This invention relates to a conveyor for transporting flowable solid material in a continuous stream.

In general, the object of the invention is to provide a novel and improved conveyor of the character specified in which provision is made for reducing to a minimum the production of jams and congestions during the transportation of the material by the conveyor.

A further object of the invention is to provide a novel and improved conveyor of the character specified in which provision is made for facilitating the discharge of the material therefrom.

A still further object of the invention is to provide a novel and improved conveyor of the character specified in which the casing is constructed in a manner such that during conveyance of the material the natural compacting thereof is counteracted and the friction of the material against the casing is prevented from increasing.

Another object of the invention is to provide a novel and improved conveyor of the character specified in which provision is made for gradually and progressively increasing the effective internal sectional area of the conveyor and, in some instances, for suddenly increasing said area so that any tendency of the material being conveyed to become compacted is counteracted and the material is maintained in a loose flowable condition, thus promoting efficient and economical conveyor operation and facilitating the discharge of the material from the conveyor.

With these general objects in view and such others as may hereinafter appear, the invention consists in the conveyor and in the particular arrangements and combinations of parts hereinafter described and particularly defined in the claims at the end of this specification.

In the drawings illustrating the preferred embodiment of the invention, Fig. 1 is a perspective view with portions broken away illustrating a conveyor embodying the present invention; Fig. 2 is an enlarged vertical sectional view of a portion of the conveyor illustrated in Fig. 1 showing the means for facilitating the discharge of the material from the conveyor; Fig. 3 is a cross-sectional view taken on the line 2—2 of Fig. 1; Fig. 4 is a perspective view of a modification with portions omitted illustrating a curved portion of a conveyor embodying the present invention; and Fig. 5 is a detail taken on the line 5—5 of Fig. 4.

In the operation of conveyors of the type illustrated in the Redler Reissue Patent No. 18,445, April 26, 1932, experience during practical use has shown that variations in the effective cross-sectional area of the conveyor casing through which flowable and substantially incompressible solid material is being conveyed operate to set up congestions which interfere with and in some cases render impossible the conveyance of the material through the conveyor casing. It has been discovered that relatively small reductions in the effective cross-sectional area of a conveyor casing, and particularly of a vertical run, have rendered the operation of the conveyor through the vertical run impossible. For example, it has been found that a reduction in the effective cross-sectional area of a conveyor casing is an amount as small as that corresponding to a reduction of one-eighth of an inch in diameter of the casing, or, in other words, a very small percentage of the effective cross-sectional area of the casing has rendered the operation of the conveyor through a vertical run impossible when operating upon such substantially incompressible materials as sand, cement and the like. Difficulties have also been encountered in effecting the discharge of the material being conveyed by conveyors of the character above mentioned due to congestion at the discharge opening and particularly in cases where sticky material is being conveyed.

In accordance with the present invention, provision is made for gradually and progressively increasing the effective cross-sectional area of the conveyor casing in the direction of travel of the transporting element in order to counteract the natural tendency of the material to compact, and provision is made for suddenly increasing the effective sectional area of the conveyor casing at those points in the casing where there is more than a normal tendency for the material to compact in order to substantially eliminate jams and congestion and to increase the efficiency and utility of the conveyor; namely, around the discharge opening and at curves of the conveyor casing.

As above stated, the conveyor casing is intentionally made of progressively increasing size in the direction of travel of the transporting member; and in the practical construction of conveyors it is preferred to construct the casing of sheet metal and of sections arranged end to end, each succeeding section being intentionally made of an effective sectional area exceeding that of the preceding section by at least an amount corresponding to the accuracy of the particular shop in which the sections are made. For example, if in any particular shop the construction is carried out to an accuracy of one-thirty-second of an inch then in accordance with the present inven-
tion each succeeding section of the conveyor casing will be designed at least one-thirty-second of an inch larger than that of the preceding section. The construction of conveyor casings in the manner set forth above insures against the possibility of slight restrictions in the sectional area of the conveyor casing and the accompanying disadvantages above mentioned.

Instead of varying the size of the conveyor casing, the function may be accomplished in varying ways by progressively increasing the effective cross-sectional area within the casing in the direction of travel of the transporting element and preferably by the introduction of tapered space-occupying members positioned within the conveyor casing and extending longitudinally thereof within those portions of the casing where it may be desired to vary the effective load carrying area.

As previously pointed out, it may be desirable to produce a sudden increase in the effective load carrying area of the conveyor casing, particularly at corners, and this may be accomplished in various ways, such as by varying the size of the conveyor casing at the desired section, or by the introduction of space-occupying members within the conveyor casing, as will be described.

In addition to the enlargement of the conveyor casing, it has been found of advantage to construct the casing so that it is suddenly enlarged in the immediate vicinity of the discharge openings in order to cause the material to assume a loosened condition and to facilitate the discharge thereof, and it has also been found that provision of discharge openings upon a plurality of sides of the transporting element will help with and without the enlargement of the conveyor casing at the point of discharge contributes to the ease and efficiency with which various materials may be discharged. In some instances, particularly where the conveyor is used to transport sticky materials, it has been discovered that the discharge of the material is decidedly facilitated by positioning an abutment or lug in the conveyor casing which is adapted to engage and displace the transporting member laterally of the conduit in order to set up vibrations in the transporting member to dislodge the material from the flights thereof, and this is most effective if the lug or abutment is placed in the immediate vicinity of the discharge opening, particularly in the vertical run of the conveyor, and where the tension in the transporting element is relatively great.

Referring now to the drawings, and particularly to Figs. 1 and 2 wherein I have illustrated a conveyor of the type forming the subject of the Redler reissue patent above referred to, and which comprises a conveyor casing 10 having a horizontal leg 12 and a vertical leg 13. An inlet 14 is provided in the horizontal leg 12 through which the solid flowable material to be conveyed is introduced into the casing to be conveyed through the casing by a plurality of conveyor flights 16 and discharged therefrom from a discharge opening 15 in the vertical leg 13 of the casing.

In accordance with the present invention, the succeeding sections of the conveyor casing illustrated in Fig. 1 are constructed so that each succeeding section has a larger effective cross-sectional area than the preceding section in the direction of travel of the transporting element. In order to provide a sudden increase in the effective internal area of the conveyor casing at the corner in the casing, in Figs. 1 and 3 I have illustrated the horizontal leg 12 of the conveyor casing 10 as being provided with a plurality of space-occupying members 20, 22 which are affixed to the inside of the casing and which extend to the point where it is desirable to suddenly increase the effective internal area. In some instances, and particularly where the conveyor flights are relatively large, for example, 10, 12, 16 and larger, it has been found desirable in addition to suddenly increasing the effective cross-sectional area at the corner in the conveyor casing, and to increase the effective cross-sectional area after the corner, and particularly when changing from a horizontal to a vertical or inclined run, and, accordingly, as illustrated in Figs. 4 and 5, this may be accomplished by the provision of an additional space-occupying member 24 affixed to the inside of the casing 10 and extending around the corner to the point where it is desired to suddenly increase the effective cross-sectional area. As illustrated in Figs. 4 and 5, it is preferred to position the additional space-occupying member 24 at the top of the conveyor casing 10 and to notch or recess the conveyor flights 16 so that they may be freely moved by the additional space-occupying member 24 and function in the usual manner. Referring now to Figs. 1 and 2, as previously stated, the discharge of the conveyor may be facilitated by the provision of discharge openings 15 and by suddenly enlarging the conveyor casing in the immediate vicinity of the discharge opening 15 and, accordingly, in Fig. 1, I have illustrated a conveyor as being provided with a plurality of discharge openings 15 and, as shown in Fig. 2, the conveyor casing is constructed so that a sudden increase in the effective cross-sectional area takes place in the immediate vicinity of the discharge openings 15, thus causing the conveyed material to assume a more loose and freely flowing condition.

In some instances, and particularly where flexible materials are being conveyed, the discharge of the material from the conveyor may be facilitated by the provision of an abutment or lug 30 positioned in the conveyor casing 10 and adapted to engage and displace the transporting member laterally of the conduit in order to set up vibration in said transporting member and cause the material to be dislodged from the flights 16 thereof and, as illustrated in Fig. 2, it is preferred to place the abutment or lug 30 in the immediate vicinity of the discharge opening 15, particularly of a vertical run of the conveyor, where the tension in the transporting element is relatively great.

From the description thus far, it will be apparent that by constructing conveyers of the type described so that the effective cross-sectional area of the conveyor casing is increased, the tendency for the material being conveyed to compact and form jams or congestions is counteracted. It will also be apparent that by constructing conveyor casings of the character described so that sudden enlargement in the effective cross-sectional area of the casing takes place at points where more than an ordinary tendency to compact and become congested exists, and particularly at corners and at the discharge opening of the conveyor casing, congestions and jams of the material being conveyed are substantially eliminated and the efficiency.
and utility of the conveyor is greatly increased. It
will also be observed that in addition to facili-
tating the discharge of the conveyor, as above
described, provision is made for further facili-
tating the discharge by provision of a plurality
of discharge openings in the conveyor casing and
by providing means for displacing and setting up
vibration in the conveyor flights in order to dis-
lodge the material from the flights.

While the preferred embodiment of the pres-
ent invention has been herein illustrated and
described, it will be understood that the in-
vention may be embodied in other forms within
the scope of the following claims.

Having thus described the invention, what is
claimed is:

1. A conveyor for transporting flowable solid
material in a continuous stream comprising a
casing, a transporting member adapted to be
drawn through the casing and provided with a
plurality of open flights to effect transportation
of the material in a mass, said casing com-
prising a plurality of sections adapted to be secured
end to end with each succeeding section of
slightly greater effective internal area than the
preceding.

2. A conveyor for transporting flowable solid
material in a continuous stream having, as a com-
bination, a moving element of the open type and
a casing the conveying area thereof being pro-
gressively enlarged in the direction of travel of
said moving element.

3. A conveyor for transporting flowable solid
material in a continuous stream comprising a
casing, a transporting member adapted to be
drawn through the casing and provided with a
plurality of open flights to effect transportation
of the material in a mass, said casing having the
interior thereof increasing in area in the direction
of travel of the transporting element.

4. A conveyor for transporting flowable solid
material in a continuous stream comprising a
casing, a transporting member adapted to be
drawn through the casing and provided with a
plurality of open flights to effect transportation
of the material in a mass, said casing comprising
a sheet metal structure made up of sections, the
effective internal sectional area of a succeeding
section being greater than that of the preceding
section.

5. A conveyor for transporting flowable solid
material in a mass, comprising a casing provid-
ed with an inlet and an outlet, a transporting
member adapted to be drawn through the casing
and provided with a plurality of open flights to
effect transportation of the material in a mass, said
casing having the interior progressively in-
creasing in area in the direction of travel of the
transporting element and said interior being su-
ddenly enlarged in the immediate vicinity of said
outlet.

6. A conveyor for transporting flowable solid
material in a mass, comprising a casing, a transpor-
ting member adapted to be drawn through the
casing provided with a plurality of open
flights to effect transportation of the material
in a mass, said casing being provided with an in-
let and an outlet, said outlet being open on a
plurality of sides of the conveyor casing to per-
mit the discharge of the material and said cas-
ing having its walls suddenly enlarged in the im-
mediate vicinity of said outlet.

7. A conveyor for transporting flowable solid
material in a mass, comprising a casing a trans-
porting member adapted to be drawn through
the casing provided with a plurality of open
flights to effect transportation of the material
in a mass, said casing having the conveying area
thereof progressively increasing in area in the
direction of travel of the transporting element
and being provided with an outlet, said outlet
being open on a plurality of sides of the conveyor
casing and the internal area of said casing be-
ing suddenly enlarged in the immediate vicinity
of said outlet.

8. A conveyor for transporting flowable solid
material in a mass, comprising a casing provided
with an inlet and an outlet, a transporting mem-
ber adapted to be drawn through the casing
provided with a plurality of open flights to effect
transportation of the material, said casing provi-
ding the conveying area thereof progressively in-
creasing in the direction of travel of the trans-
porting element, said outlet being open on a plu-
rality of sides of the conveyor casing whereby
the discharge of the material is facilitated.

9. A conveyor for transporting flowable solid
material in a mass, comprising a casing provided
with an inlet and an outlet, a transporting mem-
ber adapted to be drawn through the casing
provided with a plurality of open flights to ef-
fect the transportation of the material in a mass,
said casing having the interior thereof progres-
sively increasing in area in the direction of travel
of the transporting element, and means adja-
cent said outlet for displacing and setting up
vibration in said transporting element.

10. A conveyor for transporting flowable solid
material in a mass, comprising a casing, a trans-
porting member adapted to be drawn through the
casing and provided with a plurality of open
flights to effect the transportation of the mate-
rial in a mass, said casing having the internal
sectional area thereof progressively increasing in
the direction of travel of the transporting ele-
ment and suddenly increased at points where the
normal tendency of the material to jam or con-
gest occurs.

11. A conveyor for transporting flowable solid
material in a mass, comprising a casing provid-
ed with an inlet and an outlet, a transport-
ing member adapted to be drawn through the
casing provided with a plurality of open
flights to effect the transportation of the material
in a mass, said casing having the interior thereof
progressively increasing in area, said outlet be-
ing open on a plurality of sides of the conveyor
casing, and means adjacent said outlet for dis-
placing and setting up vibration in said trans-
porting member.

NIXON W. ELMER.