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3,102,161
PREVENTION OF CORONA DISCHARGE
Gordon Raisbeck, Bernards Township, Somerset County,
N.J., assignor to Bell Telephone Laboratories, Incorpo-
rated, New York, N.Y., a corporation of New York
| Filed Apr. 11, 1960, Ser. No. 21,402
2 Claims. (Cl 174-—-127)

This invention deals with electric conductors and espe-
cially with the prevention of corona discharge from such
conductors, |

When an electrical conductor having one or more
sharp edges or corners is supplied with a sufficiently high
electric potential, a discharge of electricity, known as a
corona discharge, takes place from the edge to the sur-
rounding atmosphere. The phenomenon stems from the
fact that, for any potential of the conductor as a whole,
the intensity of the electric field is greatest at the sharpest
edge, and may reach a magnitude at which the ambient
air breaks down while the intensity at other parts of the
conductor is still far below this magnitude. The corona
discharge thus limits the potential to which the conductor
can be raised. The difficulty is espectially serious m the
case of an elongated conductor for carrying power at
high voltage; i.e., a bus-bar or strip of rectangular cross
section, of which the major sides are substantially flat,
and usually parallel, While it is known that the corona
discharge can be reduced by rounding the sharp corners
and edges of the conductor, there has not been available
to the designer any general principle to guide him in his
choice of a contour. |

The invention stems from the discoveries that, given
two plane conducting surfaces, it is possible to find a
curved conducting surface to interconnect them over
which the electric field intensity is uniform, and hence
no greater at any one point than it is at any other point;
and that the contour of the curved surface can be gener-
ated, in- every case, by the movement of a point fixed to
the circumference of a generating circle of appropriate
radius as it rolls along an auxiliary track. In the most
important, though special, case in which the two plane
conductors to be interconnected are parallel and spaced
apart a distance D, the track is a straight line, and the
radius a of the generating circle is given by

2ra=—D

When the generating point of the rolling circle touches
the track at one end of the travel, and touches the track
again for the first time at the other end, it traces out a
single full arch of a cycloid curve between adjacent cusps,
making exactly one full revolution in doing so. The con-
tour of the interconnecting surface should conform with
this cycloid curve.

In the general case in which the two plane surfaces
are not parallel, the track along which the generating
circle rolls becomes an arc of a larger circle of which
the center lies at the point at which the plane surfaces
would meet if extended, so that it intersects each of the
plane surfaces at right angles. The generating circle
“rolls on this circular track, from coincidence with one
of the intersection points to coincidence with the other,
rolling on the inside when the angle between the planes
'js less than 180 degrees and on the outside when the angle
between the planes is more than 180 degrees. In each
case, its radius is such that, having done so, a point of
its circumference that initially coincided with one of the
plane surfaces now coincides with the other plane sur-
face. The path traced out by this generating point as
the smaller circle rolls on the larger one is a hypocycloid
curve or an epicycloid curve, accordingly as the smaller
circle rolls on the inside of the larger one or on the out-
side of it. The contour of the surface interconnecting
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the two non-parallel plane surfaces should conform to
the resulting hypocycloid, or epicycloid, curve.

Significant confirmation of the discovery is found in
the fact that, as the angle between the plane surfaces de-
oreases without limit, the circular track in the general
case reduces to the straight track in the special case and
the hypocycloidal connecting surface of the former be-
comes the cycloidal connecting surface of the latter.

The invention will be fully apprehended from the fol-
lowing description of illustrative embodiments thereof
taken in connection with the appended drawings in which:

FIG. 1 is a perspective view of a portion of an elon-
pated conductor having a rectangular cross section;

FIG. 2 is a diagram of a coordinate system of axes
referred to in the specification; |

FIG. 3 is an end view of the conductor of FIG. 1 show-
ing distribution of its surface charges and of the electro-
static field surrounding it; |

FIG. 4 is an end view of a conductor otherwise like
that of FIG. 3 and in which the straight short side and
the edges bounding it have been replaced by a cycloidal
contour;

FIG. 5 is an end view of a conductor of rectangular
cross section in which the narrower side has been rounded
to elliptical contours of various eccentricities;

FIG. 6 is a diagram showing a single arch of a cycloid
curve and a semiellipse having the same base line and the
same height; -

FIG. 7 is a diagram illustrating the generation of a
cycloid;

FIG. 8 is a diagram illustrating the generation of a
hypocycloid curve;

FIG. 9 is a perspective view of an elongated conductor
having a triangular cross section; and

FIG. 10 is a diagram showing the cross section of a
conductor bounded by three straight sides interconnected
by three hypocycloidal contours.

Referring now to the drawings, FIG. 1 is a perspective
view of a bus-bar: a heavy strip 1 of a highly conductive
metal such as copper, intended to carry electric currents
from one point to another, at high voltage. As a rule,
the dimensions of such a strip stand in high numerical
ratios to each other: the length (Z-axis, FIG. 2) is much
greater than the width (Y-axis) which, in turn, is much
oreater than the thickness (X-axis). Unless the sharp
corners of such a strip be somewhat rounded, corona
discharge 2 may take place from any or all of them,
when the strip is raised to a high potential. This dis-
charge may be excessive, and may be the cause of a
serious loss of power.

FIG. 3 shows the upper part of the cross section, in the
X—Y plane, of the strip 1 of FIG. 1 when the edges
3, 3’ at which its plane sides 4, 5, 5" intersect are in-
finitely sharp. As is well known, when such a strip is
raised to a high potential, positive or negative, the mutual
repulsions among the electric charges on its surface tend
to drive them onto the corners. This is indicated in FIG.
3 by the concentration of charges 6 which increases from
the approximate center of each plane surface toward both
of the bounding edges. Inasmuch as the electric field in-
tensity depends on the charge density, it, too, increases
from the center of each plane face toward both of the
bounding edges. With infinitely sharp edges, the field
intensity, represented by the broken line 7, reaches infinite
magnitude at each of those edges. Such a very lange,
localized, field intensity makes for prohibitive corona
discharge. |

FIG. 4 shows the sharp edges of FIG. 3 to have been
rounded, by removal of the material of the strip 1, in-
cluded between the rounded outline and the rectangular

“one, to provide the narrowest bounding face 4 of the strip

1 with a contour 8 defined by a cycloid curve, The
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~electric field intensity 9 increases, as before, from a low

magnitude at the centers of the wider faces to a moderate
“magnitude at their points of tangency with the cycloidal
contour 8. Now, however, the field intensity 9 is uniform

at -this moderate magnitude over the entire cycloidal
 contour, and the high intensity conditions that prevailed
at the sharp edges of FIG. 3 have been eliminated.
~ While any rounding of the sharp edges of FIG. 3 is
advantageous, the cycloidal contour of FIG. 4 is optimal.
(This may be established through complex domain analy-
sis, including the transformation, by the technique of
conformal mapping, of one complex plane onto another.
Indeed, it was through analysis of this sort that the con-
tours of the invention were discovered. The intricacies
of the analysis render it unsuitable for inclusion in this
specification.) The optimal character of the cycloidal
contour may be inferred from the following elementary
considerations.

From the fact that the electric field intensity in the
neighborhood of a conductor may be expressed as the
gradient of a potential, and from the large number of
widely different electrostatic problems for which analytic
solutions have been obtained, one may surmise that
the optimal contour is an analytic curve, expressible in
terms of the dimensions of the conductor to be rounded.
To avoid the introduction of spurious edges, its ends must
coincide with and be tangent to the plane faces of the
strip. Because the strip, before rounding, is symmetrical,
the contour should evidently be symmetrical, so that it
rounds the two edges that bound the narrow face of the
strip in the same way, and to the same extent. Thus it
should be parallel at its midpoint to the original (un-

rounded) narrow face, falling monotonically from this

midpoint to its point ef tangency with the wider faces.
A semicircle, curve A of FIG. 5, comes at once to
mind as satisfying all of these requirements. But with
 a semicircular contour, mutual repulsions among the
electric charges cause them to reach concentrations at
the midpoints of the contours that exceed the concen-
trations elsewhere, so that the electric field intensity
cannot be uniform over the contour havmg, rather, a
maximum magnitude at the midpoint. This is indicated,

in FIG. 5, by the central concentration of dots on curve

A. Consequently, corona discharge commences at this
midpoint.

"To prevent it, the semicircular contour must be some-
how flattened. T he natural way to “flatten” a semicircle
is to treat it as a semiellipse of zero eccentneity; i.e., an
ellipse whose major and minor axes are alike in magnitude,
and then gradually to alter the eccentricity of the ellipse
until the requisite amount of flattening has been obtained.
Semiellipses of successively greater eccentricities are
shown in curves B, C, D of FIG. 5. When the semi-
ellipse of curve D has been arrived at for which the ratio
of the length of the major axis to the length of the minor
axis is equal to »/2, it turns out that the semicircle has
been too much flattened. The contour now contains two

points, one on each shoulder of the semiellipse, at which
the field intensity has a magnitude that exceeds its mag-

nitude at all other points. This is indicated by concentra-
tions of dots on both shoulders of curve D.

~ FIG. 6 shows, to the same scale for comparison, a single
arch of a cycloid and the semiellipse of curve D of FIG. 5
for which the half major axis has the magnitude wa while
the half minor axis has the magnitude 24. The ratio of
its major axis to its minor axis is thus =/2; i.e., equal to
the ratio of the length of the base of the cycloid to its
height above the base at its midpoint. It will be observed
that except at its two end points and at its midpoint, the
~cycloid lies everywhere inside of the semiellipse, its shoul-
‘ders drooping somewhat more than those of the semi-
ellipse. It can be shown by detailed calculation that
the greater droop of the shoulders of the cyloid is just
“such as to offset the charge concentrations on the shoulders
of the semiellipse so that, with the cycloidal contour, the
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4 _ ,
charge density on the surface of the conductor, and hence
the field intensity outside of it, are umfarm over the
entire contour. |

It is plain that the concentrations of charge on the
shoulders of the ellipse can be reduced, and brought
to equality with the charge concentration at its midpoint,
by a small reduction in its flatness; i.e., by conforming
the contour of the conductor to a semiellipse of which the
ratio of major axis to minor axis is greater than unity but
less than #=/2. This however, would leave three regions .
of equal charge concentrations, and hence three regions of
equal field intensities, at the midpoint of the contour
and at its two shoulders, with regions of less field intensity
between. Hence the field intensity would not be uniform |
over the entire contour. Moreover, such a contour in-
volves the removal of a greater mass of the material of
the conductor than does the cycloidal contour.

As is well known, the cycloid curve is the plane locus
of a point which is fixed on the circumference of a circle,
as the circle rolls along a straight base line as a track;
i.e., the path described by a point on the rim of a wheel.
The track, the path, and the manner of its generation, are
shown in FIG. 7. The entire curve is thus periodic, with:
one wavelength or arch for each full revolution of the
generating circle. Taking the track as extending along
the (horizontal) X-axis from an origin at which the point
fixed to the circle of radius a touches the base line, and
designating the angle through which the circle has rolled
as 0, measured from the downward-pointing radius at the
origin, the equations of the cycloid are |

X=a(6—sin 6)

. (1)
Y=a(1--cos ¢)

These equations are in the form most commonly repro-
duced in texts and tabulations; e.g., “Mathematics Dic-
tionary,” by Glenn James and Robert C. James (Van
Nostrand, 1959). When the origin is shifted to a point
of the base line midway between two cusps of the curve,

and measuring ¢ from the upward-pointing radius, the
equations become

X=a(0-}-sin 9)

(2)
Y=a(l+4cos 6)

Other forms are readily obtainable by other shifts of the
origin, and still others by choosing a nonhorizontal base
line; i.e., a vertical base line or a base line at 45 degrees
to the horizontal.

To fit the cycloid curve of Equations 1 or 2 to the
narrow side of the strip conductor, of thickness D, it is
only necessary so to choose the radius a of the rolling
circle that the length of the base line between ad]eeent |
cusps is equal to the thickness of the strip; i.e.,

D==2raq (3)

It can readily be verified by differentiation that the
slope of the cycloid curve is infinite at each of its cusps.
Hence the contour not only coincides with the wider sides
of the strip conductor but is tangent to them.

At points of the cycloid slightly displaced from its
cusps, inwardly toward the midpoint of the base line,
the cycloid has equal and opposite finite slopes. This
observation leads naturally to the inquiry whether that
part of the cycloid arch that is included between these
points is the optimal contour for rounding the edge of a
conductor whose sides are not parallel; e.g., a conductor
whose cross section, before rounding, is triangular. Such
a conductor is shown in FIG. 9. Pursuit of this inquiry
leads to the further observation that the cycloid js a
special case of the prolate trochoid, in which the gen-
erating point is fixed to the end of an extension of the
radius of the rolling circle, and for which the portions
having zero altitude do not coincide with the portions
having infinite slope. It turns out that, while such con-
tours are favorable for the purpose, they are not optimal,
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and that the optimal contour, in such case, is that of the
hypocycloid: the plane locus of a point fixed on a circle
which rolls on the inside of another, larger, circle. As
commonly presented in texts and tabulations such as
the Mathematics Dictionary referred to above, and with
an interchange of the parameters a and b as given in that
text, the equations of the hypocycloid, stated with respect
to an origin at the center of the fixed circle, are

X=(b—a) cos@+a cos [b—-%]

a

(4)

Y =(b—a) sin 6—a sin [b a%]

where, as before, a is the radius of the rolling circle
and b is the radius of the (larger) fixed circle. A hypo-
cycloid of four cusps, and hence of four arches, is shown
on page 195 of the Dictionary, and is here reproduced,
for ready reference, as FIG. 8. Any one of its four arches
1s suitable to serve as a rounding contour to interconnect
two plane sides of a conductor that, before rounding,
intersect at an angle of ninety degrees. For other angles,
an arch of a hypocycloid of more, or fewer, cusps should
be chosen. If the ratio b/a is not an integer, the number
of cusps is no longer defined, but a single arch of the
curve 1s still defined by Formulas 4. In any case, the
center of the fixed circle is to be taken at the point at
which the straight sides of the cross section of the con-
ductor would meet, if extended. Such a circle is perpen-
dicular to each of the straight sides of the cross section at
the points at which 1t intersects them. Hence the arch
of the hypocycloid, being perpendicular to the fixed circle
at these points, is coincident with and parallel to the
straight cross section sides at these points.

The hypocycloidal contour curve is to be selected in
the following fashion. First, the angle to be rounded
1s measured. Thus, in FIG. 10, the angles are

&21"—“—90 degfees
ao=36 degrees
x3—54 degrees

These angles determine the number of arches of the com-
plete curve, in each case; i.e.,

Nn1= —'4
]
a3
Ni=— 360“" 6.67
3

Next, a suitable length is chosen for the radius & of
the fixed circle, as a compromise between the advantage
of generous rounding of the edge and the disadvantage of
removing an unnecessary amount of the material of the
conductor. Suppose that this compromise leads to the
radii by, by, by, Tespectively. Now a hypocycloid has two
arches when b=2a, three arches when 5=3¢4 and, in gen-
eral, n arches when b=na. Hence, in the cases of the
three angles of the illustrative figure, the radii of the
rolling circles should be

_—
™4

b

a3 ‘i‘%
a =0
" 6.67

It remains merely to roll each of the (smaller) gen-
‘erating circles along the arcuate track constituted of the
associated larger circle, allowing a point fixed to the
smaller circle to trace a curve, and the curve thus traced
1s the required single arch of the desired hypocycloid.

- The cycloid may be regarded as a special case of the
" hypocycloid in which the radius b of the fixed circle in-

10

6

creases without limit so that an arc of this circle becomes,
in the himit, the straight base line of the cycloid, Hence
the processes of generating the cycloid and the hypo-
cycloid are, in the end, the same: having chosen an ap-
propriate track, straight or arcuate, that intersects the
two sides of the cross section to be rounded at ninety
degrees, choose a generating circle of radius such that a
point fixed to it touches the track at one of these two
end points and, after the circle has rolled the full length
of the track, touches it again, and for the first time, at the

- other end.
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under the influence of their mutual repulsions.

Once the edges of an extended conductor strip have
been rounded in the fashion described above its ends,
unless terminated in an already rounded object, should be
domed. This is because, for a given potential to which
the conductor is raised, the electric field intensity at a
corner at which three edges meet is even higher than
that at any of the edges. Optimal rounding at such cor-
ners, however, is not critical, since the material requiring
removal is negligible.

The principles of the invention, described in connec-
tion with an elongated strip conductor apply, as well,
to an object having the shape of a figure of revolu-
tion. A porcelain insulator-support for a high voltage
conductor is an example. Especially when wet, such an
insulator can carry enough surface current to make for
serious power losses through corona discharge from its
sharp edges. Thus the term “conductor,” as employed
in this specification, is employed in the electrostatic
sense: 1t denotes any object that carries electric charges,
and along the surface of which such charges can migrate
The
term has no connotation of high volume conductivity or
of any particular material of which the conductor may
be fabricated. Accordingly, each sharp edge of an in-
sulator support may advantageously be replaced by a
cycloidal or a hypocycloidal contour.

The mathematical aspects of electrostatic potential
theory, from which stems the optimal character of the
contours of the invention, are similar to those of the
theory of velocity potential which describes the condi-
tions which arise when a solid and a fluid are in relative
movement. Accordingly, it i1s advantageous to replace
a sharp angle in a canal, or the edge in which the nose
cone of a projectile meets the projectile body, by a
rounded contour of cycloidal or hypocycloidal configura-
tion.

What is claimed is:

1. An extended conductor, for carrying electric power
at high voltage, having a cross section composed of two
plane parallel longer sides and two similar outwardly
convex curved shorter sides, each of said shorter sides
conforming to a single arch of a c¢ycloid curve between
adjacent cusps, said curve being tangent at said cusps to
said plane longer sides, respectively.

2. A conductor of electric charges bounded by sur-
faces incuding two nonparallel plane surfaces and an
outwardly convex rounded contour interconnecting said
plane surfaces, said surfaces defining an angle of « degrees
between them, the cross section of said contour conform-
ing to a single arch of a hypocycloid curve between ad-
jacent cusps, said hypocycloid being defined by the radius
a of a generating circle that rolls on the inside of a cir-
cular track of radius b and of which the center lies at
the point at which said plane surfaces would intersect,
if extended, wherein @, «, and b are in the relation |

a o
b 360°

said curve being tangent at said cusps to said plane sur-

faces, respectively, ’
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