ¥ £av-0av—Y, | €0-00
- EOIt
x| MO £QY-0QY~T
D %) HOLV1
GOl 0’ of
21914
NOY 1 W |
19373 o’ .
- |0UM
8
a r 9 €Qv-0aV IN-1IA 10-0q
/] O g0 aav4

Sheet 12 of 17 4,231,087

Oct. 28, 1980

U.S. Patent

1| e
. L—-———!- il

.i.____l..m“
Il____'l.

s

21014 | 11914 0 oa
- I
v/ b\h\
W Leml |2
rd
L4 NO v 38041S
SOV 1INV
INOYA OL |~ T3304IS
\ 1NN
4399141
TYNYILX3
- m m --
4/4 4 d)
0 ¥ | ANV O
I $914 Ol
bic hmam
_ N ENZN 1IN
HOLY T o
¢ 8 - 8
2 AT

v 21907 Y3HILVA

——_ 112

! g LD

90 SV

| 91907 W3HILYA

0 d
1/3

D D

YD €0 20
HOLV1 1NdINC

1y

Qv '00¥ 313 L4- 00
el 94

VN

I

MO0 1D

Sheet 13 of 17 4,231,087

Oct. 28, 1980

U.S. Patent

I%II

10-0Q LQ-0Q
¥344N4Q
| 8 vy [’s
_ 2CE) _
CEEl _mm_
LIWD0S HOLY
904d 8/ 3LIM |78 |
| 10-0Q £4-0a
31907 Okt
| SSIHAAY
| Jomumou _ |
|
L]
081~

rr~— = =

9ltl

L{ ..ooJ.

Y

8 dviy

g
AHOWS I
40V Y1
b

- o, et - i L = o TR T T T — S

— ot o e R S b - ———

JIVYL H34SNVHL

Licl

_ S
4 /4
0
Y
¢ (Jv3iy
Vv

AJOWIN
30V L
ot

8IEl OI€| I
O1L T~ HOLVEVdNOD >
-— —
G1y- 0y 00€!
- —-
T T e CagvL Cers | Taows &/ "9/

U.S. Patent oOct. 28, 1980 Sheet 14 of 17 4,231,087

FlG. /5
- ' *!%K

APPLICATION
SYSTEMS

MEMORY

|
32-64K
F 64 K

APPLICATION
SYSTEMS

MEMORY

Al =]
EAIS=|

AlS=|
EAIS=0

| 0-32K

L, 32K
FTU RAM o

FTU MEMORY
* MAPPED
1,0

24K

FTU RAM

AlS5=0
EAIS=0

- 16K

FTU PROM
PROGRAM
STORE

Sheet 15 of 17

Oct. 28, 1980

U.S. Patent

4,231,087

{l;

SY344Nd
SNg
vivQ

-
069

AR
30
S31A8 MV

Ovol

S¥344N8 NENT)
T0HLNOD
TENE
089l
01907 [, ,e58,
LEASS S Thew
dIH 016
0.9l
SH344Nd 1]
S$S34AQY 68V
R —— -08v)
AJOWIN Olwiw 099
9/ 9/

¢ | SH344n8
SN@

| v.1vd

NV Y
30

| S3LAG W&

ﬁWWom

£J2-002

SEEE]1L: I RIS
T0YLNOD
Qv
0¢9)
1907 [
123138
dIHD
029!

SH444N8
SS44aay

019

AYOW3IN NOWWO?

' -08v)

4

4,231,087

Sheet 16 of 17

MATCHER CCT
ENABLE RAM 1103

ADDRESS

U.S. Patent

Oct. 28, 1980

FlG, 17

QUTPUT

M4 (M3 [M2{Mm!

F1G, 2/

OUTPUT

MATCHER CCT
CONTROL RAM 1106

ADDRESS

M4|M3]mM2|mI [SPARE ETCC

D4

D2 | D3

DI

000
0

0

0

0
0

010

L O

0

0

21O

0
0

- U.S. Patent oOct. 28, 1980 Sheet 17 of 17 4,231,087

FlG. 18

18I0 MUX SELECT

1813

DO *
ML

D1

D2

D3 "
+

MI M2 M3 M4
F16G. /9 F16. 20

ADDRESS OUTPUT ADDRESS QUTPUT
A

A3A241A0[D1 | D2 [D3|D4 3A2A10 | D1 [02 [03 [D4 |
[oooofifufrfr

|ooo
e T
0o fufr
10|| B
100 Hll
L torfol{]
o]
N

4,231,087

1
MICROPROCESSOR SUPPORT SYSTEM

FIELD OF THE INVENTION

This mmvention pertains to a microprocessor-based
application system and in particular to a microproces-
sor-based field test unit connected to the application
system which enables an engineer at the site of the
application system to access a centrally located mini-
computer equipped with sophisticated hardware and
software resources to assist in the on-site development
and testing of application software for the application
system. In addition, the microprocessor-based field test
unit enables the on-site engineer to perform hardware
testing routines to debug the application system hard-
ware.

BACKGROUND OF THE INVENTION

The availability of inexpensive microprocessors has
caused a proliferation of microprocessor-based applica-
tion systems, since the microprocessor enables the cir-
cutt designer to place a great deal of intelligence in the
application system at little cost. However, this configu-
ration has introduced a new cost into system develop-
ment, and that i1s the cost of developing and maintaining
application software. As applications become increas-
ingly more sophisticated, the software required will
become more complex and its development will become
maore costly.

To generate and debug sophisticated microprocessor
software requires good tools. The basic and invaluable
tools, such as assemblers, simulators, breadboards, etc.,
are well known and are available from microprocessor
vendors. However, vendor supplied development sys-
tems which utilize prior art tools are ill-adapted to pro-
duce nontrivial amounts of high quality microprocessor
software. Prior art microprocessor support systems
which run on a large batch process time-shared com-
puter are incapable of being directly connected to the
application microprocessor. |

The output of these systems is an object module
which serves as an input to a microprocessor simulator
or 18 used to produce a portable output, generally paper
or magnetic tape. The microprocessor simulator runs on
the batch process system and produces a crude indica-

tion of the real-time code execution by the application
microprocessor. However, the simulator is not an exact

replica of the application microprocessor and merely
approximates its operation. Additionally, the simulator
cannot reproduce the actual operating environment,
such as the real world input/output that is applied to the
apphcation system. Therefore, the simulator is only
effective 1n testing the software generated for logical
consistency and not for actual utility on an operating
application system.

Another type of microprocessor software develop-
ment mvolves the use of a “Microcomputer Based De-
velopment System” (MBDS). In this situation, the
MBDS contains a microprocessor which runs an oper-
ating system to support some small scale peripherals, a
floppy disc for mass storage, and an In Circuit Emulator
for testing the software. The disadvantages of this sys-
tem are that the data base is small due to the limitations
imposed by the floppy disc and the system also lacks
portability. Additionally, the microprocessor lacks

10

15

20

25

30

35

435

50

35

65

“computing power’ and can only run a primitive oper- °

ating system with limited file management and docu-
ment production capabilities. Furthermore, operation of

2

the application system must be terminated before the In
Circuit Emulator can be plugged into the application
system in place of the application system microproces-
sor. The Emulator will approximate the operation of
this microprocessor and debugging of the application
system entails stopping the application system operation
whenever the MBDS microprocessor must process
data. Thus, the MBDS is essentially a single user test
system for testing application systems whose operation
can be interrupted. This type of system is obviously
inapplicable to situations where the application system
operation 1s uninterruptable, such as a business commu-
nication system.

SUMMARY OF THE INVENTION

The disclosed microprocessor support system con-
sists of a set of hardware and software tools designed to
provide a total “laboratory’ environment for develop-
ing and testing application software as well as debug-
ging the application system itself. The microprocessor
support system contains a centrally located time-shared
minicompu‘er equipped with a full complement of pe-
ripherals which function as the main or operating sys-
tem. The time-shared minicomputer is provided with a
data link, which enables the operating system to com-
municate with test equipment located at the site of the
application system. This remotely located test equip-
ment consists of a field test unit which interfaces to the
time-shared minicomputer via a data link, to a local
keyboard terminal, and to the application system. Thus,
an engineer at the application system has access,
through the field test unit, to both the application sys-
tem and the time-shared minicomputer operating sys-
tem with its associated sophisticated operating system
and hardware resources to assist him in developing and
testing the application software as well as in debugging
the application system hardware.

The disclosed field test unit contains a microproces-
sor, transfer trace, matcher, elapsed time clock, and
mimic memory hardware and software debugging aids.
The field test unit can receive new or modified applica-
tion software from the operating system or can retrieve
and modify the application software from the applica-
tion system itself. Also, the application system can be
run under normal operating conditions or the field test
unit can cause the application microprocessor to exe-
cute new application software stored in the field test
unit’s common memory. This enables the engineer to
modify the application software external to the applica-
tion system, and then run the application system with
the modified software, observing the results, before
altering the application system memory. The engineer
also can run sophisticated trouble locating routines on
the application system to aid in locating hardware faults
in the application system. The application system can be
controlled and monitored either by the field test unit
on-site or over the data link by the operating system
from the central location. In either case, an engineer at
either location has access to the full complement of
sophisticated hardware and software facilities that are
available on the centrally located time-shared minicom-
puter operating system.

Therefore, the microprocessor engineer has at his
command a powerful tool in a complete on-line *‘labora-
tory” to aid him in generating sophisticated micro-
processor application software and in debugging the
application system hardware while the application sys-

4,231,087

3

tem is in its operating environment. The time-shared
minicomputer runs a sophisticated operating system and
supports a large disc for mass storage, high speed so-
phisticated peripherals as well as multiple users and
multiple field test units (FTUs) for concurrently debug-
ging a number of application systems at various loca-
tions. The time-shared minicomputer has ample “com-
puting power” to run a sophisticated operating system
with file management, documentation, editing facilities
as well as having the advantage of a large common data
base accessable by the multitude of users. The FTUs
associated with the time-shared minicomputer are por-
table and can operate without disrupting the service
provided by the application system. The disclosed mi-
croprocessor support system is therefore more efficient
than prior art microprocessor support systems which
provide neither the power of a minicomputer support
system nor an integrated ‘“laboratory” environment
directly connected to the application system when it is
in use in the field. These capabilities are all provided by
the sophisticated microprocessor-based FTU through
its remote access and interface functions.

Thus, the disclosed microprocessor support system
eliminates the disadvantages of prior art software sup-
port systems by providing access to a high level lan-
guage and other powerful software development tools,
while allowing the user to debug his programs on the
application system hardware. The disclosed support
system enables an engineer to access both the sophisti-
cated software and the peripheral devices of a main
minicomputer operating system to generate the micro-
processor application software. The disclosed micro-
processor development system also has the capability to
selectively link software modules together to produce a
complete application system software package and load
this complete software system into the application sys-
tem hardware. Furthermore, it enables programmers to:
debug the application software using an interactive
symbollic debugger, document the software through
the use of the minicomputer text formatting routines,
communicate with other users, in addition to providing
the facilities to permit an engineer to directly test, oper-
ate and monitor the application system hardware in its
actual operating condition either from the central loca-
tion or from the site of the application system.

BRIEF DESCRIPTION OF THE DRAWING

The operation of the present invention will be more
fully apparent from the following description of the
drawing, in which:

FIGS. 1 and 2 illustrate an embodiment of the inven-
tion in block diagram form;

FIGS. 3-16 are a detailed circuit diagram of a pre-
ferred embodiment of the invention wherein:

FIG. 3 is a detailed circuit diagram of the receiver
circuit,

FIGS. 4 and 5 are a detailed circuit diagram of the
Arbiter circutt,

FIG. 6 is a detailed circuit diagram of the Sanity and
Receiver circuit and the interface circuit,

FIG. 7 is a detailed circuit diagram of the FTU pro-
gram store,

FIGS. 8 and 9 are a detailed circuit diagram of the
FTU microprocessor,

FIGS. 10-12 are a detailed circuit diagram of the
Matcher circuits,

FIG. 13 is a detailed circuit diagram of the Transfer
Trace and PROM programmer circuits,

10

15

20

25

30

35

45

50

33

65

4
FIG. 14 illustrates how to connect FIGS. 10-12.
FIG. 15 illustrates the memory map of common
memory,
FIG. 16 is a detailed circuit diagram of Common and
Mimic Memory circuits;
FIGS. 17-21 show an example of how the various

RAM devices are programmed,;
FIG. 22 illustrates how to connect FIGS. 8 and 9; and
FIG. 23 illustrates how to connect FIGS. 3-8§.

GENERAL DESCRIPTION—FIGS. 1 and 2

FIGS. 1 and 2 show one embodiment of our inven-
tion in block diagram form wherein a time-shared mini-
computer 103 is connected via field test unit 206 to an
application system 210. Time-shared minicomputer 103
can receive input data from keyboard terminal 100 and-
/or computer cards 101 and/or tape 102 and/or any
other suitable computer input device. These devices are
all connected by cable 114 to time-shared minicomputer
103 wherein machine language instructions are gener-
ated in standard fashion from data received from these
various input devices under control of standard com-
puter programs. The generation of machine language
instructions is accomplished on time-shared minicom-
puter 103 in well known fashion by having a high level
language input via the editor program whose output is
processed by the compiler program whose output in
turn is processed by the assembler program to generate
relocatable machine language instructions which are
processed by a loader program to produce a final set of
machine language instructions executed by application
system 210. Since minicomputer 103 operates on a time-
shared basis, a plurality of engineers may concurrently
avail themselves of the time-shared minicomputer facili-
ties to each generate a set of machine language instruc-
tions for application system microprocessor 212. How-
ever, for convenience sake, only one set of peripheral
devices and only one data-modem/field-test-unit combi-
nation are shown. In an actual operating situation, a
plurality of field test units would be connected to time-
shared minicomputer 103 with each field test unit con-
trolling an associated application system.

TIME-SHARED MINICOMPUTER 103—FIG. 1

Time-shared minicomputer 103 can be any one of the
numerous commercially available minicomputer sys-
tems. In the disclosed embodiment, applicants em-
ployed a Digital Equipment Corporation PDP 11/70
computer, which is described in the Digital Equipment
Corporation’s “PDP 11/70 Processor Handbook”,
copyrighted in 1975. As previously mentioned, numer-
ous peripheral devices are connected to time-shared
minicomputer 103 to provide various forms of input and
output. For the sake of simplicity, emphasis will be
placed on the use of a printing keyboard terminal 100
which is employed as both an input and an output de-
vice. Thus, an engineer at the main location can com-
municate with time-shared minicomputer 103 via key-
board terminal 100.

TIME-SHARED MINICOMPUTER OPERATING
SYSTEM

Time-shared minicomputer 103 is, of course, supplied
with an operating system program as well as an associ-
ated set of editor, compiler, assembler and loader pro-
grams. The operating system program employed in the
disclosed embodiment is the commercially available
UNIX program which is described both in an article by

4,231,087

<

D. M. Ritchie and K. L. Thompson entitled “The
UNIX Time-sharing System”, which appeared in Vol-
ume 17, Number 17 of the Communications of the ACM
on pages 365-375 in July, 1974 as well as in articles by
the same authors and their associates which appeared in
Volume 57, Number 6 of the Bell System Technical
Journal on pages 1905-2209 in July, 1978. The UNIX
program provides the basic operating system on which
the editor, compiler, assembler and loader programs can
be run. The UNIX system also provides the documenta-
tion support for these programs, thereby enabling the
engineer to obtain a hard copy listing of the programs
run as well as the changes implemented therein. The
compiler program employed in the disclosed embod:-
ment is a version of the SMAL language which is de-
scribed in an article entitled “SMAL -A Structured
Macro/Assembly Language for a Microprocessor” by
C. Popper in the Digest of Papers for IEEE COMP-
CON, August, 1974, pages 147 to 15]1. The SMAL2
language combines the ease of using a high level com-
piler with the efficiency of an assembly language. The
SMAL?2 language has a rich set of control structures
(1f-Else, While, Do-While, Switch) which allow a pro-
grammer to use natural compiler notations to describe
algorithms. The SMAL2 compiler has been tailored to
be used in conjunction with the Intel Corporation 8080-
type microprocessor which microprocessor is described
in the Intel Corporation’s “8080 Microcomputer Sys-
tems User’s Manual” copyrighted in 1976. Thus, the
output of the SMAL2 compiler is then converted to
system language for use in the 8080-type microproces-
sor by standard assembler and loader programs, which
are well known in the art, {0 create an absolute ad-
dressed object module and its associated symbol table.
The object module consists of the machine language
instructions for the 8080-type microprocessor.

Thus, the engineer at keyboard terminal 100 can de-
sign software to be used on an 8080-type microproces-
sor by accessing the operating system of time-shared
minicomputer 103 and generating an object module
which can be directly loaded into an appropriate mem-
ory device for use by an 8080-type microprocessor.

When an engineer generates a suitable set of machine
language instructions on time-shared minicomputer 103,
these machine language instructions may be tested by a
simulator program the output of which may be directed
to an output device such as a printing keyboard terminal
100, printer 122, CRT 123, or any other suitable output
device connected to time-shared minicomputer 103 by
cable 124. Alternatively, the machine language instruc-
tions may be tested by having application system 210
execute these instructions.

APPLICATION MACHINE 210

Application system 210 can be any of the multitude of
microprocessor controlled systems presently found in a
business environment, such as a point of sale terminal, a
ticket system, a telephone switching sytem, etc. The one
required element in application system 210 is that it
contains a microprocessor 212. In the present disclo-
sure, application system microprocessor 212 will be
assumed to be an Intel Corporation model 8080 micro-
processor. The model 8080 microprocessor, in most
applications, requires the use of buffers to supply the
required drive current to activate the various control
leads, data and address buses. Therefore, it is also as-
sumed that application system microprocessor 212 is
buffered in the standard fashion well known in the art.

3

10

15

20

25

30

35

45

50

35

65

6

Application system microprocessor 212 1s also con-
nected to Control circuit 211 which comprises various
control and “sanity” circuits which are also referred to
in the literature variously as recovery circuits, execu-
tion control circuits, or processor fault monitoring cir-
cuits, The sanity circuit functions to prevent external
conditions and/or input control signals from disabling
the associated microprocessor by placing it in a non-
recoverable state. The sanity circuit monitors the input
signals as well as the microprocessor operation and acts
to reset or rescue the microprocessor whenever it ex-
hibits a berrant operation or whenever the input signals
would improperly disrupt normal microprocessor oper-
ation. Thus, any external test system that attempts to
monitor, and/or control, and/or debug the operation of
application system microprocessor 212 must first deal
with the sanity circuit which may be operating at cross
purposes with the external test system.

PROGRAM TRANSFER

In the disclosed embodiment, testing of application
system 210 1s accomplished by the engineer activating
time-shared minicomputer 103 through keyboard termi-
nal 100 or 204 to execute a monitor program which will
load the machine language instructions into field test
unit 206 via the data channel between time-shared mini-
computer 103 and field test unit 206. The data channel
consists of a pair of data modems 205, 130 and a bidirec-
tional data link 228, such as a telephone line, between
time-shared minicomputer 103 and field test unit 206.
Data is transferred from time-shared minicomputer 103
to a standard 300 baud data modem 130 on conductors
117 and data modem 130 forwards this data to data
modem 208 of field test unit 206 via data link 225. In
return, data modem 205 of field test unit 206 transfers
data to data modem 30 wvia data link 225 and date
modem 130 forwards this data to time-shared minicom-
puter 103 on conductors 116. The monitor program in
time-shared minicomputer 103 orders the data flow to
and from data modem 130 over connections 116 and
117. Therefore, machine language instructions gener-
ated on time-shared minicomputer 103 can be trans-
ferred to field test unit 206 via data modem 130 and data

link 225.
FIELD TEST UNIT 206

Field test unit 206 contains numerous circuits which
are all connected together by a system of data, address
and control buses. In particular, common address bus
CAB, common data bus CDB, and common control bus
CCB, connect the memory circuits—Common Memory
221 and Mimic Memory 215—to the other field test unit
circuits by way of Arbiter circuit 202. Also, the applica-
tion system control bus TCB and address and data bus
TADB, as extended to field test unit 206 by Interface
circuit 216, are routed to the various control and data
collection circuits of field test unit 206. Finally, field test
unit internal control bus FCB and address and data bus
FADB are directly connected to all field test unit cir-
cuits for control and data transfer purposes. Thus, field
test unit 206 is comprised of a number of somewhat
independent control, data storage and 1nterface circuits
which circuits operate cooperatively and communicate
with each other via the above-mentioned system of
buses.

Thus, the machine language instructions transmitted
over data link 22§ to field test unit 206 are received by
field test unit Receiver circuit 201 which converts the

4,231,087

7

incoming EIA formatted data to a format usable by
FTU microprocessor 209. If the machine language in-
structions being transmitted by time-shared minicom-
puter 103 are to be executed by FTU microprocessor
209, they will be stored in FTU Program Store 207.
This is accomplished by Arbiter 202 connecting the
FTU internal buses FADB, FCB to the common buses
CAB, CDB, CCB to thereby route the incoming data to
FTU Program Store 207 and store the data therein.
FTU microprocessor 209 can then access and execute
these machine language instructions to test application
system 210 which is connected to FTU 206 via Inter-
face Circuit 216 and Sanity and Receiver circuit 213. If
the machine language instructions transmitted by time-
shared minicomputer 103 were to be executed by appli-
cation system 210, FTU microprocessor 209 will store
the received instructions in Common Memory 221 for
use by application system 210. Using these two appro-
aches, FTU 206 can effectively test both the hardware
of application system 210 as well as the execution of
new software by application system 210.

HARDWARE MAINTENANCE

The use of FTU microprocessor 209 in field test unit
206 enables an engineer to run sophisticated hardware
testing routines on field test unit 206 to debug hardware
problems in application system 210. The data link con-
nected to time shared minicomputer 103 provides ac-
cess to a complete file of debugging routines stored 1in
time-shared minicomputer 103, any of which can be
transmitted via the data link to field test unit Program
Store 207. FTU microprocessor 209 can then execute
the debugging routines, monitoring application system
210 with Matchers and Elapsed Time Clock 208, Trans-
fer Trace 203, and Mimic Memory 215 to detect any
flaws in application system 210 hardware operation.
Alternatively, the data transmitted via data link 225 to
FTU 206 can be placed in Common Memory 221. Any
debugging routines stored in Common Memory 221 can
be accessed by application system microprocessor 212.
Thus, field test unit 206 can cause application system
microprocessor 212 to execute various exercise and
trouble detection routines stored in Common Memory
221 to thereby isolate and detect hardware faults in
application system 210.

SOFTWARE DEVELOPMENT

In somewhat analogous fashion, field test unit 206 can
be utilized to develop and test software for application
system 210. As previously mentioned, application soft-
ware can be stored in Common Memory 221. Applica-
tion system microprocessor 212 can access this software
by having Arbiter 202 connect extended application
system buses TADB, TCB to common buses CAB,
CDB, CCB thereby enabling application system 210 to
access and execute the instructions stored in Common
Memory 221. The new application software can then be
monitored by the use of hardware/software debugging
aids provided by FTU 206. Monitoring may be con-
trolled at the site of application system 210 via local
keyboard terminal 204 which is connected to field test
unit 206 via a standard EIA Serial Interface 204 or
monitoring may be controlled remotely over data link
225 by keyboard terminal 100 connected to time-shared
minicomputer 103.

10

E5

20

23

30

35

45

30

55

65

8

LABORATORY DEVELOPMENT

While all the previous discussion has been concerned
with a remotely located application system, the dis-
closed microprocessor support system is also capable of
being operated in the same location as the application
system. For exampile, for the initial stages of the labora-
tory development of an application system the disclosed
microprocessor support system can be used to generate
the software for the new system as well as debug proto-
type hardware. In this situation, the data link between
time-shared minicomputer 103 and FTU 206 would be
simply a multiwire cable, directly connecting field test
unit 206 to time-shared minicomputer 103. Also, appli-
cation system’s ROM/PROM memory would be re-
placed by a writable program store such as RAM for
continual program changes. Thus, the disclosed micro-
processor support system can be configured and oper-
ated in a number of ways depending on the needs of the
engineer.

DETAILED DESCRIPTION—FIGS. 3-23

Drawing FIGS. 3 through 23 disclose the details of
the microprocessor support system as shown in FIGS. 1
and 2, and illustrate how the various elements of our
inventive embodiment cooperate to provide the micro-
processor support system. For simplicity sake, the block
diagram of field test unit 206 (FIGS. 1 and 2) have been
labeled to show which of FIGS. 3-23 relate to each
block of circuitry in field test unit 206. Thus, while the
following description delves into the details of each
block of field test unit circuitry and its associated fig-
ures, the reader will find it helpful to refer to FIGS. 1
and 2 to obtain an overview and to keep the various
elements of the disclosed microprocessor support sys-
tem in perspective.

FIELD TEST UNIT 206

For the sake of clarity, the details of field test unit 206
will now be explored. Field test unit 206 is interposed
between time-shared minicomputer 103 and application
system 210 and serves to control the operation and
testing of application system 210 while also collecting
test data and ordering this data for transmission to time-
shared minicomputer 103 via the data link. Field test
unit 206 is comprised of a Receiver circuit 201, Arbiter
circuit 202, FTU microprocessor 209, memory 207, 221,
215, Matcher and Elapsed Time Clock circuit 208,
Transfer Trace and PROM Programmer circuit 203,
Interface circuit 216, Sanity and Receiver circuit 213.
At this point it is important to clarify the terminology
employed herein with respect to FTU microprocessor
209. By FTU microprocessor 209, we mean all the cir-
cuitry shown on FIGS. 8 and 9. That is, Central Pro-
cessing Unit 801 and all its associated clock, temporary
memory, buffer, driver, decoding and interrupt cir-
cuitry. Thus, FTU microprocessor 209 constitutes a
complete small computer and references to FTU micro-
processor 209 will typically indicate a standard “com-
puter’” operation as opposed to some minutiae of circuit
operation. These references, of course, will be to well-
known standard computer functions, the detailed de-
scription of which is beyond the scope of this applica-
tion.

To illustrate the operation of field test unit 208, it 1s
best to postulate a typical situation and then follow the
activity in the microprocessor support system. To wit,
let us assume that an engineer located at time-shared

4,231,087

9

minicomputer 103 has generated (in well-known fash-
ion) a set of control instructions for field test unit 206 to
follow. Let us further assume that these control instruc-
tions request that field test unit 206 monitor certain
address leads of application system 210 and upon the
occurrence of the following bit pattern—“1101”—be-
gin timing until that bit pattern again appears. Addi-
tional details will be supplied as we proceed through the
description of field test unit 206, but for now assume
that the machine language instructions are being trans-
mitted to field test unit 206 by time-shared minicom-
puter 103 via data link 225 and data modems 205, 130.
Data modem 103 at field test unit 206 receives the data
(machine language instructions) and supplies this data
to field test unit 206.

RECEIVER CIRCUIT 201—FIG. 3

Data from data modem 2085 is received in FTU 206 by
Receiver circuit 201. A diagram of this circuit 1s shown
in FIG. 3. EIA level signals originated by time-shared
minicomputer 103 are received from data modem 205
on lead RXIDD and level shifter 304 converts these
signals to the TTL levels used in FTU 206. The TTL
level serial data stream from level shifter 304 serves as
input to an Intel type 8251 Universal Asynchronous
Receiver/Transmitter (UART) 302 which converts the
serial data stream into 8-bit words which are placed on
FTU data bus (FADB) leads DO—D7 upon UART 302
receiving enable stgnals from data modem 208 on lead
CTS*. Since UART 302 operates bidirectionally, 8-bit
words of outgoing data are also taken from leads
DO—D7 and are converted into a serial data stream and
transmitted to data modem 205 on lead TXD via level
shifter 301. In the case of incoming data from data
modem 205, when UART 302 has assembled an 8-bit
parallel word, (a byte), it generates a high signal on
output RXRDY* which thereby places low a signal via
inverter 305 on lead LEVEL 4. This low signal on iead
LEVEL 4 1s carried by field test unit control bus FCB
to field test unit microprocessor circuit 209 where it
activates priority interrupt control 901 shown on FIG.
9. FTU microprocessor 209 and its associated FTU
Program Store 207 constitute an 8-bit parallel stored
program controller which handles all internal FTU data
movement and the interpretation of FTU user direc-
tives, Therefore, upon receiving an interrupt from
UART 302 via priority interrupt control 901 on lead
INT, CPU 801 of FTU microprocessor circuit 209 will
place a low enable signal on lead UARTIO01, thereby
causing UART 302 to place the received data on the
F'TU data bus leads D0-D7. Since UART 302 has insuf-
ficient power to drive FTU data bus FADB directly,
bidirectional buffers 303 are interposed between UART
302 and FTU data bus FADB to provide the requisite
drive current. The directionality of the buffer operation
is also controlled by control data circuit 805 of FTU
microprocessor circuit 209 via leads FI/OR* and FI-
/OW?* of FTU control bus FCB which indicate read/-
write the data bus, respectively. When each 8-bit word
of data is placed on FTU data bus leads D0-D7, CPU
801 will read the incoming data and place it in tempo-
rary storage which comprises RAMO0-7 (910-917) of
FTU microprocessor 209 shown on FIG. 9 until 256
bytes have been received. FTU microprocessor circuit
209 then performs a standard checksum operation on
the data block to assure its accuracy and moves the
block of data to one of three destinations depending on
previously input user directives. These three destina-

10

15

20

25

30

35

435

50

35

60

65

10

tions are: (1) FTU Program Store 207 consisting of
RAM memory 701 shown on FIG. 7; (2) Application
system’s RAM memory (not shown) residing in applica-
tion system 210; (3) Common Memory 221—a 3K block
of RAM memory residing in FTU 206, but accessable to
both FTU microprocessor 209 and application system
microprocessor 212.

DATA STORAGE—FTU PROGRAM STORE 207

Since it 1s assumed that the user had issued a directive
to FTU 206 indicating that incoming serial data was a
program to be executed by FTU 206, FTU micro-
processor 209 will then place the received blocks of
data in RAM memory 910-917 of FTU microprocessor
209. This s accomplished by FTU microprocessor 209
generating program address information and placing
this information on leads AD0-15. This, coupled with
memory write enable signals appearing on leads
FMEMW?* and WROT?*, will cause the data appearing
on leads D0-7 to be stored in the appropriate locations
in RAM 701. When the data transmission from time-
shared minicomputer 103 is completed, the user would
direct FTU microprocessor 209 to begin executing the
program it had received.

SANITY AND RECEIVER CIRCUIT 213,
INTERFACE CIRCUIT 216—FIG. 6

As previously mentioned, the program that was just
stored in FTU Program Store 207 contains instructions
for FTU 206 to monitor certain address leads of applica-
tion system 210. Interface circuit 216 and Sanity and
Recetver Circuit 213 function to provide that capabil-
ity.

Sanity Control and Receiver Circuit 213 and Inter-
face circuit 216 allow FTU 206 to access the application
system memory by extending the application machine
210 internal buses to the FTU Address, Data and Con-
trol buses FADB, FCB. Interface circuit 216 plugs into
a slot in application system 210 backplane, thereby con-
necting application system 210 to FTU 206 via two
fifty-wire flat cables.

When FTU 206 is not actively reading or writing the
application system memory both Interface circuit 216
and Sanity and Receiver circuit 213 buffer the applica-
tion system Address, Data (TADB) and Control (TCB)
buses to the backplane of FTU 206 thereby allowing the
FTU’s debugging tools such as the Matchers and
Elapsed Time Clock 208 and Transfer Trace 203 to
monitor them. As shown on FIG. 6, Interface circuit
216 1s comprised of a number of buffers 601-608 to
buffer the internal data bus of application system 210
with the extended application system bus TADB while
buffers 609-624 interface the internal address bus of
application system 210 with extended application sys-
tem bus TADB and FTU bus FADB while buffers
625-634 interface the control bus of application system
210 with FTU internal bus FCB and extended applica-
tion system control bus TCB. Latch 680 1s connected to
FTU data bus FADB and provides several single bit
control functions on Sanity and Receiver Circuit 213.
Bit 1 of latch 680 serves as one of two inputs to gate 641
which controls the high priority interrupt input
(IHIGH) of application microprocessor 212. The I1*
input of gate 641 is controlled by Matcher 208 as de-
scribed hereinbelow.

The Sanity Control portion of Sanity Control and
Receiver circuit 213 i1s closely tied to application system
microprocessor 212. Microprocessor 212 has associated

4,231,087

11

control circuitry 211 to make sure it is constantly run-
ning and executing proper sequence of code (i.e., the
microprocessor is “sane”). In controlling application
system microprocessor 212 it is sometimes necessary to
stop application system microprocessor 212 from exe-
cuting by causing it to. execute a HALT instruction or
place it in the HOLD mold. In these instances the San-
ity control logic provides the means of doing an orderly
shut down of the microprocessor logic and an orderly
start up when program execution begins again. When
the HALT or HOLDACK control lines (FIG. 6) from
application system 210 switch high, gates 660--662, 642,
652 provide signals necessary to disable application
system sanity circuitry (not shown) via Sanity Circuit
input SANC*. When application system microproces-
sor 212 exits the HALT or HOLD mode, the Sanity
Circuit will be reenabled. FTU microprocessor 209 can
selectively disable the application system Sanity Circuit
via bit 8 of latch 680 of Sanity Control and Receiver
Circuit 213.

Thus, when FTU microprocessor 209 reads the data
(instructions) stored in FTU Program Store 207, and
determines that the address leads of application machine
210 are to be monitored, the above-described circuitry
will provide the required interface with the application
system. The monitoring function will be provided by
the FTU Matcher circuit 208 which is a programmable
monitoring circuit described hereinbelow.

MATCHER CIRCUIT 208 (FIGS. 10-12)

Matcher circuit 208 contains four data and/or ad-
dress matchers. Each of these matchers are “bit pro-
grammable” in that ““don’t care” conditions can be spec-
ified in the data and address fields when the user 1s
setting up the match to monitor application system 210.

The user can also specify that the matchers cause a
Halt, Status, Wait or Pass action whenever conditions
for a match are met. The Halt and Status actions, when
initiated, cause a high priority interrupt to be transmit-
ted to application system 210 which responds by execut-
ing instructions stored in Common Memory 221 (as
discussed hereinbelow). The utility executive program
instructions stored in Common Memory 221 will cause
application microprocessor 212 to store the contents of
its registers in Common Memory 221 and then halt if the
Halt action was requested, otherwise, return to normal
processing if the Status action was requested. If the user
selects the Watit action, the “ready” or slow memory
lines of application microprocessor 212 1s switched low
whenever a match occurs, thereby causing application
microprocessor 212 to enter a wait mode with the ad-
dress, data and control lines remaining in a constant
state. This enables the user to trace signals with a logic
probe to isolate any fault in application system 210.
When the user selects the Pass action, a strobe pulse i1s
generated and application microprocessor 212 remains
unaffected. The strobe pulse 1s made available to the
user through a connector on the front panel of FTU
206, providing a means to trigger an external debugging
tool (such as an oscilloscope) on a software event occur-
rence in application machine 210. Additionally, one
matcher can be used to enable another matcher or any
of the peripheral debugging aids in field test unit 206.

RAM 813—FIGS. 18-20

The basic module used in the programmable bit com-
parison section of the Matcher circuit 1s a 16 word by
four bit RAM. To understand how the matchers oper-

10

15

20

25

30

35

45

50

55

65

12

ate, one must first understand how this RAM device can
function as a four-bit programmable comparator. FIG.
18 illustrates the comparison circuitry used to monitor
the first four bits of application system 210 address bus
leads TABO-TAB3 of bus TADB. The 16 word ad-
dresses of RAM 813 can be thought of as representing
one of the 16 possible unique states of the four address
lines (TABO-TAB3). The four bits in each word of the
RAM provide four independent programmable outputs
for each of the 16 unique address line states. These bit
outputs are used as the match indicators M1-M4.

FIG. 19 illustrates the contents of RAM 813 if we
desired to program Matcher 1 to trigger when applica-
tion system 210 switched address leads TABO-TAB3 to
the “1101” state. In FIG. 19 it can be seen that bit 1 (i.e.,
Matcher 1) of RAM 813 at address 1101 has been writ-
ten by field test unit microprocessor 209 via leads AD-
0-AD3 to be a logic “0”. The rest of the memory loca-
tions in RAM 813 are programmed with logic “1s”. The
field test unit microprocessor 209 then switches MUX
810 to allow application system 210 address lines (TAB-
0-TAB3) to control the address inputs (A0-A3) RAM
813. If these address lines are switched by application
system 210 to the “1101” state, the M1 output of RAM
813 would go to the logic ““1” state signifying a match.
It should be noted that bits D2 to D4 of RAM 813 can
be programmed in a similar fashion, thus providing a
total of four matched outputs (M1 to M4) using RAM
813.

Bit programmability as opposed to the above-
described address programmability of the matchers is
illustrated in FIG. 2. This diagram shows the contents
of RAM 1813 if it is desired to have Matcher 1 match on
the condition that lead TAB2 is a logic 1, thereby speci-
fying leads TABO, TABI1, and TABJ3 as “don’t care”
bits in RAM 813. Note that match 1 1s programmed to
fulfill these requirements by placing a logic “0” in every
D1 location when the situation of the address is such
that there is a logic *1” in TAB2. When MUX 810 is
switched to place leads TABO-TAB3 in control of
inputs A0-A3 of RAM 813, Matcher 1 will be activated
whenever application system 210 switches lead TAB2
to a logic 1 state.

The RAMs used to provide the matching function in
the disclosed circuit have open collector outputs, there-
fore by wiring together the D0-D3 outputs of RAMs
1001-1006 of FIG. 10, we can create four 24-bit match-
ers. Sixteen bits of each matcher are used to monitor the
16 application system 210 address lines TABO-TAB1S.
The remaining eight lines are used to monitor applica-
tion system 210 data lines TDB0-TDB7 as shown in
FIG. 10. When placed under control of field test unit
microprocessor 209 for initialization, RAMs 1001-1006
are handled as three 256-byte blocks of memory. Ad-
dress decoding logic 493 on FIG. 4 performs the block
address decoding and gates the block address with field
test unit microprocessor 209 memory write pulse on
lead FMEMW?* to form the ML* MH?*, and MD*
(FIGS. 4 and 10) matcher write signals. These signals
strobe match initialization information from the ficld
test unit data bus (leads D0-D3 of bus FADB) into
RAM:s 1001-1006.

MATCHER ACTION SELECT AND STROBE
CIRCUITS

As previously mentioned, the user may specify that
one of several actions (Halt, Status, Wait and Pass)
occur when a matcher is triggered. The user must also

4,231,087

13

specify if the match is to take place when application
system 210 1s doing a memory read as memory write or
a 1/0 read or I/0O write. In addition the user may also
specify that any or all of the matchers be disabled until
a TTL signal using edge input is applied to the match-
er's external input connector on the front panel of FTU
206. Another option available to the user i1s the match
on N’ pass although this option is associated with
Matcher 1 only. This option allows the user specified
action to occur on the N* time Matcher 1 is triggered.
All of the control for implementing the above specified
options 1s provided by the matcher action select and
strobe circuitry shown in FIG. 11. ,

The eight bit output latch 1201 on FIG. 12 is written
by FTU microprocessor 209 with the action and strobe
selection information specified by the user. If the user
selected a match on I/0 write the Q1 output of latch
1201 would be high, thus whenever an [/0O write signal
was present on the application system control lead TSI-
/OW?*, the output of the AND-OR select gates would
go high. If during this write operation the address and
data match conditions programmed into the Matcher
RAM:s the state of application system address and data
buses. The M1 matcher output signal would be high
causing the matcher flip-flop 1207 to be clocked. The
output of this flip-flop indicates that a valid match has
occurred. For the time being, let us assume that the user
has not specified N passes to occur before an action and
that the output of 16-bit counter 1215 is high. If the user
has specified a match and wait action, the match event
will cause the output of gate 1209 to go high resulting in
the output of gate 1202 going low and placing a low
signal on lead TSRDY* thus placing application system
210 in a wait state. If the user had selected the match
and halt or status action, gates 1210 and 1213 would
have switched causing output 11* to go low. This will
result in a high priority interrupt (IHIGH) being issued
to application microprocessor 212 via Sanity and Re-
ceiver Circuit 213. Application microprocessor 212 will
then begin to execute the utility system executive pro-
gram stored in Common Memory 221 as previously
described. The I1* signal will also cause flip-flop 1221
to reset, resulting in a LEVEL 2 interrupt being issued
to FI'U CPU 801 which will service this interrupt by
examining Common Memory 221 and displaying status
information stored therein by application microproces-
sor 212 to the user via keyboard terminal 204. The
matcher pass strobe (output of gate 1211) will switch on
a match regardless of the action specified by the user. In
addition to the user specified control signals, the match
strobe circuit provides match signal (AN*) which swit-
ches when any of the four matchers trigger. This signal
1s used by the matcher enable, peripheral control circuit
and mmput Latch 1216. Input Latch 1216 can be read by
FTU microprocessor 209 to determine which matchers
have triggered.

MATCHER ENABLE AND PERIPHERAL
CONTROL CIRCUITS—FIGS. 17-21

This section of Matcher 208 allows the user to ena-
ble/disable any matcher and/cr debugging aid such as
Transfer Trace 203 or Mimic Memory 215 when a
match is triggered.

Programmable control of the matcher enable and
peripheral control lines is provided using a 16-word by
4-bit RAM similar to the RAM used 1n the match com-
parison circuitry. The Intel 9410 type control circuit
RAMs differ slightly in that they have a clocked output

10

13

20

25

30

35

45

50

55

65

14

buffer register. After the address inputs to the device
have stabilized, the output register must be clocked
before new data will appear on the output of the RAM:s.
This feature allows changing of address and data on the
input of the device, without changing the state of the
output data lines. FIGS. 17 and 21 illustrate use of the
9410-type RAMs in the matcher enable and peripheral
control circuits. Matcher enable RAM 1103 can selec-
tively enable any or all of the matchers, while periph-
eral control RAM 1106 controls the enable signal to
Mimic Memory 2185, Transfer Trace 1300 and Elapsed
Time Clock 1107 peripherals.

As in the case of the match RAMs, FTU micro-
processor 209 treats the two control RAMs as a 256
byte block of memory whose address select lead CW1*
is decoded by address decoding logic 493 (FIG. 4). To
initialize the control circuit RAMs, MUX 1101 is
switched to place FTU address lines (ADO-AD3) of
FTU address and data bus FADB on the inputs of latch
1102. The control RAM select signal from the 1/0-
Arbiter board appears on lead CW1* and clocks FTU
address leads ADO-AD3 into latch 1102 which controls
the address inputs of the RAMs. The FTU write strobe
signal appears on lead WROT®* and will then cause
information on the FTU data bus leads D0-D7 to be
written into the control RAMs. The last address written
by FTU microprocessor 209 is address zero (AD-
0-AD3=0000"). When the SELECT input of MUX
1101 input 1s switched to monitor application system
210, the data in address zero of the control RAMs will
be loaded into the RAM’s output register and govern
the initial enable conditions of the matchers and periph-
eral control signals via leads MMC, TFTC, ETCC.

Subsequent enabling of the matcher and peripheral
control lines is dependent on user specified action to
occur when a matcher is triggered. These user specified
actions are encoded in the data written into the control
RAMSs by FTU microprocessor 209. When a matcher is
triggered, the match outputs (M1-M4) will be loaded
into latch 1102 by the leading edge of the any match
strobe appearing on lead AM* which enables gate 1105
and causes the state of M1-M4 to be clocked into Latch
1102. Therefore, new address is presented to the control
RAMs 1103-1106. The resultant new enable word will
not control the matcher and peripheral enable lines until
it is clocked into the output latch of the RAMSs by the
trailing edge of the any match strobe signal appearing
on lead AM* . The new control word will then govern
matcher and peripheral enable controls until next
matcher is triggered.

The matcher enable control provided by RAM 1103
allows the user to specify which matchers should be
enabled after a specific match occurs. For example,
FIG. 17 shows the data which would be programmed
into RAM 1103 by FTU microprocessor 209 for the
case where Matcher M1 1s initially enabled and Matcher
M2 is to be enabled if Matcher M1 triggers. The data in
address zero of the enable RAM 1103 will determine the
initial enable conditions of the matchers as previously
described. At address zero of RAM 1106, the E1 outpul
will be low, allowing the open collector output of gate
1108 to go high if the conditions from an M1 match are
met. Also, the E2-E4 outputs of RAM 1106 will be
high, disabling Matchers M2-M4 via gates 1109-1111.
When Matcher M1 triggers, a 0001 will be loaded into
Latch 1102 and on the trailing edge of the any match
strobe (AM?*) the enable word at address 0001 in RAM
1103 will control Matchers M1-M4 via gates 2208-1111.

4,231,087

15

In this example, output E1 of RAM 1106 would be low,
enabling Matcher M2, while Matchers M1, M3, and M4
would be disabled. If the user had specified a match on
Nth pass, the FTU microprocessor 209 would load
16-bit counter 1215 with a count of N-1, causing its
output to go low inhibiting gates 1209-1211. In addition
to loading Latch 1201 with the desired match qualifiers
and actions, the FTU microprocessor 209 would set bit
Q8 of Latch 1201, enabling 16-bit counter 1215. When
the match address, data and required qualifier condi-
tions are met, the match flip-flop 1207 will toggle, and
counter 1215 will decrement its count by one. When
match N-1 occurs, counter 1215 will be clocked to a
count of zero, causing its output to go high and remov-
ing the inhibit to gates 1209-1211. On the Nth incidence
of the match conditions, the selected action will occur.

When the external enable qualifier is selected, the
matcher action select and required qualifiers are pro-
grammed as described above. However, when Latch
1201 is loaded by the FTU processor, bit Q7 1s set to a
logic “1” (FIG. 3). During the loading phase of opera-
tion, the select output of Latch 1217 is high forcing the
Q output of flip-flop 1218 to be high. The output of gate
1208 will be low inhibiting the selected matcher (in this
case M1). When the SELECT output of latch 1217 1s
switched high and the matchers begin to monitor the
application matcher M1 will be inhibited until a TTL
level rising edge clock pulse is received on the external
trigger input. The rising edge clock pulse will cause
flip-flop 1218 to clock and the output of gate 1208 to
release the inhibit from M1. Matcher M1 operation will
then proceed as previously described.

ELAPSED TIME CLOCK 1107—FIG. 11

The use of the peripheral control signals can be illus-
trated by describing their control of Elapsed Time
Clock 1107. This feature of FTU 206 allows the user to
measure the time it takes application system 210 to exe-
cute a program, The feature is invoked by setting one
matcher to trigger and start Elapsed Time Clock 1107 at
the beginning of the program segment and another
matcher to trigger at the end of the segment of code and
stop Elapsed Time Clock 1107. By specifying that a
matcher will enable Elapsed Time Clock 1107, a user
will cause a logic “1” to be stored in bit D4 of the
matchers peripheral enable word. For example, FIG. 21
shows the contents of Matcher Control RAM 1103
where Matcher M1 has been programmed to start
Elapsed Time Clock 1101. When this matcher triggers
and its peripheral enable word is loaded into the output
register of RAM 1103 (as previously described) it will
switch the enable input of Elapsed Time Clock 1107 to
a logic ““1” state, allowing the counter to count. The
matcher set to stop Elapsed Time Clock 1107 will have
a logic *0” stored in bit D3 of its control word. When
this second matcher triggers the D3 output of RAM
1103 will go to a logic *“0” and stop the Elapsed Time
Clock 1107. FTU microprocessor 209 can then read the
contents of the Elapsed Time Clock 1107 and display
this information to the user.

The remaining two peripheral control signals from
RAM 1103, MMC and TFTC, are used to control
Mimic Memory 215 and Transfer Trace 203 debugging
aids, respectively. The purpose and control of Mimic
Memory 215 were described earlier in the text. The
Transfer Trace debugging aid supplies the user with a
history of program branch addresses. Its operation ts
described below.

10

15

20

25

30

35

435

50

33

65

16
TRANSFER TRACE

The Transfer Trace 203 records a “from”, “to” his-
tory of the last 128 program branches executed by the
application microprocessor. The trace can be turned
ON and OFF by matcher 208 via the TFTL control
line. Matcher 208 control of the Transfer Trace paral-
lels that of the ETC, previously described. The combi-
nation of Matcher 208 control and dual port access to
the trace memories allows the Transfer trace 203 to be
used without disrupting the service provided applica-
tion machine 210.

The Transfer Trace Circuit 203 consists of two 256-
word by 8-bit trace memories (1315 and 1316, FIG. 13),
a memory address counter 1318, comparator 1310 and
various control logic comprised of gates 1311-1314,
1317, 1320-1321.

Transfer Trace 203 is enabled when the Transfer
Trace control line TFTC is switched to a logic 1" state
by Matcher 208. During subsequent application ma-
chine instruction fetch cycles, the instruction address or
the TADB will be compared to the address in transfer
instruction counter 1318. If the two compare, the appli-
cation microprocessor 212 has not executed a branch
instruction. Transfer instruction counter 1318 will then
be written into Trace Memory 1315 and 1316 to main-
tain an up-to-date “from address” in the memory. Fol-
lowing this transfer, instruction counter 1318 is incre-
mented to the address of the next sequential instruction
in application machine 210 and the comparison process
is repeated during subsequent application machine 210
instruction fetch cycles.

If the address on the TADB and the transfer instruc-
tion counter 1318 do not compare during an instruction
fetch cycle, the application microprocessor 209 has
executed a branch instruction. When thts event occurs,
memory address counter 1314 is incremented to save
the “from address” in the trace memory and the address
on the TADB is jammed into the transfer instruction
counter 1318. The contents of the transfer instruction
counter are then written into the trace memories 1315
and 1316. The trace memories 1315 and 1316 will now
contain the address the application microprocessor 212
branched “from” and the address is branched *to”
stored in consecutive trace memory locations. Next,
memory address counter 1314 is incremented to the
address of the next sequential instruction and the com-
parison process is completed. |

Transfer trace 203 will continue to write both *'from
addresses” and “to addresses™ into the trace memories
1315 and 1316 in a wrap-around mode, until Transfer
Trace 203 is disabled by Matcher 208. When Transfer
Trace 203 is disabled, FTU processor 209 can read trace
memories 1315 and 1316 via MUX 1321 on flip-flop
1317. FTU microprocessor 209 will format the “from”,
to “addresses and display them to the user via local
keyboard terminal 204.

DATA STORAGE—-COMMON MEMORY
221—FIG. 16

While we have just described how field test unit 206
could monitor the activity of application machine 210, a
far more powerful tool is the use of field test unit 206 to
cause application microprocessor 212 to execute pro-
gram instructions stored in Common Memory 221. This
is accomplished by employing time-shared microcom-
puter 103 in well-known fashion to generate program
instructions for application microprocessor 212. This

4,231,087

17

data 1s transmitted from time-shared minicomputer 103
to field test unit 206 as described above. However, this
data would be stored in Common Memory 221.

Common Memory 221 (FIG. 16) contains a 3 K byte
block of RAM 100 which resides in FTU 206, but is
accessable to both FTU 206 and application system
microprocessor 212. The physical memory resides in
FTU 206, however access to the memory is controlled
by an asynchronous Arbiter circuit 500. Arbiter circuit
500 1s a specific application of the general purpose
“Asynchronous Arbiter Module™ presented by R. C.
Pearce, J. A. Field, W. D. Little on p. 931-2 of the
September 1975 issue of the IEEE Transactions on
Computers.

Common Memory 221 occupies the 60 to 63 K ad-
dress space of application system microprocessor 212.
This memory space i1s not normally used by the applica-
tion program of application system 210 and is equipped
only when FTU 206 is connected to application system
210.

MEMORY MAP—FIG. 15

Both application system microprocessor 212 and
FTU microprocessor 209 have a maximum direct ad-
dressing capability of 64 K bytes of memory. Since
FTU 206 is required to read and write all of the applica-
tion system memory as well as its own, it was necessary
to develop an extended memory addressing scheme for
FTU 206. This scheme uses an extended address bit
(EA15) and the high address bit (AD15) of FTU 206 to
divide the FTU memory space into three 32 K byte
blocks which provides a total addressing capacity of 96
K bytes as shown in FIG. 15. The 0-32 K (AD15-0,
EA15=0) address space of FTU microprocessor 209
contains all of the FTU program store, Random Access
Memory and memory mapped 1/0 addresses. When
FTU microprocessor 209 address above 32 K
(AD15=1) the memory accessed will be that of the
application system. Addresses in the 32 K;14 64 K
(AD15=1, EA15=0) block of FTU memory are
mapped into the 0-32 K address space of application
system 210. Addresses in the 64 K-96 K (AD15=1,
EA15=1) block of FTU memory are mapped into the
application system 32-65 K address space. To access the
application system memory, FTU 206 issues a hold
request by setting bit 3 of Latch 680. A hold knowledge
signal (HOLDACK) from application system 210 will
then indicate that the system has tri-stated its buses and
FTU 206 may take control of them. HOLDACK will
cause the output of gate 263 to go low resulting in buff-
ers 609-624 being enabled in the direction allowing
FTU Address Bus leads AD0-AD14 and EA15 to con-
trol the application system address bus. During the
reading or writing of application system memory, the
extended application system data bus TDBO0-7 is con-
nected to FTU data bus FADB as will be explained
later in the text. Gates 671-672 will enable the FTU
read and write strobes (FMEMR* , FMEMW*) to
control the application system read and write strobe
leads whenever FTU micprocessor 209 reads or writes
memory above its 32K address space (AD15=1). Since
in this particular situation, application system 210 has
memory mapped 1/0, FTU 206 is capable of reading
and writing [/O ports in the same manner in which it
writes application system Memory.

The direct memory access approach used in reading
and writing the application system memory enables
FTU 206 to read and write data while application sys-

10

E5

20

25

30

35

45

50

55

65

18

tem 210 is running. This memory accessing can be done
without disrupting the service provided by application
system 210.

In addition to data being transmitted from time-
shared minicomputer 103 to application system 210,
FTU 206 can copy data from application system 210
and send it to the time-shared minicomputer 103. This
enbles complete verification of a users ROM program
store at site of the installation.

Returning to the present situation, after FTU micro-
processor 209 loads a program transmitted from time-
shared minicomputer 103 into Common Memory 221 1t
causes application system microprocessor 212 to exe-
cute the program by exerting the high priority interrupt
(IHIGH) via bit 1 of latch 680 (FIG. 6) on Sanity and
Receiver Circuit 213. Bit 1 of latch 680 activates gate
641 thereby placing an interrupt signal on the high
priority interrupt lead IHIGH of application system
210. This interrupt signal will cause application system
microprocessor 212 to cease its routine processing. The
IHIGH interrupt servicing routine of application sys-
tem microprocessor 212 will cause it to begin executing
at some preassigned memory location, such as 60K,
which memory location 1s in Common Memory 221.
Thus, the interrupt causes application system micro-
processor 212 to jump to a new segment of program as
supplied to Common Memory 221 by time-shared mini-
computer 103.

While application system 210 is executing a program
it can communicate with FTU 206 by setting Flags in
Common Memory 221. As previously mentioned, both
microprocessors 209, 212 are capable of reading and
writing Common Memory 221 as synchronous Arbiter
500 allocates control on Common Memory 221 on a
first-come/first-served basis. If one microprocessor is in
control of Common Memory 221 and the second micro-
processor attempts to access it, Arbiter 500 will cause
the second microprocessor to enter a wait state (see
Intel 8080 System User’'s Manual) until the first micro-
processor is finished its access of Common Memory
221. Common Memory 221 1s allocated by Arbiter 500
to a microprocessor only for the current read or write
cycle of the microprocessor. Therefore, the second
microprocessor will wait only a short period of time to
gain control of Common Memory 221.

MIMIC MEMORY 215—FIG. 16

Asynchronous Arbiter 202 provides a similar type of
multiprocessor access to a 4 K byte block of RAM used
as a Mimic Memory 215. While Common Memory 221
always resides in the 60—63 K address space of applica-
tion system 210, the specified address of Mimic Memory
215 can be changed by user request. The only require-
ment being that the specified address be on a 4 K boun-
dry of application system 210 address space. Mimic
Memory 215 can be read or written (initialize or moni-
tored) by FTU microprocessor 209; however, it func-
tions as a write only memory in reference to application
system microprocessor 212. Once initialized to a 4 K
boundry and enabled, any data written to a mimicked 4
K block of application system memory will also be
written into Mimic Memory 215. Subsequent disabling
of Mimic Memory 215 at some point in the application
system program enables the user to capture the state of
a 4 K block of the application system memory. The user
may examine the contents of this 4 K block on local
terminal 204 or transmit its contents to time-shared

minicomputer 103 for further analysis.

4,231,087

19

ARBITER AND ADDRESS DECODING
CIRCUIT 202 (FIGS. 4-5)

FIGS. 4—5 shows the Arbiter and address decoding
circuit 202 used to control Common Memory 221 and
Mimic Memory 215 of FTU 206. If application system
microprocessor 212 attempts to read or write Common
Memory 221 (60-63K), it will activate the appropriate
ones of address leads of TABO—TAB1S and these acti-
vated leads will be recognized by address decoder 501
on FIG. 5. Address decoder 501 generates a high output
signal indicating that application system 210 is attempt-
ing to access Common Memory 221 and this signal in
combination with a memory read/write signal on lead
TSMEMR/TSMEMW activates gate $12/511 which in
turn activates gate 513 causing the application system
memory request lead (TSMREQ*) to go low, thereby
requesting control of Common Memory 221. This re-
quest is received by asynchronous Arbiter circuit 500
which determines whether application system 210 or
FTU 206 will be enabled to access Common Memory
221. The actual embodiment of Arbiter 500 comprises
gates 520-530 and differs from the Pierce et al Arbiter
referred to above essentially only in the selection of
logic gates employed. Assuming that FTU 206 is nei-
ther requesting nor in control of Common Memory 221,
the TSMREQ?* signal will force the output of gate 521
to go high, resulting in the output of gate 525 going high
thereby causing the application system control
(TSCNTL*) output of gate 528 to go low. The presence
of the TSCNTL?* signal indicates that application sys-
tem 210 currently has been given control of Common
Memory 221. Also, the high signal on lead TSCNTL,
coupled with the previously discussed high output sig-
nal from address decoder 501, activates gate 03 which
turns on gate 504, causing the board select lead BS1* to
go low thereby enabling the 3K Common Memory 221.
If at this time FTU 206 were to attempt to access Com-
mon Memory 221, it would place the address of the
Common Memory 221 on address leads AD0-ADA15,
F24K, and EA1S, thereby enabling address decoder 514
which detects the memory access request on the address
leads. The output of address decoder 514 coupled with
an FTU memory read/write request on lead
FMEMR*/FMEMW?#* However, application system
210 has control of Common Memory 221 and Arbiter
500 blocks FTU 206 from accessing Common Memory
221 by disabling gate 528 thereby preventing FTU 206
from receiving a control enable signal on lead
FCNTL*. Instead, the low signal on lead FMREQ?*
results in the FTU Ready (FRDY*) output of gate 529
going low, which causes FTU microprocessor 209 to
enter a wait state (see Intel 8080 System User’s Manual).
When application system 210 completes the read or
write to Common Memory 221, the TSMREQ®* signal
would go high allowing the output of gate 522 to go
high resulting in the FTU control (FCNTL?) output of
gate 527 going low. The presence of the FCNTL* sig-
nal indicates that FTU 206 is in control of Common
Memory 221. Additionally, the low signal on lead
FCNTL"* is inverted by gate 502 and coupled with the
address signal on lead F24K* activates gate 505 which
turns on gate 504 causing the board select lead BS1* to
go low thereby enabling the 3K Common Memory 221.
It can be easily seen from this example that if the situa-
tion were reversed and FTU 206 had control of the
memory (FCNTL* were low) after which application
system 210 attempted to access Common Memory 221,

10

15

20

25

30

33

43

50

35

63

20

the application system ready signal (lead TSRDY* gate
526) would switch low causing application system 210
to enter a wait state.

Arbiter control of 4K Mimic Memory 215 differs
slightly from that of Common Memory 221 in that the
address select logic of Mimic Memory 215 1s program-
mable. FTU microprocessor 209 writes the starting
address of the 4K block to be mimicked into the upper
4 bits of latch 531. When Mimic Memory 215 is enabled
by Matchers 208 the Mimic Memory Control lead
(MMC) will go high enabling the comparator 3532.
Should application system microprocessor 212 address
the 4K block of memory being mimicked, the Mimic
Memory Select (MMS) output of comparator 532 will
go high. If application system microprocessor 212 exe-
cutes a write to memory at this address, the TSMREQ*
output of gate 513 will go low requesting control of the
memory. When .Arbiter 500 grants control and lead
TSCNTL* switches low, granting memory control to
application system 210, the Board Select Two (BS2*)
output of gate 508 will go low enabling the 4K byte
Mimic Memory 215. Thus, in addition to writing 1ts
own memory, application system microprocessor 212
will write data into Mimic Memory 215.

The variability of the address of Mimic Memory 2135
with respect to the address space of application system
210 requires that FTU 206 access Mimic Memory 215 in
a slightly different manner than it does Common Mem-
ory 221. FTU 206 considers the 4K of Mimic Memory
215 as part of its own memory, residing in the 24K to
28K block of memory mapped I/0O address space.
When FTU 206 accesses an address in this block the
signal on lead F24K* will go low causing an FMREQ?*
signal to be generated by gate 517 as previously de-
scribed. Subsequent granting of memory control to
FTU 206 is also described above.

Once FTU microprocessor 209 or application system
microprocessor 212 is placed in control of Common
Memory 221 or Mimic Memory 215 by Arbiter 500, the
multiplexing circuitry shown in FIG. 4 will connect the
selected microprocessor address data and control lines
to the memory. When application system 210 1s granted
control of Common 221 or Mimic 215 memory the
TSCNTL* lead will be low, allowing the tri-state buffer
400 to connect application system 210, address and
control leads TABO-TAB11, TSMEMR, TSMEMW to
the memory boards. The BS1* or BS2* lead will enable
one of the two memory boards depending on whether
Common Memory 221 or Mimic Memory 215 1s being
accessed. If FTU 206 were granted control of the mem-
ory, buffer 499 would be enabled by the FCNTL* sig-
nal, placing FTU 206 in control of the memory and
connecting FTU, address and control leads ADO-11,
FMEMR*, FMRMW*,

The common Memory data bus (CDB) control cir-
cuitry must not only allow data flow between applica-
tion system microprocessor 212 and the memortes and
FTU microprocessor 209 and the memories, it must also
provide a bidirectional data path between application
system data bus (TADB) and the FTU data bus
(FADB) for FTU access of the application system
memory. As previously described, when FTU 206 ac-
cesses application system 210 memory, the HOLDACK
signal for application system 210 is high and the highest
order FTU address bus signal is high (AD15=1). The
buffer circuitry on FIG. 4 responds to these control
signals by activating gates 485-487 which, in conjunc-
tion with an FTU memory read signal on lead

4,231,087

21

FMEMR?, turns on gate 484. Gate 484 on enables buff-
ers 450-438 thereby connecting FTU data bus leads
DO-D7 to common data bus leads CD0-CD7. Addi-
tionally, gate 484, as in conjunction with the control
signal on lead FCNTL?, turns on gate 481 which turns
on gate 480 thereby enabling buffers 440-448 which
connect application system data bus leads TDB0-TDB7?
to common data bus leads CD0-CD7. Thus, the appli-
cation system data bus is connected to the FTU data bus
via buffers 440-448 and 450-458 and FTU 206 can di-
rectly read the application system data bus. If FTU 206
1s writing the application system memory, control lead
FMEMW?* would be active and buffers 460-8, 470-8
would be enabled, placing the data from bus FADB
onto bus TADB. If FTU 206 is performing a read of the
application system memory, buffers 440-8 and 450-8
will be enabled completing a data path from bus TADB
to bus FADB.

Thus, through Arbiter 500 and its associated memory
control logic, FTU 206 can load a program segment
sent from time shared minicomputer 103 into Common
Memory 221 where it can be executed by application
system 210. Execution of the program segment stored in
Common Memory 221 is initiated through use of the
IHIGH interrupt as previously described. When FTU
206 activates this interrupt via control latch 600 on the
Sanity and Receiver circuit 213, execution of the pro-
gram segment stored in Common Memory 221 is ran-
dom with respect to the rest of the application system’s
software. That is, no matter what point application
system 210 1s in 1ts resident program, when it gets the
interrupt it will branch immediately to Common Mem-
ory 221 and begin executing the program stored there.

The code segment stored in Common Memory 221
may be integrated into the application system’s software
package through use of the Matcher circuit 208 pro-
vided in the FTU. Matcher circuit 208 enables the user
to designate a specific address in the application sys-
tem’s program at which the IHIGH interrupt will be
exerted causing the application system to branch to its
code stored in Common Memory 221. Upon comple-
tion, the Common Memory resident code may branch
to any point in the application system’s program. This
mechanism enables the user to temporarily insert new
code or replace code presently in the application sys-
tem’s ROM memory. Through this approach program
patches may be exercised on an application system 210
in the field before they are implemented as a permanent
system software change.

In addition to being used to provide the aforemen-
tioned patching capability, the common memory fea-
ture of FTU 206 1s used to allow application system 210
access to a utility executive program which it executes
under control of the FTU Matcher circuit 208.

FTU FROM PROGRAMMER 1301

FI'U PROM Programmer 1301 provides the capabil-
ity to program PROMs with data downloaded from
time-shared minicomputer 103, or entered manually
from FTU keyboard terminal 204.

FTU microprocessor 209, acting as the controller,
buffers the source data, blank checks the object PROM,
performs the programming operation, verifies the pro-
grammed device, and issues appropriate messages con-
cerning status of the procedures.

The diagram in FIG. 13 illustrates the actual hard-
ware involved. Although the example shown is in-

10

15

20

235

30

35

45

50

>3

65

22

tended for programming 2708 type PROMs, the circuit
may be modified to program a variety of devices.

Once source data has been received, and its accuracy
verified by FTU microprocessor 209, the device to be
programmed is blank checked to assure that an unpro-
grammed PROM has been inserted in programming
socket 1333. When the blank check is complete, the
program cycle will begin.

A single program cycle consists of a write operation
to enter data in write latch 1331. The microprocessor
write strobe simultaneously initiates a timing sequence
in control logic 1330 which sets hardware busy flag for
FTU microprocessor 209 to monitor, and begins the
actual programming operation for that byte of data.
Write latch 1331 retains the data for the duration of a
program sequence. When the sequence is complete, the
busy flag is cleared. FTU microprocessor 209 again
writes a byte of data, initiating the next program se-
quence. This process is repeated until the programming
requirements for the particular PROM being used are
satisfied.

Upon completion of the entire programming cycle,
FTU microprocessor 209 will switch the hardware to
the read mode by enabling read buffer 1332 and verify
every PROM location against the original source data.
If the PROM verifies, the next block of data is automati-
cally requested from the source. If the verification fails,
the hardware will immediately recycle to allow the user
to program another PROM with the same source data.

The devices from which programmer 1301 is con-
structed are noncritical. That is to say that most of the
integrated circuits may be replaced by functionally
similar devices. Write latch 1331 may be any device or
devices which provide the ability to retain 8 bits of data
until cleared or rewrnitten. The outputs of these devices
must be capable of being disabled (three-state) when
necessary. For the programmer circuit illustrated in
FIG. 13, an Intel Corp. 8212 was used for this purpose.
Read buffer 1332 needs only the ability to disable its
outputs, and any general purpose three-state device
such as the Intel Corp. 8212 or a Texas Instrument
741.5S244 may be used.

The address counter must provide a sufficient num-
ber of outputs to match the number of address leads
required for a given PROM. It need not be synchro-
nous, but must be clearable, or loadable to all zeroes.

Other timing and control logic must be tailored to the
PROMs being programmed. The “handshaking™ ap-
proach which provides the busy flag for the micro-
processor, mimimizes the amount of complex timing
and sequencing logic required to complete the program-
mer.

FTU PROCESSOR CIRCUIT—FIGS. 8§ AND 9

As previously mentioned FTU 206 is controlled by an
8-bit stored program controller. This controller is built
around the Intel type 8080 microprocessor 209, and its
associated Intel type 8224 clock 802, Intel 8238 bus
controller 805 and Intel 8214 interrupt controller, as
illustrated in FIGS. 8 and 9. (Reference Intel 8080 Mi-
crocomputer Systems User’s Manual). The micro-
processor uses 16 Intel 2708 PROMS to provide its 16K
byte to program store. Eight Intel type 2101-1 RAMS
and sixteen type 9130 RAMS provide the microproces-
sor with 9K of buffer and variable storage memory. The
controller 1s implemented on two circuit packs. The
first circuit pack contains the Intel 8080 microprocessor
801, eight type 2708 PROMS 920-927 (8K of PROM),

4,231,087

23

eight type 2101-1 RAMS 910-917 (1K of RAM) and a
serial EIA Interface 807-810. The block memory ad-
dress decoding for the PROM and RAM is performed
by address decoding logic 493 on FIG. 4. The Disable
RAM (DISRAM) and Enable ROM (ENROM) signals
are gated to place the 8K of ROM from 0 to 8K in FTU
Memory Space (see FTU Memory Map FIG. 15) and
the 1K of RAM in the FTU 31-32K address space. The
second circuit pack used to implement the controller is
the FTU Program Store board 207. FIG. 7 is a block
diagram of the Program Store board, which contains
the remaining 8K of ROM and 8K of RAM used by the
controller. All address decoding for the 8K of PROM
and 8K of RAM is performed on the board by the ad-
dress decoder. The PROM occupies the 8 to 16K block
of FTU memory and the RAM occupies the 16-24K
block (see FTU Memory Map FIG. 15).

Directives input to the FTU via the local keyboard
terminal 204 will cause the local terminal interface 404
to interrupt FTU microprocessor 209. FTU micro-
processor 209 will compare the user input to its set of
commands if the input is a member of the set, FTU 206
will proceed to perform the directive. If the input is not
a member of the command set FTU 206 will send an
error message to the user. For example, if the user de-
sired to read a location in memory of application system
210, he would enter the Debug directive “DB”. FTU
206 would respond with a “DB$” prompt and wait for
the use to input the symbolic label or absolute address of
the memory location. If the user inputs a symbolic
name, FTU microprocessor 209 will search its local
symbol table for the label entry and its absolute address.
If the label is not found, FTU microprocessor 209 will
transmit the symbol label to time-shared minicomputer
103 (via the data link 225) and request that time-shared
minicomputer 103 supply the absolute value. When the
absolute address of the memory location is found, FTU
206 will begin executing a program to read application
system 210 memory. First, application system 210 will
be placed in the HOLD mode as previously described,
allowing the FTU 206 to take command of its address,
data and control buses TADB, TCB. The FTU will
read the specified memory location, after which it will
remove its Hold request to application system 210. FTU
microprocessor 209 will then display to the user the
absolute address of the memory location and its con-
tents.

We claim:

1. A processor support system for providing mainte-
nance and software development for an application
system which is controlled by an application processor
via data, address, and control buses, wherein said pro-
CESSOr support system COmprises:

computer means for running an operating system to

generate and store software for said application
system;
field test unit means connected between saild com-
puter means and said application system for inter-
facing said computer means with said application
system, wherein said field test unit means com-
prises:
program store means for storing control instructions
generated by said computer means for regulating
the operation of said field test unit means,

processor means for controlling the operation of said
application system;

10

15

20

25

30

35

45

30

35

65

24

memory means for storing said software generated by
said computer means and written in saild memory
means by said computer means;

interface means responsive to said processor means

and directly connectable to said application system
data, address, and control buses for connecting said
application processor to said memory means;

field test unit bus means connected to said program

store means and to said processor means for apply-
ing said control instructions to said processor
means; and

wherein said processor means is responsive to said

control instructions for directing said application
processor via said interface means to execute said
software stored in said memory means.

2. The invention of claim 1 wherein said field test unit
means includes:

terminal means for providing an engineer with data

access to sald processor support system,;

access means for transmitting input data from said

terminal means on said data link to said computer
means; and

wherein said computer means are responsive to said

input data to generate application software for said
application system.

3. The invention of claim 1 wherein said interface
means includes:

supervision means responsive to said processor means

and connected to said application system data,
address, and control bus for monitoring and driv-
ing said application system data, address, and con-
trol bus.

4. The invention of claim 3 wherein said supervision
means includes transfer trace means connected to said
interface means and responsive to signals appearing on
said application system data, address, and control bus
for storing data representative of the program branches
taken by said application processor in the execution of
said application software.

5. The invention of claim 3 wherein said supervision
means includes:

matcher means connected to said field test unit data,

address, and control bus means and responsive to
programming signals applied to said field test unit
data, address, and control bus means by said pro-
cessor means for storing said programming signals;
and

wherein said matcher means are connected to said

interface means and are responsive to signals ap-
pearing on said application system data bus for
generating a match indication signal whenever said
signals appearing on said application system data
are identical to said programming signals stored in
sald matcher means.

6. The invention of claim S wherein said matcher
means includes Nth pass counter means responsive to
said programming signals for storing a count indication;

wherein said matcher means decrements said count

indication stored in said Nth pass counter means
whenever said signals appearing on said applica-
tion system data bus are identical to said program-
ming signals stored in said matcher means; and
wherein said matcher means generates an Nth pass
match indication signal when said count indication
stored in said Nth pass counter means equals zero.

7. The invention of claim 6 wherein said supervision

means includes:

4,231,087

25

elapsed time clock means responsive to said match
indication signal for indicating the amount of real

time elapsed between subsequent appearances of

said match indication signal.

8. The invention of claim 3 wherein said supervision
means includes:

buffer means connected to said application system

data, address, and control buses for transmitting all
signals appearing on said application system data,
address, and control buses to said access means;
and

wherein said access means is additionally responsive

to said buffer means for transmitting said signals
appearing on said application system data, address,
and control buses to said computer means via said
data link for storage.

9. The invention of claim 1 wherein said computer
means includes a time-shared computer connectable to a
plurality of field test unit means.

10. The invention of claim 9 wherein said computer
means is remotely located from said application system
and said field test unit means; and wherein said access
means comprises a data modem.

11. A processor support system for providing hard-
ware debugging and software development capabilities
for an application system which contains both a mem-
ory device and an application processor which proces-
sor drives data, address, and control buses of said appli-
cation system, wherein said microprocessor support
system COmprises:

computer means responsive to control signals input

from a user terminal for running an operating sys-
tem to generate control instructions and to manipu-
late data;

field test unit means connected to said computer

means by a data link and directly connected to said

application system for ordering the flow of said

data between said cdmputer means and said appli-

cation system; |
wherein said field test unit means includes:

field test unit data, address, and control bus means for

interconnecting the various circuits of said field
test unit means;

program store means connected to said field test unit

data, address, and control bus means for storing
said control instructions generated by said com-
puter means to regulate the operation of said field
test unit means:

data receiver means connected to both said data link

and said field test unit data, address, and control
bus means, wherein said data receiver means are
responsive to said computer means transmitting
said control instructions to said field test unit means
via said data link for writing said control instruc-
tions into said program store means via said field
test unit data, address, and control bus means;
processor means connected to said field test unit data,
address, and control bus means and responsive to
said control instructions stored in said program

10

15

20

25

30

35

45

50

55

65

26

store means for driving said field test unit data,
address, and control bus means;

memory means connected to said field test unit data,

address, and control bus means for storing data
generated by said application system;

interface means connected to said field test unit data,

address, and control bus means and directly con-
nectable to said application system data, address,
and control buses for providing bidirectional data
transfer between said application system data, ad-
dress, and control buses and saitd memory means
via said field test unit data, address, and conirol bus
means in response to control signals transmitted to
said processor means to said interface means via
said field test unit data, address, and control bus
means; and

data transmission means connected to both said data

link and said field test unit data, address, and con-
trol bus means and responsive to said processor
means for transmitting said data from said memory
means to said computer via said data link.

12. The invention of claim 11 wherein said field test
unit means includes transceiver means responsive to
said processor means for transmitting data stored in said
memory means to said computer means via said data
link and for receiving data transmitted by said computer
means via said data link.

13. The invention of claim 12 wherein said field test
unit means includes:

terminal means for providing an engineer with data

access to said field test unit; and

input means connected to said field test unmit data,

address, and control bus means and responsive to
input data entered into said terminal means for
storing said input data in said memory means.

14. The invention of claim 11 wherein said processor
means is responsive to said control instructions for con-
currently enabling the transfer of data between said
interface means and said memory means and between
said memory means and saild computer means.

15. The invention of claim 11 wherein said interface
means is responsive to said processor means for reading
the contents of said application system memory onto
said field test unit address, data, and control bus means.

16. The invention of claim 15 wherein said processor
means is additionally responsive to said control instruc-
tions for regulating the operation of said application
processor by driving said control bus of said application
processor via said interface means.

17. The invention of claim 15 wherein said field test
unit means includes buffer means for connecting said
field test unit data, address, and control bus means to
said transceiver means for transmitting said contents of
said application system memory appearing on said field
test unit data, address and control bus means to said
computer means via said data link.

18. The invention of claim 16 wherein said interface
means is responsive to said processor means for halting

the operation of said application processor.
* ¥ = * *

	Front Page
	Drawings
	Specification
	Claims

