		tates Patent [19]		[11	4,191,767
Wa	rner, Jr.	et al.	<u> </u>	[45	Mar. 4, 1980
[54]	INFECTIO	FOR TREATING FUNGAL ON IN MAMMALS WITH IMIDAZO NOXALINES	[52] [58] [56]	Field of Search	
[75]	Inventors:	Paul L. Warner, Jr., Clarence; Edward J. Luber, Jr., Buffalo, both of N.Y.		References PUBLICAT chemer et al. Chem. A	TIONS
[73]	Assignee:	Westwood Pharmaceuticals, Inc., Buffalo, N.Y.	Prima Attorn	ry Examiner—Mark L. I ey, Agent, or Firm—Mor	Berch
[21]	Appl. No.:	858,513	Holtz	• '	-
[22]	Filed:	Dec. 8, 1977	[57]	ABSTRA	
[63]		ted U.S. Application Data n-in-part of Ser. No. 757,640, Jan. 7, 1977,	which a fung	comprises administering	al infection in mammals to said mammals having cally effective amount of [1,2-a]quinoxaline.

2 Claims, No Drawings

Int. Cl.² A01N 9/22; C07D 487/04

METHOD FOR TREATING FUNGAL INFECTION IN MAMMALS WITH IMIDAZO [1,2-A]QUINOXALINES

RELATED CASES

This is a continuation-in-part of application Ser. No. 757,640 filed Jan. 7, 1977, now abandoned.

This invention relates to certain 4-substituted imidazo[1,2-a]quinoxalines and to processes for preparing the same. It also concerns certain 1-(2-acylaminophenyl-)imidazoles which among other things are useful as intermediates in the preparation of 4-substituted imidazo[1,2-a]quinoxalines. The aforesaid compounds are 15 cyclohexyl, cyclohexenyl useful for a variety of purposes which will be described in more detail below. Some of these are useful as immunosuppressants; whereas, others are useful as anti-inflammatory agents or display antifungal activity. Moreover, some exhibit two or all three of these activities. 20

The 4-substituted imidazo[1,2-a]quinoxalines encompassed in the present invention may be described by the formula:

and pharmaceutically acceptable salts thereof wherein 35 X is $-R^1$ or $-NHR^2$ wherein:

(1) R¹ is bonded to a ring carbon by a carbon-to-carbon linkage and is an aliphatic, cycloaliphatic, substituted phenyl, fused bicyclic aryl; or monocyclic aryl-substituted aliphatic; and

(2) R² is a radical bonded to a nitrogen by a carbon to nitrogen linkage; said radical being selected from the group consisting of aliphatic, cycloaliphatic, phenyl, substituted phenyl, fused bicyclic aryl or a monocyclic aryl-substituted aliphatic group.

When R¹ is an aliphatic group, it may be a straight chain or branched chain hydrocarbon group which is saturated, monounsaturated or polyunsaturated. It may also comprise a straight chain or branched chain group containing other than carbon-to-carbon bondings e.g. ether linkages, carbon to halogen linkages, etc. Ordinarily, it will contain from about 1 to 18 carbon atoms, the most typical radicals of this group being the alkyl radicals having from 1 to 18 carbon atoms.

By way of illustrating the aliphatic groups that may be represented by R¹, the following are given: CH₃—; CH_3CH_2 —; CH_3CH_2 — CH_2 —; $CH_3(CH_2)_n$ — in which n is 3, 4, 5, 6, 7, 8, 14 and 16 respectively; $CH_3(CH_2)_3(CH_3CH_2)CH_{--}, 60$ $(CH_3)_2CH-CH_2-$; CH₂=CH-(CH₂)₈-, alkoxyalkyl in which the alkyl moieties have from 1 to 4 carbon atoms e.g. methoxymethyl; halogenoalkyl (i.e. CH₂Cl—; CH₃CHCl—; $CHCL_2-$; CCl_3- ; CH_2Br- ; CF_3).

When R¹ is a cycloaliphatic radical it will most often 65 be a cycloalkyl radical containing 3 to 8 carbon atoms or a cycloalkenyl radical containing 5 to 6 carbon atoms. By way of illustrating the cycloaliphatic radicals

that may correspond to R¹ in formula I mention may be made of the cyclopropyl

cyclobutyl

and norbornenyl

When R¹ is a substituted phenyl radical in formula I above, the phenyl group may have from 1 to 5 substituents but will usually be mono, di or trisubstituted. Typical among the groups that may be contained in the phenyl group are (a) alkyl groups which are branched or straight chain containing 1 to 6 carbon atoms e.g. methyl, ethyl, tertiary butyl; (b) alkoxyl groups containing 1 to 6 carbon atoms e.g. methoxy, ethoxy; (c) hydroxy; (d) acyloxy containing 1 to 18 carbon atoms; (e) halogen e.g. 1 or 2 Cl, F, Br, I preferably in the meta and/or para position; (f) nitro; (g) amino; (h) acylamino in which the acylamino moiety is derived from an alkanoic acid containing 1 to 18 carbon atoms and benzamides in which the benzene ring is unsubstituted or monosubstituted, disubstituted or trisubstituted with alkyl groups containing 1 to 5 carbon atoms or halogen atoms; (i) polyhydroxyalkylamino groups containing 4 to 8 carbon atoms; (j) cyano; (k) trifluoromethyl; (l) mercapto; (m) alkylthio; (n) acylthio containing 1 to 18 carbon atoms; (o) carboxyl; (p) carboalkoxyl containing 1 to 8 aliphatic carbon atoms; (q) phenyl; (r) phenoxy, and combinations thereof.

When R¹ is a fused bicyclic aryl radical, it may be a substituted or unsubstituted radical. These are exemplified by such fused bicyclic hydrocarbon radicals as 1-naphtyl, 2-naphthyl etc.

When R¹ is a monocyclic aryl substituted aliphatic radical, the monocyclic aryl moiety may be either of the substituted or unsubstituted variety. The aliphatic moiety of this group may be either of the saturated or unsaturated straight chain or branched chain hydrocarbon variety or it may contain other than carbon-to-carbon bonding. This may be illustrated by such groups as phenoxymethyl; benzyl, styryl,

-continued

$$CH_3CH_2-CH CI$$
 $-CH-$,
 CI
 $-C-$,

The group R² in the radical -NHR² of formula I above is exemplified by the same radicals given above in illustrating the radical -R¹. In addition, R² may also be phenyl as in the case of the group

In general, the compounds included in formula I above as well as the cases in formula I in which X is hydrogen or phenyl may be prepared by heating the corresponding 1-(2-acylaminophenyl)imidazole at reflux in the presence of cyclizing quantities of a cyclizing agent e.g. polyphosphoric acid or phosphorous oxychloride, etc. for sufficient time to cause significant cyclization of this reactant. More particularly, the 1-(2-30 acylaminophenyl)imidazole reactants that can be employed in this process may be described by the general formula:

in which X² is R⁵ or —NHR² wherein: R⁵ is hydrogen or an aliphatic, cycloaliphatic, phenyl or substituted phenyl, fused bicyclic aryl or monocyclic aryl substituted aliphatic radical and R² has the same values assigned to it in connection with formula I above.

The group R^5 in formula II is illustrated by the same groups that illustrate R^1 in formula I. However, in addition, R^5 may also be illustrated by the phenyl radical.

The reaction can be depicted by the following equation:

60

The process of equation III is preferably carried out in the presence of an excess of an organic amine solvent. A variety of solvents may be used for this purpose among which mention may be made of the following: pyridine, 2,6-dimethylpyridine, N,N-dimethylaniline, trimethylamine, and N-methylmorpholine, etc. However, the preferred organic solvent is pyridine.

The quantity of phosphorous oxychloride that is employed in the reaction can vary somewhat. Generally, however, the phosphorous oxychloride will be employed in the range of from about one-half mole to about 6 moles and preferably one-half mole to two moles per mole of compound II.

The desired product IV may be recovered from the reaction mixture using any of the ordinary techniques well known to those skilled in this art. The time of reaction will vary depending upon, among other things, the particular reactants or molar quantities of reactants employed. In general, the reaction time will be from about 30 to 120 minutes.

The temperature employed in carrying out the reaction will also vary depending upon the particular reactants selected, the solvent and other factors. Ordinarily, the temperature employed will be the reflux temperature of the reaction mixture. This generally will be in the range of from about 95° C. to 195° C.

The method of preparing the 1-(2-acylaminophenyl-)imidazoles (compound II) will vary depending on the particular type that is being made. Thus, for example, in preparing compound of the general type:

where R⁵ is hydrogen, aliphatic, cycloaliphatic, phenyl, substituted phenyl, fused bicyclic aryl or monocyclic aryl substituted aliphatic group, the 1-(2-acylamino-phenyl)imidazole is reacted with the appropriate acid halide e.g. the acid chloride.

This can be expressed by the following equation:

$$\begin{array}{c|c}
N & VI \\
N & VI \\
N & O \\
N$$

in which R⁵ has the value ascribed to it above. The reaction will usually be carried out employing equimolar amounts of the appropriate acid chloride and in the presence of excess solvent (e.g. pyridine) at reflux.

When the compounds in question are of the 15 phenylureylene type e.g.

where R² is hydrogen, aliphatic, cycloaliphatic, phenyl, substituted phenyl, fused bicyclic aryl or monocyclic aryl substituted aliphatic group, these are prepared by reacting the aminophenylimidazole with the appropriate isocyanate. This can be expressed by the following equation:

$$\begin{array}{c|c}
N & VIII \\
N & O \\
NH-C-NHR^2
\end{array}$$

in which R² has the value ascribed to it above. This reaction is preferably carried out in the presence of a solvent and at steam bath temperatures. A typical solvent that can be employed is toluene and the reactants are usually used in about equimolar quantities. The products obtained from reactions VI and VIII may be recovered using standard techniques well known to those skilled in this art.

Prior Art

U.S. Pat. No. 3,887,566 discloses imidazo[1,2-a]quinoxaline and 4-phenylimidazo[1,2-a]quinoxaline. However, this reference does not disclose the 4-substituted imidazo[1,2-a]quinoxalines of the present invention nor the process for making these compounds. The activity disclosed in this reference for these compounds is as cardiovascular drugs. There is no disclosure of the fact that these compounds may have immunosuppressant activity, antifungal activity or non-steroidal anti-inflammatory action. It is in fact interesting to note that the unsubstituted imidazo[1,2-a]quinoxaline lacks immunosuppressant activity while the 4-phenylimidazo[1,2-a]quinoxaline has only minor activity which is greatly increased by substitution on the para- and meta- positions on the benzene ring.

Uryukina et al, Khim. Geterotsikl. Soedin., 1972, 1558-60 (See C.A. 78, 58345' (1973) discloses the unsub-

stituted and the 7-methyl, methoxy, and bromo substituted imidazo[1,2-a]quinoxalines. No 4-substituted products are disclosed nor is any utility disclosed for these compounds.

Kovalev et al, Farmakol. Toksilkol (Moscow), 36 (2), 232-238, 1973 (See C.A. 78 154693^a) also discloses the 7-methoxyimidazo[1,2-a]quinoxaline and suggests the use of this material as an hypotensive agent. This reference likewise does not disclose the 4-substituted imidazo[1,2-a]quinoxalines of the present invention or their utility.

Japanese Patents 10677/74 and 10678/74 disclose certain 4-substituted 1,2-dihydroimidazo[1,2-a]quinoxalines and the fact that these materials are useful as anti-inflammatory agents. These references do not show the unhydrogenated compounds of this invention. Moreover, no immunosuppressant activity or antifungal activity is disclosed.

Siminov et al, Khim. Geterotsikl, Soedin, 7, 570 (1971) (See C.A. 76, 25242ⁿ 1972) discloses a process for synthesizing imidazo[1,2-a]quinoxaline involving the reduction of 1-(o-nitrophenyl)-2-formylimidazole. This is obviously not related to the process of the present invention.

The following Examples are given to further illustrate the present invention. It is to be understood, however, that they are not limitative of this invention.

The compounds described in the Tables below were prepared as described. Melting points were obtained by the capillary tube method using a Mel-Temp melting point apparatus and are uncorrected. Ultraviolet spectra were obtained in ethanol solution using a Beckman U.V. Acta III or a Beckman DBG. 1-(2-aminophenyl)imidazole was prepared as reported by A. F. Pozharskii, A. M. Siminov and L. M. Sitkina, Khim. Geterotskl. Soedin. 5, 1916 (1969) [Chem. Abstr., 72 11427a (1970)].

Table I below further illustrates the preparation of the aliphatic, cycloaliphatic and monocyclic aryl substituted aliphatic- amidophenylimidazoles of the present invention. Table II further exemplifies the preparation of the aryl (including the fused ring aryl) amidophenylimidazoles of this invention.

Except as noted in Tables I and II, the amides were prepared by reacting equimolar amounts of the appropriate acid chloride with 1-(2-aminophenyl)imidazole in the presence of excess pyridine on a steam bath for 45 minutes. The reaction mixture was then stirred into ice water and the crude product isolated according to one of the following methods.

Method A

If a solid was obtained, it was directly crystallized from the solvent indicated in Table I.

Method B

If an oil was obtained, it was dissolved in a minimum amount of chloroform and passed through an alumina column with the amount of alumina being approximately twenty times the weight of the crude solid; elution was with chloroform. The chloroform was evaporated from the crude product which was crystallized as indicated in Table I.

Method C

If a solution was obtained in the ice water mixture, the pyridine/water azeotrope was removed until the

crude product separated. It was then treated as in Method B above.

TABLE I

N N O	N N O
NH ₂ + RC-Cl	NHC-R

1-(2-alkanamidophenyl)imidazoles Analysis **Isolation** Crystallization m.p., °C. Found Calc'd Yield Solvent Method R No. 200-204 64.26 Water C,64.16 C 63.3 H^{-a} 4.71 H, 4.85 22.30 N,22.45 56.2 Ethanol 65.69 163-166 C,65.66 Α CH₃— 2 5.52 H, 5.51 N,20.88 20.84 CH_3CH_2-b 67.26 73.9 Water C,66.96 C 144-146 3 6.15 H, 6.09 19.40 N,19.52 67.95 В Toluene 108-110 C,68.10 31.1 $CH_3(CH_2)_2$ 4 6.52 H, 6.59 18.25 N,18.33 69.14 C,69.11 Toluene-123-125 B 49.6 5 $CH_3(CH_2)_3$ 7.00 H, 7.04 hexane 17.17 N,17.27 70.31 В C,70.01 103-105 49.4 isopropyl ether- $CH_3(CH_2)_4$ 6 7.45 H, 7.44 trichloroethylene 16.26 N,16.33 70.79 C,70.82 Α 96–98 $CH_3(CH_2)_5$ 55.3 isopropyl ether 7 7.74 H, 7.80 15.23 N,15.48 71.67 101-102 C,71.55 isopropyl ether Α 55.1 $CH_3(CH_2)_6$ 8 8.05 H, 8.12 14.65 N,14.72 C,72.21 72.24 93-95 45.6 isopropyl ether Α 9 $CH_3(CH_2)_7$ 8.41 H, 8.42 13.92 N,14.03 isopropyl 73.38 C,72.81 79-81 \mathbf{A} 60.6 10 $CH_3(CH_2)_8$ H, 8.68 8.85 ether-hexane 13.02 N,13.41 75.12 94-96 C,75.52 В isopropyl ether $CH_3(CH_2)_{14}$ 58.1 11 9.76 H, 9.89 10.38 N,10.57 76.57 C,76.19 \mathbf{B} 98-100 isopropyl ether 80.6 $CH_3(CH_2)_{16}$ 12 10.28 H,10.18 9.79 N, 9.87 $(CH_3)_3C^{-b}$ C,69.11 69.15 \mathbf{C} 102-104 48.8 benzene 13 7.26 H, 7.04 17.19 N,17.27 69.60 C,69.40 C 25.4 128-130 14 (CH₃)₂CHCH₂ benzene H, 6.66 7.00 17.40 N,17.34 C,71.55 71.86 125-127 В 32.8 CH₃(CH₂)₃(CH₃CH₂)CH-15 benzene 7.84 H, 8.12 14.95 N,14.72 74.26 92-94 C,73.81 76.8 Α isopropyl $CH_2-CH-(CH_2)_8-$ 16 8.50 H, 8.36 ether-hexane 12.30 N,12.91 73.76 C,76.92 76.73 17 $CH_3(CH_2)_3(CH_2-CH=CH)_2(CH_2)_7-$ C 3.6 c. 9.36 H, 9.32 9.78 N, 9.97 C,73.63 73.81 145.147 C 41.9 ethanol 18 5.57 H, 5.45 15.41 N,15.15 $-CH_2-$ 74.83 C diethyl ether C,74.73 19 205-207 6.32 H, 6.27 N,13.76 13.59 CH₃CH₂(C,74.72 74.94 ethanol 161-164 20 43.0 H, 5.23 5.47 N,14.52 14.55 CH=CH-

TABLE I-continued

1-(2-alkanamidophenyl)imidazoles

No. R			I-(2-aikanannu Isolation	%	Crystallization		<i>F</i>	Analysis
A 77.7 Toluene 136.5— C,69.61 69.82 138.5 H, 5.15 5.37 N,14.33 14.04 23 A 10.1 isopropanol 207-209 C,68.71 68.67 H, 5.76 5.85 N,18.49 18.67 H, 5.76 76.21 H, 5.76 76.21 N,17.41 17.55 A 67.3 Toluene 151-153 C,69.69 69.44 H, 6.27 76.21 N,17.41 17.55 S A 67.3 Toluene 142.5— C,71.35 70.88 145 H, 7.11 6.92 N,15.60 15.59 26 A 21.6 ethanol 196-198.5 C,72.16 71.87 H, 6.06 6.33 N,15.78 15.40 27 CH ₂ Cl- B 11.9 water 255(dec.) C,56.06 55.92 H, 4.28 4.26 N,17.83 17.72 N,17.83 17.72 S 28 CH ₃ CHCl- A 27.9 Toluene 143.5— C,57.72 57.54 H, 4.28 4.26 N,17.83 17.72 S 29 CHCl ₂ —b A 33.2 benzene 162-165 C,48.91 48.94 H, 3.36 3.24 N,15.56 15.42 C,126.25 26.17 S 15.84 N,15.56 15.42 C,126.25 26.17 S 15.84 N,15.56 15.42 C,126.25 26.17 S 15.88 N,16.47 16.53 N,16.47 16.53 C,10.23 60.21 CHCH-OC— ethylene	No.	R	Method	Yield	Solvent	m.p., °C.	Calc'd	Found
N.18.17 18.48	21	CH ₃ OCH ₂ —	A	49.8	Toluene	146-147	C,62.33	61.99
A 77.7 Toluene 136.5— C,69.61 69.82 138.5 H, 5.15 5.37 N,14.33 14.04 23 A 10.1 isopropanol 207-209 C,68.71 68.67 H, 5.76 5.85 N,18.49 18.67 N,18.49 18.67 N,18.49 18.67 N,17.41 17.55 N,17.41 17.55 N,17.41 17.55 N,15.60 15.59 A 67.3 Toluene 142.5— C,71.35 70.88 145 H, 7.11 6.92 N,15.60 15.59 A 21.6 ethanol 196-198.5 C,72.16 71.87 H, 6.06 6.33 N,15.78 15.40 27 CH ₂ Cl— B 11.9 water 255(dec.) C,56.06 55.92 H, 4.28 4.26 N,17.83 17.72 28 CH ₃ CHCl— A 27.9 Toluene 143.5— C,57.72 57.54 N,16.83 17.72 29 CHCl ₂ —b A 33.2 benzene 162-165 C,48.91 48.94 H, 3.36 3.24 N,15.56 15.42 C,126.25 26.17 N,15.61 15.33 O CF ₃ — A 22.0 ethanol 165-167 C,51.77 51.58 H, 3.16 3.20 N,16.47 16.33 C,16.24 16.33 N,16.47 16.33 C,16.24 16.34 C,16.24							H, 5.66	5.74
A 10.1 isopropanol 207-209 C,68.71 68.67 H, 5.76 5.85 N,14.33 14.04 23					•		N,18.17	18.48
A 10.1 isopropanol 207-209 C,68.71 68.67 H, 5.76 5.85 N,18.49 18.67 C,69.69 69.44 H, 6.27 6.21 H, 6.27 6.21 H, 7.11 17.55 S A 67.3 Toluene 142.5- C,71.35 70.88 145 H, 7.11 6.92 N,15.60 15.59 A 21.6 ethanol 196-198.5 C,72.16 71.87 H, 6.06 6.33 N,15.78 15.40 CHackled B A 33.2 benzene 162-165 C,48.91 48.94 H, 3.36 3.24 N,15.66 15.42 CHackled B A 22.0 ethanol 165-167 C,51.77 51.58 H, 3.16 3.20 N,16.47 16.53 CHackled B A 22.0 ethanol 165-167 C,51.77 51.58 H, 3.16 3.20 N,16.47 16.53 CHackled B A 32.0 ethanol 165-167 C,51.77 51.58 H, 3.16 3.20 N,16.47 16.53 CHackled B A 3.20 CHackled B	22	/ 	A	77.7	Toluene	136.5-	C,69.61	69.82
A 10.1 isopropanol 207-209 C,68.71 68.67 H, 5.76 5.85 N, 18.49 18.67 S, 18.49						138.5	H, 5.15	5.37
A 55.6 Toluene 151-153 C,69.69 69.44 A 67.3 Toluene 151-153 C,69.69 69.44 H, 6.27 6.21 N,17.41 17.55 70.88 A 67.3 Toluene 142.5- C,71.35 70.88 145 H, 7.11 6.92 N,15.60 15.59 A 21.6 ethanol 196-198.5 C,72.16 71.87 H, 6.06 6.33 N,15.78 15.40 CH2CI— B 11.9 water 255(dec.) C,56.06 55.92 H, 4.28 4.26 N,17.83 17.72 28 CH3CHCI— A 27.9 Toluene 143.5- C,57.72 57.54 145.5° H, 4.85 4.92 H, 16.83 17.16 CH2CI— A 33.2 benzene 162-165 C,48.91 48.94 H, 3.36 3.24 N,15.56 15.42 C,26.25 26.17 30 CF3— A 22.0 ethanol 165-167 C,51.77 51.58 H, 3.16 3.20 N,16.47 16.53 CH2CHCI— CH2CHCI		√ -о-сн ₂					N,14.33	14.04
A 55.6 Toluene 151-153 C,69.69 69.44 A 67.3 Toluene 151-153 C,69.69 69.44 H, 6.27 6.21 N,17.41 17.55 70.88 A 67.3 Toluene 142.5- C,71.35 70.88 145 H, 7.11 6.92 N,15.60 15.59 A 21.6 ethanol 196-198.5 C,72.16 71.87 H, 6.06 6.33 N,15.78 15.40 CH2CI— B 11.9 water 255(dec.) C,56.06 55.92 H, 4.28 4.26 N,17.83 17.72 28 CH3CHCI— A 27.9 Toluene 143.5- C,57.72 57.54 145.5° H, 4.85 4.92 H, 16.83 17.16 CH2CI— A 33.2 benzene 162-165 C,48.91 48.94 H, 3.36 3.24 N,15.56 15.42 C,26.25 26.17 30 CF3— A 22.0 ethanol 165-167 C,51.77 51.58 H, 3.16 3.20 N,16.47 16.53 CH2CHCI— CH2CHCI	23		Α	10.1	isopropanol	207–209	C.68.71	68.67
A 55.6 Toluene 151-153 C,69,69 69,44 H, 6.27 6.21 N,17.41 17.55 C,71.35 70,88 145 H, 7.11 6.92 N,15.60 15.59 A 21.6 ethanol 196-198.5 C,72.16 71.87 H, 6.06 6.33 N,15.78 15.40 CH2Cl— B 11.9 water 255(dec.) C,56.06 55.92 H, 4.28 4.26 N,17.83 17.72 4.28 CH3CHCI— A 27.9 Toluene 143.5— C,57.72 57.54 145.5° H, 4.85 4.92 H,16.83 17.16 2.9 CHCl2—b A 33.2 benzene 162-165 C,48.91 48.94 H, 3.36 3.24 N,15.56 15.42 CL,26.25 26.17 30 CF3— A 22.0 ethanol 165-167 C,51.77 51.58 H, 3.16 3.20 N,16.47 16.53 17.18 1.20 C,60.23 60.21 CH3CHCI— CH3CHCI— CH3CHCI— A 22.0 ethanol 165-167 C,51.77 51.58 H, 3.16 3.20 N,16.47 16.53 17.18 1.20 C,60.23 60.21 cethylene H, 5.05 5.10	·		-			20. 202		
A 55.6 Toluene 151-153 C.69.69 69.44 H, 6.27 6.21 N,17.41 17.55 70.88 145 H, 7.11 6.92 N,15.60 15.59 A 67.3 Toluene 142.5- C,71.35 70.88 145 H, 7.11 6.92 N,15.60 15.59 A 21.6 ethanol 196-198.5 C,72.16 71.87 H, 6.06 6.33 N,15.78 15.40 CH2CI- B 11.9 water 255(dec.) C,56.06 55.92 H, 4.28 4.26 N,17.83 17.72 17.20 N,15.78 15.40 CH3CHCI- A 27.9 Toluene 143.5- C,57.72 57.54 N,16.83 17.16 145.5° H, 4.85 4.92 H,16.83 17.16 145.5° H, 4.85 4.92 H,16.83 17.16 145.5° H, 3.36 3.24 N,15.56 15.42 C,26.25 26.17 30 CF3- A 22.0 ethanol 165-167 C,51.77 51.58 H, 3.16 3.20 N,16.47 16.53 32 O CF3- C 14.1 trichloroethylene H, 5.05 5.10								
H, 6.27 6.21 N,17.41 17.55 S A 67.3 Toluenc 142.5- C,71.35 70.88 145 H, 7.11 6.92 N,15.60 15.59 A 21.6 ethanol 196-198.5 C,72.16 71.87 H, 6.06 6.33 N,15.78 15.40 27 CH ₂ CI- B 11.9 water 255(dec.) C,56.06 55.92 H, 4.28 4.26 N,17.83 17.72 28 CH ₃ CHCl- A 27.9 Toluene 143.5- C,57.72 57.54 145.5° H, 4.85 4.92 H,16.83 17.16 29 CHCl ₂ -b A 33.2 benzene 162-165 C,48.91 48.94 H, 3.36 3.24 N,15.56 15.42 C,126.25 26.17 30 CF ₃ - A 22.0 ethanol 165-167 C,51.77 51.58 H, 3.16 3.20 N,16.47 16.53 32 O C C 14.1 trichloro- ethylene 128-130 C,60.23 60.21 CHCH-0C-	24	•	` A	55.6	Toluene	151-153		
A 67.3 Toluene 142.5- C,71.35 70.88 145 H, 7.11 6.92 N,15.60 15.59 26 A 21.6 ethanol 196-198.5 C,72.16 71.87 H, 6.06 6.33 N,15.78 15.40 27 CH ₂ Cl- B 11.9 water 255(dec.) C,56.06 55.92 H, 4.28 4.26 N,17.83 17.72 28 CH ₃ CHCl- A 27.9 Toluene 143.5- C,57.72 57.54 145.5° H, 4.85 4.92 H,16.83 17.16 29 CHCl ₂ -b A 33.2 benzene 162-165 C,48.91 48.94 H, 3.36 3.24 N,15.56 15.42 Cl ₂ Ce ₂ Ce ₃ Ce ₄ Ce ₇								
A 67.3 Toluene 142.5- C,71.35 70.88 145 H, 7.11 6.92 N,15.60 15.59 26 A 21.6 ethanol 196-198.5 C,72.16 71.87 H, 6.06 6.33 N,15.78 15.40 27 CH ₂ Cl— B 11.9 water 255(dec.) C,56.06 55.92 H, 4.28 4.26 N,17.83 17.72 143.5- C,57.72 57.54 145.5° H, 4.85 4.92 H,16.83 17.16 145.5° H, 4.85 4.92 H,16.35 17.16 145.5° H, 4.85 4.92 H,16.35 17.16 145.5° H, 4.85 4.92 H,16.35 17.16 145.5° H, 4.36 3.24 N,15.56 15.42 C,126.25 26.17 145.5° H, 3.16 3.20 N,15.47 16.53 145.5° C,126.25 26.17 145.5° C,126.25 26.17 145.5° C,126.25 26.17 15.58 H, 3.16 3.20 N,16.47 16.53 15.40 C,126.25 26.17 16.53 15.40 C,126.2								
26 A 21.6 ethanol 196-198.5 C,72.16 71.87 H, 6.06 6.33 N,15.78 15.40 27 CH ₂ Cl- B 11.9 water 255(dec.) C,56.06 55.92 H, 4.28 4.26 N,17.83 17.72 28 CH ₃ CHCl- A 27.9 Toluene 143.5- C,57.72 57.54 145.5° H, 4.85 4.92 H, 16.83 17.16 29 CHCl ₂ -b A 33.2 benzene 162-165 C,48.91 48.94 H, 3.36 3.24 N,15.56 15.42 Cl ₂ C ₆ C ₅ C ₅ C ₆ C ₁₇ 30 CF ₃ - A 22.0 ethanol 165-167 C,51.77 51.58 H, 3.16 3.20 N,16.47 16.53 32 O C 14.1 trichloroethylene 128-130 C,60.23 60.21 ethylene	25		Α	67.3	Toluene	142.5-		
S N,15.60 15.59 A 21.6 ethanol 196-198.5 C,72.16 71.87 H, 6.06 6.33 N,15.78 15.40 27 CH ₂ Cl- B 11.9 water 255(dec.) C,56.06 55.92 H, 4.28 4.26 N,17.83 17.72 28 CH ₃ CHCl- A 27.9 Toluene 143.5- C,57.72 57.54 145.5° H, 4.85 4.92 H,16.83 17.16 29 CHCl ₂ -b A 33.2 benzene 162-165 C,48.91 48.94 H, 3.36 3.24 N,15.56 15.42 Cl ₂ 6.25 26.17 30 CF ₃ - A 22.0 ethanol 165-167 C,51.77 51.58 H, 3.16 3.20 N,16.47 16.53 CH ₂ Ch								
H, 6.06 6.33 N,15.78 15.40 27 CH ₂ Cl— B 11.9 water 255(dec.) C,56.06 55.92 H, 4.28 4.26 N,17.83 17.72 28 CH ₃ CHCl— A 27.9 Toluene 143.5- C,57.72 57.54 145.5° H, 4.85 4.92 H,16.83 17.16 29 CHCl ₂ —b A 33.2 benzene 162-165 C,48.91 48.94 H, 3.36 3.24 N,15.56 15.42 Cl ₂ C ₂ C ₃ C ₂ C ₃ C ₃ C ₃ C ₄ C ₃ C ₃ C ₃ C ₃ C ₄ C ₃ C ₃ C ₃ C ₃ C ₄ C ₃ C ₃ C ₃ C ₄ C ₃ C ₃ C ₃ C ₄ C ₃ C ₄ C ₅		(s)—				-		
H, 6.06 6.33 N,15.78 15.40 27 CH ₂ Cl— B 11.9 water 255(dec.) C,56.06 55.92 H, 4.28 4.26 N,17.83 17.72 28 CH ₃ CHCl— A 27.9 Toluene 143.5- C,57.72 57.54 145.5° H, 4.85 4.92 H,16.83 17.16 29 CHCl ₂ —b A 33.2 benzene 162-165 C,48.91 48.94 H, 3.36 3.24 N,15.56 15.42 Cl ₂ C ₂ C ₃ C ₂ C ₃ C ₃ C ₃ C ₄ C ₃ C ₃ C ₃ C ₃ C ₄ C ₃ C ₃ C ₃ C ₃ C ₄ C ₃ C ₃ C ₃ C ₄ C ₃ C ₃ C ₃ C ₄ C ₃ C ₄ C ₅	26		Α	21.6	ethanol	196–198.5	C.72.16	71.87
N,15.78 15.40 27 CH ₂ Cl— B 11.9 water 255(dec.) C,56.06 55.92 H, 4.28 4.26 N,17.83 17.72 28 CH ₃ CHCl— A 27.9 Toluene 143.5— C,57.72 57.54 145.5° H, 4.85 4.92 H,16.83 17.16 29 CHCl ₂ —b A 33.2 benzene 162–165 C,48.91 48.94 H, 3.36 3.24 N,15.56 15.42 Cl,26.25 26.17 30 CF ₃ — A 22.0 ethanol 165–167 C,51.77 51.58 H, 3.16 3.20 N,16.47 16.53 32 O C 14.1 trichloro- ethylene H, 5.05 5.10								
H, 4.28 4.26 N,17.83 17.72 28 CH ₃ CHCl— A 27.9 Toluene 143.5— C,57.72 57.54 145.5° H, 4.85 4.92 H,16.83 17.16 29 CHCl ₂ —b A 33.2 benzene 162–165 C,48.91 48.94 H, 3.36 3.24 N,15.56 15.42 Cl,26.25 26.17 30 CF ₃ — A 22.0 ethanol 165–167 C,51.77 51.58 H, 3.16 3.20 N,16.47 16.53 32 C 14.1 trichloro-ethylene 128–130 C,60.23 60.21 CH-CH-OC—		<u>\</u>						
H, 4.28 4.26 N,17.83 17.72 28 CH ₃ CHCl— A 27.9 Toluene 143.5— C,57.72 57.54 145.5° H, 4.85 4.92 H,16.83 17.16 29 CHCl ₂ —b A 33.2 benzene 162–165 C,48.91 48.94 H, 3.36 3.24 N,15.56 15.42 Cl,26.25 26.17 30 CF ₃ — A 22.0 ethanol 165–167 C,51.77 51.58 H, 3.16 3.20 N,16.47 16.53 32 C 14.1 trichloro-ethylene 128–130 C,60.23 60.21 CH-CH-OC—	27	CHaCl	Ð	11.0	·*·oto#	255(doo)	C 56 06	E5 03
28 CH ₃ CHCl— A 27.9 Toluene 143.5— C,57.72 57.54 145.5° H, 4.85 4.92 H,16.83 17.16 29 CHCl ₂ —b A 33.2 benzene 162–165 C,48.91 48.94 H, 3.36 3.24 N,15.56 15.42 Cl ₂ 62.25 26.17 30 CF ₃ — A 22.0 ethanol 165–167 C,51.77 51.58 H, 3.16 3.20 N,16.47 16.53 32 O CH ₂ CH ₂ CH ₂ CCC Cl ₂ CCC CH ₂ CCC CCCC CCCC CCCC CCCC CCCC CCCC CCC	21	CH2Ci—	В	11.9	water	255(dec.)	•	
28 CH ₃ CHCl— A 27.9 Toluene 143.5- C,57.72 57.54 145.5° H, 4.85 4.92 H,16.83 17.16 29 CHCl ₂ —b A 33.2 benzene 162–165 C,48.91 48.94 H, 3.36 3.24 N,15.56 15.42 Cl,26.25 26.17 30 CF ₃ — A 22.0 ethanol 165–167 C,51.77 51.58 H, 3.16 3.20 N,16.47 16.53 32 O C 14.1 trichloroethylene 128–130 C,60.23 60.21 H, 5.05 5.10	•	•						
29 CHCl ₂ —b A 33.2 benzene 162–165 C,48.91 48.94 H, 3.36 3.24 N,15.56 15.42 Cl,26.25 26.17 30 CF ₃ — A 22.0 ethanol 165–167 C,51.77 51.58 H, 3.16 3.20 N,16.47 16.53 CH-CH-CC— CH-CH-CC— CH-CH-CC— 14.1 trichloro-ethylene 128–130 C,60.23 60.21 H, 5.05 5.10	28	CH-CHCI-		27.0	Toluene	1/2 5		
29 CHCl ₂ —b A 33.2 benzene 162-165 C,48.91 48.94 H, 3.36 3.24 N,15.56 15.42 Cl,26.25 26.17 30 CF ₃ — A 22.0 ethanol 165-167 C,51.77 51.58 H, 3.16 3.20 N,16.47 16.53 32 CH.CH-OC— CH.CH-OC— CH.CH-OC— CH.CH-OC— A 33.2 benzene 162-165 C,48.91 48.94 H, 3.36 3.24 N,15.56 15.42 Cl,26.25 26.17 S1.58 H, 3.16 3.20 N,16.47 16.53 CH.CH-OC— CH.CH-OC— CH.CH-OC— CH.CH-OC— CH.CH-OC— A 33.2 benzene 162-165 C,48.91 48.94 H, 3.36 3.24 N,15.56 15.42 Cl,26.25 26.17 S1.58 H, 3.16 3.20 N,16.47 16.53 CH.CH-OC—	20	CityCitCi	PA.	21.9	TOTUCHE			
29 CHCl ₂ —b A 33.2 benzene 162–165 C,48.91 48.94 H, 3.36 3.24 N,15.56 15.42 Cl,26.25 26.17 30 CF ₃ — A 22.0 ethanol 165–167 C,51.77 51.58 H, 3.16 3.20 N,16.47 16.53 32 CH ₂ CH ₂ CC ₁ CC ₂ CC ₂ CC ₂ CC ₃ CC ₁ CC ₂ CC ₁ CC ₂ CC ₂ CC ₁ CC ₂ CC ₁ CC ₂ CC ₂						143.3		
H, 3.36 3.24 N,15.56 15.42 Cl,26.25 26.17 A 22.0 ethanol 165-167 C,51.77 51.58 H, 3.16 3.20 N,16.47 16.53 CH2CH2OC= CH2CH2OC= CH2CH2OC= CH2CH2OC= A 22.0 ethanol 128-130 C,60.23 60.21 ethylene H, 5.05 5.10	29	CHCla-b	Λ	33.2	honzeno	162_165	_	
N,15.56 15.42 Cl,26.25 26.17 30 CF ₃ — A 22.0 ethanol 165–167 C,51.77 51.58 H, 3.16 3.20 N,16.47 16.53 32 O C 14.1 trichloro-ethylene 128–130 C,60.23 60.21 ethylene H, 5.05 5.10	2,	CIICIZ	7.	33.2	UCHZCHC	102-103		
30 CF ₃ — A 22.0 ethanol 165–167 C,51.77 51.58 H, 3.16 3.20 N,16.47 16.53 32 O C 14.1 trichloro- ethylene 128–130 C,60.23 60.21 H, 5.05 5.10							·	
30 CF ₃ — A 22.0 ethanol 165–167 C,51.77 51.58 H, 3.16 3.20 N,16.47 16.53 32 O CH ₂ CH ₂ CH ₂ CCH ₂ CCCH ₂ CCH ₂ CCH ₂ CCCCCCCCCC								
H, 3.16 3.20 N,16.47 16.53 CHaCHaOCT CHaCHaOCT H, 3.16 3.20 N,16.47 16.53 CHacHaOCT CHacHaOCT H, 5.05 5.10	30	CF ₃ —	Δ	22 N	ethanol	165_167		
N,16.47 16.53 32 O CHaCHaOC H, 5.05 5.10 N,16.47 16.53 CHaCHaOC H, 5.05 5.10		•		22.0	OVALIMATOR	105-107	•	
32 O CH-CH-OC- C		•	•			•		
ethylene H, 5.05 5.10	32	O	C	14.1	trichloro-	128_130		
$CU_{\bullet}CU_{\bullet}CC_{\bullet \bullet \bullet}$	- 	Ĭ		4 714		120-100		
I - I - I - I - I - I - I - I - I - I -		CH ₃ CH ₂ OC—					N,16.21	16.16

Notes:

- a. Prepared from acetic-formic anhydride according to R. J. Jones, J. Am. Chem. Soc., 71,644(1949). After removal by distillution of excess solvent, residue dissolved in water and neutralized with NaOH to provide crude product.
- b. Prepared via the anhydride.
- c. Could not be crystallized; purified by chromatography on alumina with ethyl acetate as elutant.

TABLE II

1-(2-Arylamidophenyl)imidazoles

•	Isolation	%	Crystallization			A	nalysis
No. Ar	Method	Yield	Solvent	m.p., °C.	λmax.(Am)	Calc'd	Found
4	Α	44.9	dimethoxyethane	148-150	225(21,720)	C,72.99	73.30
/ \						H, 4.98	5.08
						N,15.96	16.04

TABLE II-continued

			NH ₂	+ Ar−C−Cl−→	N	 HC—Ar		
•			1-((2-Arylamidophenyl)im	idazoles	•	·	
		Isolation	%	Crystallization		.	Ar	alysis
No.	Ar	Method	Yield	Solvent	m.p., °C.	λmax.(Am)	Calc'd	Found
35		A	58.7	ethanol	190-192.5	262(21,400)	C,73.63 H, 5.45 N,15.15	73.10 5.32 15.46
36	CH ₃	B .	58.3	benzene	147–148.5	231,sh(18,200)	C,73.63 H, 5.45 N,15.15	73.63 5.24 15.36
37	CH ₃	B	57.4	benzene	143-146.5	236(23,400)	C,73.63 H, 5.45 N,15.15	73.28 5.29 15.27
38		A	53.0	benzene	151-153	C.	C,61.63 H, 3.65 N,12.68	60.97 3.62 12.34
39	CF ₃ (CH ₃) ₃ C	В	79.3	ethyl acetate	136–138	239(20,400)	C,75.21 H, 6.63 N,13.27	75.06 6.45 13.31
40		A	45.5	isopropanol	198-200	276(28,100)	C,77.86 H, 5.05 N,12.38	77.46 4.76 12.09
41	NO ₂	A	73.5	dimethylformamide, ethanol	194-196	260(17,810)	C,62.33 H, 3.92 N,18.17	62.26 3.69 18.10
42		· A	74.4	dimethylformamide, water	198–202.5	250(16,500)	C,62.33 H, 3.92 N,18.17	62.27 4.00 18.37
43	NO ₂ NO ₂	A	87.41	dimethylformamide, water	254–256	C.	C,54.40 H, 3.14 N,19.82	54.35 3.31 19.82
44	NO_2 $N \equiv C$	A	60.87	dimethylformamide, water	219–220.5	234(1,500)	C,70.82 H, 4.20 N,19.49	70.14 4.45 19.15
						e Springer Style e I		·
45	F—	B	56.8	benzene	205-208	229(18,500)	C,68.32 H, 4.30 N,14.94	67.86 4.02 15.17

The second second second

TABLE II-continued

		L N		Ο	N	O		
			NH ₂	+ Ar-C-Cl>		∬ NHC — Ar		
			J					
	·							
	_		1-	(2-Arylamidophenyl)in	nidazoles			
		Isolation	%	Crystallization			A	nalysis
No.	Ar	Method	Yield	Solvent	m.p., °C.	λmax.(Am)	Calc'd	Found
46		A	53.2ª	dimethylformamide,	93-96	260(10,100)	C,66.20	65.96
	A Section 1. Section 2.			water	•		H, 4.51 N,14.47	4.37 14.40
		·:						
	F							
47		A	b.	dimethylformamide	189-190.5	240(22,100)	C,56.16	56.03
	Br—(H, 3.53	3.58
				•			N,12.28	12.51
48	//	A	40.1	dimethylformamide,	199-201.5	258(20,100)	C,56.16	55.84
				water		000(20,100)	H, 3.54	3.58
							N,12.28	12.48
49	Br	 A	20 7	dim otheritä		061416 #00		•
		A	38.7	dimethylformamide, ethanol	201–203	261(16,700)	C,64.54 H, 4.06	64.70 4.05
							N, 14.11	13.95
								•
	Cl							
50		B	68.5	ethanol	144–146	c.	C,64.54	64.82
	\						H, 4.06 N,14.11	3.92 14.59
		•						
	Cl							
51		A	59.7	ethanol	167-170	240(26,410)	C,64.54	64.41
	Cl—(H, 4.06 N,14.11	3.94 13.92
52		A	26.6	dimethylformamide,	210-212	265(21,000)	C,57.85	58.05
	C1—()—			water			H, 3.34 N,12.65	3.46 13.08
							14,12.05	13.00
	Cl	.1:						
53	/====_\	A	61.2	dimethylformamide,	180.5-183	235(22,100)	C,57.85	57.65
	CI—()—			water		,,	H, 3.34	3.51
							N,12.65	12.93
	—							
54	Cl	Α	42.9	ethanol	186.5-189	255(28,480)	C 40 28	40.00
			,		100.5-105	233(20,400)	C,49.38 H, 3.11	49.22 3.15
							N,10.80 I,32.61	10.85 32.89
55		ъ	£0.6	••••••	446 454			
		В	58.6	isopropanol	146151	263(20,400)	C,69.61 H, 5.15	69.01 5.14
	CH ₃ O—						N,14.33	14.36
E £		· —	^ -	••				
56		В	83.2	dimethylformamide, water	171–173	281(5,100)	C,69.61 H, 5.15	69.27 5.02
							N,14.33	14.28
								
	OCH ₃							

TABLE II-continued

$$NH_{2} + Ar - C - Cl - NHC - Ar$$

$$1-(2-Arylamidophenyl)imidazoles$$

		- i · · · · · · · · · · · · · · · · ·	1-(2-Arylamidophenyl)im	idazoles			
	-	Isolation	%	Crystallization			An	alysis
No.	Ar	Method	Yield	Solvent	m.p., °C.	λmax.(Am)	Calc'd	Found
57	CH ₃ O	В	61.2	benzene	130–132.5	244,sh(12,300)	C,66.86 H, 5.30 N,13.00	66.97 5.08 13.54
58	CH ₃ O'	C	29.79	dimethylformamide, water	133.5–136.5	281(15,410)	C,69.61 H, 5.15 N,14.33	69.10 5.08 14.18
59	OCH ₃	B '	18.26	dimethylformamide, water	164.5–166.5	C.	C,56.16 H, 3.54 N,12.28	55.65 3.51 12.37
60	Br	A	51.07	isopropanol	142.5–145.5	223(14,420)	C,68.32 H, 4.30 N,14.94	67.79 4.36 14.58
61	F F F	B	15.68	isopropanol- ethanol	203.5-205	258(18,840)	C,54.40 H, 2.28 N,11.90	53.78 2.30 12.16
62	F F	A	46.9	isopropanol	165.5–167.5	237(53,900)	C,76.66 H, 4.83 N,13.41	76.29 4.84 13.27
63		A	36.78	isopropanol- dimethylformamide	175-177	289(6,940)	C,76.66 H, 4.82 N,13.41	76.68 4.75 12.01
190	CH ₃ O	B	38.80	benzene	156157.5	268(13,800)	C,64.58 H, 5.42 N,11.89	64.58 5.39 12.02
	CH ₃ O			•			•	

TABLE II-continued

1-(2-Arylamidophenyl)imidazoles

		Isolation	%	Crystallization			A	nalysis
No.	Ar	Method	Yield	Solvent	m.p., °C.	λmax.(Am)	Calc'd	Found
217	CH ₃ O OCH ₃	A	45.8	ethanol	134136.5	273(14,900)	C,66.86 H, 5.30 N,13.00	66.88 5.37 12.68

Notes:

- a. isolated as hemihydrate.
- b. partial loss prevented yield determination.
- c. Compound absorbed too low for significant U.V.

Alkyl-2-(1-imidazolyl)phenylureylenes (Table III) were prepared by the reaction of equimolar amounts of

dimethylformamide and precipitated with water followed by crystallization.

TABLE III

$$\begin{array}{c|c}
N & & & \\
N & & \\
N$$

Alkyl-2-(1-imidazolyl)phenylureylenes

		Isolation	%	Crystallization			Ana	alysis
No.	R	Method	Yield	Solvent	m.p., °C.	λmax.(Am)	Calc'd	Found
. 64	CH ₃ —	Α	41.6	ethanol	194–196	240(15,500)	C,61.60	61.22
							H, 5.59	5.48
							N,25.91	26.11
65	CH ₃ CH ₂ —	В	27.3	trichloroethylene	173-175	278(1,200)	C,62.59	62.21
						242(12,700)	H, 6.13	6.04
							N,24.33	24.32
66	CH ₃ CH ₂ CH ₂ —	В	49.3	trichloroethylene	139-141	279(1,200)	C,63.92	63.75
						240(12,800)	H, 6.60	6.56
							N,22.93	23.00
67	CH ₃ CH ₂ CH ₂ CH ₂ —	В	35.6	isopropanol	115-116.5	278(1,400)	C,65.09	64.84
						241(15,000)	H, 7.02	7.00
							N,21.69	21.78
68		Α	50.64	dimethylformamide,	164-166	241(12,200)	C,67.58	67.60
				water			H, 7.09	7.08
. ,	(s.)—				·		N,19.70	19.44

the aminophenylimidazole and the appropriate isocyanate in toluene solution at steam bath temperatures during two or three hours. Upon cooling, the crude product was collected by filtration and treated by one of the following methods: (A) direct crystallization from the appropriate solvent or (B) dissolved in hot

Aryl-2-(1-imidazolyl)phenylureylenes (Table IV) were prepared by reacting equimolar amounts of the aminophenylimidazole and the appropriate arylisocyanate in dry toluene during three hours at steam bath temperatures. The reaction mixture was cooled and the crude product was separated by filtration, and washed with ether and crystallized from the indicated solvent.

TABLE IV

$$\begin{array}{c|c}
N & & & \\
N & & \\
N$$

Arvl-2-(1-imidazolyl)phenylureylenes

	_	Aryl-2-(1-imidazolyl)phenylure	eylenes			
			Recrystallization			Analysis	
No.	Ar	% Yield	-	m.p., °C.	λmax.(Am)		Found
69		64.6	ethanol	201-203	256(27,640)	C,69.05	69.13
03		04.0	Cilianoi	201-203	230(27,040)	H, 5.07	5.15
	_{ \\					N,20.13	20.16
	\/						
70		76.9	dimethylformamide-	203.5-207.5	258(23,400)	C,69.84	69.85
			water	20010 20110	200(20,100)	H, 5.52	5.47
	─ { }	d		in the second	i gazaren a	N,19.17	19.28
	CH ₃		_				
71	/ \	76.9	ethanol	182-183.5	256(25,800)		69.97
	$-\langle CH_3 \rangle$				a de servicio	H, 5.52 N,19.17	5.35 19.12
 -	`						
72		78.8	dimethylformamide-	202.5–203.5	251(25,500)		64.77 4.47
			water		•	H, 4.42 N,18.91	4.47 19.16
				•		- ·, • · · · ·	
	}						
	F'			•			
73	/	61.9	dimethylformamide-	201.5-202	253(26,000)		64.47
	/ \		water			H, 4.42	4.40
				•		N,18.97	19.24
				•			
	\ F						
74	<u></u>	65.8	dimethylformamide-	220–222	251(23,100)	C,64.86	64.56
. •			water	•	231(23,100)	H, 4.42	4.41
	⟨					N,18.97	19.14
							•
75		76.7	dimethylformamide-	204–206	258(30,900)	C,61.45	61.57
		70.7	water		-	H, 4.19	4.12
	{ }Cl					N,17.91	18.26
76		58.1	dimethylformamide-	244-245.5	260(32,900)	C,55.35	54.93
		-70. A	water		200(J2,700)	H, 3.48	3.47
	()—C1					N,16.14	16.25
				-			
77	Cl	70.0	# :	100 5 100 5	050/03.000	Ö 63 00	£2 00
77		70.0	dimethylformamide- water	180.5-182.5	252(23,000)	-C,53.80 H, 3.76	53.88 3.78
	_()		*******			N,15.68	15.66
	\						
			·				
	Br						
78		75.2	dimethylformamide-	218-219.5	258(28,600)		53.71
			water			H, 3.67 N,15.68	3.66 15.35
						11,15.00	x J · J J
	\ (•					ı
	Br	-			, •		e e e e e e e e e e e e e e e e e e e
79		53.1	methanol	227-230.5	260(27,700)	C,53.80	52.08
						n. 3.0/	` 3.30
	————Br				₽. Ī→	N,15.68	15.12
		•		•			
				•		* **	· · · · · · · · · · · · · · · · · · ·

TABLE IV-continued

$$\begin{array}{c|c}
N & O \\
N & N \\
N & O \\
N & N \\
N &$$

Aryl-2-(1-imidazolyl)phenylureylenes Recrystallization Analysis												
Recrystallization												
No.	Ar		% Yield	Solvent	m.p., °C.	λmax.(Am)	Calc'd	Found				
80		-1	83.2	dimethylformamide- water	201–202	253(26,000)	C,64.86 H, 4.42 N,18.97	64.47 4.40 19.24				
81			57.79	dimethylformamide- water	167-170	250(20,710)	C,69.84 H, 5.52 N,19.17	70.10 5.57 18.60				
	CH ₃	· ', · · · ·		•								
82 ⁻	CF		77.4	dimethylformamide- water	216.5-218.5	256(31,010)	C,58.96 H, 3.78 N,16.18	58.86 3.81 15.79				
83		-CH ₃	78.9	dimethylformamide- water	212-215	260(27,580)	C,70.57 H, 5.92 N,18.29	70.30 5.83 18.00				
84	CH	-CH ₂ CH ₃	76.6	dimethylformamide- water	185–188	258(29,590)	C,70.57 H, 5.92 N,18.29	70.30 5.96 18.00				
85	CH	I ₂ CH ₃	76.2	dimethylformamide- water	163.5166	258(28,770)	C,70.57 H, 5.92 N,18.29	70.52 5.81 17.94				
86		-(CH ₂) ₃ CH ₃	67.8	dimethylformamide- water	169-172	257(29,920)	C,71.83 H, 6.63 N,16.75	71.61 6.56 16.24				
87		CH ₃ -CH CH ₃	80.6	dimethylformamide- water	206-209	282(27,620)	C,71.23 H, 6.29 N,17.49	71.12 6.12 17.24				
88			69.0	dimethylformamide- water	204.5-206	285(10,630)	C,66.22 H, 5.23 N,18.17	65.96 5.15 18.15				
89	CH ₃ O	: H ₃	84.0	dimethylformamide- water	188	252(25,510)	C,66.22 H, 5.23 N,18.17	65.83 5.13 18.02				
90		-OCH ₃	81.9	dimethylformamide- water	200-202	260(24,560)	C,66.22 H, 5.23 N,18.17	65.61 5.14 17.98				

TABLE IV-continued

		Aryl-2-(1-imidazolyl)phenylure	ylenes	•		
			Recrystallization		-	Ana	lysis
No.	Ar	% Yield	Solvent	m.p., °C.	λmax.(Am)	Calc'd	Found
91	OCH ₂ CH ₃	80.9	dimethylformamide- water	190.5–193	··259(27,180)	C,67.07 H, 5.63 N,17.38	66.80 5.62 17.16
92	O(CH ₂) ₃ CH ₃	79.5	dimethylformamide- water	178-179.5	258(26,490)	C,68.55 H, 6.33 N,15.99	68.68 6.34 15.62
93		64.1	dimethylformamide- water	202.5205	259(35,850)	C,71.34 H, 4.90 N,15.13	71.14 4.93 14.78
94	SCH ₃	75.1	dimethylformamide- water	189-191	278(32,130)	C,62.94 H, 4.97 N,17.27	62.84 4.86 17.22
95	Cl	62.3	dimethylformamide- water	211.5-214.5	259(30,210)	C,61.45 H, 4.19 N,17.91	60.94 4.02 17.79
96	——————————————————————————————————————	75.9	dimethylformamide- water	198-210	252(25,230)	C.61.44 H, 3.85 N,17.83	61.33 3.92 17.98
97	F Cl	64.8	dimethylformamide- water	232.5–234	258(32,380)	C,55.35 H, 3.48 N,16.14	55.60 3.50 16.00
98	Cl —CH ₃	70.7	dimethylformamide- water	237.5-239	258(31,300)	C,62,48 H, 4.63 N,17.15	62.79 4.70 17.30
99	Cl F	70.0	dimethylformamide- water	229–232	256(25,630)	C,58.10 H, 3.66 N,16.94	57.84 3.56 16.90
100	Cl ————————————————————————————————————	57.6	dimethylformamide- water	239.5-242.2	261(37,430)	C,53.63 H, 3.18 N,14.71	53.89 3.05 14.41
101	CF ₃ Cl CF ₃	50.7	dimethylformamide- water	190-192	255(26,350)	H, 3.18 N,14.71	53.70 2.97 14.90

TABLE IV-continued

	······································	Aryl-2-(1-imidazolyl)phenylure	eylenes			
	•		Recrystallization		_	Ana	lysis
No.	Ar	% Yield	Solvent	m.p., °C.	λmax.(Am)	Calc'd	Found
102		42.7	dimethylformamide- water	202-205	375(4,200) 253(32,970)	C,59.44 H, 4.05 N,21.66	59.40 4.10 21.44
103	NO ₂	44.2	dimethylformamide- water	237.5–239.5	342(1,800) 264(46,530)	C,59.44 H, 4.05 N,21.66	59.16 4.10 21.31
104	NO ₂ —NO ₂	52.3	dimethylformamide- water	>257(Dec.)	330(20,010)	C,59.44 H, 4.05 N,21.66	59.01 3.97 21.07
105	——————————————————————————————————————	35.4	dimethylformamide- water	256.5–258	257(33,080)	C,53.72 H, 3.38 N,19.57	53.72 3.31 19.63
106	NO ₂ —CH ₃	57.1	dimethylformamide- water	254-256 (Dec.)	256(36,930)	C,60.53 H, 4.48 N,20.76	60.26 4.34 20.68
107	NO_2 $C \equiv N$	47.3	dimethylformamide- water	244	290(57,510)	C,67.32 H, 4.32 N,23.09	67.88 4.13 21.37
108	O CCH ₃	33.8	dimethylformamide- water	227.5-229.5	297(32,710)	C,67.48 H, 5.03 N,17.49	67.49 5.05 17.07
191		35.2	dimethylformamide- water	233-236	284(16,710)	C,73.15 H, 4.91 N,17.06	72.70 4.97 16.63
192	NO ₂	25.2	dimethylformamide- methanol-water	231-232	252(32,920)	C,56.31 H, 3.55 N,20.52	54.13 3.50 20.21

4-Alkylimidazo[1,2-a]quinoxalines (Table V) were prepared by refluxing the appropriate amide (Table I, compounds 1-33) with phosphorous oxychloride in through excess pyridine during one hour. The reaction mixture orated a was stirred into water and sufficient azeotrope removed 65 solvent.

to form a viscous residue which was dissolved in chloroform, dried over MgSO₄, and chromatographed through an alumina column. The chloroform was evaporated and the product crystallized from the indicated solvent.

. .

TABLE Viscosia

4-alkylimidazo[1,2-a] quinoxalines

			Recrystallization		•	An	alysis
No.	R	% Yield	Solvent	m.p. °C.	λmax.(Am)	Calc'd	Found
1				<u> </u>	······································		
109	H a.	63.3	sublimed	120	316(10,900)	C 50 11	50.10
110	CH3	13.3	isopropyl ether	134–135	312(11,200)	C,72.11	72.18
						H, 4.95	4.89
		27.6	1	114 115	211/10 500\	N,22.93	23.01
111	CH ₃ CH ₂ —	37.6	hexane	114115	311(10,500)	C,73.07	72.85
						H, 5.62	5.83
112	CU-CU-CU	14.3	havana	110-111	214(10,000)	N,21.30	21.29
112	CH ₃ CH ₂ CH ₂ —	14.5	hexane	110-111	314(10,900)	C,73.91 H, 6.20	73.99
						N,19.89	6.13 19.94
113	CH ₃ (CH ₂) ₃ —	17.6	hexane	92-93	324(8,000)	C,74.64	74.34
•••	C113(C112/3	,,,,	Homano		321(0,000)	H, 6.70	6.74
						N,18.65	18.48
114	CH ₃ (CH ₂) ₄	29.2	b .	63-65	314(11,300)	C,75.28	75.13
	5(2)4				(,,	H, 7.16	7.39
						N,17.56	17.43
115	CH ₃ (CH ₂) ₅ —	10.7	b.	43-45	313(10,800)	C,75.86	76.03
					` ' '	H, 7.56	7.63
		· · · · · · · · · · · · · · · · · · ·				N,16.59	16.40
16	CH ₃ (CH ₂) ₆ —	8.0	c.	54-57	313(9,400)	C,76.37	75.84
	 				• • •	H, 7.92	7.77
	•					N,15.72	16.43
17	CH ₃ (CH ₂) ₇ —	26.3	isopropyl ether	65-66	311(11,600)	C,76.83	76.97
						H, 8.24	8.20
			, •			N,14.93	14.89
18	CH ₃ (CH ₂) ₈ —	9.5	ethyl ether-	55-57	307(12,500)	C,77.25	77.04
	•		hexane			H, 8.53	8.36
						N,14.22	14.52
19	CH ₃ (CH ₂) ₁₄ —	24.3	isopropyl ether	73–75	313(11,300)	C,79.11	79.03
						H, 9.82	10.02
						N,11.07	10.88
120	$CH_3(CH_2)_{16}$	13.7	isopropyl ether-	79-81	311(11,300)	C,79.11	79.54
						H,10.14	10.12
						N,10.31	10.34
21	(CH3)2CHCH2-	12.6	hexanes	52–55	314(11,700)	C,74.64	74.92
						H, 6.71	6.81
						N,18.65	18.74
22	CF ₃ —	50.7	isopropyl ether-	184–187	328(10,800)	C,55.70	55.94
			chloroform			H, 2.55	2.49
~~	OII OII/OII \	0.0	•	40.40	000/40 400	N,17.72	17.64
23	$CH_2 = CH(CH_2)_8 -$	9.8	hexanes	40–42	309(13,100)	C,78.14	77.92
		. •		•		H, 8.20	7.98
24		165	_41 1	140 6 646	212/12 100	N,13.67	13.96
24		16.7	ethanol	140.5–142	312(13,100)	C,78.74	78.59
	/ \					H, 5.05	5.20
	\leftarrow CH ₂ -					N,16.20	16.10
25	CH ₃ OCH ₂ —	3,1	toluene-hexane	96.5-97.5	312(10,600)	C,67.59	67.04
	~~~~~~ <u>~~~</u>	. 3,1	Widelic-Headle	70.0-71.0	512(10,000) ·	H, 5.20	5.17
					•	N,19.71	19.93
26		14.5	ethanol	146 5_148 5	314(10,400)	C,74.17	74.28
- <del></del> +		17.5	··············	170.J-170.J	J. 1 (10, 100)	H, 4.76	4.61
	( )					N,15.26	15.09
					•	14,13.20	13.03
127		37.2	benzene	164167	286(10,500)	C,79.68	80.38
	/			•	\ \ \ \ \ \ \	H, 4.83	4.91
	( )-CH=CH-	•	<del>.</del> .		•	N,15.49	15.12
	\\	to the second second				,	· • -
	`		· • • • • • • • • • • • • • • • • • • •				
		17.9	hexane	106.5-107.5	310(11,500)	C,75.31	75.32
128					-		
128						H, 5.87	5.84
128						H, 5.87 N,18.82	

### TABLE V-continued

4-alkylimidazo[1,2-a] quinoxalines

			Recrystallization	Analysis			
No.	R	% Yield	Solvent	m.p. °C.	λmax.(Am)	Calc'd	Found
129		2.0	hexane	119-120.5	311(11,400)	C,76.46 H, 6.82 N,16.72	76.65 6.76 16.58
130		<b>0.8</b>	isopropyl ether	133–135	312(11,700)	C,77.39 H, 5.68 N,16.92	77.20 6.13 16.76

Notes:

- a. A.M. Siminov and I.G. Urykina, Khim. Geterot Soedin., 7,570(1971) report this compound has an mp of 124° with  $\lambda_{max.}^{MeOH}$  (Am) = 315 (10,700).
- b. Purified by sublimation at 90°/0.15 mm Pressure.
- c. Purified by distillation at 174°-184°/0.40 mm P.

4-Arylimidazo[1,2-a]quinoxalines (Table VI) were prepared and isolated according to the general method described for the 4-alkylimidazo[1,2-a]quinoxalines, ³⁰ except as noted in Table VI.

#### TABLE VI

4-Arylimidazo[1,2-9]quinoxalines

	%	Crystallization			Aı	nalysis
No. Ar	Yield	Solvent	m.p. °C.	λmax.(Am)	Calc'd	Found
131 <u>a</u> .	34.8	benzene	145–147	328(14,100)	C,78.35 H, 4.52 N,17.13	78.70 4.38 16.90
132 CH ₃	37.2	toluene- isopropanol	149–150.5	334(22,650)	C,78.74 H, 5.05 N,16.20	78.80 5.08 16.27
133 CH ₃	35.9	isopropanol- isopropyl ether	112-114	329(14,400)	C,78.74 H, 5.05 N,16.20	78.53 5.19 16.20
134 CH ₃ ————————————————————————————————————	47.1	isopropanol	119–120	329(18,100)	C,78.74 H, 5.05 N,16.20	78.32 4.73 15.93
135	37.8	isopropanol	136–137	331(27,780)	C,82.22 H, 4.70 N,13.07	82.06 4.38 12.89

og graft of

 $(\varphi_{i},\mathcal{B}_{i})\otimes_{\mathcal{B}_{i}}^{H}$ 

3 + 88C

## TABLE VI-continued

4-Arylimidazo[1,2-9]quinoxalines Crystallization % **Analysis** m.p. °C. No. Ar Yield Solvent λmax.(Am) Calc'd Found 136 47.0 112–113 332(10,411) isooctane C,65.18 65.03 H, 3.22 3.10 N,13.41 13.62 CF₃ 137 56.7 105-107 329(20,354) C,79.70 hexanes 79.50 H, 6.35 6.58 N,13.94 13.84 (CH₃)₃C138 149-150.5 334(22,650) isopropanol-C,74.17 74.18 37.2 toluene 4.79 H, 4.76 15.33 N,15.26 CH₃O-139 CH₃O 51.5 136-138 isopropanol 329(16,600) C,70.81 70.61 5.06 H, 4.95 N,13.76 13.56 CH₃O C,68.70 173-175 ethanol 69.06 140 31.5 328(16,280) ₹ H, 3.60 3.28 N,15.02 15.08 Cl-141 166-168 C,68.70 6.8 331(10,300) 68.77 benzene-H, 3.60 3.48 hexanes N,15.02 14.87 142 133–134 330(14,000) C,68.70 68.43 isopropanol **...Н, 3.60** ... 3.45 ... 14.89 N,15.02 143 60.94 2.82 215-217.5 toluene 333(16,530) C,61.16 H, 2.89 N,13.37 13.50 144 carbon tetra-168-170 321(13,030) 60.61 C,61.17 H, 2.89 chloride 2.85 N,13.37 13.57 145 319(10,200) 24.1 dimethyl-161.5–164.5 C,59.28 58.75 formamide-H, 3.11 3.03 12.90 N,12.96 water Br 146 dimethyl-59.34 13.4 329(12,900) 172 C,59.28 H, 3.11 formamide-3.13 13.23 N,12.96 water Br- $(x,\xi)_{x\in \mathcal{X}}$ 

# TABLE VI-continued

4-Arylimidazo[1,2-9]quinoxalines Crystallization Analysis No: Ar Yield m.p. °C. Solvent Calc'd λmax.(Am) Found 147 39.1 isopropanol 183-185 328(14,500) C,72.99 73.00 H, 3.83 4.06 N,15.96 15.77 148 15.0 ethanol 190-192 222(48,000) C,70.58 70.54 H, 3.83 3.71 N,14.52 14.67 COOH 149 53.3 dimethyl-257.5-259.5 335(14,900) C,75.54 75.15 formamide-H, 3.73 3.85 NHCwater N,20.73 20.66 150 2-ethoxyethanol 59.8 220.5-222.5 333(13,850) C,66.20 66.10 H, 3.47 3.48 N,19.30 19.53 NO₂ 151 40.3 toluene 249-252 346(15,269) C,66.20 66.10 H, 3.47 3.44 NO₂-N,19.30 19.28 152 NO₂ dimethyl-52.5 283-285 340(10,880) C,57.30 57.08 formamide H, 2.71 2.74 N,20.89 21.11 NO₂ 153 75.7 dimethyl-198-199.5 369(23,470) C,73.83 73.48 formamide-H, 4.65 4.69 NH₂-N,21.53 water 21.54 154 dimethyl-61.9 130-133 326(14,830) C,73.83 73.56 formamide-H, 4.65 4.78 N,21.53 water 21.69 NH₂ 155 58.0 ethylacetate-214-217 342(27,700) C,68.88 68.46 hexane H, 4.66 4.99 CH₃CNH-1 H2O N,17.85 17.76 156 dimethyl-13.9 237.5-240 345(32,350) C,68.24 68.54 formamide-H H, 3.90 3.90 طر <u>d</u>: غ H₂O N,13.84 water 14.00 173 32.3 ethanol 155-157 321(13,090) C,72.99 72.44 H, 3.83 3.83 N,15.96 16.14

### TABLE VI-continued

4-Arylimidazo[1,2-9]quinoxalines **Analysis** Crystallization Found m.p. °C. λmax.(Am) Calc'd Yield Solvent No. Ar 134.5-136 332(14,260) C,59.28 59.25 dimethyl-56.6 157 H, 3.11 3.04 formamide-N,12.96 13.11 water Br 330(13,970) C,72.99 73.00 132.5-134 dimethyl-47.5 158 H, 3.83 3.79 formamide-N,15.96 15.84 water 74.09 C,74.17 113-114.5 329(16,500) ethanol -52.7 159 H, 4.76 4.71 N,15.26 15.05 CH₃O C,81.34 H, 4.43 10.62 chloroform 159-161.5 81.29 323(15,290) 160 4.41 N,14.23 14.22 1 may 1 mg C,81.34 81.19 154.5-156.5 340(21,800) 161 benzene H, 4.44 4.57 N,14.23 13.92 68.99 C,68.81 210-215 343(23,800) isopropanol 25.4 162 H, 4.69 4.63 N,15.04 <del>e</del>. H₂O 14.92 HO-C,71.28 158-160 71.31 333(14,950) 84.2 ethanol 163 H, 4.32 4.44 N,13.85 13.85 CH₃CO-72.38 C,72.49 116-118 ethanol 335(15,100) 80.3 164 H, 5.17 5.42 N,12.68 12.36 CH₃(CH₂)₂CO-ethanol 74.87 c,75.15 H, 7.03 90.5-93.5 335(15,100) 62.6 165 O || CH₃(CH₂)₈CO—( 7.16 N,10.11 9.94 154–155.5 76.58 45.85 chloroform 166 8.35 10.81 ). ¼ H₂O 74.37 150-152 C,74.72 342(22,900) 29.80 ethanol 193 H, 5.23 5.17 N,14.52 14.33

## TABLE VI-continued

4-Arylimidazo[1,2-9]quinoxalines

	%	Crystallization			- A:	nalysis
No. Ar	Yield	Solvent	m.p. °C.	λmax.(Am)	Calc'd	Found
196 I————————————————————————————————————	8.2	dimethyl- formamide- water	178-181	330(27,300)	C,51.77 H, 2.72 N,11.32	51.89 2.68 11.46
219	37.1	toluene	151.5-153.5	333(21,000)	C,78.32 H, 4.48 N,12.45	78.32 4.63 12.22
220 CH ₃ O————————————————————————————————————	35.1	benzene	151.5-153.5	337(22,200)	C,75.19 H, 4.66 N,11.44	75.42 4.58 11.46
221 HO————————————————————————————————————	33.3	ethanol-water	>330°	343(22,700)	C,72.92 H, 4.45 N,11.60	73.21 4.31 11.74
222 CH ₃ (CH ₂ ) ₃ S—g.	28.2	ethanol	83-85	348(24,600)	C,72.04 H, 5.74 N,12.60	71.64 5.68 12.62
194 CH ₃ O  CH ₃ O	22.6	toluene	164-165.5	339(19,400)	C,68.05 H, 5.11 N,12.53	67.70 5.03 12.32
CH ₃ O						

a. U.S. Pat. No. 3,887,566 describes this compound as having a m.p. of 154-157° C.

b. Prepared by refluxing aquimolar amounts of the 2-aminophinyl-imidazole and phthalic anlydride in toluene for one and one-half hours. Upon cooling, the product separated out of solution.

c. Prepared by catalytic hydrogenation with 10% palladium on carbon of a dimethylformamide solution of the nitro analog; crude product precipitated with water.

d. Prepared by treating compound 153 in pyridine with the appropriate acid chloride followed by precipitation with water.

e. Prepared by HI cleavage of compound No. 138.

f. Prepared by treating the lithium salt of compound No. 162 with the appropriate acid chloride in DMF followed by precipitation with water.

g. Prepared by treating compound No. 151 with the appropriate nucleo-phile according to the method of Kornblum et al, J. Org. Chem., 41, 1560(1976).

h. Prepared by HI cleavage of compound 220.

The 4-Alkylaminoimidazo[1,2-a]quinoxalines (Table 55 VII) were prepared by treating the corresponding alkylureylenes (Table III) with phosphorous oxychloride and pyridine during one-half hour at reflux temperatures. The reaction mixture was poured into cold water and the excess pyridine was removed by azeotropic 60 yield.

distillation. The crude product was dissolved in chloroform and pass through an alumina columa. After evaporation of the chloroform, the solid was crystallized from the indicated solvent and obtained in the indicated

### TABLE VII

	<u> </u>	%	Crystallization		•	Ana	lysis
No.	R	Yield	Solvent	m.p. °C.	°C. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Found
67	*	4.89	hexane	98.5-101.5	335(11,700)	C,72.15	72.02
, • .		,,-,		, ·		H, 6.81	6.75
	( s )-	-		. •		N,21.04	20.81
				100 104	222(11.400)	C 60 07	70 12
68	$CH_3(CH_2)_2CH_2$	28.33	isopropyl ether	102–104	332(11,480)	C,69.97	70.12
						H, 6.71	6.71
						N,23.31	23.21
69	$CH_3(CH_2)_2$	7.5	isopropyl ether	72-74	317(15,800)	C,69.00	69.14
-	J(2/L				•	H, 6.24	6.35
						N,24.76	24.60

4-Arylaminoimidazo[1,2-a]quinoxalines (Table VIII) were prepared by treating the corresponding arylaurey-lenes (Table IV) with an equimolar amount of phosphorous oxychloride in refluxing pyridine during one hour. The cooled reaction mixture was stirred into cold wa-

ter, and the crude solid which separated was dissolved in chloroform, dried and passed through an alumina column. The chloroform was evaporated and the crude solid was crystallized as indicated in Table VIII.

#### TABLE VIII

	4-1	······ <del>-</del>	inoimidazo(1,2-a	rquinoxannes	· · · · · · · · · · · · · · · · · · ·	<del></del> Д na	lysis
No	A	% Yield	Crystallization Solvent	m.p. °C.	λmax.(Am)	Calc'd	Found
No. 170	a.	7.2	ethanol-water	120–123	304(13,800)	C,72.57 H, 4.76 N,21.16	72.67 4.71 20.88
171	CH ₃ —	13.1	methanol- chloroform	151	334(20,700)	C,74.43 H, 5.14 N,20.42	74.16 5.06 20.09
172		11.7	methanol- chloroform	153–155	330(20,200)	C,74.43 H, 5.14 N,20.42	73.23 5.26 20.02
174	CH ₃	13.6	methanol- chloroform	176.5–178	330(22,200)	C,65.26 H, 3.75 N,19.02	65.04 3.77 18.91
175	Cl	10.9	methanol- chloroform	178.5–180.5	334(33,600)	C,58.38 H, 3.06 N,17.02	58.15 3.06 17.09
176	Cl	18.2	toluene- chloroform	193.5-195	332(4,500)	C,49.76 H, 2.87 N,14.51	49.72 3.10 14.39

# TABLE VIII-continued

4-Arylaminoimidazo{1,2-a}quinoxalines

		4-Arylami	noimidazo{1,2-a}quinoxa	lines		<del></del>	
		%	Crystallization			Апа	lysis
No.	Ar	Yield	Solvent	m.p. °C.	λmax.(Am)	Calc'd	Found
177		11.5	ethanol	196.5-198.5	324(16,600)	C,56.66 H, 3.27 N,16.52	56.69 3.24 16.43
178	Br	15.0	methanol- chloroform	184185.5	329(24,100)	C,56.66 H, 3.27 N,16.52	56.26 3.20 16.54
179	Br . ½ H ₂ O	10.52	dimethylformamide water	122-124	343(19,600)	C,63.27 H, 3.98 N,18.45	62.94 4.19 18.58
180	CI	13.0	ethanol-dimethyl- formamide	139	339(19,810)	C,69.05 H, 3.98 N,20.13	68.88 4.02 20.13
181	F	9.4	isopropanol	148.5-149.5	343(20,230)	C,69.05 H, 3.98 N,20.13	68.92 4.00 20.14
182	F	3.1	isopropanol	139.5–141	331(18,030)	C,69.05 H, 3.98 N,20.13	68.50 3.92 19.86
183	Br—\\	16.58	dimethylformamide- water	166–168.5	347(21,730)	C,56.66 H, 3.27 N,16.52	56.31 3.25 16.56
184		11.4	dimethylformamide- water	207–209	366(22,410)	C,70.33 H, 4.86 N,19.30	70.61 5.11 19.11
185	OCH ₃	8.3	dimethylformamide- water	116.5–117.5	335(21,820)	C,70.33 H, 4.86 N,19.30	70.16 5.28 19.31
. 186	CH ₃ O	14.12	dimethylformamide- water	147–149	339(18,540)	C,70.33 H, 4.86 N,19.30	70.14 4.98 19.09

ú

## TABLE VIII-continued

4-Arylaminoimidazo{1,2-a}quinoxalines Analysis Crystallization m.p. °C. Found Calc'd λmax.(Am) Solvent Yield No. Ar 60.21 C,60.28 341(20,370) isopropanol-dimethyl-195-197 2.0 187 3.88 H, 3.95 formamide N,21.97 21.63 . § H₂O NO₂ 400(8,960) C,62.95 62.62 241-243.5 dimethylformamide-36.4 188 3.63 H, 3.63 water. 22.68 N,22.94 NO₂ 368(23,670) C,62.95 62.73 323-324.5 dimethylformamide-33.1 189 H, 3.63 3.73 water N,22.94 22.81 NO₂-75.02 335(22,900) C,74.99 138.5-141 11.61 dimethylformamide-195 H, 4.58 4.66 water 75.02 N,15.90 74.63 C,74.43 330(18,000) 143-145 dimethylformamide-197 5.16 H, 5.15 water N,20.42 20.09 CH₃ 74.69 163.5-165.5 337(18,800) C,74.98 10.91 dimethylformamide 198 H, 5.59 5.56 N,19.43 19.43 CH₃-CH₃ 333(20,800) 73.87 C,73.83 15.29 dimethylformamide-81-83 199 H, 5.51 35 5.49 water N,19.13 18.88 . 4 H₂O CH₃CH₂ 74.14 335(23,200) C,73.83 124.5-127 dimethylformamide-13.81 200 H, 5.51 5.47 water N,19.13 19.02 ¼ H₂O CH₃CH₂-74.14 335(21,000) C,73.83 89.5-91.5 16.96 isopropanol-201 5.47 H, 5.51 water 19.02 N,19.13 CH₃(CH₂)₃-C,76.29 76.58 342(24,200) 187-190 11.50 methanol-202 H, 4.56 4.52 chloroform N,17.80 17.58 ¼ H₂O 68,32 5.32 340(20,300) C,68.99 120.5-123 dimethylformamide-203 H, 5.15 water N,17.88 17.61 1 H2O CH₃CH₂-

# TABLE VIII-continued

		4-Arylam	inoimidazo{1,2-a}quinoxa	lines	· !! · · · · · · · · · · · · · · · ·	<del></del>	
		%	Crystallization			An	alysis
No.	Ar	Yield	Solvent	m.p. °C.	λmax.(Am)	Calc'd	Found
204	CH ₃ (CH ₂ ) ₃ O————————————————————————————————————	21.39	dimethylformamide- water	102.5-10.7	340(19,600)	C,62.20 H, 3.38 N,17.07	61.56 3.34 17.46
205	CH ₃ S————————————————————————————————————	8.5	dimethylformamide- water	90-97	341(26,400)	C,65.68 H, 4.62 N,18.02	65.56 4.57 17.88
206		21.39	dimethylformamide- water	129130	347(20,300)	C,62.20 H, 3.38 N,17.07	61.56 3.34 17.46
207	CF ₃	11.49	dimethylformamide- water	178.5–179.5	324(25,500)	C,56.29 H, 2.78 N,15.45	55.86 2.72 15.37
208	CI	7.52	dimethylformamide- water	172.5-173.5	345(24,900)	C,56.29 H, 2.78 N,15.45	56.13 2.72 15.35
209	CF ₃ CH ₃ ————————————————————————————————————	15.18	dimethylformamide- water	170–172	332(23,800)	C,65.18 H, 4.18 N,17.89	65.35 4.15 17.91
210	Ci F————————————————————————————————————	13.56	dimethylformamide- water	171.5–173	337(17,300)	C,64.86 H, 3.40 N,18.91	64.92 3.51 19.09
211	Cl H ₂ O	10.78	dimethylformamide- water	259.5~261.5	342(23,200)	C,56.82 H, 3.28 N,16.57	56.76 3.07 16.57
212	Cl F	7.22	dimethylformamide- water	198–200	343(18,400)	C,61.45 H, 3.22 N,17.92	61.35 3.27 17.81
213	Cl F—	3.04	methanol-chloroform	229–231	341(19,900)	C,58.63 H, 3.15 N,21.36	58.50 3.06 21.20
	NO ₂			•	Ţ.,		

## TABLE VIII-continued

Various compounds of this invention display anti-fungal and anti-yeast activity. Thus, for example, they have been found to be effective against such organisms as Candida albicans (ATCC No. 10231), Candida tropicalis, Aspergillus niger (ATCC No. 16404), Trichophyton mentagrophytes (ATCC No. 8757 and 9129), Trichophyton rubrum (ATCC No. 10218 and 14001) and Trichophyton ajelloi.

The antifungal activity of compounds of this invention indicate their usefulness against dermatomycosis such as tinea capitis, tinea favosa, tinea barbae, tinea corporis, tinea imbricata, tinea cruris, tinea pedis, tinea manus, tinea unquium and various types of candidiasis such as glossitis, stomatitis, chelitis, perleche, vaginitis and balanitis.

When the compounds of the present invention are used for antifungal medical purposes, they will usually be incorporated in a suitable pharmaceutical carrier. These antifungal preparations may take the form of solutions, lotions, creams, ointments, etc. The quantity of antifungal agent of this invention that will be contained in such preparations may vary somewhat. Ordinarily, however, it will constitute about 0.5% to 10.0% by weight based on the total weight of the preparation.

In Table IX below are listed the antifungal activity of a number of compounds encompassed in the present invention. These were determined by the agar dilution method as described in Chapters 2 and 3 of *Methods in Microbiology*, Vol. 7B, edited by J. R. Norris and D. W. Ribbons, Academic Press, New York, 1972.

TABLE IX

Antifungal Activity
Parts Per Million Inhibitions of
Fungus and Yeast Species

			Fungus a	nd Yea	st Species	<u>****</u> 4	
	Com-					<b>T.</b>	
	pound	<i>C</i> .	<i>C</i> .	<i>A</i> .	T.	menta-	<i>T</i> .
40	No.	albicans	tropicalis	niger	ajelloi	grophytes	rubrum
-1	20	,	., .,	<del></del> .	100	100	
	136			• 10		100	
	40	100	100	· W	100	100	
	35				100 .	16	
	39				100	10Ò	
45	133	100	100		8	8	8
	134	,			100	16	• '
	139	. e . e . i				100	
	137	•			<b>100</b>	100	. 4
	135				100	100	
	142					100	
50	132				100	100	
-	138				100	100	
	130	100	100		100	100	19 12 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15
	113	100	100			100	•
	9					16	16
	10					16	16
55	116				·	16	ું 16
55	127					16 16	16
	109					178 *	, 32
	114					16	1
. ,	118					256	4 :
	123					`,	2
60	131				1 <b>4</b> 4	., 16	
Ų0	140					ş	< 0.5
	151					Section 2	1
	191						8
	120					,	l
	8	ŕ				ુ%₹ <b>`</b> Ş ≈ ₆	8
65	16					4	2
65	110			128	tig + - i	z 128	
	122					14 A A A A	32
	112		100			128	64
	153		100			i i i i i i i i i i i i i i i i i i i	
						- <del>-</del> .	

TABLE IX-continued

		Parts Per N		_			•
Con pour No	ıd <i>C</i> .	C. tropicalis	<b>A</b> .	T. ajelloi	T. menta- grophytes	T. rubrum	
124	100	100	-	100	100	8	•
58				100	100	100	
59	Men (45-1) Albania (15-1)				• • • • • • • • • • • • • • • • • • • •	100	
62	200			100	100	100	1
126		:		100	100	100	
145			9	100	100	100	
159	the modern community of the	0.0800		100	100	100	
160	•		,	100	100	100	
163				100	100	100	
164				100	100	100	1
165				100	100	100	
167				100	100	100	
168				100	100	100	
169				100	100	100	
173	•			100	100	100	
179				100	100	100	2
182						100	•
184				100	100	100	
185				100	100	100	
186	•			100	100	100	
189	1.0			100		100	
187				100		100	_
123						16	2
129	·			16	16	8	

A number of the compounds encompassed in the present invention have been found to have immunosuppressant action. Of those tested, most of these are of the 4-substituted imidazo[1,2-a]quinoxaline type described in formula I above, although a couple are of the 1-(2acylaminophenyl)imidazole type shown in formula II. Because they exhibit this activity, they are indicated for use in the treatment of those diseases that the prior art ³⁵ recognizes may be helped by the administration of immunosuppressants. These include such conditions as: glomerulonephritis, serum sickness, organ transplant, rheumatoid arthritis, systemic lupus erythematosis, ulcerative colitis, chronic active hepatitis, multiple sclero-40 sis, heterografts or homografts in burns, psoriatic arthritis, urticaria, respiratory allergies, i.e. asthma, hayfever; scleraclerma, mycosis fungoides, dermatomyositis, psoriasis and contact dermatitis (including poison ivy).

The dosage level for administering the immunosup- 45 pressants of the present invention will vary with the particular compound that is to be administered. In general, this will be at about the same level of the prior art immunosuppressants. For the most part, when the present immunosuppressants are administered orally or in- 50 traveneously, the daily dose would be in the range of about 0.1 mg. to 15 mg./per kilogram of body weight. When other mode of administration are employed, e.g. depot injections, implants, etc. the dose may be considerably higher i.e. up to about 100 mg./kg of body 55 weight in a single injection.

The immunosuppressant activities of the compounds of this invention were determined via the hemolysin test in mice and by the delayed hypersensitivity test. The hemolysin test used is that described in *Methods in Im-* 60 munology, edited by D. H. Campbell et al, W. A. Benjamin, New York 1963 pages 172-175, and measures humeral or antibody response. The delayed hypersensitivity test measures the effect of a test compound on the ability of a subject mouse to mount a cell-mediated 65 immune response to the antigen, Mycobacterium tuberculosis H37Ra. The mouse is sensitized to the antigen by subcutaneous administration in the base of the tail. The

development of the delayed hypersensitivity response may be measured at any time beginning six days after sensitization but is usually done on the ninth day as follows: The right hind paw is injected with purified protein derivative (tuberculin) while the left hind paw (control) receives physiological saline. Both paw volumes are measured after twenty-four hours and significant increase in the volume of the right hind paw is taken as a measure of an effective delayed hypersensitivity response. All compounds were administered by the subcutaneous route.

The results of these studies are summarized in Table X below. The expression HL(ED₅₀) mg./kg. s.c. is an expression of the number of milligrams per kilogram of body weight of the drug administered subcutaneously required to reduce the antibody activity by 50% when compared with a control. In this case, the lower the HL(ED₅₀) value for a drug the more effective immunosuppressant it is.

The D.H.S. (ED₆₀) mg./kg. s.c. value appearing in column 3 is an expression of the effectiveness of the drug in reducing the edema that accompanies the cellmediated immune response. It is a measure of the number of milligrams per kilogram of body weight of the drug administered subcutaneously which is required to reduce the edema of the cell-mediated immune response by 60% when compared to the control. Again, the lower the D.H.S. (ED $_{60}$ ) value the more effective is the drug as an immunosuppressant for the cell-mediate immune response.

<b></b>	TABLE X					
Compound	HL(ED ₅₀ )	D.H.S. (ED ₆₀ )				
No.	mg/kg,s.c.	mg/kg,s.c				
151	0.3	1.52				
140	0.26	1.15				
131	18	81				
116	>50	56				
117	>50	46				
118	>50	43				
109	>50	>50				
110		50				
3	50	50				
66	46	>50				
147	0.027	1.7				
134	0.5	7.2				
137	< 0.125	3.2				
135	0.033	0.22				
142	0.20	4.2				
136	2.7	>50				
133	0.75	32				
139	3.0	>50				
138	0.72	27				
127	>50	36				
170	6.6	>50				
150	22	>50				
143	0.36	1.3				
174	0.61	8.0				
171	0,96	59.0				
175	0.09	5.9				
178	11.0	46.0				
196	0.42	45.0				
197	1.6	37				
3	50.0	50.0				
169	46	>50.0				
146	0.11	3.1				
153	1.2	5.7				
149	0.16	8.8				
126	35.0	>50.0				
177	13.0	>50.0				
182	1.1	<del></del>				
162	13.0					
173		40				
159	3.0	27				
181	16.0	<del></del>				

TABLE X-continued

Compound No.	HL(ED ₅₀ ) mg/kg,s.c.	D.H.S. (ED ₆₀ ) mg/kg,s.c
180	5.6	
183	0.39	15
158	1.0	7.6
157	0.39	12
218	1.5	25
219	2.5	>32
220	2.3	11
222	1.0	>32

>50 means that it would take more than 50 mg./kg. of drug to reduce the humeral antibody activity by 50% or to reduce edema of the cell mediated immune response by 60%. Since these values are higher than is of practical interest from a clinical point of view, no further testing was doe for these materials.

A number of compounds encompassed in the present invention display non-steroidal anti-inflammatory properties. This appears to be generally the case for the 4-substituted imidazo[1,2-a]quinoxalines of formula 1 above and the 1-(2-acylaminophenyl)imidazoles of formula II. Because of this characteristic, they are indicated for use in the treatment of diseases that the prior art recognizes may be helped by the administration of non-steroidal anti-inflammatory compounds. These include such conditions as ichthyosis, psoriasis, alopecia, atopic eczemas, etc.

The dosage level for administering the anti-inflammatory agents of the present invention may vary somewhat depending on the particular drug selected, the disease being treated and the mode of administration. In general, however, when used for topical application, the compounds are distributed in a pharmaceutical vehicle suitable for topical application. In these compositions, the anti-inflammatory agent of this invention will comprise about 0.5% to 15.0% by weight based on the total weight of the composition.

The anti-inflammatory agents of the present invention may also be administered orally, intraveneously, subcutaneously, intramuscularly, and intradermally. In these cases, the daily dosage will be in the range of from 0.5 mg. to 20 mg. per kilogram of body weight of the active anti-inflammatory agents of this invention.

The anti-inflammatory activity of representative compounds of this invention was determined by the rat paw edema assay both by local administration (Table XI below) and by oral dosing (Table XII below). For the oral dosing, the procedure of C. A. Winter, E. A. Risley and G. W. Nuss, Proc. Soc. Exp. Biol. Med. 111, 544 (1962) was employed with measurement taken four hours after the drug was administered. The local administration tests were carried out similarly except the irritant (carrageenan) and the test compound were injected simultaneously at time zero.

Tables XI and XII report the anti-inflammatory activity of the compounds tested as % difference in the edema or swelling as compared with the control. These Tables also give the response in many instances of more than one dose level of the same drug.

TABLE XI

		1 /	ABLE A	<u>L</u>		_
		Local (injected	w Edema A Administra directly intended ence from C	tion o paw)		- •
	Compound No.	lμg	10µg	100μg	100 mg/kg	
•	148 109 114 117	-32.6 -30.8 -68.2	-53.5 -3.9 -30.0	-14.3 +31.6 -131.6	- 39	-
	110 122 49 7 51				-74 -61 -35 -22 -57	•

#### TABLE XI-continued

	Rat Paw Edema Assay,  Local Administration  (injected directly into paw)  % Difference from Control				
	Compound No.	lμg	10µg	100µg	100 mg/kg
•	140	· · · · · · · · · · · · · · · · · · ·			<b>-78</b>

#### TABLE XII

	IADLE AII		
<u> </u>	Rat Paw Edema Assay, Oral Dosi	ng	
	%Difference from Control		
Compound No		400 mg/kg	
Compound No.		400 III 67 K 6	
Indomethacin	-65		
phenybutazone	<b>-76</b>		
Aspirin	57		
114	61		
110	<b>-43</b>		
122	-61 -52		
148 49	32 35		
7	— 53 — 52		
5Í	-52 $-57$		
140	-35		
131	<b>-52</b>		
10	-30		
39	<b>50</b>		
133	<b>—17</b>		
137	-26	40	
112	-17	<b>-68</b>	
111	<b>-43</b>		
121	-61 20		
147	39 43		
134 139	$-43 \\ -22$	<b>—25</b>	
132	$-22 \\ -76$	-23	
150	-30		
144	-26		
115	+70	<b>-25</b>	
117	<b>-7</b>	18	
123	0	<b> 50</b>	
116	+104	-18	
136	<u>-9</u>	-25	
8	-22	-13 25	
29	-24	<b>—25</b>	
14 20	−52 −59		
. 38	<b>-41</b>		
. 57	$-3\overline{5}$		
50	-20	-33	
45	<b>—33</b>		
40	43		
35	<b> 50</b>		
37	<b>-35</b>		
18	-28	<b>E</b>	
15	-24 26	<b>5</b>	
55 52	<b>−26</b> <b>−26</b>		
2	-26 -26	+43	
23	-46	, 10	
25	-30		
30	. +9	-33	
36	<del>7</del>	<b>-68</b>	
42	<b>9</b>	25	
24	-17	<b>—25</b>	
109	-17		
71	-22		
75 69	-30 26		
68 73	$-26 \\ -22$		
128	- 22 39		
128	39 30		
147	·-·· J · · · · · · · · · · · · · · · · ·		

What is claimed is:

1. A method for inhibiting fungal growth comprising contacting a fungus sensitive thereto with an amount sufficient to inhibit the growth of such fungus of an imidazo[1,2-a]quinoxaline substituted at the 4-position by a hydrogen, an alkyl group of from 1 to 17 carbon atoms, 9-decenyl, a trifluoromethyl group, a benzyl group, a cycloalkyl group of from 4 or 6 carbon atoms, a styryl group, a phenyl group, and a phenyl group substituted by methyl, chloro, nitro or amino, in a suitable carrier therefor.

2. The method for inhibiting fungal growth according to claim 1 wherein said imidazo[1,2-a]quinoxaline is present in an amount of from about 0.5% to 10% by weight.