United States Patent (19

Bjornsson

[54]

COMPUTER SYSTEM OPERATION AND
CONTROL

[75] Inventor: Eyjolf Steuart Bjornsson, Manhattan
Beach, Calif.
[73] Assignee: Xerox Corporation, Stamford, Conn.
[22] Filed; Dec. 18, 1974
(21] Appl. No.: §34,045
[52] US.CL bentseresenasntnsotrtnaotny 340/172.5
(S1] Imt. CL%.....coeuennen.n. reserecarasnanaranee GO6F 11/04
[58] Field of Search 340/172.5; 445/1
[56] References Cited
UNITED STATES PATENTS
3,421,150 1/1969 Quosig et al. 340/172.5
3,623,011 6/1969 Brynard, Jr. et al. 340/172.5
3,643,227 2/1972 Smithetal. 340/172.5
3,648,252 3/1972 Thronetal.ccovvvvmnanee 340/172.5
3,763,474 10/1973 Freman et al. 340/172.5
3,771,131 LH/1973 LANE eeeceencciiinreereeeanennes 340/172.5
3,806,878 4/1974 Edstromcccccccunnuene.. . 340/172.5
34 :'
26
CONTROL
PANEL -
© Jop ‘
CONSOLE] | (RTERFACE 28 OCP
CONTROL SYSTEM CONTROL

INTERFACE

e

e

SYSTEM
CONTROL
.‘B > P
4 0 SUPERRESET e
Gonsore| LTV ,’
MODEM ’
©
CTLR

F--_-_--__-ﬂ

h-'—--—-“*-

TELECOMMUNICATIONS %0
SUBCONTROLLER

4,030,072
June 14, 1977

[11]
(45]

3,825,901 6/1974 Golnek, Sr. 340/172.5

Primary Examiner—Harvey E. Springborn
Attorney, Agent, or Firm—James J. Ralabate; Michael
J. Colitz, Jr.; Franklyn C. Weiss

[57] ABSTRACT

A data processing system includes a control processor
in communication with the various devices comprising
the data processing system. Communication between
the control processor and the data processing system
devices occurs on a separate maintenance and diagnos-
tic bus. The control processor initiates diagnostics
stored within several of the data processing system
devices. The self-diagnosing devices provide an indica-
tion to the control processor of successful completion

of the diagnostic stored therein. The device being diag-

nosed and the control processor operate asynchro-
nously of each other and utilize a register bit to indicate
successful completion of the diagnostic test.

8 Claims, 15 Drawing Figures

4 Ty AT S S TS - T . .

OTHER
CLUSTERS

PROCE

INTERFACE
BASCeson -
DCP

44
m -
MULTIPLEXOR 10 28

PROCESSOR —~, _
m—-.
MEMORY

INTERFACE

TO
OTHER
CLUSTERS

TSC

10
CONTROLLER

50

MAIN MEMORY UNIT

4,030,072

June 14, 1977 Sheet 1 of 12

U.S. Patent

SH3ILSNTO
d3H10
Ol

Sd31SN10
d44H10
Ol

4%
A3Ad| |A30] |A3Q] IA3A
Ol Ol Oi |] Ol

lINO AJOW3W NIV

LELN
os

3oV4HTLN! mu._.._ww_._.zoo .,%._.o
AHOW3W -

2s

|
|
|
|
|
|
|
|
|
|
|
|
|
/

[O/

R

FI / W3QOW
/
IE \\ 13S3943dNS A ol
7 A4 Oc 8/
L7 _37naow
¢ TOH1INOD 52
HOSS3004d E _ WLSAS | 310SNOD
82 24 Ot HOX3dILINKW K _ m._muw.__w . 19S5 dO 27
IE _ .
dJ0 P ' 3OV4YIINI 9/
3OV4HIUN]
oy EETIONLNOOBNS | dvQ 8¢ HOSS300ud | [TOSNOD
I \ 44 0313l _ d4.1SNI 0/1 d0
; __ am/ay o/
30V3H31INI 7 E - 13Nvd
SOVIUIIN of S .q_,_._o_w AD01D ._.osﬂm N0 1NOY
Ad | SLdNY¥AINI B gy |NAlsAS
Jid HIVd TOHLNOD OILSONSVIQ _ oz LINN SWILSAs

| 431SN710

)

re

Sheet 2 of 12 4,030,072

June 14, 1977

U.S. Patent

c 9/4

219071 NOILVYYH3INIO

Y2012 T04INOD 21s[S] SO34 JOVJH3LN
719071 NOISIAIQ MI0TD SLI18 6 XOw |
0344 "WWOO[™" H3LSVA 0Qadoq QvdoQ =
90/ 86 96 | 94
1NO 8HD - . .
o XN
S3NIT NI VHO XMW |
sl W I » ol | PO S
4
80/ p6 l =T
06 P og
N Eigiclelple
oL XOWY _ XNwa 2 EICTE) ol
8
NON)
S1ig 8X 2¢ S1198X 2¢ 26
93y V 934 YV _ Ot °
HOLVINWNDOV H. .
98 9348 _

OO/

4300030 | ¢°

88 »8

95
S3HOLV 3OV4N3LNI

U.S. Patent June 14, 1977 Sheet 3 of 12 4,030,072

ASEL
|

DCP (A) BUS ’ 14 3 CLOCK

MUX DCPENC (O-5)

28114 | 5 _
DCP (B)BUS » 14 | DCPAD (0-4)

DCPDI
140

DCPDO (A) ‘ DCPDO
DCPDO(B)

DCPAD(0-4):C /49

NDSE (a)

DCPDO:C (.
s

G —oara 3

Sheet 4 of 12 4,030,072

June 14, 1977

U.S. Patent

SIN3N33
d31SN1D
ONV
d31SN1D
Ol

JOV4H3LNI
Jid

STIVNOIS
JOV4d 3 LN

-GNV 13534

OVIAOHDINN

Gl 3SAON

00 3SAN

1:00d94d

21907
1383y
ANV
S3HOLV
3OV443LNI

ropyl

S/

4300030
Ol:p

J:10d0Q €———0
0:(§-0) Q¥d0g €«—©

qc O/

M201D _ Gl ONS
Gl1-0 ON4
138D 80 ON4
1383
20 ON4
00 ONAd
60 ON4
4
Tale) 4 r
y¥SOS |
10 ON4

60 DN 60 ON4

seo (-
380
sl

4

gLl
_ Gl—8
_ 340034|:
_ -0
) 3402330 G—0 ON43dad

13S0
Ve -di

80 ONd

cv

JUYINOD :
_ (-1)avdodQ
/

(€-0)
SS34Aaav
4318010

00dOd

Sheet 5 of 12 4,030,072

June 14, 1977

U.S. Patent

JNL3ON
1QdOQa

3WN139
0dd8

1350ddgN
HSd8

AD
€O ONJ

£5/

11 ON4 GGl
¥1D
Ol ON4
¥
N9 “ 2
GO ON3 S PG/
. 00 ON3
00d9oQ 21907 9NILVO

03y

O34 ._..n__Im lig82¢ SS3INAAY/ Y1V

mp)
cs/

4/5

13400 03y
NOILONS

A1
?OONJ

30JOWdOd

JW139

VYHO109d8

HOL1LVIWAVYN

0Qad8
1 THHOHH 3N

1044

1350d8

HSdO

U.S. Patent June 14, 1977 Sheet 6 of 12 4,030,072

BRO-7

156
NDCPDO:C - “ TSCEN je—o ‘ NDCPDI:C

DCPDOEN SRO-7 TSCFN O-3

157
NTSCSCK
6 NDCPFNC(0-5):C
SCIINT B
DCPDOEN —
NIMHE:C
FlG. Je

LTI

FlG.6

| 202 204
e | {g
REGISTER
DETECT

SHIFT CONTROL £08

FRAME 206
COUNT

CLOCK

FIG.7

EDGE
DETECT

4,030,072

S e SN8 Vv

Chnd

-

e~

H — S s e o ams

> SQHOM _, _ . !

7 AHOW3W | _
AHOWIW 108.1NOD 21907 1901 “ “
Y041INOD Y0¥1NOD o »uzzpa_n__u sng3 1 w3,

~ 91907 | _ _ |

N SS340AV | _

5 L o e

< 221 521 921 | o]

L

-

E 82 SN8 4o sne o

U.S. Patent

U.S. Patent june 14, 1977 Sheet 8 of 12

4,030,072

/188

E BUS(EAU)

U.S. Patent June 14, 1977 Sheet 9 of 12 4,030,072

ERRORS | °| MICRODIAGNOSTICS

CHANNEL
: N
IN
' CHANNEL
INITIALIZE A I CMD
. IN "PARSING
CONTROL
SEQUENCES
 CHANNEL
A .
ouT .
oNsTAcK] [P-MoDE] [SCSR
CHANNEL
iy
. ouT *
SCP

F/G.5

U.S. Patent Jjune 14, 1977 Sheet 10 of 12 4,030,072

E/CHA IN

<

FIG.
8b

INITIALIZE
FRAME

COUNTERS

€/CHA OUT)e—N

INITIALIZE E/CHA OUT

NEW
FRAME

T .
SHIFT IN BIT COUNT
=9? |
E/CHA OUT)e—D o | CLR. RUN FLG.
Y

' CHAR
E/CHA OUT) = BREAK ?
- FLG

N
SET Y
FL
N

— . CHB/ENT
L N
FLAG _ O

-E /CHA QUT
FlG. 8a

U.S. Patent Jjune 14, 1977 Sheet 11 of 12 4,030,072

CXX (A)
CLR. BRK. FLG. CHB/ENT)

Flo TRANSLATE INPUT
8a CHAR INTO REG I7

ARE

WE SINGLE
CLOCKING

DO SCTICKS Jé—Y<

ISSUE A PAIR
'OF CLOCK

TICKS
Y 5 seT z€
|
N —S(E/CHA OUT ‘
Y
| 2C seT
SET FLAG FOR (28 seT

SINGLE CLOCK

DISPLAY N

FIG. 8¢

Sheet 12 of 12 4,030,072

June 14, 1977

U.S. Patent

100 YHO/3

OHO3 ¥04
NOVLS

IN=47T°8D
31VTISNVH1

28°9/4

100 VHO/3

19S1/3

1951 - YHD

404 SHNIT
JZI"'TVILINI

1I9S1VHO/ 3

JI8IHNI
ddd LON

S|

a8 9i14

4,030,072

1

COMPUTER SYSTEM OPERATION AND
CONTROL

TABLE OF CONTENTS

Background of the Invention
Field of the Invention
Description of the Prior Art

Summary of the Invention

Brief Description of the Drawings

Description of a Preferred Embodiment
PIC Module
Basic Processor
General Registers
Processor Control Word
Address Compare Word

SCI Operation
Channel B Input
TSC Communications
Channel A Input
Control Modes
Maintenance Mode Functions
Channel A Qutput
P-Mode Sequencing
TSC Data Output
Channel B Output
SCP Display Handler
Test Sequences
Address Match
Address Alarm
Halt Message

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to electronic data processing
systems and more particularly to the remote control
and diagnosis of computer systems by means of an
external control subsystem.

2. Description of the Prior Art

A computer system for commerical data processing,
time-sharing, and/or real-time computing requires a
means of communication for its local operator (“oper-
ator”, as used herein, need not be restricted to human
operators but may include other computers or systems
for controlling the system referenced) as part of the
process of starting, stopping, loading and diagnosing
the system. Traditionally, the means of communication
has been two-fold, a panel of lamps and switches for
manually interacting with the system hardware and a
typewriter-like device or console which has tradition-
ally been constrained to interact only with the system
software, usually the operating sytem software. In “re-
mote trouble-shooting”’, a similar means is required to
allow remote operator control capable of operating
over a telecommunications channel and 1t 1s necessary
to combine in this means of communication, both con-
trol of software related events and hardware related
events. Remote trouble shooting is a useful tool, practi-
cally and economically as it allows highly skilled main-
tenance personnel to attend large numbers of computer
systems over wide geographic areas.

The use of a telecommunications channel for control
of hardware and software imposes constraints on the
nature of the control operations which are possible and
the manner in which they are implemented. A telecom-
munications device, for example, is intrinsically seral

10

15

20

25

30

35

40

45

30

335

60

65

2

in nature. Therefore, the control protocol must be
organized such as to be meaningful in terms of the
succession of serial events whether those consist of a
single input character or a string of input characters.
Characters, in this sense, may mean a binary code gen-
erated by a remote telecommunications device.

The serial nature of the communications introduces a
sensitivity to error because of the characteristics of
typical communications paths, and therefore the con-
trol mechanism or control protocol must be organized
so as to have limited sensitivity to the kinds of error
which normally occur in a communications environ-
ment. These errors amount to alteration of bits in indi-
vidual characters, interruption of communications be-
cause of noise on the lines, and other such distortions
of the information. A consequence of the organization
of a computer system for remote control and diagnosis
is the need for a central point of control on the system.
That point of control is central from the standpoint of

the local operator, and the remote point of control

must correspond to the point of control of the local
operator so that transactions may be monitored, en-
tered or controlled from a remote point and so that
control of the computer both in a hardware and a soft-
ware sense may be had over a single communications
path.

It is desirable to have the capability of single point
hardware and software control over a communications
channel in order to provide maintenance to the com-
puter system in both the case of unanticipated system
failures and for preventative or diagnostic purposes
where no known failure exists but it is desired to exam-
ine the state of the system to see if there are indications
of potential failures. In the case where the system itself
has failed, an inoperative system cannot control itself
and the objective of diagnosing the failure in the ma-
chine in order to plan the appropriate maintenance
action is defeated. If the system is partially functioning,
fault conditions in the system itself may be such as to
prevent the use of a control mechanism to diagnose the
nature of the fault. Additionally, diagnosis of a failed
computer system may be extremely difficult if the exist-
ing fault condition requires interactions at a rate faster
than is possible over a standard telecommunications
interface. |

In order to overcome the problems of control and
diagnosis of computer systems as described above, the
instant invention provides a command and control
processor which is able to exercise control of the essen-
tial system without being controlled, itself, by the sys-
tem. The command and control processor will have in
it the capability to communicate over a telecommuni-
cations path and a capability of receiving, storing, and
translating commands from a remote operator into
command sequences related to the detailed hardware
of the machine. The internal control structure of the
system is likewise altered such that the traditional panel
of lamps and switches is no longer necessary to the
control of the system, creating an economic saving.
The lack of physical constraints of lamps and switches
also allows the expansion of the number of control
points without economic and physical constraints. In-
formation may further be output from the system in
larger quantities and greater variety than would be
economically feasible through lamp displays, since the
potential for data output over a telecommunications
path to a telecommunications device is virtually unlim-

4,030,072

3

ited in quantity and variety of information which can be
transferred.

The introduction of a command and control proces-
sor in the system also allows the performance of se-
quences of operations which would not be manually
feasible either through the panel of lamps and switches
or over a telecommunications panel if it 1s assumed that
the command and control processor operates at elec-
tronic speed and is interfaced to the system in such a
way that it can control internal conditions at electronic
speeds.

SUMMARY OF THE INVENTION

The foregoing features of the instant invention are
accomplished by a control processor which addresses
the data processing system devices on a specialized bus.
An initiation signal, provided by the control processor
to the addressed device, tnggers operation of a diag-
nostic test stored within the device. Upon determining
the existence of a device having an internal diagnostic
at the address generated by the control processor, the
processor idles a predetermined time and awaits indica-
tion of a successful completion of the diagnostic test.
On indication of successful completion of the diagnos-
tic, the control processor continues in its operation,
and may generate a next address for testing a next
device in the data processing system. A specified bit of
a single clock status register is utilized to indicate suc-
cessful completion of the diagnostic. Setting the bit to
a first condition upon initiation of the diagnostic 1s
indicative to the controller of the existence of a self-
diagnosing device at a particular address generated by
the controller. The controller, after idling a predeter-
mined length of time, then returns to check the speci-
fied bit to determine if it has been set to a second con-
dition, thus obtaining indication of successful comple-
tion of the diagnostic.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a computer system incor-
porating the instant invention.

FIG. 2 is a block diagram of the SCI module accord-
ing to the invention.

FIGS. 3a-3e¢ is a block diagram of the PIC module.

FIG. 4 is a block diagram of the Basic Processor
module.

FIG. 4a is a Basic Processor flow diagram.

FIG. § is a flow diagram of the SCI algorithm.

FIG. 6 is a representation of a string of bits of a com-
munications data word for describing the operation of
asynchronous communications.

FIG. 7 is a block diagram of a portion of the SCI
operation for handling asynchronous communications.

FIG. 8 is a flow diagram showing the SCI Channel A

Input sequence.
DESCRIPTION OF A PREFERRED EMBODIMENT

FIG. 1 is an overall block diagram of a system Incor-
porating the features of the instant invention. In partic-
ular, three Operator Consoles are shown through which
information may be entered into or received from the
computer system. An Operator’s Console 10 and an
Alternate Operator’s Console 12 are connected di-
rectly to a System Control Interface 16 which functions
as a command and control processor to control the
operation of the overall system. A Remote Console 14
is shown connected through a modem 18 across a tele-

10

15

20

25

30

35

45

50

35

60

4

phone line 20 through a further modem 22 and ulti-
mately connected also to the SCI 16.

The Operator’s Console 10 (Channel A) may be any
ASCIIl-Code communications device capable of send-
ing and receiving asynchronous data over a standard
interface at various standard speeds. In most systems
configurations, the operator’s console would be cabled
directly to the SCI module below, without intervening
hardware. If desired, however, the operator’s console
may be interfaced to the system via a communications
modem (1 each at the system site and the console site),
over a telephone line or other long distance path.

The operator’s console alternate 12 has interface
characteristics and control identical to those of the
primary Operator’s Control 10. Both channels receive
identical data, but only one may be selected to origi-
nate input.

The Remote Console 14 has interface and data char-
acteristics identical to those of the Operator’s Console
10. Normally, however, the Remote Console (Channel
B) will always be interfaced to a data communications
modem as described above. Channel B may be used in
two different ways depending upon the type of mainte-
nance activity in progress. During “on line trouble-
shooting”, that is, when operating software 1s perform-
ing additional non-maintenance work in the system, the
Remote Console is operated in a “decoupled” mode. In
this state, the Remote Console acts as an independent
communications channel into the system. No interac-
tion occurs between Operator’s Console 10 and Re-
mote Console 14 except at the system software level.
Remote Console 14 appears to the software as an inde-
pendent [/O controller resembling the console control-
ler but, of course, residing at a different address. Dur-
ing “‘off line trouble-shooting’’, when the entire system
1s assumed to be under the descretionary control of the
remote trouble-shooter or local maintenance person-
nel, the Remote Console may be operated in a *“cou-
pled” mode. In this mode, the remote trouble-shooter
is logically interfaced to Channel A, that is, the channel
of the Operator’s Console 10, and the remote terminal
behaves in the same manner as the Operator’s Console
10. The Remote Console 14 may be used to enter data
through a software channel normally reserved for the
Operator’s Console 10. If the facility is enabled the
Remote Console 14 in coupled mode has access to all
P-Mode and Z-Mode DCP controls (to be discussed
later) just as does the local systems operator.

Connected to the SCI 1s a System Control Module 24
which has several functions within the computer system
but for purposes of discussion of the instant invention,
it 1s necessary to note merely that the SCM contains the
apparatus for generating the system internal clock sig-
nals.

Also associated with the SCI 16 is an SCP or System
Control Panel 26. The System Control Panel 26 con-
sists of a senies of lights and switches which may per-
form a function similar to that of the Operator’s Con-
sole, that 1s, a means for entering data or control infor-
mation (the switches) into the system and a means for

- monitoring the condition of the data or control infor-

65

mation within the system (the lamps). Connecting the
SCI to the SCP 26 is a DCP bus 28 which is additionally

connected to a Processor Interface Control module 30,
the structure and operation of which will be described
in greater detail later in the specification. The DCP bus
28 continues through the PIC module 30 to a second
PIC module 32 which is connected to various elements

4,030,072

S

of a processor cluster which is shown within the dashed
line 34. It is understood that, while only one processor
cluster is shown in FIG. 1, additional processor clusters
may be provided to increase the size and performance
of the computer system described. The existance of the
additional clusters is shown merely by extensions of
various bus lines with indications of destinations in
other processor clusters.

The PIC module 30 is connected to a Systems Unit
36 which contains shared resources of the computer
system. These shared resources contained within the
SU device 36 may be, for example, controllers for the
various processors, interrupt structures, real-time clock
structures and the like, all of which may be common to
more than one processor cluster and thus may be con-
nected to various devices within the cluster by control
and data lines which are not shown in FIG. 1 for pur-
poses of clarity of the drawing. It is well understood by
those skilled in the art, however, how such system-
shared resources are distributed throughout the com-
puting system. The text Microprogramming Principles
and Practices, by Husson (1970, Prentice Hall) gives
several examples of microprogrammable computers
which use shared resources. For example, see sharing
of CPU clock and power supplies, as well as data paths,
by the multiplexor channel of IBM system/360, Mod
80, as described at Sec. 8.15 of Husson. Simultaneous
access of a memory unit by an [/O unit and a CPU 18
described at Sec. 10.4 for the Honeywell H4200.

Connected to the SU module 36 18 a Processor Bus
38 to which each processor cluster in the overall system
is connected through the mechanism of a processor
interface 40 for each processor cluster. Associated with
each processor interface 40 is an Internal Bus 42 to
which are connected a Basic Process or Arithmetic and
Logic Unit 44, a Multiplexer 10 processor 46, and a
Memory Interface 48. Connected to the Memory Inter-
face 48 is a Main Memory Unit §0. Associated with the
Multiplexer IO Processor 46 are several Input/Output
Controllers 52 which have associated with them a plu-
rality of Input/Output Devices 54. Again, it is well
understood within the data processing art how the
Basic Processor 44, or ALU unit, the Input/Output
Processor 46 and the Memory Interface and Memory
Unit 48 and 50 are caused to interact to provide data
processing capabilities. The text noted above gives
examples of such interactions.

FIGS. 1.1 and 6.1 of the text are such illustrations.
Associated further the the PIC module 32 is another
extension of the DCP bus 28 which is terminated at the
Processor Interface 40, the basic Processor 44, the
Multiplexer I/O Processor 46 and the Memory Inter-
face 48. Additionally, associated with the DCP bus 28
is a telecommunications subcontroller (TSC) module
58 which is the interface between the external control
system and the input/output system. That is, informa-
tion to and from the input/output system of the proces-
sor is carried through the TSC module over the DCP
bus 28 with the aid of PIC module 32 ultimately reach-
ing the user interfaces through the SCI 16.

FIG. 2 is an overall block diagram of the System
Control Interface or SCI 16 from FIG. 1. The SCI mod-
ule provides all control for external control subsystem
functions. The SCI is a fixed-program, micro-con-
trolled processor which operates independently of all
other system elements to the greatest extent possible.
The SCI is organized so that it will continue to operate
and provide a mechanism of control under all failure

3

10

15

20

25

30

335

45

50

55

60

65

6

conditions other than loss of system power or master
clock signal. The SCI has four interfaces of primary

importance as shown in FIG. 1:
1. FlA-standard communications interface for the

operator’s console 10 (to be described later as Channel
A).

2. A switch-selectable alternate EIA interface for the
alternate operator’s console 12 (Channel A Alt.).

3. An EIA interface for the remote console 14 (fur-
ther described as Channel B).

4. A 14-wire interface DCP bus 28 through which the
SCI communicates with all other system elements.

As shown in FIG. 2, the fixed-program of the SCI 1s
stored in a control read only memory 70 which may be
of conventional design and capable of storing control
words having lengths of 20 bits. The read only memory
70 is addressed by means of an address register 72
which derives its inputs from one of a pair of multiplex-
ers 74, 76 or from selected output lines of the read only

memory 70 which may contain the address of the next

successive control word to be operated upon. Also,
shown associated with the address register is an incre-
menter 78 which, again, may be of conventional design.
The function of the incrementer 78 is merely to add
one to the contents of the address register 72 for serial
progression through the contents of the read only mem-
ory 70. The address is buffered by a control read only
memory address buffer 80. The output of the read only
memory 70 is applied over output lines as shown to a
decoder 82, the output of the decoder being operable
to set or reset one or more of a plurality of interface
latches 84, 86, 88. It is understood that there may be
more interface latches than the three depicted in FIG.
2 but the number shown is limited for clarity of descrip-
tion of the device. The output of the read only memory
70 may be applied to a B-multiplexer 90 which has an
additional or alternate input from the B register block
92 which is an accumulater. The B-multiplexer output
may be applied alternately to an arithmethic and logic
unit 94 or an interface register DCPAD 96, the func-
tion of which will be described later. The output of the
ALU 94 may be alterhately applied to a second inter-
face register DCPDO 98, or as an input to an A register
100, an AA register 102 or the B register 92 as previ-
ously noted.

The output of the ALU 94 which may be applied to
the A register, AA register or B register is by means of
a bus structure which is referred to as the C bus. The
ALU 94 may be operated 1n a serial or parallel manner,
that is, data may be shifted into or out of the ALU or
applied to and extracted from the ALU in parallel. The
serial output of the ALU 94 may be applied to output
registers 104 and 106 where are the Channel A output
and Channel B output registers, respectively. The
Channel A alternate cutput is derived directly from the
Channel A output from the register 104. The serial
ALU output may alternatively be applied to a shaft
multiplexer 108 which derives additional input from
communication lines representing Channel A input,
Channel A alternate input or Channel B input.

The A register may be a 32 by 8 bit register with an
8 bit parallel input and output. The A register output
may be applied as a input to the AA register or alter-
nately as an input to the A multiplexer 110. The AA
register is also a 32 by 8 bit register block, the ouput of
which may also be applied to the A multiplexer 110.
The A multiplexer performs the function of selecting

4,030,072

7

the ouput from either the A register or the AA register
for appltcatton to the ALU 94.. =
The operation of the SCI will be descrlbed in detail in

a subsequent portion of this specification.

“PIC MODULE

The SCI, as previously noted, communicates with all
system elements other than the Operator’s Console
over the DCP bus. The DCP bus has various interfaces
connected thereto for mterfacmg with the dlﬂ'erent
system elements.

The PIC module is the interface between the SCI and
a group of Single Clock Status Registers distributed
among the elements of the system. The SCSRs are
primarily diagnostic tools for use when the system is In
a maintenance mode and 1s being single clocked or

stepped through operation manually in order to 1solate

faults. SCSRs may be up to 32 bits in length (the length
is not critical and may be any conveniently addressable
length) and one SCSR may be dedicated to one partic-
ular module or distributed among several modules. A
particular module may have more than one SCSR asso-
ciated with it. Likewise, a single SCSR may serve multi-
ple systems or multiple elements within a system.

Briefly, a Single Clock Status Register is an interface
which allows the state of an element desired to be
sensed to be so sensed and the status returned to the
SCI and, ultimately, the Operator’s Console for display.

An SCSR may monitor any point of circuit connec-
tion or interconnection, any node or storage means or
single carrying line. Thus, the contents of a register or
a bus may be sensed. The following is a brief descrip-
tion of the logic of pertinent parts of the PIC module as
they relate to SCSR operation over the DCP bus. A
more exhaustive treatment of the SCI operation, In-
cluding SCSR operation, will be made later under the
heading “SCI Operation™.

FIGS. 3a through 34 are block diagrams of the logic
of a typical PIC Module and its inputs, a pair of four-
teen line busses, as well as its outputs which are busses
of varying size going to Single Clock Status Registers
and to the Basic Processor. FIG. 3a depicts the manner
in which two alternative DCP busses (DCP(A) and
DCP(B)) are selected through the means of an external
control signal. These two busses may be functionally
identical but independent, allowing dual access to the
PIC control elements and the cluster logic through one
of two alternative paths. The two alternate busses are
multiplexed together by a 28:14 multiplexer 140 to
form a single DCP bus internal to the PIC. Five of the
DCP bus lines, DCPAD are connected to a comparison
logic 142 in FIG. 3b which is activated by a function
code on the DCPFNC lines to compare an mput ad-
dress with a stored address in the cluster. If these ad-
dresses compare, a latch 144 called CSEL is set when
the function code 08 appears on the DCPFNC lines to
cause cluster selection. If the CSEL latch 1s set and the
function . code 01 subsequently appears on the
DCPFNC lines, the ESEL latch 146 will be set indicat-
ing that a Single Clock Status Register element is to be

selected. At the same time, the contents of the DCPAD

bus, lines 1-4, are stored in a Single Clock Status Regis-
ter address Register 145, This address register connects
to a four-bit to sixteen-state decoder 146a which gener-

ates one of sixteen element select signals that are dis-

tributed to individual Single Clock Status Registers.
Also transmitted directly to the Single Clock Status
Registers are the DCPAD address lines, the DCPDI

10

15

20

25

30

35

45

50

35

65

8

data line and the DCPDO data line which is the path
through which Single Clock Status Register data is
output. If the ESEL latch has been set as described
above, the signal line 'DCPDO:C which connects to all
Single Clock Status Register outputs is enabled for
transmission on the DCP bus. Signals from the
DCPFNC lines are input to a pair of three-bit to eight-
state decoders 147, 148. One of these decoders, 148, is
continuously enabled so as to decode function codes in
the range of elght to fifteen. The second of these de-
coders, 147, is enabled only when the CSEL signal is
true, indicating cluster selection, decoding function
codes 0 through 7. One of the coded DCPFNC signals,
Function 09, is used to reset the cluster and element
selection logic ESEL 146 to deactivate all PIC modules
in the system at the end of a transaction.

As shown in FIG. 3c, a typical Single Clock Status
Register 1mplementatlon consists of a decoder 149
connected to the DCPAD signal lines 0-4, which is
enabled by the signal line NDSE, one of the sixteen
possible NDSE signals g_enerated by the PIC decoder
146a. The assignment of an NDSE signal to a specific
SCSR can either be a fixed characteristic of the system
logic or may be altered at the time of configuration.
The address decoder 149 enables AND gates 150
which in turn enable passage of data information from
the system element in w leh the SCSR resides to the
DCPDO:C bus which in turn is interfaced to the
DCPDO bus that eventually is transmitted to the SCL
The outputs of all SCSRs are ORed together at 151
within the cluster, and so the NDSE signal is used to
enable a given one of those’ outputs for activity on the
bus.

Referring again to FIG. 3b, the PIC includes reset and
control logic operating by various combinations of
function codes and function states which operate the
CPU, Memory, I/O resets and other eontrol signals 1n
the cluster.

The PIC, since it carries the DCP bus is also involved
in communications between the SCI and the Basic
Processor. The Basic Processor wnll ‘be described In
more detail in a subsequent section.

. The DCP bus-BP interface differs from the DCP-
SCSR interface in s¢veral important respects. In the
SCSR interface, control 'of the transaction never was
required to pass from the SCI, as the SCSR contents
were continually accessed and the SCI merely (through
the PIC) addresed the lndwldﬂal btts of the SCSR
under interrogation.

‘Communications with the Basic Processor, however,
is substantially more complex due to the nature of the
control information exchapged between the BP and
SCI. Since the primary phﬂosophy of the SCl is that of
maintaining total autonomy, the BP, even through
failed, can not be allowed to prevent the SCI from

completing its own algorithm. To this end a protocol
has been established whereby a register pair is used to
pass communications, which register operation can not
interfere with SCI operations.

In FIG. 3d, the interface between the DCP bus and
the Basic Processor differs from that to the SCSRs. This
interface consists of two shift registers, one is four bits
long (function regtster 152) which transfers function
codes from the SCI to the Basic Processor. The other,
153, is thirty-two bits long, transfers data and address
information from the SCI into the Basic Processor and
transfers data and address mformatlon from the Basic
Processor back to the SCI Beeause the SCI and Basm

4,030,072

9

Processor are asynchronous with respect to each other,
logical means are provided for transferring the elec-
tronic control of these shifting registers from the SCI to
the Basic Processor and back to the SCI. This control 1s
implemented by means of function codes sent from the
SCI and interface signals received from the Basic Pro-
cessor. Using function code 04 the SCI can shift ind1-
vidual bits of data over the DCPDI path mnto a function
register 152. Likewwise, using function code 03, the
SCI can shift individual bits into the thirty-two bit data-
{address register 153. Control of these registers is trans-
ferred from the SCI to the Basic Processor by the set-
ting of the GETME latch 154 through function code
05. When this signal is true, the Basic Processor inter-
face signals BPSH and BPDSEL control which of the
two shift registers is directed to input to the Basic Pro-
cessor and controls the shifting of individual bits. Like-
wise, 1n this mode, ths signal BPDO provides an input
to the 32 bit shift register from the BP when informa-
tion is to be transferred to the SCI. The BPGOTCHA
signal indicates the completion of a transaction and the
desire to return control of the shift registers from the
BP to the SCI. A means is provided through the use of
function codes and other gating logic to detect the state
of the BPGOTCHA, BPDO, NADMATCH, and NER-
RORHLT signals returned from the Basic Processor
under the control of the SCI1. The PCP Mode latch 155
signals to the BP the need to enter those special micro-
code routines which implement the algorithms of the
PCP functions.

TSC-SCI INTERFACE

The SCI also interfaces with the TSC module over
the DCP bus which, again, passes through the PIC
module. The TSC is a telecommunications sub-con-
troller through which the SCI and, hence, the operator
can communicate with system software, similarly as is
conventionally done in data processing systems. Simi-
larly, that is, only in the sense that a telecommunica-
tions channel is used for such an interface. Again, the
existence of a control processor, the SCI, allows ex-
panded control even of these conventional operations,
such as, for example remote operation and Transparent

Test operation.
The interface between the SCI and the TSC consists

of a 12-bit shift register 156 in FI1G. 3e connected to the
DCPDI and DCPDO lines available within the cluster.
The TSC also contains a decoder 157 which senses
function codes that generate the signal SCIINT (SCI
Interrupt) which is an interrupt ot the TSC causing
examination of the TSC interface registers and the
signal DCPDOEN which enables the TSC to transmit
information on the DCPDO bus. The Decoder 157 may
be a Read Only Memory device, responsive to a plural-
ity of input codes for generating a plurality of output
functions. The standard clock signal is also brought in
here. The protocol for a transaction of the DCP-TSC
interface is that the SCI, for an input transaction, sends
over 8 bits of data plus a 4-bit function code indicating
the channel for which the data is intended and the fact
that it 1s an input transaction. Then it sends the func-
tion code which generates SCIINT and disconnects,
leaving the TSC to handle the data itself. Likewise, for
an output transaction the SCI shifts in only 4 bits of
data inciating channel and the need for an output trans-
action. The SCI then triggers the function code for
SCIINT and waits for a period of time (approximately
9 microseconds). Following that time, it enables the

10

15

20

25

30

35

45

50

35

60

65

10

DCPDO Enable line by means of a function code and
shifts eight bits of data using yet another function code
which generates the NTSCSCK signal. Finally, 1t gener-
ates yet another function code which disconnects the

DCPDO Enable latch and removes the TSC from the
DCP bus.

BASIC PROCESSOR

The Basic Processor comprises a fast memory and an
arithmetic and control unit as functionally shown in the
diagram of FIG. 4.

(Functionally associated with the Basic Processor but
physically located elsewhere in the system are a mem-
ory map, memory access protection codes, and mem-
ory write protection codes. Since these are not directly
related to the discussion of the instant invention, no
further mention will be made of these components).

GENERAL REGISTERS

A fast memory consisting of ninety-six 32-bit regis-
ters is used within the Basic Processor. A group of 24
registers is referred to as a register block; thus a Basic
Processor contains four register blocks. A 2-bit control
field called a register block pointer in the program
status words (PSWs) selects the register block cur-
rently available to a program. The register block
pointer can be changed where the Basic Processor 1s in
the master mode or the master-protected mode. Only
the first sixty general registers of the register block may
be used by program; the last eight are reserved.

Each of the first sixteen general registers in a register
block is identified by a four bit code. Any of these
sixteen registers can be used as a temporary data stor-
age location or can contain control information such as
data address, count, pointer, etc. General registers 1-7
can be used as index registers and registers 12-15 can
be used as a decimal accumulator capable of contain-
ing a decimal number of thirty-one digits plus sign.
Register 12-15 are used for decimal functions.

Since the operation of the Basic Processor, per se,
does not form a part of the instant invention, it will not
be discussed in detail. It is sufficient to note that certain
registers which will be described later in more detail
are accessible by means of the DCP bus to provide
control information thereto, to set certain bits thereof
and return information from the Basic Processor relat-
ing to status, microdiagnostic execution, and the like to
the Operator’s Console through the mechanism of the
SCI. A general description follows.

The Basic Processor (BP) is the principal logical unit
of the computer and is shown in block diagram form in
FIG. 4. It contains circuits that control the execution of
instructions, perform the arithmetic and logic func-
tions, and maintain a rapid access memory containing
special registers. An adjunct to, but not part of, the BP
is the extended arithmetic unit (EAU) 170 for perform-
Ing floating point arithmetic. Since the EAU forms no
part of this invention, no further discussion will be
included thereon.

The BP is a microprogrammed processor that oper-
ates under the control of the microprograms stored in
its read-only-memory (ROM) 172. This ROM contains
4096 locations and each microinstruction is 80 bits in
length. Control circuitry 174 for addressing the mem-
ory locations provides for microprogram conditioning,
modification, and branching.

An instruction read from the main memory 50 by the
BP determines the starting ROM address for the execu-

4,030,072

11

tion of that instruction. Microinstructions read from
the ROM 172 determine the step-by-step processing of
the BP.

The operation of the EAU 170 1s initiated by the BP.
The BP transfers to the EAU both instructions and
data. Like the BP, the operation of the EAU is con-
trolled by microinstructions read from a ROM (not
shown) contained in the EAU. This ROM has 256
locations and each microinstruction is 64 bits in length.
Control circuitry for addressing the memory locations
provides for microprogram conditioning, modification,
and branching.

When the EAU has finished a particular arithmetic
operation (the data transferred back to the BP), the
EAU returns to idle.

The BP communicates with the other units of the
system over the Internal Bus 42. This bus connects the
BP with the processor interface (P1) and the memory
interface (MI). The PI connects the BP to other proces-
sors outside the cluster and the Ml connects the BP
with the memory units of the system.

The BP (with EAU) is composed of four major func-
tional groups, as shown in FIG. 4. All data enters the
BP over the D-bus and leaves the BP over the A-bus.
Instructions from main memory are transferred to the
control logic which selects the control memory (ROM)
addresses. The microinstructions from the control
memory enter the control logic which distributes the
control fields to operating portions of the BP. The EAU
receives its instructions and data over the E-bus and
returns data over the E-bus. -

The operation of the BP begins in the idle loop and
may be followed with reference to FIGS. 4 and 4a. The
idle loop is entered following a reset or when the exter-
nal control subsystem (ECS) signals the BP that the
system control console (SCC) mode (explained in the
following paragraphs) has been entered. The ECS con-
trol signal is sent to the BP over the diagnostic control
path (DCP).

Two types of resets which will be discussed in greater
detail later are received by the BP: reset/super reset
and BP reset. The reset/super reset is generated:

During a power-on sequence

By the maintenance mode switch on the SCP

By the ACMM4 console entry while in the mainte-
nance mode of operation.

The BP reset is generated by a ACRBP console entry
(following a ACI) during normal operation of the BP.
Both resets:

Initialize the program status words (PSWs) in the

Q-register RAM 178

Load certain status registers (not shown)

Send an interrupt inhibit to the Pl

Check the E-bus to the extended arithmetic unit

In addition, the reset/super reset clears the Q-register
178 and R-register 180 prior to performing the tasks
mentioned above.

While in the idle loop, the BP waits for one of three
conditions to determine its next operation. Signals re-
ceived from the ECS over the diagnostic control path
control the selection of BP operation. These signals:

Hold the BP in the SCC mode

Cause the BP to enter its microdiagnostic sequence

Start a serial data transfer between the ECS and the

BP over the diagnostic control path

When the signal holding the system in the SCC mode
is removed, the BP returns to normal operation and
software control. So long as the signal is present, the BP

5

10

15

20

25

30

35

40

45

50

55

12

remains in the idle loop and waits for one of the other
two signals. The data signal causes the BP to accept a
four bit function code and 32-bit data word from the
ECS. |

This transfer occurs over the DCP and enters the
ER-register 182 of the BP. The BP performs the re-
quested sequence and returns data to the ECS (if re-
quired) over the diagnostic control path. While in the
SCC mode, all communications between the BP and
the ECS are over the DCP. Note that the contents of
the ER-register may be transferred through the adder
184 to the W-multiplexer 186. The function received
from the ECS passes through the W-multiplexer 186 to
the instruction register and control memory addressing
logic.

%uring a load-normal operation (ZCLDN entered at
the SCC) and after microdiagnostics have been per-
formed by the MIOP, MI, and PI, the ECS transfers a
function to the BP over the DCP. The BP then enters its
microdiagnostic sequence. A successful completion of
the microdiagnostic is indicated by one bit in a single
clock status register. The ECS then issues a system
reset, after which the BP returns to the idle loop.

The ECS follows the systems reset with the transfer
of a function and device address over the DCP to the
BP. The BP stores the device address in a Q-register.
The function causes the BP to read a higher level diag-
nostic and the boot-strap loader from the K-register
188 and store them in their assigned memory locations.
The Q and K Registers typically consist of a plurality of
registers sequentially numbered.

The ECS places the BP in the run mode by removing
the signal for the SCC mode. The BP then executes a
diagnostic and the loader and the control of the system
is transferred to the software.

An instruction read from memory enters the D-regis-
ter 190 of the BP. Parity is checked and the instruction
is transferred to the W-multiplexer 186. From W', the
instruction is sent to the instruction register on the BPH
module where the instruction is decoded. The control
memory logic of the BP selects the starting address of
the microprogram and the instruction i1s executed
under control of microinstructions from the control
memory.

In general, in FIG. 44, operands enter the BP from
the D-bus into the DD-register 190. DD-register data
may be routed directly to the W-multiplexer 186 or
through the U-multiplexer 192 to the adder 184. Out-
puts from the W-multiplexer 186 may be stored in the
Q-register 178, sent to the ER-register 182, or through
the cable drivers to the A-bus.

The adder has two input multiplexers, U192 and
V194. Note that the Q-register may be sent to either
input multiplexder. The adder in the BP is used for
address modification along with the Q-register and
R-register. The adder is used in the execution of only
two fixed point arithmetic operations: addition and
subtraction.

Fixed point multiplication and subtraction, floating
point and decimal arithmetic are executed by the EAU.

- When one of these instructions is decoded by the BP,

65

the BP sends to the EAU a 32-bit instruction word
followed by two or more data words. The EAU exe-
cutes the instruction received and transfers back to the
BP bus results of the operation.

The BP uses the A-bus or Internal Bus 42 to transfer
addressing information and data to the MI and Pl. Qut-
puts to the A-bus are through the W-multiplexer. In-

4,030,072

13

puts to the W-multiplexer are from the adder, the Q-
registers, the DD-register, the R-registers, the ER-regis-
ter, and the E-bus from the EAU.

Parity is checked for information received after the
D-bus, and parity is generated for information output
over the A-bus and the E-bus.

PROCESSOR CONTROL WORD

The processor control word resides in register 30 of
the Basic Processor’s Addressable Q-Register. The bit
assignment for Q30 are shown below in the accompa-
nying table. By loading register Q30 the operator is
able to perform maintenance-type functions such as
halting and resetting the Basic Processor, setting ad-
dress hold and activating various halt on fault controls.
During normal operation it should not be necessary to
access this word. The contents of the processor control
word are not affected by either processor or system
reset, but are automatically set to zero during power-on
sequencing.

Bit
Position Description
0 Retry Inhibit:

If this bit is a 0, the basic processor
will automatically retry the instruction
which caused the trap to location X'’4C’;
if this bit is a |, the basic processor
is inhibited from retrying the instruction
which caused the trap to location X'4C’.
1 Parity Check Inhibit:
If this bit is a O, parity checking of R
register transactions is enabled, if this
bit is a 1, parity checking of R register
transactions is inhibited. |
2 Watchdog Timer Override:
If this bit is a O, the watchdog timer is
allowed to count; if this bit is a |, the
the watchdog timer is inhibited from counting
and the machine will not execute the Watch-
dog Timer Trap.
3 Watchdog Timer Alarm:
If this bit is & 0, the Watchdog Timer Trap
is enabled; if this bit is a 1, the Watchdog
Timer Trap is inhibited. When a timeout
occurs, a system reset is generated and
the system will run to timeout again. This
provides a dynamic loop for isolating the
cause of the timeout.
4-5 Reserved (must be coded as zeros).
6 Address Hold:
If this bit is a 0, the address hold 1a
disabled; if this bit is a |, the program
counter is inhibited from counting (increment-
ing) causing the machine to loop on the
selected instruction (i.¢., when the
machine i3 returned to RUN mode, the
instruction pointed to by the program counter
is executed continuously).
7 Processor Halt:
If this bit is a 0, the processor is allowed
to run under the control of system and P-Mode
controls. If this bit is a |, the processor is
forced into the HALT condition.
Reserved.
L.oad device address.

o

8-15
16-31

ADDRESS COMPARE WORD

The address compare word is located in Basic Pro-
cessor Register Q31 and contains parameters defining
the type of comparison and the desired action (alarm,
hait, or none) on detecting an address compare. The
various bit positions and their significance in the ad-
dress compare are tabulated in the following table:

Bit
Position

Sta-

tus Significance

0 1 Selects mapped address comparison.

10

15

20

25

30

35

40

45

50

55

60

65

14

-continued

Sta-
tus

Bit

Position Significance

0 Selects unmapped address comparison.

1 1 Selects address comparison during
instruction access only.

0 Selects address comparison for all
memory cycles.
Selects comparison only during memory
write cycle.
Selects all memory cycle comparisons,
Selects page comparisons.
Selects word comparisons.
System turns on audible alarm for 220
microseconds each time on Address Compare
occurs (maximum frequency 1KHz).
Address match alarm is disabled.
The processor is forced into the HALT
state when an Address Compare occurs.
Address Halt disable,
Reserved.
Comparison address field.

-

67
18-31

SCI OPERATION

In general, one of the primary tasks of the SCI mod-
ule is to assemble and disassemble the ASCII charac-
ters as it receives them from or transmits them to the
consoles. An output bit stream from the console occurs
at a specific time interval in accordance with a selected
bit rate. The processor keeps track of the timing by
monitoring the communications clock. It samples the
input and services the output at scheduled intervals to
satisfy the asynchronous timing requirement of the
characters at the specified communication rate. The
control memory in the SCI module loops through its
control program once every two hundred twenty mi-
croseconds or at a 4800 Hz rate. It monitors the input
interface until it sees a start bit. This bit indicates the
console is transmitting a character. Once a start bit is
recognized, the SCI rmodule must continue to sample
the data bits at specific intervals. Bits are shifted into
storage on the SCI ufitil all eight of the data bits have
been accumulated.

Output to the cotsole is accomplished by taking a
character out of stroage (the SCI output stack), putting
a start bit on the line, and shifting the character out a
bit at a time.

A set of commands enables the operator to commu-
nicate with hardware through the console. The control
functions generated from these commands fit into three
catagories: operator control commands, diagnostic
control commands, and maintenance control com-
mands. Certain “event messages’ are provided to indi-
cate possible sources of error in executing the com-
mands. The commands and messages are discussed in
greater detail in the discussion of the SCI microcode
which follows.

In general, however, there are four operational
modes recognized by the SCI control memory: Z-
Mode, P-Mode, Single Clock Mode and Transparent
Text Mode. A brief explanation of each mode follows.

Z-MODE

Z- mode has the command format Z°XXX and pro-
vides the majority of hardware controls. The SCI
receives a character which it recognizes as Z°, sets
a flag and shifts the Z¢ and subsequent characters
from the I/O stream. The mode of the SCI is al-
tered. The SCI prompts the operator with a new
line and prints a parenthesis on the control console

4,030,072

13

to indicate that it has entered this control mode. It
then accepts the next one, three, or seven charac-
ters as a hardware control command executed In-
dependently of the software. Each character 1s
echoed to the console display until the SCI gets a
full complement for a command. For example, the
interrupt command Z°l, is completed with one
character, while the system reset command,
Z°RSY, is completed with three characters. In

either case, the function is performed and the SCI
exits Z-Mode.

P-MODE

P-Mode is used to implement the diagnostic controls
provided by the basic processor. This mode is en-
tered by typing P¢. Once in P-Mode, every charac-
ter is treated as a hexadecimal data or as a function
character. A question mark is output following any
character not recognized as a function character. A
hexadecimal digit is shifted into storage in the PIC
Module until the basic processor can accept it. If,
while in P-Mode Z¢ is typed on the console, the
mode changes to Z-Mode until the command 1s
finished and then returns to P-Mode.

TRANSPARENT TEXT MODE

Transparent Text Mode provides for communica-
tions between a remote console and a local console
even though the 10 system is not working. In this
case, the SCI simply echos to both consoles what-
ever it receives. This 1s distinguished by a parenthe-
sis on each new line. The control command to
enter and exit transparent text mode is Z¢T. Trans-
parent text mode is overriden by the other three
modes.

SINGLE CLOCK MODE

The final mode allows the operator to Single Clock
the system and gather Single Clock status. The
status is presented in the form of a print out on the
console. The SCI actually enters a separate mode
where it stops the clock and issues a display. While
in this mode each space character causes a clock to
be issued and a display printed. Single Clock Mode
and the Single Clock Status Registers are dlscussed
in greater detail in this specification.

When none of these four modes are active, a charac-—
ter typed on the console is transferred to the TSC Mod-
ule. The TSC is a “device-controller” connected to a
Multiplexing input/output processor. The MIOP is, in
turn, connected to the system memories and central
processing units via data and control paths. Input/Out-
put transfers within the system are initiated as the con-
sequence of execution of an “SIO” instruction by one
of the arithmetic processors, causing the MIOP to ini1-
tialize a device controller for either mput or output.

From an overview the SCI is an interrupt driven pro-
cessor. The logic block diagram of the SCI is shown in
F1G. 2. The interrupt is a clock pulse generated by a
timing divider at 4812 cycles per second. This fre-
quency is selected as a multiple of all of the communi-
cations frequencies which the SCI handles. Each time
an interrupt clock pulse is received the SCI cycles
through a large part of its code structure looking for
tasks which require processing and performing certain
hausekeepmg functions. An essential characteristic of
this design is that all tasks performed by the SCI have to
be completed within the interval between interrupt

10

B

20

25

30

35

40

45

30

35

60

65

16
pulses which is apprommately 210 microseconds or the
device will fall bei-nﬁld Some features have been in-
serted in the coding to soften this requirement slightly
by making non-critical pmcﬁsmg tasks optional as a
function of the amount of processing time available In
a given interrupt quantum

During a normal processing cycle, the SCI works
through four communications routines, an error testing
routine to detect mainframe errors, and a display se-
quence routine which refreshes the system control
panel. These routines are shown in a flow diagram in
FIG. S. Each of the four communications routines,
Channel A In, Channel B In, Channel A Out, and Chan-
nel B Out, handles a single path input or output for the
A or B Channels. If processing is required in one of the
communications routines, execution branches to that
processing algorithm and performs whatever sequence
of events is dictated by the current situation.

For example, as shown in FIG. §, the Channel B Input
routine serves the BC function, Channel A Input allows
communication with the TSC for software interaction
and also provides C-Mode command processing and
control sequencing. Likewise, Channel A Output han-
dles TSC communications from software to the con-
sole, provides character unstacking, P-Mode operation
and Single Clock Status Register information handhing.
The Channel B Output includes an alternate software
communications algorithm for the TSC, and the Error
routine also conducts mlc:mdlagnostlc control.

The SCI code will be described as it is actually stored
in the control memory, in a somewhat linear manner
with digressions where appropriate. The beginning of
the code contains initialization routines which establish
status conditions in various regssters—the scratch pad
memory of the SCI. This is necessary to ensure that the
SCI starts out in a predetermined state whenever it is
powered up or given a master feset. Master Reset (Su-
perrest) is performed under three different circum-
stances: 1) when power is initially applied, 2) when a
power trap occurs, as one of theé responsibilities of the
SCI to sequence system initialization following the
application of power to the system, and 3) when the
super-reset command is issued either as an input com-
mand to the SCI or as'a function of a switch on the
System Control Panel. The object of the super-reset is
in fact to reinitialize the SCI, something that does not
normally have to be done. In the event of a fault condi-
tion, however, it may be useful to initiate this function.

The initialization sequence consists of, in addition to
setting status flags within the SCI register, manipulating
some of the interface latches that it controls, putting
the system in a normalized condition to clear mainte-
nance features, and msuring that all of the buses are at
a neutral state. Also as part of initialization the SCI
determines the communications frequency for the two
different Channels A and B that it is supporting. The
frequency information comes from three switches on a
Configuration Control Panel which select operating
speeds of 110, 150, 300 or 1200 bits per second for the
A Channel, and select a default speed for the B Chan-
nel of either the same rate as the A Channel or 300 bits
per second. =

Following initialization the SCI falls into its interrupt
idle loop (WAIT) where it sits and spins until a clock

interrupt is received. In the idle loop it repetitively

branches to a single control memory location while in a
quiescent state.

4,030,072

17

Immediately following the idle routine in the se-
quence of the code 1s a test routine for determining
error conditions in the system at large. This test routine
1s executed at the end of the interrupt processing cycle,
if time is available before the next interrupt. Because
the test routine involves many of the structural features
which we’ll describe later on we will treat that as an
item at the end rather than the beginning of the actual
sequence.

The interrupt signal causes exit from the SCI idle
loop and entry to the Channel B input routine. Channel
B is defined as the software remote trouble-shooting
channel. To more clearly establish the relationship
between these channels from a software standpoint, the
external control system supports two communications
channels which are functionally and logically indepen-
dent from the software point of view. Channel B is
reserved for remote trouble-shooting with software.
Channel A is the operators console channel over which
all system software operating commands are conveyed
and over which the system transmits its status and mes-
sages to the operator. Provisions exist for coupling
these two channels together logically within the micro-
code of the SCI so that they become functionally iden-
tical and in this case both physical interfaces become
equivalent to Channel A. They OR logically into Chan-
nel A both receiving outputs from Channel A and both
inputting to Channel A. In the coupled state Channel B
on the computer interface side is quiescent. The Opera-
tor’s Console channel, which is Channel A, has the
special capability of hardware control which we generi-
cally class as PCP modes, that name coming from the
old title for the operator’s manual control panel which
was the ““Processor Control Panel”. When the A and B
Channels are coupled together both have the capability
of using the PCP mode. The coupling or decoupling of
channels 1s determined by the setting of a switch on the
System Control Panel. The same switch may be used to
disable operation of the PCP mode on either Channel,
more literally on both Channels, and to restrict them to
software-only-level communication. The reason for
handling Channel B mnput before Channel A input,
although Channel B is somewhat ancillary to the main
process of the SCI, is that it 1s a shorter routine and is
more predictable in its timing than the Channel A input
routine. Therefore, it is convenient to get it out of the
way quickly. Further, Channel B is the remote channel
and in the event the machine is being remotely oper-
ated it is useful to execute Channel B function without
first using time on Channel A.

CHANNEL B INPUT

Following the clock interrupt, execution is trans-
ferred to the Channel B Input routine. The first func-
tion of the Channel B Input routine is to clear the clock
interrupt so that it will be possible to sense the next
clock interrupt. The receipt of a new clock interrupt is
penodically tested for in the body of the code. The
Channel B input routine is characteristic of the com-
munications handling method in the SCI. It works in
the following manner: A register or status flag related
to Channel B is examined to determine if the Channel
is in the process of receiving a character. “Running”’ is
the phrase used in the documentation. If this is the
case, the execution branches to an intercharacter pro-
cessing routine. If the channel is not running, then a
test is made to see if the communications interface is in
a so-called spacing state, that is, in the opposite state

10

15

20

25

30

35

40

45

30

53

60

65

18

from its normal quiescent condition. The occurence of
this state following a period of quiescence signals the
beginning of a new communications character.

To briefly describe the asynchronous communica-
tions format, it should be understood that asynchro-
nous communications means, literally, that character
information occurs at a time which is not predictable to
the receiving device. It is necessary, therefore, for the
receiving device to synchronize itself with incoming
information so that it may accurately extract the data
bits. For this purpose, the asynchronous protocol is
defined to consist of a “start’’ bit which signals the
beginning of the character, some number of data bits —
which in this case, and commonly, 1s 8 bits — and then
some number of stop bits which in the case of the SCI
or in the case of this system is either one or two stop
bits. The stop bits are of a polarity opposite the start
bit, and serve as a spacer between characters. Immedi-
ately after the stop bit, another character may begin, or
the interface may again remain in a quiescent state for

an indefinite period of time.

The way that the SCI receives these communications
is shown in FIGS. 6 and 7. FIG. 6 is a representation of
a string of bits which may comprise a communication
word. FIG. 7 1s a logic block diagram of the portion of
the SCI used for handling asynchronous communica-
tions characters. The presence of the start bit is de-
tected by edge detector as early as possible within the
bit time. The bit time is determined by the operting
frequency of the communications line. That is why it is
necessary to initialize the SCI for specific asynchronous
communications frequencies to determine the width of
the bit interval. The SCI having sensed the beginning of
a start bit — and it does sense the beginning since its
clock frequency is in the worse case at 4 times as brief
in time as the shortest bit interval — the SCI deter-
mines the center of the bit window, the time frame of
the bit, as shown by the tick line 210 of FIG. 6 by a
mathematical computation by adding a predetermined
numerical value to a Frame Counter 206 and then
decrementing that counter for as many clock intervals
as are required to bring the register for that channel to
a count of nine since in fact the start bit will also be
sampled along with the data bits. The routine then exits
to continue processing at the Channel A Input routine.
On a successive pass following this initialization, the
status flag indicating that the Channel is running will be
true and so the Channel B input routine will increment
its Frame Counter 206 and test to see if a carry-out
condition has occured. Should this be the case, it will
shift a bit of data into the Channel B Input Data Assem-
bly Register 202 and increment the Bit Counter 204 for
that channel. If the process of incrementing the bit
count produces a carry-out signifying that all bits have
been received the Channel B Input routine then sets
status flags which a) indicate that it is no longer run-
ning and b) indicate for a subsequent processing rou-
tine that a character has been received and is ready for
subsequent processing.

Also incorporated in the Channel B Input routine is
an algonthm which tests for the special condition of a
character which consists of all zeros. This character
may be one of two defined telecommunications charac-
ters. Either the so-called Null character or the so-called
Break which is in fact not a character but interruption
of the data path for some indefinite period of time. The
Break may have a special function in the software con-
trol of communications interfaces. It may, for example,

4,030,072

19

be used for signaling operator attention and so it is
specially detected — it is modified so that the TSC
which is the 1/O system interface for the SCI in commu-
nications can detect 1t.

Also in the Channel B Input routine is a special sens-
ing protocol to detect a character sequence generated
by a special purpose terminal device which is used to
regulate the rate of transfer over the communications
interface to that device. Specifically, to prevent over-
runs, a terminal of this type may stop receiving data
after the transmission of certain characters — carriage
return is one — and may not be available for further
receipt of output data until it has emptied its bufter
which it signifies by sending in an acknowledge charac-
ter abbreviated ACK. This character is detected in the
Channel b input routine and used to set an internal
status flag which enables further output to the device.

Also, in the Channel B input routine is an algorithm
to detect the condition where the System Control Panel
switch that makes Channel A equal to Channel B is
true. In this case, Channel B input is not forwarded to
the /O system through Channel B as would normally
be the case, but it is input to the Channel A [/O path.
The transfer of input data from the SCI to the TSC,
which is the 10 system interface, is accomplished
through a special B and the Channel B Input routine
initializes certain registers for linking to that algorithm
by a) putting the received data in a transfer register and
b) by establishing a key value in another linking regis-
ter which passes destination and function information
to the SCI/TSC transfer routine. In the case where
Channel B is configured for normal communications —
that is where Channel B input goes to software Channel
B — the routine then falls into the TSC communica-
tions routine which serves the purpose of transferring
the received data from the SCI to the TSC which, in
turn, inputs it to memory through the protocol of the
MIOP system. The TSC communications routine is
shared by both the Channel B and the Channel A input
routines and the distinction of where information is to
be sensed and how the processor is to exit from the
routine is contained in the code and link words stored
in an SCI register called Register 22 and initialized
before access of the TSC routine by the respective SCI
input routine.

SCI Registers within the Scratch Pad A and AA Reg-
ister blocks are numbered ROO through R63 and are
assigned as follows:

REGISTER:

ROO CHA INPUT FRAME COUNTER

RO1 CHA INPUT BIT COUNTER

RO2 CHA INPUT ASSEMBLY REGISTER

RO3 CHA OUTPUT FRAME COUNTER

RO4 CHA OUTPUT BIT COUNTER

ROS CHA OUTPUT DISASSEMBLY REGISTER
RO6 CHA FLAGS

RO7 CHB INPUT FRAME COUNTER

RO8 CHB INPUT BIT COUNTER

RO9 CHB INPUT ASSEMBLY REGISTER

R10 CHB OUTPUT FRAME COUNTER

R11 CHB OUTPUT BIT COUNTER

R12 CHB OUTPUT DISASSEMBLY REGISTER
R13 SNGL CLOCK DISPLAY ADDRESS & FLAGS

R14 TOP OF STACK POINTER

R15 BOTTOM OF STACK POINTER

R16 ERROR MESSAGE CODE DIGITS
R17 CMODE TRANSLATION REGISTER

10

15

20

25

30

35

40

45

50

535

60

65

20

R18 CMODE FLAGS

R19 CMODE FLAGS

R20 CMODE FLAGS

R21 GENERAL PURPOSE REG

R22 GENERAL PURPOSE REG

R23 DATA OUTPUT BUFFER BIT COUNTER

R24 ZMODE FIRST CHAR/PDISP ASSY REG

R25 ZMODE SECOND CHAR/C COUNTER

R26 ZMODE CHAR CNTR AND FLAGS

R27 TSC TRANSACTION BUFFER

R28 P-MODE PHASE AND REPEAT CONTROLS

R29 P-MODE FUNCTION CHARACTER

R30 COMMUNICATIONS FREQUENCY STOR-
AGE REGISTER

R31 CLOCK COUNTER FOR SINGLE CLOCKING

R32-63 OUTPUT STACK BUFFER

TSC COMMUNICATIONS

The next routines in the SCI code are the TSC Com-
munications routines. The purpose of the TSC Commu-
nications routines, there are two of them, one for mnput
and one for output, is to transfer information from the
SCI which serves as the communications protocol re-
ceiving and transmitting device into the TSC which
serves as the 10 channel protocol transmitting and
receiving device in the system. The path between the
SCI and the TSC is the DCP bus as previously dis-
cussed. The structure of the system is such that there
can be one TSC connected to the DCP bus somewhere
in the system. Its physical location is not important, and
the nature of the communications will be such that the
transactions between SCI and TSC always take place
satisfactorily wherever the device is located in the sys-
tem. This location generality is achieved by assigning to
the TSC a number of function codes, out of the 64
possible function codes on the DCP bus, which 1t
uniquely recognizes. ' |

The communications between SCI and TSC are asyn-
chronous and they are controlled by the SCI. Essen-
tially, neither the SCI nor the TSC knows what the
other is doing. Either one may be busy at a given mo-
ment in time. Because the SCI is a more time-critical
device, it has control of the transaction sequences.
When the SCI wants to send an input character into the
TSC, the SCI calls the TSC on the DCP bus, sends the
character, and then goes away. The presumption here
is that the TSC will always be available to receive data
from the SCI despite their device asynchronism. The
TSC has an interrupt routine in it which is triggered by
a control code, 26, which is set by the SCI following
transfer of a character. The requirement imposed upon
the TSC is that it must remove a received character
from its reception buffer within one character time so
that information transmitted from the SCI will never
interfere from one character to the next with itself — so
that the SCI will not supenmpose one character on
another. The same buffer is used for both input and
output on the two channels — four paths — which
means that the TSC must be able to service information
at minimum of four times the basic character rate of
the interfere.

There are two entry points to the TSC Communica-
tions routine, either from the Channel B input routine

or the Channel A input routine. They share this code
and the manner of processing resulting from entry from
Channel B or Channel A is determined by data left in
two registers — one register actually contains status
codes and the second register contains the data to be

4,030,072

21

transferred. The Channel A or Channel B input routine
will put the data in Register R27 and put in Register
R22 a code signifying the path or branch out of the
TSC routine and indicating the channel destination of
the information. Code 01 is input from Channel B.
Code 00 is input from Channel A.

The actual sequence of the TSC input routine is
straightforward. A control code is issued to clear the
DCP bus and the first data bit from Register R27 18 put
on the bus. A control code CRLC 28 is then initiated to
start the TSC shifting. Subsequently, the SCI shifts out
the remaining 7 bits of the data byte to the interface
and then immediately following shifts the 4 leading bits
of the TSC link register, Register R22, which contain
the code specifying the type of operation which the
TSC must perform. Following that, a CRL code is 1s-
sued to stop shifting, which preserves the information
in the TSC input buffer, and sets the Attention fhip-flop
saying that a transaction has occured and processing is
required in the TSC. Then the DCP bus is released,
flags are cleared, and the routine branches out based
on the low order bits of Register R22 to either the
Channel A Input routine if it had just processed an
input character from Channel B Input, or the Channel
A Output routine if it had just processed a character
from Channel A Input.

The reason for receiving serial communications,
deserializing it and converting to a parallel form and
then reserializing to transmit internally to another asyn-
chronous device is because of the physical characteris-
tics of the system, it is inconvenient to have the TSC
and SC! in the same physical area, in fact it is desirable
to have the TSC able to fit into a variety of locations
and in fact to live on one of a number of possible
MIOPs in the system. A technical reason for the recep-
tion by the SCI and the retransmission to the TSC is
that the SCI has to monitor the input data streams for
both Channels A and Channels B and routing those in
different ways, depending upon the SCI’s state. If the
SCI is in a PCP mode, for example, input data is not
sent into the IO system, it is stopped at the SCI and
acted upon there. Likewise, if the system is in a soft-
ware input mode, the SCI must still watch the data
being transferred over the bus to detect the control
characters which might put it into a control mode.
Finally, the asynchronous protocol used by the TSC is
organized so that there is no request-response relation-
ship between the SCI and the TSC. This is partly a
convenience and partly a necessity, since the SCI which
might cause a halt in SCI processing. With the com-
mand data transfer scheme the SCI sends data whether
or not the TSC is prepared to receive it, with the as-
sumption ensured by certain cautions in the design,
that the TSC is operating normally should be able to
receive the data and to handle it. There are in fact cases
which the TSC will receive data and not make any use
of it. An example of this is when the TSC is not utilized
for input on the data path. In such case, the data is lost
on the receipt of the successive character.

A feature of the external control subsystem is that it
provides echoplexing, or return of an input character to
the console display, of input data without software
intervention. For control level operations, echoplexing
is accomplished by the SCI. Input data is automatically
retransmitted to the sender for purposes of verification.
In the case of software type input the SCI does not
echoplex but the TSC does by receiving a character
and then at some subsequent time retransmitting it over

S

10

15

20

25

30

35

40

45

50

33

60

65

22

the corresponding output path. An advantage of this
two-level structure is that it provides a continuous and
automatic verification of the operation of the internal
paths of both the SCI and TSC. In fact, due to the
nature of the device, if the echoplexing operation
words, one can assume that as much as 90% of the
hardware of both the SCI and TSC is in fact functional.

CHANNEL A INPUT

The Channel A Input routine follows the TSC com-
munications routine and is much like the Channel B
Input routine as will be noted later. Figure 8 is a flow
diagram of Channel A Input, and because of the simi-
larities to Channel B Input, reference may be made
thereo for either channel.

A minor difference between the Channel Input input
routine and the Channel A Input routine is that at the
beginning of the Channel A Input routine a decision is
made as to what communications frequency the input
interface is to use. The two choices are a) the fre-
quency established by the frequency select switches on
the configuration control panel or b) the frequency of
Channel B which is one of two alternates. The program
examines two outside switches to determine whether 1t
is to use the Channel B frequency by virtue of the
switch settings or to see if the two channels are coupled
together in which case it is mandatory that it use the
same frequency. If neither of these conditions is true,
Channel B will operate at a 300 baud input rate. The
Channel B communications frequency can be changed
simply by reconfiguring the relationship between Chan-
nels A and B, without resetting the SCI. This can occur
from one character to the next in effect, whereas the
basic communications frequency for the system — the
overall set of options — is determined only at the time
the SCI is reset. This has the effect of an interlock, it
says that changing the master frequencies can only be
determined at break points when the system is being
initialized but changing the configuration can be done
during normal operation, at the risk of introducing a
possible communications error, for the convenience of
reconfiguration. In the Channel B Input routine there
are, in addition to the basic communications input
functions, a number of functions that relate to the con-
trol features implemented by SCI in its various PCP
modes. | '

As previously mentioned, the Channel A Input rou-
tine works very similarly to Channel B Input routine,
that is, it looks to see if the channel is running, if 1t is 1t
looks to see if the frame count has reached zero after
incrementing the frarhe, if that not be the case, it exits.
If the frame count goes to zero then it initializes a new
frame and shifts in a bit, and checks to see if that the
last bit, if it 1S not, it exits, if it i1s the last bit it looks at
that character and checks to see if it is one of a set of
characters that are especially handied in the input rou-
tine. First, it checks to see if the input character is a
break character which will consist of all zeros. If the
character is a break it sets a flag. If the character is not
a break it checks to see if the flag set by a preceeding
break character js true. In that case, the routine inten-
tionally ignores the input character. The reason for that
is that the break code is not a character per se in the
communications protocol, it is an indefinite interrup-
tion of the line, and because of this indefinite quality 1t
will tend to be sensed as a succession of characters. But
at the end of the break transmission, there will be the
break which is being interpreted as a character but

4,030,072

23

which is in fact just an idle state of the line. The pur-
pose of this flag arrangement then is to sense when a
break has happened and designate as garbage the single
character information which immediately follows the
break.

A similar detection scheme is used for the Acknowl-
edge character. This has to do with handling of the
Diablo Hy-Type mechanism which send back an Ac-
knowledge character following receipt of a line of data
to indicate that i can receive additional data. If an
Acknowledge character is sensed, then a flag is cleared
and the character is otherwise ignored.

Should the received character be none of the above-
break or acknowledge, the SCI then goes to the Chan-
nel B entry routine which is part of Channel A Input.
The Channel B entry routine which really services
Channel A, looks to determine the nature of the re-
ceived characters, specifically, it wants to find out if it
is required to take any action as a consequence of
receiving the character other than just sending it on to
the TSC. It looks to see first of all, if the character is a
blank. It if turns out that the character is a blank then
it checks to see if the flag which indicates presence of
Single Clock Mode is true. When Single Clock Mode is
true, it is possible for the operator, by typing in blanks
to cause the machine to step its clocks one time for
each flag. In the case that single clocking 1s true, and
the character was a blank, the Channel A Input Rou-
tine goes to a sequence called “So SC Ticks™ and 1ssues
a pair of clock ticks to the system. It is the nature of the
machine that one clock is defined as two ticks o visa-
versa. After issuing the clock tick the contents of a
counter which is incremented on each pair of clock
ticks is compared with the contents of another counter
that determines the number of clock ticks to be isused.
This is controlled by other routines that we will en-
counter later. If it turns out that just exactly the re-
quired number of clock ticks have been issued, a flag 1s

set to sebsequently initiate Single Clock Display 1n the

Channel A Output Routine and then an exit 1s made to
the Channel A Output Routine. Otherwise, no flag 1s
set and exit proceeds to the Channel A Output Routine
anyway. If it turns out that the character that came In
was not a blank, that it does not really matter if we are
Single Clocking or not, but we check to see if the char-
acter is a Control Z which is the initiation character for
an entire class or control operations. If it was, we
branch off to the control routine called “SET ZC". If 1t
was not a Control Z we check to see 1if a Control Z has
been received recently and we are in the Control Z
mode. If that is the case, then this character will be part
of a command, a Control Z command, and we branch
to a routine called “ZC SET".

If it was not a Control Z, and a Control Z was not set,
then we check to see if PCP mode is enable or inhib-
ited. This is controlled by a switch on the System Con-
tro! Panel and the reason for inhibiting it is to prevent
people playmg with the control functions which can
affect the inner state of the machine. If it turns out that
PCP Inhibit is set, then the only thing that can be done
with the character is to send it into the TSC. We initial-
ize the set of links for the TSC input routine in the same
manner as was done with Channel B and then the exe-
cution branches to the TSC Input Routine. After exe-
cution of that, it will branch to Channel A Output Rou-
tine. If it turns out that PCP Inhibit is not set, in another
words, if PCP operations are enabled, it i1s incombent
upon the SCI to check first if the recetved character is

10

135

20

23

30

335

40

45

50

53

60

65

24

a Control P which is the header character for the mode.
If it is, it branches off to a routine called SET PC. If 1t
is not, the SCI checks to see if it is already in PC mode.
Should that be the case, it branches off to a routine
called PC SET. Finally, if it is not a Control P character
or function of the SCI checks to see if the flag indicat-
ing Transparent Text Mode is set.

The Transparent Text Mode is a special feature
which is put in both for maintainability purposes and
for the convenience of the operator during remote
trouble-shooting. It allows information to be exchanged
between the remote trouble-shooting console and the
local operator’s console without that information being
examined by the SCI for control content or passed in to
the system software for processing. The reason it is
transparent is that the information shows up on the
communications devices but never gets into the func-
tional devices that operate on system status or soft-
ware. If the Transparent Text flag is set, then the SCI
enters a small checking routine in which i1t converts
carriage returns and line feeds into the same character.
This is necessary to bypass an inconsistency in coding
between various telecommunications devices. Then it
puts the data character on the stack for output to the
Channel A device some time later. All output on the
Channel A device is run through a stack maintained by
the SCI. Various routines within the SCI code generate
output information and leave it in the stack where an
output routine will asynchronously and independently
pick it up if there is anythmg to be sent and transmit 1t
to the device.

One other function is performed by the Channel A
Input Routine. If it turned out the start of the routine
that Channel A was not running, that 1s not receiving a
character, and there was need to start receiving a char-
acter, then execution is transferred to a clocking rou-
tine, associated with one of the control functions. The
purpose of this clocking routine is to single clock the
entire system and the reason for executing it at this
point because under the definition of some of the
clocking functions 1t is possible to generate a rather
large number of clocks repetitively with the single com-
mand. This is the location in the code which allows that
function. If the Multiple Clocking flag is set in the SCI
(called the “CXX Flag’) then at this point the Channel
A Input routine issues a pair of clocks and then checks
to see if it has issued the requisite number, if it has not
it branches out, and if it has, it sets a flag so that a
Single Clock Display is initiated later on in the process-
ing sequence.

Since the Channel A Input routine involves quite a
number of functions, not all intimately related, the
following is a brief summary of the functions in more
general terms. First of all, Channel A Input receives
communications data in essentially the same manner as
the Channel B Input routine does. When it has received
data it examines the data for correspondence with vari-
ous character codes which require special operations
and these special operations relate to the characteris-
tics of the system itself — the way it responds to input
data in the case of the Break or a characteristic of
external devices in the case of the Acknowledge char-
acter. Or Iinformation that relates to internal control
functions, such as is the case with the Control Z and
Control P characters and characters which are received
while one of the other of those modes is active. The
same 1s true of the Blank character for single clock
initiation. It does one final thing and that is to perform

4,030,072

25

an updating task which is not a part of the input se-
quence per se, but is merely a logical place to do the
clock stepping function, because the clock stepping
function is similar to an input in that under certain
circumstances it will generate an output. The same
general characteristic is true of the functions associated
with the control Z and Control P routines — that they
are likely to generate an output as a consequence of an
input and therefore they need to be handled in advance
of the output servicing routines.

CONTROL MODES

The discussion of the SCI code should be interrupted
at this point to examine the Control Z and Control P
sequences which have been referred to and which are
entered in fact as a result of, events in the Channel A
Input routine. For convenience, a list of Control Z and
Control P commands and functions is also attached
hereto as Appendix B.

The first special mode or special condition which the
Channel A Input routine looks for is to determine
whether Control Z characters are input. In that case the
routine branches to a routine called Set ZC. The func-
tion of the ZC SET routine is to initialize the SCI into
a Control Mode where it will be able to detect and act
upon the actual code characters which follow the Con-
trol Z. SET ZC (line 1604 of the appended listing) first
sets a flag that indicates the SCI is going into Control Z
Mode. It then echos a sequence of characters that have
formatting and esthetic functions as their primary pur-
poses. Although the primary role of the external con-
trol system is to provide functional control and infor-
mation display for the computer system, the mmple-
mented formatting and human factors characteristics
of the interface between the machine and the operator
cannot be underestimated in their importance. It is a
prime consideration in the design of this system to
make both the input sequence and the output sequen-
ces as humanly comprehensable as possible. The re-

10

15

20

25

30

35

quirement is to avoid ambiguity in the presentation of 40

data; to present data in a neatly formated manner so 1t’s
easy for the operator to scan and to clearly differentiate
between types of data display where there is any poten-
tial for confusion or misinterpretation. Most of this is
accomplished by format and by the selection of codes
which are humanly recognizable. For example, most of
the function codes, used in the command sequences are
arranged so as to be mnemonic and to have some pho-
netic correspondence to the functions which they per-

form.
The function of the Set ZC routine is to initialize the

state of the SCI Control Z Mode and then to transmit
formatting inforamtion to the Operator’s Console de-
vice or the trouble-shooting device, (Remote Console)
which signifies entry of this mode and which leaves
space for subsequent transmission. The format i1s to
index the display device to a new line and to type a left
parenthesis to signify that Control Z Mode has been
entered.

Following that sequence of operations, the Set ZC
routine branches to the Channel B Qutput routine. At
that point it has initialized the system for further mput
and it now waits for the operator to type i a command.
In the Channe!l A Input routine, following an unsuc-
cessful test for the Control Z character as an input, the
code tests to see if Control Z Mode has been set as it
would have been done by the sequence just described.
In that case, the execution branches to a routine called

45

S50

55

65

26

ZC SET. It will be recalled that when ZC SET is en-
tered, it is known that a Control Z has been transmitted
sometime within recent history and the SCI is in this
Control Mode. The purpose of the ZC SET routine is to
accumulate control characters until there are enough
characters to constitute a control command. The
length of a control command is either one or three
characters in the case of ZC Mode, with one exception
which will be treated later. The AC SET routine 1s
entered each time a character is received with ZC
Mode active, looking for that combination of charac-
ters which will allow it to proceed and process interpre-
tations of command. The ZC SET routine (beginning
on line 1253) commences by echoing the character
which it has received. This is done by putting the char-
acter on the register stack R32-R63 and incrementing
the stack pointer, then it executes a brief translation
routine which converts the input characters to upper
case should they be lower case alphanumeric informa-
tion. This is a matter of slightly altering the codes of the

lower case characters and it is done merely for consis-

tency in the later coding sequences. The ZC Set routine
then examines the character and determines how many
other characters it has received. Specifically, if this is
the first character following a Control Z, 1t checks to
see if it is the character 1 which signifies an interrupt
command — that is one of the single character com-
mands — a character T, which signifies the Transpar-
ent Text Mode command, or a character S which signi-
fies the Sense Switch Command. These define control
functions, which will be discussed later. To complete
the description of the input logic of the ZC SET rou-
tine, it is seen that the routine upon receiving one char-
acter, if it is not one of the special functions noted
above, sets a flag indicating “‘first character following
ZC” and puts the character in the buffer. The next time
the routine 1s entered, which will be some substantial
time later, based on this flag the SCI determines that it
has received the second character after the Control Z,
and then sets another flag. The third time ZC SET is
entered 1t should have a complete command so the
routine enters the sequence called “Z PARS"” 1n which
it determines the nature of the command and either
sets up the conditions for executing it or directly the
command. |

Returning to the Single Character commands briefly,
the implementation of the Interrupt command, which is
a single function command ““I”, is a simple setting of a
CRLC code which causes a pulse on the interrupt inter-
face connection unit. CRLC codes are defined and
attached as Appendix A. The Control Z T command (a
second single character command) similarly causes
setting (actually causes toggling — a binary state rever-
sal) of the flag for Transparent Text and then generates
an exit. The Senseswitch command, Control Z S, is a
somewhat different case than the other one letter com-
mands. Senseswitch is actually a 3 or more letter com-
mand, but it 1s one of the few commands that is permit-
ted in the case that the console functions, that is the
PCP modes, are inhibited by a switch on the system
control panel. If the first character of the received
command is an S, the SCI is permitted to go ahead and
parse the command even if it would not otherwise parse
a three character command.

The state that the SCI enters after its determined that
three command characters are received, is one of exe-
cuting the Z PARS routine. The first step in the Z
PARS routine is to set an event code into Register R16.

4,030,072

27

The event code is a message which is transmitted to the
operator if for some reason the command 1s unaccept-
able. This merely allows a simpler way to get the mes-
sage out to the console when a command 1s found unac-
ceptable. For the first group of command event Al is
put into the message buffer or the error message buffer.
A1l means that a command can’t be executed when the
machine is running. The Z PARS routine then exam-
ines the characters in the three registers which are
Registers R24, R2S and R2. These contain in sequence
the last three characters that have been received. The
first comparison is for an S. If the character in 24 is an
S then the Parsing routine branches to the sequence
SXX and looks to see if the second character is also an
S and finally looks to see if the third character 1s a W.
[t should be mentioned that if any of these comparisons
fail, there is a branch to an exit case. For example, in
the case of a comparison where an S is found and then
the second character is not an S, that is a case which is
not defined in the command set and the routine exits
through routine called Z Abort, causing transmission of
a message to the operator indicating that the command
can’t be accepted.

In the case that the command was an SSw the status
of the system Sense Switches are displayed. This is
done by 1) echoing, as is always done with Control Z
Mode, the input character, 2) then appending an
‘‘equals sign” into the output stack, and 3) finally com-
municating with the System Unit for its Senseswitch
status. This is done by looking at the Single Clock Sta-
tus Register 13 in System Cluster 7 which is the preas-
signed location for the register containing the Sense
Switches. (The preassignment, of course, relates only
to this preferred embodiment.) The status codes are
shifted in as four binary bits and translated into binary
1’s and O’s by the Sense Switch routing (lines 1326
through 1345 of the code). That information is put on
the stack as a four-character display and the routine
goes to Z Exit which takes care of spacing and typo-
graphical functions.

If the first character was an S and the second one was
an S but the third was not a W, the SCI checks to see if
the third number is in fact a numerical digit, or more
accurately a hexadecimal digit. A special coding of the
Arithmetic Unit (94 in FIG. 2) is provided in the SCI to
make this test for a hexadecimal digit a simple fuction.
Part of the output of the comparison logic of the ALU
is an indication whether the number of the mnput to the
ALU is a hexadecimal digit or not. In the case that it is,
the system is first halted — the entire computer system
is halted briefly so that the updating of the Senseswit-
ches will not interfere with ongoing processing. The S5
No. commmand is a means of setting the system Sen-
seswitches (which constitute four binary bits) to a new
value. There may also be programmatic means of set-
ting these Sense Switches and the necessity for halting
the system is to avoid interference between possible
programmatic setting and the psuedo-manual setting
accomplished through the SCI.

To update the Sense Switches (lines 1346 through
1369) CRLC codes (Appendix A) (control functions
on the DCP bus) are issued. All of the Sense Switches
are cleared and CRLC codes are issued to set the ones
indicated by the input command. From zero to four bits
are set depending upon the input data. The setting
routine then branches to a segment of code that starts
the computer system operating again. (Actually it de-
termines whether the system was operating when it had

S

10

135

20

23

30

35

40

45

50

35

28

to stop it to change the Sense Switch, and if 1t was it
restarts it. If it was not running, it doesn’t do anything.)
It then displays the Sense Switches which it just set, to
provide a visual verification of completion of the func-
tion. Following that is goes to Z EXIT which will be
discussed later.

If the input character is not an S, then on line 1285 of
the code a check is made to see if itisa B. If it 1s, a
branch is made the BXX subroutine which determines
whether the second character is a P. If it 1s not, 1t goes
to an abort. If it is a B, it assumes that the third charac-
ter will be a hexadecimal digit. The hexidecimal digit 1s
placed in Register R20 as the number of the Basic
Processor which the SCI will address for Basic Proces-
sor control functions in the Control Z Mode. The BP
Number command is a means directing the control of
the SCI to any one of a number of processors in a multi-
processor system configuration. Following those acts,
BP No. exits through the Z EXIT routine.

If the first input character is not a B, Parse determine
whether it is an E. In that case, a branch is made to the
EXX Routine. The E # # is analogous to the BP
command but where BP # sets in the SCI a BP
address, the E # # command stores in the SCI the two
digit hexidecimal value of a Single Clock Status Display
cluster/element pair. The EXX command, if the first
input characters a C then the SCI assumes that the
branch is made to the CXX routine to see if the second
character is an L and the third character a K. Should
this be true, a check is made to see whether the system
is in a Maintenance Mode.

The CLK command causes the system to be put in
Single Clock Mode. Since it is important that this not
be done during normal system operation to avoid loss
of data, an interlock called ‘“Maintenance Mode™ 1s
used to act as a means of preventing this. If the system
is not in Maintenance Mode, then an error flag is set
and the Control Z command is aborted, and the opera-
tor is allowed to enter another command. If the system
is in Maintenance Mode, first a flag is set in the SCI to
inidcate that the clock will be stopped and then the
interface latch which stops all the clocks in the system
is controlled. Finally, the SCI register which is a
counter of single clock pulses entered is initialized by
setting to zero, and the acceptance of Single Clock
Mode is signified to the operator by clearing the screen
of the display and setting a flag which will, in a subse-
quent task, generate a Single Clock Display at the Sin-
gle Clock Register currently being pointed to.

If the first character is a C and the second character
is not an L a routine that is called C # # is entered
and the assumption is made that two numerical digits
follow. These two characters are translated into binary
values and stored in Register R25, as two-4 bit digits.
Register R2§ contains the count value for extending
clocking. This is an automatic function where based on
a C Number Number type command the machine will
be advanced many clock times automatically by the
SCI. Finally, the extended clocking flag which initiates
extending clocking is set and the routine is exited. The

- discussion of Channel A Input will show how the ex-

65

tended clocking sequence functions from these initial-
1ZIng parameters.

MAINTENANCE MODE FUNCTIONS

If the first character in is not a C then a check is made
to see if it is an M. If it is an M, a branch is made to the
routine M XX which checks to see if the second charac-

29

ter is also an M. If that’s the case, the sequence then
looks to see if the third character of the sequence 1s a
0,1,2,3,4,5,6,7,8,9, A or F. These are a class of
functions which are called Maintenance Mode func-
tions and they perform special control tasks in the
system that are primarily for maintenance. The first
three or the first four Maintenance Mode functions are
permitted when the system is not in Maintenance
Mode. The remaining ones, 4 through F are only per-
mitted if the system is in Maintenance Mode.

MMO is a general “clear” command for special
modes and states inside the SCI. It clears all of the
repeating and stored functions which the SCI would
otherwise remember, simply by clearing the SCI flags.
The three functions which it explicity does in this ver-
sion are to clear the system interleave and clock margin
control flags and clear repetition of control P Mode.

By setting a flag the MM1 function initiates a single
clock display capability that’s only meaningful if the
systemn is also incidentially in single clock mode. This
function makes the system continuously display the
status of the Single Clock Register which has been
specified beforehand, and after each display to advance
the system clock by one tick. Most of this function is
handled under the Channel A Input routine.

The MM2 function set Single Clock Scan Mode
which is a display option that allows 16-register SCSR
display from one request, whether it’s a manual step-
ping of the system clock or an automatic stepping of
the single clock, or any other function which would
generate the display of the Single Clock Status Regis-
ter. Instead of just showing one register it will show all
16 registers which may be allocated for a given cluster,
where the cluster is the one specified as the first, or the
high order 4 bits of the Single Clock Status Register
address that has been stored previously. This function
is also executed within the Channel A Input routine,
based on the setting of the MM2-controlled flags.

Control function MM3 arms an automatic repeating
function for P Mode operations. This is similar to the
MM2 function except it relates to the processor control
(P Mode) class of operation and it causes an actual
function to be repetitively executed at the rate at which
output display takes place. Usually when a Control P
function is executed there is a succeeding display of
some 20 or 30 characters which gives information on
what has been done. The MM3 function causes the

machine to cycle at whatever rate the display occurs.
Examples of the use of this function are: to automati-

cally cause the machine to single step instructions; to
execute it’s current instruction routine or program at
humanly perceptable speeds; or to examine sequen-
tially an indefinitely long string of locations inside the
system Main Memory. [t may also be used to write a
given value into a succession of memory locations. The
import of this will become clearer with description of
the P Mode functions themselves.

Function MM4 is a special function which dernives
from the cautionary desire for a way of resetting the
system of the SCI and its control functions by manual
intervention. MM4 generates a function called *Sup-
per-reset”” which causes the SCI to reset itself and, 1n
the process, causes the entire computer system to be
reset and reinitialized. This can be useful for recovering
the system from a hang-up condition when a fault has
occurred, and also as a way of getting the system back
to a known state of configuration. MM4 is the first of

4,030,072

10

15

20

25

30

the Maintenance Mode only functions, the implications
of accidential operation of MM4 can be clearly seen.

MMS is a function relating to microdiagnostic execu-
tion. MMS sets a flag which causes the microdiagnostic
code, when accessed, to repeatedly initiate microdiag-
nostics and test their outcome on a single processor
element in the system. This differs from the normal
scheme of microdiagnostic execution where a scan 1s
made of all elements of the system and each one 1s run
through its microdiagnostic paces in turn. The one
application for the MMS type of microdiagnostic loop-
ing function is to allow service personnel to examine
with an oscilloscope the operation of faulty system
elements should other diagnostic means be not avail-

able.
The MM6 function is also related to microdiagnos-

tics. It causes microdiagnostics to be initiated on a
single processor element while the system is in Single
Clock Mode. This is a function that would not other-
wise be possible because a certain number of clocks are

required by the processor element to recognize the

microdiagnostic signal and when 1it’s being single
clocked the SCI would not be able to get it into this
mode. This is a special provision for single clocking
through the microdiagnostics. Once the flag is set, 1t
branches to a routine called “Select” which will be
discussed later under the microdiagnostic sequence.
The MM?7 function serves the purpose of setting low
clock margins for the system. The value of setting low

0 clock margins can be two-fold. First, for diagnostic

35

40

45

30

55

60

65

purposes it is desirable to determine that the system
can run at a lower than nominal master clock rate.
Also, it is possible that a system which has a failure at
nominal clock speed will operate at a reduced clock
speed, so the ability to set low clock margins act as a
potential means of creating degraded operation instead
of hard failure. This is set by a control command inter-
nal to the SCI which operates in the interface latch that
in turn directly controls the system clock generation
module. |

The MMS8 function is a companion to MM7, i1t sets
the clock from normal to high margins which is used
primarily for diagnostic verification. If the system suc-
cessfully runs at high margins it is likely to run at nomi-
nal clock speed.

The MM9 function controls the cverride of system
memory interleave by setting a latch on the SCI. Nor-
mally, the memories within the system are interleaved
to improve the access to cycle time ratio to the mem-
ory. For some diagnostic functions, it is desirable or
necessary to test the memories in a noninterleaved
mode for fault isolation. This function overrides the
interleave.

The MMA function causes all output on the Opera-
tor’s Console or PCP ¢hannel suported by the SCI to be
inhibited when the system i1s in any of the Control
Modes. It has previously been noted that there are
some functions which repeat themselves at rates which
are determined by the frequency of output from the
SC1 display, 1n other words, the communications rate to
the Operator Console device. Among these are Single
Clocking of the system, repetition of microdiagnostics,
and stepping of program steps in the system. It is desir-
able tc be able to repeat these at human speeds and
that is what the display function does. But it is also
desirable, in some cases, to repeat these at speeds
which are between the normal speed of operation and

human speed. By eliminating output, data transmission

4,030,072

31

the MMA function allows these looping functions to
proceed at a faster rate, either to get past long sections
of sequence or to allow oscilloscope analysis of signals
within the system.

MMF function is used to change the frequency of 5

communications to the console device. It causes the
frequency switches which are initially examined during
SCI initialization to be reexamined and a new set of
communications frequencies to be determined. This
has the net effect of permitting a change of the console
frequency without requiring to reset the overall system.

If the first character of a Control Z sequence 1s not an
M, a new class of command parsing is entered into on
line 1298 of the code. A test is made to see if the system
is running. The commands preceeding this point can all
be executed when the system is running. The com-
mands following this point cannot. If the system 1s run-
ning, and such a command 1s detected, an error mes-
sage is generated indicating that the command cannot
be accepted. If the system is not running the parsing
sequence is continued. There is a special condition; if
the machine is ostensibly running, but in control P
Mode, it will not in fact be running, because Control P
Mode implicitly halts instruction execution. In the case
that the machine is in control P Mode, even if running,
the parsing can continue.

The next character that’s looked for is an L. If that is
the case, a branch is made to the routine LXX to see if
the second character is D. If it is not, we send out an
error message; if it is, a flag is set to allow capture of
four more characters after the third digit. These four
characters are intended to be hexadecimal digits which
specify a load address. With the flag set, an exat is made
and then the “ZC Set’ sequence counts up four more
input characters and then returns to the point where we
proceed. With seven input characters, and knowing
that LD are the first two, a check is made to see if the
third character is an N. If the third character is an N a
branch is not made to a routine, but first of all, the
microdiagnostic pointer register is initialized to 1ts be-
ginning value since the LDN function is *“load normal”™
which involves execution of microdiagnostics, initial-
ization of the system for loading, memory clearing, and
finally execution of the load function itself.

There are three functions in the “load” catagory
Load Normal is described above; it serves to send a
load address into the system, execute microdiagnostics,
initialize the system for loading, clear the memory and
then go to load sequence execution which starts the
machine running. Load Special does a similar function
but it bypasses the microdiagnostics. The reasons for
this are to shorten the sequence, to make it possible to
load a machine which has a microdiagnostic fault, and
to allow programmatic diagnosis of a fault detected
through microdiagnostics.

The function called LDT serves to set the entire
system memory to a given value, a value that’s been
stored in one of the Basic Processors Q Registers, pre-
viously by manual interaction from the operator. Func-
tion of this is again primarily diagnostic. If there is a
memory location which is not functioning properly, it
may be identified through use of LDT. The LDT func-
tion is executed directly, that s, the detection sequence
followmg label LXX looks to see if the Control Z code
is an LDN or an LDS and in the case that it is not,
checks to see if it is and LDT. If it is an LDT, it puts a
function code in the register reserved for communica-
tion with the Basic Processor (R29) and then it sets the

10

15

20

25

30

35

40

45

30

55

65

32

Register (R28) which is the phase counted for Basic

Processor communications to a hexidecimal value of F.
The phase sequence for Basic Processor communica-
tions will be discussed later. Briefly, however, 1t initi-
ates a subsequent sequence of events which causes the
function code 14 to be sent to the Basic Processor
which then executes the Memory Set function. The SCI
completes its Control Z sequence and returns to a qui-
escent state in the meantime. The LDN and LDS func-
tions are uncommon in that they consist of a six charac-
ter input, and a seven character display. On the display,
the first three characters are format of the next seven
characters, three are for the code and four for the load
address of the device which will be used by the Basic
Processor in system loading.

If an LDS or an LDN is detected, flags (bits) 1 and §
in Register R26 are set. In the case of an LDS flag 4 in
Register R26 is also set. Then the routine branches to
the Channel A Out entry point to continue with other
processing. On receipt of a subsequent character the
LXX routine is reentered because the LD is still in the
input character registers, the last digit having been
overwritten by its successive character. A test is made
to see if that successive character is an ASCII digit. In
the case that it is, a branch is made to the PASSADDR
routine which is a function that operates under the PC
Mode sequencing and its task is to transfer information
digits from the SCI to a collection register in the PIC
associated with the Basic Processor which is currently
selected by the SCIL. This is the Basic Processor which
will be responsible for the load operation. One Basic
Processor performs the load sequence for the entire
system. The detail of the PASSADDR routine will be
described below under *“P Mode Sequencing.” It serves
to get the input digits for the load address successively
into an accumulation register which is adjacent to the
load BP. When the last digit has been received, that is
the fourth numeric digit, (each time a character 1s
received, the character counter in Register 26 is incre-
mented), that condition:is detected inside the PASS-
ADDR routine and one of two branches is made. If bt
four of Register 26 was set, it means that the operation
in progress was an LDS and so there is a branch to the
routine LDS/R that initiates the LDS operation. The
subroutine LDS/R causes function code 13 to be initial-
ized in Register R29 for transmission to the Basic Pro-
cessor and the PC Mode phase sequencer is initialized
to the value of hexadecimal F which will cause the
function code to be transmitted to the basic processor
by the PC routines which will be discussed in detail
below. Similarly, if bit four of Register 26 1s not set, the
function is an LDN, and a branch is made to a routine
called MRSY.

Up to this point, the code LDN LLDS or LDT has
been detected. In the case of LDT the conditions which
initiate the Memory Set function have been established
and then execution control 1s transferred. In the case of
LDN and LDS, flags have been set so that an additional
four mput characters could be accumulated, those
being the data specifying the load device address, and
those digits have been passed a digit at a time to the
accumulation register in the Basic Processor. If the
code after receipt of those digits 1s remembered to be
an LDS, a Control P algorithm is initialized which sends
the function code over the Basic Processor a little bit
later. If the code was an LDN, a branch is made to a
microdiagnostic routine which will cause the system
microdiagnostics to be executed before the load code 1s

4,030,072

33

transmitted to the Basic Processor. It is important to
note here that the microdiagnostics resets the system
and for that reason it would not be possible to initialize
the Basic Processor with the load address prior to the
execution of microdiagnostics because the data would
be cleared out. For that reason it is extremely advanta-
geous to have a holding register where this data can be
preserved during microdiagnostic execution.

Entry into load sequence has been from the flag
MRSY. There is another entry point just prior to this
which is selected in the case of microdiagnostic loop-
ing, a function that was described under the MM group
of commands. The execution of microdiagnostics is
essentially the same. The only difference between mi-
crodiagnostic execution under looping microdiagnostic
execution during load and microdiagnostic single exe-
cution is the way that the address of the device being
microdiagnosed is altered in the body of the routine.

The philosophy of microdiagnostic execution in the
system 1s as follows: A processor element in the system
is addressed by the SCI over the DCP bus. The proces-
sor element address consists of a cluster address (4
bits) and an element address (4 bits). The processor is
selected in much the same way as it is selected for
display of a Single Clock Status Register, except that
instead of Single Clock Status Register Display, a func-
tion code is 1ssued after the processor is selected direct-
ing the processor to microdiagnose itself. This function
code initiates autonomous and asynchronous execution
of an internal microdiagnostic routine by the processor.

The SC] determines the success or failure of the
microdiagnostic by a single test. It checks to see if, after
a period of time, the processor involved has managed
to set a flag imdicating successful completion of the
microdiagnostic routine. Because not all processor
locations are populated, and not all processors have
microdiagnostics in them, the SCI tests immediately
after 1ssuing the microdiagnostic command to see if the
processor has in fact altered the microdiagnostic flag to
the zero state, to indicate that it has begun microdiag-
nostics; only if this happens does the SCI subsequently
return to see if the microdiagnostics was successful.

In the event that a given processor successfully com-
pletes its microdiagnostic, the SCI resets the entire
system, modifies the processor address by one, and
repeats the process. when it has gone through all pro-
cessor addresses, it exits to continue the load function
which follows naturally and automatically from the
microdiagnostic sequence.

If a microdiagnostic fails, an error message is gener-
ated by the SCI, and a display of the Single Clock Sta-
tus Register from that processor is transmitted to the
operator.

The first task in the microdiagnostic sequence, (label
MRSY) 1s to reset the system and to delay for a period
of 32 microseconds to ensure that that reset has
reached all elements of the system. That delay is more
than i1s absolutely necessary, but one characteristic of
the design of the external control subsystem is that it is
intended to be very tolerant to diversity in the types of
subsystems that it supports; and so it provides rather
wide margins where feasible.

After the reset delay, a flag is set to indicate that a
microtest 1s in sequence. A test is made to determine

10

15

20

25

30

35

40

45

50

55

60

whether microdiagnostic looping is to be performed; 65

and in that case the routine branches to a label called
TEST, which is the exit point for the microdiagnostic
sequence if nothing s to be performed at that moment.

34

That is a return path to the interrupt detection loop at
the beginning of the code. If looping s not the case, the
microdiagnostic routine inserts another lengthy delay
of 60 milliseconds to permit certain mechanical periph-
erals to be properly reset and initialized A function of
this duration normally would not be possible within the
control environment of the SCI because of the inter-
ruption to communications sequencing timing. How-
ever, during the load sequence it is acceptable to cause
this delay because nothing else of a more critical nature
is occurring at that time.

Following that delay sequence, the microdiagnostic
algorithm proper is entered. At label NXTMICRO a
test is made to see if the contents of Register R13,
which is the address register for the processor element
being microdiagnosed, has reached zero. If 1t is not
zero, a branch i1s made to label DECRADRS which
decrements that address and then moves to connect the
processor named by the new address. The select rou-
tine, 1s conventional, and has been described before

under the Single Clock Status Register routine. The

cluster address is obtained and put on the bus, cluster
selection is driven, the element address is obtained and
put on the bus and element selection is driven. Follow-
ing the basic connection, the SCI is set to examine bit
O of the Single Clock Status Register of the addressed
element. |

The microdiagnostic Loop-in-Test sequence flag is
cleared; and branches are made based on the various
possible looping combinations for microdiagnostics. In
the case of microdiagnostic initiation, where a specific
processor branch is made to M* and the microdiagnos-
tic code is transmitted over the bus CRLCO7, it is
allowed to remain high for 1 microsecond and cleared.
If Single Clock microdiagnostics are in progress, how-
ever, the code branches to a Clock Z exit where a clock
pulse is issued prior to clearing the microdiagnostic
signal, allowing the processor element to accept that
signal and enter its microdiagnostic sequence during
single clocking.

If microdiagnostics have just been initiated, the rou-
tine branches to the Test exit which is an entry point for
the interrupt detection sequence. A subsequent inter-
rupt will cause a return to the microdiagnostic entry
point, and by examining bit § of Register R19, a deter-
mination will be made that microdiagnostics are in
progress and that it 1s time to determine whether the
microdiagnostic was successfully executed. The timing
delay between interrupt ticks has thus been used to act
as a time-out interval for the microdiagnostic execution
in the processor element. Therefore, on the second
pass through the end loop routine, a check is made to
see whether bit 0 has been reset. If it has been reset to
1, the flags are changed back to initialize the next mi-
crodiagnostic test. If the microdiagnostic test has
failed, a flag is set in Register R19 to initiate a Single
Clock Status Register Display and at the same time
Register R16, which is the Fault Status Message Regis-
ter, is initialized to code F9, which is the indication of
a microdiagnostic fault, and then a branch is made to
the Z Abort exit which causes all of those things to be
displayed.

The process described above it iterated as many
times as 15 required to reduce the processor address
register to zero. When that address reaches zero on a
pass through the microdiagnostic routine, the Load
Function 1s initialized. The Load Function is estab-
lished as a code in Buffer R29, (Basic Processor func-

4,030,072

35

tion code 12, or hexidecimal C) and the Basic Proces-
sor phase sequencer is set to hexidecimal B which initi-
ates the transfer of the load function following execu-
tion of the memory clear function in the processor.
This again is done under the PC data transfer routines

which will be discussed below.

Once these initializations have been made, of Regis-
ters R29 for the function be transmitted to a Basic
Processor, and Register R28 for the Basic Processor
communications Sequence Phase Counter state, the
operation of the load sequences becomes asynchronous
with respect to the channel A Input routine and be-
comes effectively a part of the Channel A Output rou-
tine.

The remainder of the ZC Set and Z Parsing routines
will be reviewed at the point where a test is made to
determine the nature of the code input for a Control Z
operation. As noted before the description digressed,
the first letter of the code input is not an L so a check
is made to see whether the first letter is an R. If the first
letter is an R a branch is made to the subroutine RXX
and a test is made to see whether the second character
is a U. In the event the second characters a U a test 1s
made to see whether the third character is an N. The
command is then executed which puts the system in
Run. This is done by first modifying flags in the SCI,
Register 20, flag 0 and Register R6, flag 6 which indi-
cate a) that PCP Mode is no longer active, and b) that
the system is running. A control command CRLC11 1s
issued which sets the Run latches in the PIC modules
associated with each Basic Processor in the system. At
that point a branch is made to the Z Exit routine.

If the code is not a RUN, an examination for RSY is
made. That being the case a CRLC command 14 is
issued which generates the System Reset pulse to all
processors and elements of the system. From that a
branch is made to the routine CLKZEX1 which causes
the SCI to wait for a period of time determined by the
numerical contents of Register R13 and then the code
falls into Clock Z Exit 2 which actually issues a clock
pulse that allows the function to be accepted by the
processor elements involved. After that it falls into the
normal Z Exit path.

If the function was not an RSY a check is made to see
whether it was an RBP, and in that case, a different
Basic Processor reset code is issued and again an exit is
made to Clock Exit 1. Finally, if it was not one of those,
it is determined whether it is an R10. In that case, a
third class of reset is issued which is CRLC12 and the
code falls into Clock Z Exit 1 again.

To summarize the Reset environment, it will be seen
that four different possibilities for reset in the control
scheme have been utilized: Superreset, initiated by an
MM code to reset the SCI and the control system; RSY
which is System Reset that resets all devices in the
system, the central processor, the 10 processors, the
memories, the 10 devices on the IO Bus, and everything
but the SCI for the purpose of thoroughly initializing
the entire computational part of the system; Basic Pro-
cessor Reset, to reinitialize the Basic Processor alone
without disturbing the status or state of the 10 systen
(Basic Processor Reset also has the effect of resetting
the memories because it is necessary to reinitialize that
interface, but it does not disturbe the state of 10 con-
trollers on the bus): and [O Reset which does just the
opposite, that is, it resets the 10 processors and all of
their connected 10 controllers, but it does not reset the

10

15

20

25

30

35

45

50

535

36

Basic Processor or even alter the point in its instruction
sequence where it has been stopped.

The Reset commands are in that class of functions
which can only be issued when the system is halted.
The exception to this is Superreset which can be issued
anytime. There is one modification of this, if the ma-
chine is in P Mode, it is effectively halted, even though
it is considered from a logical standpoint to be running.
The Reset commands can be executed in P Mode even
if the machine is ostensibly running.

Returning to the microprogram, if the first character
finally turns out not to be an R then it is not an accept-
able command in the Z Mode set and a branch is made
to a routine called Z Abort which generates an Event
Message by initializing the Error Message Register to a
given event code and setting a flag which causes the
Event Message generator to be executed asynchro-
nously under another routine. Z Abort then falls into
the END Sequence Routine. Line 1314 is the normal
entry to the Z Exit routine and that sets the END Se-
quence flag which causes punctuation and graphical
control information be sent to the Console device. Z
Abort on the next line does essentially the same thing,
but it inserts an error message before the line is com-
pleted. In either case, the Z sequence is finished by
appending a right parenthesis to the line of echoed
information, clearing control Z Mode, clearing the
various character counters and flags that were set dur-
ing possible branches of Control Z Mode, and then
branching to the entry point of Channel A Out, which

is the next major block in the execution sequence of the
SCL |

In the Channel A Input routine, one of the exit paths
was to the routine SETPC This is done if a Control P
character is reveived in an information stream. It puts
the system ultimately into the Processor Control mode
in which information can be obtained from and infor-
mation can be sent to the Central Processing Unit in
the system. First, a flag is set in the SCI to indicate that
PC Mode is true. That flag will remain set until an X
character is received signifying the end of Control P
Mode. The entire system is then stopped by issuing a
CRLC 10 code on the DCP bus and the P Mode Dis-
play Mechanism within the SCI is initialized to display
the instruction counter of the currently selected Basic
Processor. Currently selected means that its address is
contained in one of the SCI registers, Register R20, bits
4-7. After reset, the default case for the current se-
lected Basic Processor is Processor O. The task of ini-
tializing the display sequence which signifies that the
Control P command has been accepted, among other
things, is to put a Basic Processor function code in
Register R29 of the SCI. The function code here is a
binary 1011. Register R28 which is the phase counter
and flag register for BP transactions 1s imitialized to
show a phase count of one. The PC Mode phase se-
quencer will be discussed below under Channel A Out-
put. That serves as an asynchronous mechanism for
controlling the stepping of the transaction between the
Basic Processor and the SCI. Following flag and phase

~ counter initialization, an exit is made to the Channel A

65

Output entry point.

The other and last possible branch out of the Channel
A Input routine, as part of the analysis of an incoming
character, is to the PCSET. This indicates that the

-~ Control P code is already set and the character which

has just been received is a Control P command in and
of itself. The first thing that happens in PCSET 1s that

4,030,072

37

flag S of Register R28 is cleared. This flag (which can
be set by an MM function described above) causes
continuous repetition of a given P Mode function. The
repetition is ceased by inputting any other character. If
the character received is a valid P Mode the repetition
will reenabled after the command has been entered
into the Basic Processor.

The next step is to put a copy of Register R28, the P
Mode phase counter into Register R22, to zero out bits
four through seven which aren’t relevant to this test
and then to compare and see if the remaining value is
equal to zero. In the case that the value is not equal to
zero, a branch 1s made to the Channel A Output routine
and, effectively, the input character will be ignored.
Zero i1s the quiescent stage of the phase counter for
Basic Processor transactions. The purpose of this test is
to see if the SCI is in the middle of one of its asynchro-
nous transactions. In normal practice, these transac-
tions complete much faster than communications char-
acters can be recetved, but if an operator is single
clocking through Basic Processor transactions that
might not be the case. This is one of several features to
prevent the Basic Processor interface from losing syn-
chronization during Single Clocking Mode.

The next step is to take the received character and
put 1t on the output stack for echoing. That is done in
the conventional manner. A test is then made to deter-
mine if the input character is a hexidecimal digit. In the
case that it is a hexadecimal digit, a branch is made to
the routine PASSDATA. In the PASSDATA sequence,
the BP address stored within the SCI is fetched, placed
on the DCP bus to address a cluster, and then the con-
tents of the register containing the translated input
character, (in other words the binary equivalent of the
ASCII hexadecimal digit) is shifted out to the holding
register in the PIC Module associated with the selected
Basic Processor. Following that, the DCP bus is discon-
nected, a test is made to determine if a Load transac-
tion is in progress, and if that is the case a branch is
made to return execution to the LDS routine or the
LDN initialization sequence as described above.

If the system is in Control P Mode and characters
which represent hexadecimal digits are received from
the Operator’s Console or the controlling device, they
are automatically and unquestionably shifted out to the
32 bit storage register associated with the selected
Basic Processor. If there are more digits sent out then
there are bits in that storage register, then the loading
Is destroyed. The implementation is transparent to the
number of digits input. This is a convenience factor in
terms of the Control environment because for an ad-
dress that is a single digit in the low order position it
permits the operator to specify that by typing in a single
digit. If the address is 8 digits long he must type in all 8
digits to specify it. The address (or the same register
can contain data) is always defined as such only at the
time that a function code is entered into the SCI when
the machine is in P Mode.

If a P Mode input character it is not a hexadeciaml
digit then a check is made to see whether it is a defined
function code. If it is not a function code a question
mark is echoed to the Console device and exit is made
to the Channel A QOutput routine. But if it is a function
code, then a branch is made and several things are
done. First of all a check 1s made of the function code
to see if it 1s an X. Should it be an X, the P Mode flag
is cleared and a check is made to see whether the sys-
tem is supposed to be running. If it is supposed to be

S

10

15

20

25

30

35

45

50

35

60

65

38

running, a code is sent out on the DCP bus to tell all the
processors to start running. It is not running, it is al-
lowed to remain in idle. The ENDSEQ flag is set and an
exit 1s made.

If the function was not an X, a branch is made to
GOODFN and the Phase Counter is set to transmit that
function code to the Basic Processor. The function
code that is used by the Phase Sequencer is put in the
transfer register then an exit is made to the Channel A
Output routine where the transaction is performed. At
the same time in GOODFNcontinuous function opera-
tions are reenabled which had been disabled at the
beginning of the routine.

In review, the Channel A Input functions have for the
most part done one of two things: Either they have
resulted in a short circumscribed transaction like set-
ting or clearing a flag or driving an interface latch or
making a transfer to the TSC, or they have imtialized
varnious flags inside the SCI’s scratch pad buffer which
will be sensed by subsequent routines and initiate se-
quence actions at the appropniate times. There are
three reasons for this way of sequencing things, those
are 1) time dependence, 2) sequential logic depen-
dence and 3) conservation of memory space by sharing
of routines. The SCI is time dependent in executing its
cycles because it’s always racing against the interrupt
clock. Likewise, these sequences are logically or func-
tionally sequence-dependent because of the very na-
ture of the transactions — things have to be done in a
precise and orderly sequence. An input datum must
appear before it can be sent to the device which will
receive it, for example. The completion of one transac-
tion has to occur before another transaction can be
begun. The flag mechanism is used for deferring events
as well as passing them between logically distinct rou-
tines.

CHANNEL A OUTPUT

Most of the functions which have to do with the
examination of the incoming information were under
Channel A Input. Likewise, most of the functions
which have to do with the generation of outgoing infor-
mation are under Channel A Output.

The first part of Channel A QOutput, is in essence, a
mirror image of the input routine in that it uses frame
and bit counter registers to determine the timing for
signals to be transmitted over the communications
interface. A check is made to see if the SCl is in a frame
counting sequence. If it is in a frame counting se-
quence, the frame counter is incremented. A check is
made to see if a bit has been completed, if not it
branches out. If the bit has been completed, the frame
count is reinitialized and another bit is shifted out if
another bit exists. (there are some formatting features
for handling certain devices, specifically to hold up
output transmission of a new character if a device in-
hibit signal is true.) If a character has just completed
transmission, a branch is made to the flag E/CMODE-
OUT where the SCI looks to see if there is more data to
the output on Channel A.

There are a variety of different sources of output data
for Channel A. The first source which the SCI examines
is the Output Stack itself. If the Stack has something in
it, ascertained by comparing the top and bottom of
stack pointers for equality and finding that they are
unequal, a test is made of bit 1 of flag Register R19 to
check to see if display is permitted. There is an MM
function which inhibits display so that the continuous

4,030,072

39

functions can repeat at a more rapid rate. If it is the
case that this bit is set, the stack will not be accessed for
a new data. Otherwise, assuming there 1s data on the
output stack, which is where all of the input routines
put data and where most of the output routines put
data, a byte is removed from the bottom of the FIFO
stack, and a branch is made to the routine ALDBIT.
That routine puts the B Register into Register RS which
is the output register for Channel A, sets the Communi-
cation Interface QOutput Latch to the spacing state to
create the start bit of the character, sets the Output
Run Flag for Channel A, checks to see if the output
character is an EOT as part of a printer protocol, and
goes off and inserts the delay if it is. Otherwise, that
completes the initialization for output and the routine
exits to ECHBOUT.

If there was nothing on the stack available for output,
the P Mode Output routine branches instead to the flag
E/DISP and searches for some new datum. The typical
mode of operation for output display sequences is to let
the stack run down to zero, which is detected as the
condition when a new event can be initiated, then
something which generates data is executed, the stack
fills up again, and additional display operations are
thereby inhibited until the stack has once again been
emptied.

In the E/DISP routine, first a check is made to see if
the SCI is in Control Z Mode. If this is the case, any
data gathering sequences are aborted because Control
Z Mode interrupts the normal flow of these transac-
tions so that it can exercise control. If the SCI 15 in
Control Z Mode, a branch out of this routine is made to
Channel B Out and nothing is done. Otherwise, a test is
made of Flag zero in Register R18 which is the indica-
tion of the End Sequence routine that is used to termi-
nate most display transactions and append certain nec-
essary formatting characters to the end of the display
sequences, that is shared by both the Control P and
Control Z routines. The purpose of the End Sequence
is to insert a carriage return, a line feed, a delaying
character, and, in the case of some devices, an End of
Transmission character at the end of each line of dis-
play output. The exit point from the End Sequence for
Control P Mode is to Channel B Output which is where
all Channel A Output routines go when they finally
exit.

If the End Sequence flag is not set, a test is made to
see if Flag 7 of Register R18 is set. That produces a test
message called “TXT1” that is displayed following a
reset or a restart of the SCI such as when the power is
turned on. The message generated in this case may be
programmatically determined. The exit from TXT1 is
to ECHBOUT The next test under E/DISP, however, is
for Flag § of Register R18 which goes to the label
EVENTGEN and it is in this routine that the alphabeti-
cal sequence blank star EVENT blank and a two digit
code obtained from Register R16 is displayed in hexa-
decimal code. This Event code is generated as an error
message or as a condition message by various routines
in the SCL. To send out an Event flag it i8 necessary
merely to set a Flag 8 of Register R18 and place the
desired two digit Event code in Register R16. The exit
from EVENTGEN is also to E Channel B Out.

If Flag § was not set for Event Generation a test is
made of Flag 4 in Register R18 and if that’s true, the
TXT 2 sequence is entered. This provides a display
formatting sequence that clears the screen on keyboard
display device used with the system. Again, this i8 ex-

10

15

20

25

30

35

40

45

30

535

65

40

clusively a formatting sequence. It generates a string of
delay characters and then a sequence of characters to
erase the screen on the device and then another se-
quence to place the display cursor in the initialized
position. Finally, that branches to the End Sequence
routine to generate the end of line text formatting data,
and goes to E Channel B Out.

If the flag wasn’t set, Register R19 is accessed and
Flag 2 of that is checked to determine whether there is
a pending request for a Single Clock display. If that is
the case, a branch is made to the flag E/SCDISP. This
is the sequence that presents the Single Clock Status
Register display. In Single Clock Status display, the first
step is to deselect all clusters in the system to initialize
the interface. The cluster address of the currently se-
lected Single Clock Status Register is then obtained
from Register R13 and placed on the bus, a cluster 1s
selected, the element address is obtained from Register
R13 and an element is selected.

One of the branches that could have been taken
before getting to this point is the End Sequence rou-
tine, which would prevent getting into the Single Clock
Status Display on this pass. A code routine in the SCI
for doing a Single Clock Status Display initializes both
the End Sequence routine and the Single Clock Status
Display routine so that first of all the End Sequence
would be executed and then on a subsequent pass after
the stack has emptied itself out again the Single Clock
Status Display routine would be entered and the output
information would occur at the left hand side of the
new line.

During the process of selecting the cluster and ele-
ment for the Single Clock Status Register the digit
which specifies it is translated into ASCIHI and inserted
into the output stack for display to the device. Like-
wise, a colon is sent out following these two digits as a
delimiter before the Single Clock Status information
proper is obtained. This two digit plus colon format is
meant to be distinctive and to signify the state of the
system at that point in time to the operator. It is meant
to be a mnemonic aid for the operator to understand
the condition of the system at any point in time when
the display is taking place. Other displays are formatted
in similarly unique and distinctive fashions.

After a cluster has been selected, and an element
selected, data is to be taken from the Single Clock
Status Register. Register R23 is initialized to all one’s
which is minus zero in this case and the Single Clock
Status display sequence proper commences. That be-
gins by, first of all, initializing the stack pointer for the
next input datum and then inputting four bits by suc-
cessive commands of incrementing Register R23 and
shifting from the interface, Register R23 serves as the
address register that is transferred to the DCP address
register on each cycle. The shift is performed four
times. This gets a hexidecimal digit which is then
shifted once to the left to align it for translation. It is
translated to an ASCII character and placed on the
output stack. It is stored indirectly through Register
R14 which is the top-of-stack pointer. then, a check 18
made to see if Register R23 has reached the maximum
value 31. If it has not, the cycle is repeated, another
four bits are obtained, until, finally, 8 digits of data, 32
bits have been obtained and stacked in the output
stack.

The Single Clock Display Flag in Register R19 is
cleared, the End Sequence flag is set and additional
display characters are inserted in the stack before ter-

4,030,072

41

mination of the sequence. Those consist of, first, a
blank to separate the subsequent data from the Single
Clock Status Register contents and finally two digits
which are the content of the Single Clock counter. This
is a counter that is updated each time a clock pulse 1s
generated in any of the single clocking or SCI control
clocking modes and Register R31 contains this infor-
mation. Those two digits are put on the stack and then
the display sequence falls into Channel B Qutput and 1s
terminated.

P- Mode Sequencer

In the parsing routine, under E/DISP, if a Single
Clock Status Register display was not called for, then
the code unconditionally branches to the flag PHISEL
which checks the state of the phase sequencer and
serves to advance the phase state of the sequencer if a
P Mode phase sequence is active.

It would be noted that each time one of the phase
sequencer routines is entered, the SCI executes its task
and then advances the phase counter. A branch is made
out of the Channel A Qutput routine and a full interac-
tion of the SCI flow is acccomplished and the SCI does
not return here until sometime much later in the pro-
cessing sequence. Many of these operations put infor-
mation in the stack so the SCI will spin around through
its interrupt routine, perhaps a thousand or more times,
extracting those characters out of the stack before a
return is made to the phase sequencer again to perform

42

phase step involves a different branch to a piece of

- code which carries on that segement of the BP phase

10

15

20

25

the operations for the next phase step. That is a part of 30

the asynchronism of this operating technique.

The first step in the PHISEL routine 1s to select the
Basic Processor cluster and get it connected to the
DCP bus since that will be needed for any subsequent
transactions if there are any. The phase counter is ob-
tained from Register R28 and put into Register R22 so
that its lower flag bits can be masked off and compared
to see if that is zero. In that case, it is in a quiescent
condition and a branch is made to the flag PRETO on
line 813 which checks the state of the interface be-
tween the SCI and the Basic Processor, both of which
are now connected to the DCP bus. The signal BP
GOTCHA is tested by connecting it to the DCP output
line and then testing that line. If that signal is high then
a branch is made to the C/GETME routine and the
GETME latch is cleared over the DCP bus. This is an
initializing function that is important in keeping the
Basic Processor in its proper state. The primary func-
tion of that portion of code is to keep the system initial-
1ized properly during signal clocking transactions and
other times when the normal time sequencing of opera-
tions 1s disrupted.

If the GETME flag is not high, then the contents of
Register R19 are obtained to get the scan or repetitive
clocking flag. This is the code for the continuous dis-
play of Single Clock Status Register. It is effectively the
last sequence of the output source detection when P
Mode is active, being the lowest priority display trans-
action that can occur during P mode. The purpose of

35

40

45

50

33

the code is to determine that continuous single clock- 60

ing is active, If 1t is scanning a cluster, or just looking at
a single register, and based on that information to ni-
tialize a new display pass, if no higher priority tasks are
outstanding.

In the case that the phase sequencer is not equal to
zero, tests are made for its value in the range of one to
sixteen to determine the next step in the Basic Proces-
sor phase sequence to be performed. Each different

65

operation.
| Phase |

In the case that the state of the phase counter 1s one,
a branch is made. The Emit 1 Phase 1 function i1s to
transfer an Basic Processor function code from the SCI
to the BP to initiate a transaction which involves Basic
Processor execution (using its own microcode) to fetch
the internal data or perhaps obtain data from the sys-
tem memory. Under most circumstances, there will be
already a datum stored in the 32 bit data register on the
PIC associated with the selected BP which will be refer-
enced in the course of this transaction. The Emit 1
function obtains the function code from Register R29,
puts it into Register R17 and then falls into the Emit 2
sequence which shifts the function out to a four bit
function register on the PIC module associated with the
selected Basic Processor. After the function code has

been shifted, CRLC is issued which sets the GETME

flag to the selected Basic Processor.

All SCI-Basic Processor transactions are asynchro-
nous. The Basic Processor and the SCI are on different
clock systems and have fundamentally different rates of
instruction execution. All transactions between them
are done at ‘““arm’s length” by putting information into
either the 32 bit data register or the 4 bit function
register or both on the PIC module associated with the
BP and then setting latches sensible by one or other or
both, signifying that a transaction is necessary to oper-
ate on the datum.

Setting the GETME flag as part of the Emit 2 se-
quence serves notice to the Basic Processor that there
1s a function code for it to process and there may be
data ready for it to process on the PIC module. The
branch out of this is to the STEPPHI routine which
increments the phase counter by one and branches to
flag PRET. Flag PRET is in the code which checks to
see if there are any Single Clock Displays required. In
the case that a P Mode transaction is taking place, the
display of additional Single Clock Status Register infor-
mation during the display will be aborted unless it is
specifically requested through a Z Mode command.

Phase 2

If at the time of entry to the phase frequency routine,
Phase 2 is set, (logically follows from the processing of
Phase 1 on an earlier pass) a branch is made to the flag
S/ENSEQ which arms the End Sequencer that provides
carriage return line feed information as described
above, and then branches to the STEPPHI routine
which is the exit point. When a P Mode control com-
mangd is received it causes the Phase Sequence Counter
to step from 0 to 1 and Phase 1 causes the command to
be sent to the Basic Processor. It steps to Phase 2 and
that merely formats the output display so the cursor of
the display device is moved to the beginning of the next
line where the actual information display will be put.

Phase 3

A test is made for Phase 3. If this is the case, a branch
1s made to a routine called BP/PROMPT appearing on
line 20. This routine also does formatting. It places on
the output stack the address, that is the 1-digit number
describing the selected basic processor, (in a mono-
processor system that will always be 0), and puts a
colon after that in the display line. This is another nme-

4,030,072

43

monic display format created for operator recognition.
The BP/PROMPT routine then exists through the
STEPPHI routine as we have seen before.

Phase 4

If the SCI is in Phase 4, which means all of the for-
matting has been done, the branch is to routine called
T/GOTCHA. After a function code has been sent to the
Basic Processor, some response is expected from it.
The availability of the response is signified by the set-
ting of a latch called GOTCHA. The DCP is already
connected to the Basic Processor by virtue of the entry
into the Phase selection routine. The T/GOTCHA rou-
tine tests the interface signal GOTCHA by connecting
that to DCPDO and in the case that the GOTCHA is
not true, exits to the PRET sequence discussed above.
If GOTCHA is true, that means that there i1s data ready
for the SCI over in the PIC register in the PIC module
associated with the BP. So, a counter is initialized to
minus 32 and the GETME latch is cleared, the waiting
for GOTCHA flag is cleared, the DCPDI bus is cleared
to avoid interference with data there, and a sequence 1s
entered to shift in 8 digits of 4 bit binary data from the
interface on the PIC. This is not a Single Clock Status
Register, it behaves somewhat differently it responds to
different shifting code — and so requires a separate
shift loop. The shifting operation is self evident. The
effect of this transaction is that the SCI shifts in a chunk
of 4 bits, translates it into an ASCIHI digit and puts it on
the output stack, then goes and gets another 4 bits —
and continues for 8 characters. Finally, after the 8th
character it steps the Phase Counter by 1 and branches
to Channel B Output. The stack is now full of data.

Phase 5

In Phase 5 in the phase detection loop, the branch is
to a label called WAIT. Here the SCI checks to see if
the GOTCHA signal is still high. In the protocol be-
tween the SCI and the Basic Processor when the SCI
clears the GETME flag (and when the BP’s GOTCHA
signal is true) then the Basic Processor must clear the
GOTCHA signal. If single clocking is in process the BP
may not be able to do this for some period of time, so
here the WAIT routine just waits and doesn’t allow the
SCI to do any other logical transactions with the Basic
Processor until it has gone ahead and cleared the inter-
face signal signifying that it is ready to proceed to an-
other step. Normally the GOTCHA flag has been
cleared well before the SCI looks to see if it is clear. In
the case that it has been cleared, this routine sets the
function code to 15, the function code that will be next
transmitted to the Basic Processor, and increments the
phase counter by 1 more, getting it to Phase 6.

Phase 6

When the phase is 6, the phase sequencer branches
to the routine PUNCT and inserts some more punctua-
tion on the output stack, specifically a blank and a sign
and another blank. This prefaces the display of the
address proper. Then the phase counter is incremented
by falling into the STEPPHI routine and that goes to its
natural exit from the Channel A Output sequence.

Function code 15 tells the Basic Processor to display
the current value of the address that it has stored 1n it
which is has obtained from the SCI in prior transac-
tions. This address is in fact the address of the datum
which it did access as a result of the function code in
the transaction just preceeding. The purpose of display-

10

15

20

25

30

35

45

50

55

65

44

ing the address is for operator clarity and also as a
reliability feature determining that the interfaces are
operating properly.

Phase 7

Phase 7 causes a branch to the Emit 2 sequence
(which is a sub-component of the Emit 1 sequence
discussed before) that sends the BP function code 18
out to the PIC and sets the GETME latch, telling the
Basic Processor to now go and get the address of the
datum it has just displayed and put that into the data
interface register. Then the phase sequencer steps once
more to Phase 8

Phases 8 and 9

Phase 8 tests for the GOTCHA signal. Phase 9
branches to the WAIT routine which waits to insure
that the GOTCHA signal has gone low before perform-
ing another operation.

Phase 10 branches to the routine WHAT NEXT
which checks to see whether to proceed with another P
Mode operation or do something else. The first test is
to see if P Looping is armed. If that is the case, then
there is a branch to the routine P Loop Armed,
PLPARMED, which checks to see if P Looping 1s ac-
tive. If P Looping is both armed and active, then a
branch is made to the label PLPING and the phase
counter is set to 0 and then a branch is made to the
STEPPHI exit point which will cause the phase counter
to be initialized to 1 again, which will subsequently
cause a repetition of the P Mode display sequence
when the stack gets flushed and the phase sequencer is
next called upon. |

Phase 11

Now if P Looping is not armed or is not active, a
branch is made to STEPPHI and we go from Phase 10
to PHase 11, The detection of Phase 11 causes a
branch to the Set End Sequence routine which, as
noted before, provides punctuation and formatting of
the display and causes the phase counter to be stepped
again. The Phase 11 condition when detected causes a
branch to the routine 2ZBLANK which puts two blanks
on the end of the display line by stacking them and then
branches to the sequence ZEROPHI which clears the
phase counter and branches to Channel B Output. The
two blanks serve as a spacer to separate the display
from new commands which may be entered on the
same line.

Phases 1—12 are the normal execution sequence for
manually and/or automatically initiated P Mode trans-
actions,

Phase 13

Phase 13 is initiated by receipt of an LDN command
in Contro! Z mode. That branches to Emit 1 and sends

out through Emit 1 a function code that initiates the
load sequence on a subsequent path following the ad-
vancement of the phase counter to 14.

Phase 14

In Phase 14 the phase sequencer directs execution to
the subroutine S/RUN which tests for GOTCHA in the
same manner as the WAIT routine and exits if
GOTCHA is still high. When it sees GOTCHA low, it
sets the system Run bit true, clears PCP mode, and
starts the system running which initiates actual load
execution. Then it zeros out the phase counter. The

4,030,072

45

Basic Processor that has been loaded will start up with
the load bootstrap and then proceed running. Then 1t
exits to Channel B Qut. |

Phase 15 is entered in the event of the LDS com-
mand. It causes execution of the Emit 1 sequence with-
out the initialization orRun sequences. Phase 15 gets
the load function out to the Basic Processor, but it does
not start the machine running. Then Emit 1 naturally
sets the phase to zero and the SCI and the Basic Proces-
sor return to a stable and quiescent state whic¢h is (with
the BP ready to run and the SCI ready to accept the
commands). That completes the list of Output Phase
Sequencer states which control the P Mode transac-
tion.

For the sake of the clarity, the P Mode transfer mech-
anism will be examined again looking at the different
ways that information is exchanged between the SCI
and the Basic Processor.

The first class of events is the transfer of humerical
hexadecimal digits in binary from the SCI to the shift
register on the PIC module, this occurs when in Control
P Mode, and can go on indefinitely without causing any
other event. If a character that is received is a hexadec-
imal digit and if the SCI is in the proper state it will shift
that out to the interface.

The second class of event is transfer of a BP function
code from the SCI to the Basic Processor. This serves
to notify the Basic Processor that it must perform a
sequence of some sort, In Appendix C is a table of the
function codes recognized from translation of alpha-
betic characters manually input by the operator. A few
of those are originated by routines within the SCI and
cause control sequences that are typically part of a
larger pattern of sequence operation. The functions

that the BP can perform are as follows:

Operator Input

(/)
(.)

Code Val. Function

SELECT PCP ADDRESS (MEMORY)
SELECT PCP ADDRESS (Q)

00
01

02 DISPLAY ADDRESSED LOCATION (RUB)
DATA

03 INCREMENT PCP ADDRESS (1)

04 SHIFT DISPLAY 1 BIT LEFT (L)

0S5 SHIFT DISPLAY 1 BIT RIGHT (R)

06 STORE IN ADDRESSED LOCATION (M)

07 ADD TO ADDRESSED LOCATION (+)

08 SUBTRACT FROM ADDRESSED (—)
LOCATION

09 SINGLE STEP FROM PSQ (S)

10 SINGLE STEP FROM QS5 (G)

11 DISPLAY NEXT INSTRUCTION (U)

12 LOAD & EXECUTE FROM DIAGNOSTIC ZC(LDN A###)
AND LOADER

13 LOAD ONLY LOADER ZC(LDS agdt##)

14 MEMORY SET (ALL LOCATIONS ZC(LPT)

EQUAL

TO THE CONTENTS OF QX'IA")

DISPLAY CURRENT PCP ADDRESS

*BIT) OF THE RETURNED 32-BIT VALUE IS

*0 FOR MEMORY ADDRESSING

*1 FOR Q ADDRESSING

*THE SECOND HEX OF THE RETURNED 32-BIT
VALUE CONTAINS THE CONDITION CODES FOR A

STEP OPERATION

[5

The general classes of function are: (1) Selecting an
address, either in the Main Memory or in the Basic
Processor’s Two-register; (2) Displaying data as a func-
tion of that address; (3) Modifying that address by
incrementing it; (4) Modifying the apparent display by

10

15

20

25

30

35

40

45

50

55

60

65

46

shifting it one bit to the left or one bit to the right, (this
is a function that is used to justify data as a convenience
to the operator, since the only display mode imple-
mented is hexidecimal output).

One problem which programmers and operators en-
counter is the need occasionally to shift a binary datum
one bit left or right for address justification purposes,
and in hexidecimal this is a rather demanding intellec-
tual exercise, so the purpose of shifting the information
in the PCP before it is converted to hexadecimal 1s to
simplify that task.

It is also possible to modify locations in Memory
through the P Mode command. A value can be added
to an address location, subtracted from the address
location or that location can be replaced entirely with
any value.

Another type of P Mode operation is stepping the
Basic Processor. There are two kinds of single stepping
initiated by the SCI generated functions. Single step-

ping from the program status quadruple word as had

been done with prior computer systems from a panel
switch, or a single step from a specific register that
causes an instruction to be executed without modifying
the contents of the program counter.

There is a function for displaying the next mstruc-
tion, displaying the current PCP address, and there are
three Load related functions; Load with diagnostic
execution, Load only the loader, and Memory, Set
which is used during the LDN sequence as the memory
Clear to initialize the entire Main Memory of the sys-
tem to a given value. When it 1s used as Memory Clear
the value 1s zero.

These functions are transferred from the SCI to the
Basic Processor by putting the data into the four bit
function register and then setting the GETME latch in
the PIC. The BP senses this if its clocks are running or
after its clocks have run through N many steps, and
shifts in first of all the contents of the four bit function
register then if the function is one which involves a data
component, the BP shifts in the 32 bits of the data
register which, depending upon the command, will be
used as an address or as a data value. The BP then
performs the requisite operation, based on this data,
and produces a result typically, in the form of a 32 bit
result value which it shifts back into the PIC display
register. The BP then relinquishes control of the PIC by
raising the GOTCHA latch. The SCI by calling up the
PIC over the DCP bus and issuing the right CRLC
command can sense the condition of the GOTCHA
latch and, finding that in the high state, obtains data, if
that is an appropriate step, or at least proceeds to the
next sequence step. The SCI always checks to see that
the Basic Processor has lowered its GOTCHA latch
before initiating another sequence that would involve
raising GETME since that is necessary for separation
on one command response from the next

All of these transactions are performed in an asyn-
chronous manner, over a reasonably long span of time
in terms of computer speed. For the SCI to do a single
Basic Processor display it passes through its interrupt
routine (based on the 10 character per second speed)
perhaps 12,000 times in the course of executing a sin-
gle Basic Processor data display. The structure of inter-
locking flags prevents the SCI from ever getting ahead
of or failling behind the Basic Processor despite the

disparity in their speeds.

4,030,072

47

TSC DATA OUTPUT

If it turns out that there is no data forthcoming from
P Mode, the one remaining alternative as a data source
for Channel A Output is the TSC, in other words, soft-
ware data output. In the C/GETME sequence, if other
conditions are unfulfilled, and the machine is not in P
Mode, and not in Z Mode, and it does not have any
continuous operations going on, a branch is made to

the routine E/CHA/TSCO, and there a check is made 10

to see whether the SCI is in Transparent Text Mode. If
so, a branch out is made without doing anything. If the

machine is in PCP Mode, a branch out is made without

doing anything. And if an MM1 or an MM2 is in execu-
tion, a branch out is made without doing anything.
However, if none of those qualifying cases are true,
and an output is required, Register R22 is initialized to
the code for Channel A Output data collection and a

branch is made to the routine E/TSCO which is the

TSC transfer routine. The TSC QOutput routine func-
tion= in a manner similar to the TSC Input routine.

TSC COMMUNICATIONS OUTPUT ROUTINE

If the Channel A Output routine is not able to find
information in any of the Control P or Control Z se-
quence modes, it accesses the TSC Communication
Output routine to determine whether a character is
available from the software generated data stream

coming over the MIOP through the TSC. Entry point

for this is line at the label ETSCO.

The transaction has several parts to it. First of all the
SCI takes control of the DCP bus and clears any out-
standing conditions on it, then it shifts out to the TSC
the contents of the SCI Register R22 which is a transfer
code comprehensible to the TSC, designating whether
the transfer is input or output and whether it is for
Channel A or B. After shifting that code into the TSC,
bit by bit, the SCI sets an attention flip-flop which has
the effect of interrupting the micro-sequence in the
TSC, and leaves that high for a period of one microsec-
ond. Then the SCI waits for a pertod of nine microsec-
onds by looping on a single instruction and shifts 1n
eight data bits and one data valid bit. Finally, it discon-
nects the TSC and checks the data valid bit to see if
actual information has been transmaitted in the transac-
tion.

In the case that real data has not been received, the
routine exits from the TSC portion and from what ever
portion called it previously, (in this case the Channel A
Output Routine), and branches into the SCP display
handler. In the case that a valid bit has been received,
a check is is made to determine if it is an EOT charac-
ter which may relate to operation of a special printer
device. If so, an interface flag is set. If the entry was
from the Channel A routine, a branch is made back to
Channel A where the output initialization i1s resumed
Channel A TSC return, which was discussed earlier; or

if the entry has been from the Channel B Output rou-

tine, the Channel B Transmit frame and bit counters
are initialized and the Channel B interface flags are
initialized for the commencement of transmission in
the same way as Channel A (above).

A test is also made for the case that Channel A equals
Channel B, one of the switch setable configuration
options, in which case the Channel A character is si-
multaneously initiated for both Channel A and Channel
B. Finally, at the end of the TSC Output routine is the
Channel B Output frame counter, which is really a

15

20

25

30

35

40

45

50

55

60

65

48

continuation -of the Channel B Qutput routine, and
which is so closely related to the TSC handling routine
that the two are essentially merged together.

The Channel B Output frame counter sequence Is
comparable to the other output framing sequence de-
scribed earlier for Channel A, with the only exception
being that Channel B is normally run as a free-standing
independent channel and therefore, is not involved 1in
the intricate parsing and text analysis procedures ap-
plied to Channel A. | |

The general algorithm for accessing information
from the TSC on output is Interesting in that 1t 1s de-
signed for full asynchronism between the SCI and the
TSC, yet allows control of the process timing and the
overall transaction to remain with the SCI. That is
accomplished by the method of first transmitting a
character which specifies the type of transaction to be
performed and setting an alarm signal in the TSC and
then waiting a specified interval, during which data will
either be made available or will not be made available
depending upon chance and the condition under which
TSC happens to be operating at the time. if TSC is busy
or if there i1s no data available for output or if the TSC
is not initialized for output, the net effect of the trans-
action will be to produce no data on the output inter-
face and initialize no new character. The process of
requesting new data will be reinitiated whenever the
SCI gets back down to the same point in the Channel A
Output routine or the Channel B OQutput routine where
it needs new data.

If data is available, however, the presumption of this
transfer scheme is that, for the data valid bit to be set,
the information transmitted just prior to receipt of the
data valid bit must represent a full datum for output.
Any errors or aberrations detected in that character
subsequent to receipt from the TSC can be considered
hardware or functional errors in the system. This
method of partitioning both simplifies the manner of

asynchronism between the devices and also testing of
the interfaces between SCI and TSC.

Both the Channel A Output and Channel B Output
routines eventually branch to the SCP Display Handler
when they have finished their respective tasks. The
function of the Display Handler is to access the control
circuitry of the computer display panel, determine the
address of a datum which is desired to be displayed,
obtain that datum through the Single Clock Status
Register mechanism and transfer it to the SCP panel.

SCP DISPLAY HANDLER

Because the SCP Display Handler falls rather late in
the overall time sequencing of and because it is not
specially there — critical the SCI, the first event of this
routine is to test and see if the interrupt latch signifying
a new clock time frame has been set. Should this be the
case, the SCP handler 1s not executed but control re-
turns to the beginning of the overall SCI sequence at
the E Channel B entry point. Should time be available
CRLC codes are sent to first connect the SCP; se-
condly, to cause the SCP to jam its next desired Single
Clock Status Register address value into its own shift
register; and third to disable all other clusters which
may be on the DCP bus. Then the 8-bit address value of
the Single Clock Status Register designated by the SCP
1s shifted into the SCI and converted into two parallel
half-bytes which are used in the conventional manner
to address a cluster and an element in the DCP net-
work. The SCI then initializes its own bit counter to 32

4,030,072

49

and at the same time, or roughly concurrently, through
the use of CRLC codes disconnects the SCP shift regis-
ter output from the DCP bus and connects the SCP
shift register input to the DCP bus and connects the
SCP shift register input to the DCP bus. The SCP then
issues a CRLC code which starts the shift register of the
SCP (the 32-bit shift register, which is really the display
buffer for the SCP) shifting, and one clock time later it
starts its own internal address bit counter counting
down. Both processes continue until a count of 32 has
been achieved and all bits of the distant Single Clock
Status Register have been transferred directly to the
SCP Display Buffer Register. Then with a CRLC 63 the
SCI disconnects the SCP from the DCP bus allowing 1t
to stabilize its display buffer and falls into the E micro-
sequence routine.

The microdiagnostic and micro-sequencing routines
have been discussed at some length previously and will
not be repeated in detail here. The normal exit from the

microdiagnostic routine when entered from the SCP
routine 1s to go to the Test function which is at the very
beginning of the overall code sequence just after the
Imtializer and Tick routine. These test routines are one
of the general purpose functions of the SCI within the
framework of the computer system. Their purpose is to
detect certain fundamental error conditions signalled
by one or more of the Basic Processors in the system
and to initiate control events which will rectify or signal
those conditions.

TEST SEQUENCES

The idea of the test sequences in general is that there
are certain error detect mechanisms which can be
armed or disarmed depending upon the requirements
of operation for the system. When they are armed it is
by means of setting bits in the so called Processor Con-
trol Word which is resident in (one of the (Q-scratch
pad registers of the Basic Processor). When any of
these conditions should produce a result in the form of
an altered condition, it will cause the setting of a bit in
the Basic Processor Single Clock Status Register. The
function of the test routines is to examine the Single
Clock Status Register for the Basic Processor that is
selected and in some cases to initiate system actions
when these bits occur.

ADDRESS MATCH

The first function that is tested for is the presence of
Address Match, which is connected to the DCP bus by
means of the CRL code CRLC 48. The Address Match
mechanism in the system 1s comparable in function to
that which has existed in previous processors, but its
implementation is substantially different, in that the
address generation mechanism in the system is more
widely distributed than has been hereto experienced. In
earlier processors, the complete memory address is
generated within the Basic Processor unit itself. In the
Instant system the address generated by the Basic Pro-
cessor contains indirect and indexing information and,
in the case of special modes, base register information,
but it does not include mapping which is done by the
MI Processor unit.

Because the determination of the actual address sent
to memory 1S an important criterion in addressing
matching it is therefore necessary to make the address
match comparison occur in the MI proper. There is in
the Basic Processor a register reserved for the Address
Match word, which specifies both the type of address

10

15

20

25

30

35

40

45

50

55

60

65

50

matching to be performed, literal or virtual, page or
word, read/write, etc. and also carrier the value of the
address components that is to be matched against. The
Basic Processor automatically transfers this datum up
to the MI unit whenever it is altered in the BP’s Q-
scratch pad.

In the Basic Processor Processor Control Word,
there are some control bits to enable and disable Ad-
dress Matching and other control bits to enable and
disable the Address Match Alarm function. When an
Address Match occurs in the M1 a signal is sent down to
the Basic Processor, and depending upon the condition
of the Address Match hold bit in the Basic Processor
Processor Control Word, the Basic Processor may or
may not at that time cease execution at the instruction
boundary or at that access point. The point of this SCI
function is to determine if a Basic Processor has in fact
stopped itself because of an Address Match condition
and under that circumstance to notify the operator that
his machine 1s no longer running.

ADDRESS ALARM

This function, is a feature which provides a higher
level of subjective feel to an operator in controlling a
computer system without being able to see an array of
display lamps. The idea of the Address Match Alarm is
that, with the proper conditions enabled, whenever a
predetermined address condition occurs or a given
location 1s accessed, in the course of execution, the
Address Match latch will be set in the Basic Processor
and sometime later — within two hundred microsec-
onds or so, the SCI will sense the setting of that latch
and turn on an audible alarm. The intended function of
this 1s to produce an audible signal which varies as a
function of the frequency of execution of a given loca-
tion in memory, which can be used to test the relative
balance of time between one mode of processing and
another, for example, or the relative frequency of occu-
rence of a certain class of error.

Following Test for Address Matching, a CRLC com-
mand is issued to connect the Basic Processor’s Error
Halt latch to the DCP bus. If this signal is true, it indi-
cates that the Basic Processor has stopped itself be-
cause of an error condition. The SCP updates its own
status, should this be the case, to indicate that this
system Is halted (that will in turn generate a display of
a message stating that the system is halted), and then
branches, based on the setting of SCI maintenance
flags, to a function called Reset Run. If Ad-Match was
true, the alarm latch is set, if it was not true, the alarm
latch is cleared and then a branch is 'made to the test
point TSTHLT, where, by issuing a CRLC command
the Ad-Match latch is cleared, if it was set, and the
Error Halt latch is connected to the DCP bus. Then a
test 1s made to see if Error Halt is true, and if so a
branch 1s made to obtain the contents of Register R18.
R18 holds flags for these functions, and a check is
made to see the status of Event Message Display. Bit §
of Register R18 is examined to see whether the Event
Message Display flag is already set.

Because of the nature of the test that is performed
here it is possible to generate error conditions much
more rapidly than the console device can display the
error information. By making this test an error condi-
tion 1s intentionally ignored or action on an error con-
dition is ignored if it turns out that the SCI is still trying
to respond to a previous error condition. Should that

4,030,072

)|

display bit be set a branch is made to the E Tick rou-
tine.

If the display bit is not set, a check is made of Bit 3 of
flag Register R18 to determine whether a halt message
can or should be generated to the operator as a result of
this condition. If that test is not successful, a CRLC 02
command is issued to clear the error halt condition and
a branch is made back to the E Tick routine, leaving
things where they were.

HALT MESSAGE

If that flag is set, saying that a halt message can be
issued a branch is made to, HLTMSG and, first of all,
bit 3 of Register R18 is disabled which is the bit that
controls generation of a halt message. Then the address
of the currently selected Basic Processor is obtained
and selected. The low order 3 bits of the Basic Proces-
sor Single Clock Status Register are shifted in through
conventional SCSR shifting methods and a display mes-
sage is created in the event flag buffer which contains
two hexadecimal digits which are printed out to indi-
cate an error attention or fault condition in the ma-
chine and bits 28, 29 and 30 of the Basic Processor
Single Clock Status Register give combinations FO
through F7 of these fault condition possibilities. Those
are merged into the Event Display register, Flags 1 and
§ of Register R18 are set to initiate the event display
and then a test is made to see if the machine is in main-
tenance mode.

If not in maintenance mode at this point, a branch 1s
made back to the E Tick routine and processing is
continued having made a message to be displayed. If in
maintenance mode, a branch is made to the routine
RUNRST which checks to see if the system is in run
with an error condition existing. Should this be the
case, a routine is entered where the main system 1s reset
for a period of 20 microseconds or more and bit 2 of
register R18 is set which is the restart flag that will
cause the machine to be restarted on the next pass
through this routine if the error halt condition is no
longer true. And then an exit is made to E Tick.

On the next pass through this routine which will pre-
sumably occur after the next E Tick Sequence, the
condition is encountered where the Error Halt latch 1s
not true and the flags indicate that the “rerun” se-
quence is initiated, or is waiting to proceed. A check 1S
made to see if the message has been completed. If the
previously displayed message has already been com-
pleted, a new error message is generated saying the

system has been restarted and then the system 1s re- 50

started, the Run flag set, the rerun flag cleared and
normal operation is resumed. |

While the invention has been described with refer-
ence to a preferred embodiment, to those skilled in the
art will occur modifications and variations of the inven-
tion which remain, however within the scope of the
claims appended hereto.

APPENDIX A
CRLC CODES
00 CLEAR GETME
¢1 CLOCK IN ELEMENT ADDRESS
02 CLEAR ERRORHALT
04 START SHIFTING FCN REG
05 SET GETME
06 CONNECT BPGOTCHA
07 START TEST
08 CLUSTER SELECT
09 DESELECT CLUSTER
10 HALT SYSTEM
11 RUN THE SYSTEM
12 1/O RESET

5

10

15

20

25

30

33

40

43

55

5§52
APPENDIX A-continued
CRLC CODES
13 BASIC PROCESSOR RESET
14 RESET
15 CONNECT ERRORHALT AND CLEAR ADMATCH
16 CONTROL ZClI
17 CLEAR OLD SSW VALUE
18 SENSE, SENSE SWITCH |
19 SENSE, SENSE SWITCH 2
20 SENSE, SENSE SWITCH 3
21 SENSE. SENSE SWITCH 4
22 GENERATE POWERTRAP SIGNAL
24 RESERT AND DISCONNECT TSC
25 START TSC SHIFTING
7¢ STOP SHIFTING, SET ATTN FLIPFLOP IN TSC
29 RESET ATTN FLIPFLOP
32 CONNECT SCP
33 DISCONNECT SCP OUTPUT
34 JAM SWITCHES
35 START SCP SHIFTING
48 CONNECT ADMATCH TO DCPDé
63 RELEASE/QUIESCE ~.

What is claimed is:

1. A data processing system having a plurality of
devices including a basic processor, memory unit and
1/O processor, said devices interconnected to one an-
other by a first group of data and address lines compris-
ing a first electrical bus, the data processing system
further comprising:

a. at least one operator console,

b. a controller connected to said operator console,
said controller including a microprogrammed pro-
CEessOr Comprising:

1. a control memory for storing a programmed
sequence diagnostic control words,

2. means for addressing said control memory,

3. an arithmetic and logic unit for processing said
control words, and

4. addressing means connected to said arithmetic
and logic unit for generating an address,

c. a second group of data and address lines compris-
ing a second electrical bus, said second bus inde-
pendent of said first bus for carrying diagnostic
control signals associated with said diagnostic con-
trol words, said second bus connected to said con-
troller,

d. one of said plurality of devices comprising:

1. diagnosing means for conducting diagnostic tests
thereon, and

2. means responsive to said address generated by
said addressing means;

e. said diagnosing means comprising storage means
for storing procedures of said diagnostic test
therein,

f. said diagnosing means initiated by a signal of said
controller on said second bus and conducting said
diagnostic test independently of said controller,

g. said diagnosing means providing an indication of
successful completion of said diagnostic test on
said second bus to said controller.

2. A data processing system as recited in claim 1

wherein said one of said plurality of devices and said

60 controller operate asynchronously of each other.

635

3. A data processing system as recited in claim 1
wherein said diagnosing means comprises means for
setting a flag to a first condition during execution of
said diagnostic test and means for setting said flag to a
second condition only after successful completion of
said diagnostic test.

4. A data processing system as recited in claim 3
wherein said flag comprises a bit in a single clock status

4,030,072

53 54
register, and wherein said second condition of said flag 2. means for setting said flag to a second condition
indicates successful completion of said diagnostic test only after completion of said diagnostic test, and
to said controller. b. said ascertaining means comprises means respon-
5. A data processing system as recited in claim 4 - sive to said flag being set to said first condition.
wherein said first condition of said flag indicatestosaid 5 8. A data processing system as recited in claim 1
controller correspondence between said one of said wherein:
plurality of devices and said address. a. said addressing means generates an address at a
6. A data processing system as recited in claim 1 first time and at a second, later time,
wherein said controller further comprises means for b. said address responsive means responds to said
ascertaining whether said address corresponds to an 10 address at a first time for enabling said diagnosing
address of said one of said plurality of devicges. | means to be initiated by said controller, and
7. A data processing system as recited in claim 6 ¢. said diagnosing means of said one of said plurality
wherein: of devices provides said indication of successful
a. said diagnosing means comprises: completion on said second bus to said controlier In
I. means for setting a flag to a first condition during 15 response to said address at said second, later time.

execution of said diagnostic test, and I I

20

25

30

35

40

45

50

55

60

65

	Front Page
	Drawings
	Specification
	Claims

