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HUMAN MOTION UNDERSTANDING USING
STATE SPACE MODELS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of U.S. Provi-
sional Application Ser. No. 63/647,839 filed May 13, 2024,
and U.S. Provisional Application Ser. No. 63/547,202 filed
Nov. 3, 2023, each of which 1s incorporated by reference
herein 1n 1ts entirety.

TECHNICAL FIELD

[0002] The present disclosure generally relates to systems,
methods, and devices that generate 3-dimensional (3D)
information related to a user from a continuous time light
signal.

BACKGROUND

[0003] Existing techniques for evaluating human motion
from a video stream for use with applications such as pose
estimation, mesh recovery and action recognition may be
improved with respect to adapting to new frame rates during
real time processing of a continuous stream of video frames.

SUMMARY

[0004] Various implementations disclosed herein include
devices, systems, and methods that determine 3-dimensional
(3D) information related to a user from a continuous time
light signal. For example, a continuous time light signal may
include a signal comprising a continuous light that 1is
reflected from the user and 1s captured by an 1mage sensor(s)
at discrete times and frame rates.

[0005] Some implementations acquire mput information
such as 2-dimensional (2D) information associated with a
continuous time light signal providing information about a
user 1n a three-dimensional (3D) environment such as, inter
alia, 2D joint positions within a sequence of frames of a
video signal capturing a continuous time light signal with
respect to one or more frame rates.

[0006] Some implementations acquire mput information
such as discretization information such as, inter alia, delta
information corresponding to a time between frames, frame
rate information, etc.

[0007] Some implementations enable a state space model
to acquire mput information to generate the 3D information.
The 3D information may provide a 3D shape, model or
mesh, 3D joints, a 3D location, an action performed, a
number of times an action 1s performed, etc. The use of a
state space model to generate the 3D information may be
beneficial with respect to accuracy and efliciency 1n com-
parison to alternatively using transformers or long term-
short term (LSTM) networks. The use of discretization
information may enable adaptability without retraining with
respect to different video frame rates.

[0008] In some implementations, an electronic device has
a processor (e.g., one or more processors) that executes
instructions stored in a non-transitory computer-readable
medium to perform a method. The method performs one or
more steps or processes. In some implementations, the
clectronic device obtains two-dimensional (2D) information
corresponding to a continuous time light signal providing
information about a user in a three-dimensional (3D) envi-
ronment. The 2D information may be based on frames
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comprising images capturing the continuous time light sig-
nal at one or more frame rates. In some 1mplementations,
discretization information corresponding to the one or more
frame rates 1s obtained and 3D information about the user
may be determined by inputting the 2D information and the
discretization information into a state space model. The state
space model 1s a continuous time learnable framework for
mapping between continuous time 2D scalar inputs and
continuous time scalar 3D outputs.

[0009] In accordance with some implementations, a
device includes one or more processors, a non-transitory
memory, and one or more programs; the one or more
programs are stored in the non-transitory memory and
configured to be executed by the one or more processors and
the one or more programs include instructions for perform-
ing or causing performance of any of the methods described
herein. In accordance with some implementations, a non-
transitory computer readable storage medium has stored
therein instructions, which, when executed by one or more
processors of a device, cause the device to perform or cause
performance of any of the methods described herein. In
accordance with some implementations, a device includes:
One Or more processors, a non-fransitory memory, and
means for performing or causing performance of any of the
methods described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] So that the present disclosure can be understood by
those of ordinary skill 1n the art, a more detailed description
may be had by reference to aspects of some 1illustrative
implementations, some of which are shown 1n the accom-
panying drawings.

[0011] FIG. 1 illustrates an exemplary electronic device
operating 1n a physical environment 1 accordance with
some 1mplementations.

[0012] FIG. 2 illustrates an example representing a state
space model (SSM) associated with generating 3D informa-
tion related to a user, 1n accordance with some 1mplemen-
tations.

[0013] FIG. 3 illustrates continuous-time attention-free
architecture that obtains spatiotemporal human motion data
as mput and outputs representations corresponding to each
spatial and temporal location, 1n accordance with some

implementations.

[0014] FIG. 4 1illustrates bidirectional GDSSM architec-
ture, 1n accordance with some implementations.

[0015] FIG. 5 illustrates unidirectional GDSSM architec-
ture, 1n accordance with some implementations.

[0016] FIG. 6 1s a flowchart representation of an exem-
plary method that determines 3D information associated
with a user from a continuous time signal captured by an
image sensor at discrete times, 1n accordance with some
implementations.

[0017] FIG. 7 1s a block diagram of an electronic device of
in accordance with some implementations.

[0018] In accordance with common practice the various
teatures illustrated 1n the drawings may not be drawn to
scale. Accordingly, the dimensions of the various features
may be arbitrarily expanded or reduced for clanty. In
addition, some of the drawings may not depict all of the
components of a given system, method or device. Finally,
like reference numerals may be used to denote like features
throughout the specification and figures.
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DESCRIPTION

[0019] Numerous details are described 1n order to provide
a thorough understanding of the example implementations
shown 1n the drawings. However, the drawings merely show
some example aspects of the present disclosure and are
therefore not to be considered limiting. Those of ordinary
skill in the art will appreciate that other effective aspects
and/or variants do not include all of the specific details
described herein. Moreover, well-known systems, methods,
components, devices and circuits have not been described 1n
exhaustive detail so as not to obscure more pertinent aspects
of the example implementations described herein.

[0020] FIG. 1 illustrates an exemplary electronic device
105 operating 1n a physical environment 100. In the example
of FIG. 1, the physical environment 100 1s a room. The
electronic device 105 may include one or more cameras,
microphones, depth sensors, or other sensors that can be
used to capture information about and evaluate the physical
environment 100 and the objects within 1t, as well as
information about the user 102 of electronic device 105. The
information about the physical environment 100 and/or user
102 may be used to provide visnal and audio content and/or
to 1dentily the current location of the physical environment
100 and/or the location of the user within the physical
environment 100.

[0021] In some implementations, views of an extended
reality (XR) environment may be provided to one or more
participants (e.g., user 102 and/or other participants not
shown) via electronic device 105 (e.g., a wearable device
such as an HMD). Such an XR environment may include
views of a 3D environment that i1s generated based on
camera 1mages and/or depth camera 1mages of the physical
environment 100 as well as a representation of user 102
based on camera 1mages and/or depth camera images of the
user 102. Such an XR environment may include virtual
content that 1s positioned at 3D locations relative to a 3D
coordinate system associated with the XR environment,
which may correspond to a 3D coordinate system of the
physical environment 100.

[0022] In some implementations, an HMD (e.g., device
105), communicatively coupled to a server, or other external
device may be configured generate 3D information associ-
ated with a user based on analyzing a continuous time signal
such as a signal comprising continuous light reflected from
a user (e.g., user 102) that 1s captured by an 1image sensor at
discrete times/frames.

[0023] In some implementations, 2D information, such as,
inter alia, 2D joint locations of a user 1s obtained. The 2D
information may correspond to a confinuous time light
signal providing information about the user in a 3D envi-
ronment (e.g., an XR environment provided by electronic
device 105). The 2D information may be based on frames
that include 1mages capturing the continuous time light
signal at one or more frame rates.

[0024] In some 1mplementations, discretization informa-
fion corresponding to the one or more frame rates 1is
obtained. The discretization information may include delta
information corresponding to, inter alia, a time period occur-
ring between frames (e.g., delta information), frame rate
information, etc.

[0025] In some implementations, 3D information associ-
ated with the user may be determined by inputting the 2D
information and the discretization information into a state
space model. For example, a state space model may be a
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continuous time learnable framework for performing a map-
ping process between continuous time 2D scalar inputs and
confinuous time scalar 3D outputs. In some 1mplementa-
tions, the 3D information may provide a 3D model repre-
senting a portion(s) of the user. In some 1mplementations,
the 3D information may provide a 3D representation of a
joint(s) of the user at a specified location within a 3D
environment. In some implementations, the 3D information
may provide information associated with an action per-
formed by the user. In some implementations, the 3D
information may provide information associated with a
number of times the action 1s performed by the user.

[0026] FIG. 2 illustrates an example representing a state
space model (SSM) 200 associated with generating 3D
information related to a user, in accordance with some
implementations. SSM 200 provides a continuous time
learnable framework providing mapping between continu-
ous-time scalar 2D inputs and continuous-time scalar 3D
outputs. For example, given an input u(t) and an output y(t),
SSM 200 may be described by the following differential
equations 204 involving a continuous-time state vector x(t)

and 1ts associated derivative x'(t), parameterized by matrices
Ae VN, Be gV, Ce Y and De |r:

X ()=Ax()Bu(t),y()=Cx(t) Du(t).

[0027] In discrete-time, with a parameterized sample time
A 202, differential equations 204 may transition into the
following recursive formulations 206:

Xp = E}C;ﬁ_l + FH;C, Vi = EI&EH;C.

[0028] where A=e"?, B=(e"*~I) A~' B, C=C and D=D
using zero order hold (zoh) discretization.
[0029] In some implementations, a linear nature of SSM
200 allows an output sequence to be computed directly by
unrolling the recursion in time as follows:

. kA —=—i=s
Vi = ZFDC’A B'“,q;_j-

[0030] An advantage of the above structure 1s the potential
for parallel computation, facilitated by the discrete convo-
lution of the input sequence u with the precomputed SSM

kernel K=(CB, C AB, ..., C A" B), denoted as follows:

y=Kx_.u

[0031] While the approach to the above computation
requires O(L*) multiplications, it may be done in O(Z
log(l.)) time using a Fast Fourier Transform (FFT). SSM 200
may be configured to switch from a convolutional to recur-
sive formulation in the aforementioned recursive formula-
fions when properties such as autoregressive decoding 1s
desirable.

[0032] In some implementations, an efficient adaptation of
a framework of SSM 200 1s the incorporation of a diagonal
state matrix, facilitating the computation of SSM 200 kernel
K. For example, a diagonal state matrix A represented as
A=diag(A,, . . ., Ay) may effectively approximate a hyper
parameter optimization (HIPPO) parameterization of a tran-
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sition matrix A that yields a stable training regime with long
sequences. Further simplifications may be introduced with a
vector B expressed as B=(1),,,. Under these conditions, a
diagonal state space model (DSSM) may be Characterized by
learnable parameters: A, A, €R”, Ce ", and ALEE.

Subsequently, diagonal elemeuts of A are computed through
the relationship exp(A _)+H-A; , where i=v—1 and A is
deduced as exp(A,, )e R >0 . Kernel K may be computed as

follows:

'Y (3)

CeAlA - 1/Al
b exp(F)

eANA — 1/AN

s

[0033] where © is element-wise multiplication and the
elements of matrix Pe ~ """ are being given by P, =1, A. In
practice, to obtain a real valued kernel K, the diagonal
elements are assumed to appear in complex conjugate pairs
and their corresponding parameters 1n C are tied together.
Therefore, the dimension of state space 1s effectively set to
N/2 and a final kernel 1s obtained by taking the real part of
2-K.

[0034] The aforementioned framework may establish a
linear mapping for 1-D sequences and when extending to
sequences comprising H-dimensional vectors, i1ndividual
state space models may be applied to each of the H dimen-
sions. Specifically, a DSSM layer takes a sequence of length
L, denoted as ue =%, and yields an output ye "', For
each feature duuensrou h=1, ..., H, a kernel K,e =" 1
computed and a corresponding output ye R * for this feature
is obtained using the convolution of input u,e k* and kernel
K, m accordance with y=K* u as described, supra. The
aforementioned process may be performed for a batch of

samples leading to a linear DSSM layer that may map from
ue g2 to ye P and is denoted by y=DSSM(u).

[0035] Considering a batch size of B, sequence length L,
and hidden dimension H, a computation time for kernels 1n
a diagonal state space (DSS) layer may scale as O(N H L),
whereas a discrete convolution may demand a time com-
plexity of O(B H L log(L)).

[0036] DSSM parameters may be initialized by using
linear 1nitialization setting the real part A_ to

and an 1maginary part A, to

N

= 1.
=1

(7))
J

Likewise, elements of C may include samples from a normal

distribution and A may be 1nitialized randomly between
0.001 and 0.1.

[0037] In some implementations, differing types of neural
architectures, including multi-layer perceptrons (MLPs),
CNNs, and transformer models may benefit from 1ntegration
of gating units such as a gated linear unit (GLU), which may
be effective in CNN-based natural language processing
(NLP) applications. For example, with respect to a given
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input activation, denoted as u, a GLU may perform two
distinct operations such as calculating a gating vector G(Wu)
and a linear transformation Vu. A final output of the GLU
may be obtained by computing the Hadamard product:

c(Wu)ovu.

[0038] FIG. 3 illustrates continuous-time attention-free
architecture 300 that obtains spatiotemporal human motion
data as input and outputs representations corresponding to
each spatial and temporal location, 1n accordance with some
implementations. For example, an input to architecture 300
may include a video of key points ue E BED - where B
1s a batch size, F 1s a number of frames, J 1s a number of
jomts, and D, 1s a dimension of the input which 1s typically
3 for the 2D joint positions and scalar joint confidence.
Architecture 300 1s configured to learn to model an under-
lying continuous signal resulting from evolution of joint
positions and associated interactions with each other to
produce a spatiotemporal representation re g *"  As
illustrated 1n FIG. 3, architecture 300 includes a sequence of
spatiotemporal blocks consisting of spatial and temporal

gated diagonal state space model (GDSSM) blocks 302a,
302bH, 302¢, and 302d. Likewise, architecture 300 uses a
lifting layer 305 to lift an 1nput to a model dimension D, and
a final layer 307 to transform representations in model
dimensions to required representation dimension D,

[0039] FIG. 4 illustrates bidirectional GDSSM architec-

ture 400, 1n accordance with some 1mplementations. Bidi-
rectional GDSSM architecture 400 may receive as input: X
R 7> P  such that bidirectional GDSSM blocks (forward
DSSM bloek 402 and backward DSSM block 404) learn to
combine information along a sequence dimension L. As
illustrated in FIG. 4, architecture 400 comprises an initial
layer norm 406 and includes three main pathways 410a,
4100, and 410c¢ to process information. Pathway 410a 1s
configured to processes information independently. Pathway
410/ and pathway 410c¢ are configured to processes infor-
mation with respect to a combination of forward and back-
ward paths within a sequence dimension as follows:

Xy = LayerNorm(x) e R B*LXDnm,
Xig = TxyWig) e RBXLxnDp,
1 2 BxlxD
.If:DSSMf G-INW? W? R "

1

Xp = ﬂlp(DSSMb(G'[ﬂlp(}fﬁr)W%)]W—

c RBaLaDm
)

[0040] With respect to the above sequence dimension:
W;‘de RDmanm,

comprise learnable weight matrices; flip( ) (enabled via flip
module 418) de-notes a flipping operation along the
sequence dimension; and G( ) denotes gaussian error linear
unit (GELU) activation associated with GELU modules
414a-4144d. In this formulation, a dimension of the DSSM
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may be reduced by a factor of k to speed up kernel
computation and combine different dimensions of the DSSM
output by using weights

Subsequently, the forward and backward aggregated infor-
mation may be combined using the following:

Xep = O((xf ©xp)Wep) € REHEXDm

[0041] where W _, € = "~""» An output of the GDSSM

blocks may be computed by combining independently
processed information (via pathway 410a) with infor-
mation from pathways 4105 and 410c with a skip
connection with respect to an input to a block. Subse-
quently, a dimension expansion factor of n may be used
before using multiplicative gating as follows:

Bx i«
Xowr = X T (-xfd chb)Wﬂur cR &

[0042] With respect to the above multiplicative gating:
W_ e p™"P~Pnis used to bring an output of a multiplicative
gate back to a model dimension thereby providing an
expressive non-linear bidirectional block to process a
sequence of vectors denoted as x_ =B1GDSSM-Block(x).

oLl

[0043] FIG. 5 1llustrates unidirectional GDSSM architec-

ture 500, 1n accordance with some implementations. Unidi-
rectional GDSSM architecture 500 may receive as mnput: X
RZPr such that unidirectional GDSSM blocks (e.g..
forward DSSM 502 block) learn to combine information
along a sequence dimension L but only 1n forward direction.
As illustrated in FIG. 5, GDSSM architecture 500 comprises
an 1nitial layer norm 506 and includes two main pathways
510a and 5105 to process information. Pathway 510a 1s
configured to processes information independently. Pathway
510/ 1s configured to processes information with respect to
a forward path within a sequence dimension as follows:

xy = LayerNorm(x) € RPL*Pm

Xig = Olxy W) € R m

1 2
Xf = DSSMf(G’[XN W?))W? - RBKL}{D”I

[0044] With respect to the above sequence dimension:
W-dE > D xnD,

In contrast to bidirectional GDSSM architecture 400 as
illustrated with respect to FIG. 4, an output of unidirectional
GDSSM architecture 500 1s directly computed by combining

May 8, 2025

X,s and X, using multiplicative gating and a skip connection
with the input to unidirectional GDSSM architecture 500 as
follows:

BxLxD
Xowr = X + (Xig G-If)WﬂuIER "

[0045] In the above example, W_ e "’»"*"= The above
causal block 1s denoted as x_, =UniGDSSM—Block(x).

ot

[0046] Subsequently, a spatiotemporal layer may be con-
structed using GDSSM architecture 400 (as described with
respect to FIG. 4) and/or GDSSM architecture 500. For
example, an input xe R #****P» may be passed through two
different information processing streams such that a first
stream 1s configured to combine information spatially and
temporally as follows:

x =B1GDSSM-Block 1/s(x-flatten(0,1))
x.=xreshape(B,FJ,.D, )-1T(1,2)
x,=B1GDSSM-Block1/t{(x -flatten(0,1))

x,,=x,reshape(B,J £D_)-1(1,2)

[0047] In the above example, BiGDSSMBIlock1/s(*) and
BiGDSSM-Block1/t(*) are the spatial-temporal GDSSM
blocks of stream 1 and x-T(a, b) x-flatten(a, b) denote the
transpose and flattening of the a-th and b-th dimension of
tensor X respectively.

[0048] In some implementations, transpose, reshape and
flattening operations may be used to process a spatial and
temporal dimension using the similar GDSSM Blocks
expecting a tensor of shape BXLXD . In contrast to pro-
cessing of the first stream, a second stream may be config-
ured to combine information temporally and spatially as
follows:

x,=BiGDSSM-Blocks2/#x-7(1,2)-flatten(0,1))
x,=x,reshape(B,J,£D )
x . ~=B1GDSSM—-Block2/s(x,T(1,2)-flatten(0,1))

x_=x, reshape(B,FJ.D )

[0049] A final step may include combining outputs of both
streams (1.e., the aforementioned first and second streams)
using learnable weights given by:

[(IHGLH] :sgftma}{( [_xﬂxm] W )E LF? BxEF=< <2

_ ILE Bl o )
‘xﬂut_asr@‘xst-l_ats@‘xtse E

Fr

[0050] In the above example, N/ e g BP0 _1s a learn-
able mapping to the weights which are normalized by using
softmax(®).

[0051] In some implementations, a causal variant of the
spatiotemporal model may be designed by replacing tem-

poral blocks 1n first and second streams with a unidirectional
GDSSM block. Therefore, BiIGDSSM—-Block1/t(.) and Bi1G-

DSSM-Block2/t(.) may be replaced with UnmiGDSSM-—
Blockl/t(.) and UmiGDSSM—-Block2/t(.).

[0052] A pretraining loss architecture 500 (and/or archi-
tecture 300 and/or 400 of FIGS. 3 and 4) may be calculated

as a combination of 3D and 2D losses as follows:

[0053] Imitially, a first process to learn a robust motion
representation using a universal pretext task 1s used to
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recover depth information from 2D visual observations,
mspired by a 3D human pose estimation. Large-scale 3D
motion capture data may be used to create a 2D-to-3D lifting,
task such that corrupted 2D skeleton sequences are gener-
ated from 2D projections of 3D motion. The skeleton
sequences mimic real-world 1ssues such as, inter alia, occlu-
sions and errors. The aforementioned information 1s used to
obtain motion representation and reconstruct 3D motion,
with loss functions for 3D reconstruction and velocity.

[0054] A second process may utilize heterogeneous
human motion data in various formats by extracting 2D
skeletons from different motion data sources using in-the-
wild RGB videos. For example, the 2D skeletons may be
obtained from RGB videos via manual annotation or by
using a 2D pose estimator. Additional masking and noise
may be applied to degrade the 2D skeletons and since 3D
motion ground truth data may not be available for this data,
a weighted 2D re-projection loss may be used.

[0055] FIG. 6 1s a flowchart representation of an exem-
plary method 600 that determines 3D information associated
with a user from a continuous time signal captured by an
image sensor at discrete times, 1n accordance with some
implementations. In some 1implementations, the method 600
1s performed by a device, such as a mobile device, desktop,
laptop, HMD, or server device. In some implementations,
the device has a screen for displaying images and/or a screen
for viewing stereoscopic images such as an HMD (HMD
such as e.g., device 105 of FIG. 1). In some 1mplementa-
tions, the method 600 1s performed by processing logic,
including hardware, firmware, software, or a combination
thereol. In some implementations, the method 600 1s per-
formed by a processor executing code stored 1 a non-
transitory computer-readable medium (e.g., a memory).

Each of the blocks 1n the method 600 may be enabled and
executed 1n any order.

[0056] At block 602, the method 600 obtains 2D infor-
mation corresponding to a continuous time light signal
providing information about a user in a 3D environment.
The 2D information may be based on video frames com-
prising 1images capturing the continuous time light signal at
one or more Irame rates. For example, a continuous light
reflected from a user 102 may be captured by an image
sensor at discrete times/frames as described with respect to
FIG. 1. In some implementations, the 2D information may
include information associated with 2D locations of joints of
the user. For example, input that includes 2D joint positions
and associated interactions to produce a spatiotemporal
representation as described with respect to FIG. 3.

[0057] At block 604, the method 600 obtains discretiza-
tion mformation corresponding to the one or more frame
rates. The discretization information may include delta
information (e.g., A 202 as described with respect to FIG. 2)
corresponding to time periods between the frames. In some
implementations, the discretization information comprises
information associated with the at least one or more frame
rates.

[0058] At block 606, the method 600 determines 3D
information about the user by mputting the 2D information
and the discretization information into a state space model
(SSM) such as SSM 200 as described with respect to FIG.
2. The state space model comprises a continuous time
learnable framework for mapping between continuous time
2D scalar inputs and continuous time scalar 3D outputs. In
some 1mplementations, the 3D information may provide a
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3D model or mesh representing at least a portion of the user.
In some 1mplementations, the 3D information may provide
a 3D representation of at least one joint of the user at a
specified location (e.g., joint positions as described with
respect to FIG. 3) withun the 3D environment. In some
implementations, the 3D information may provide informa-
tion associated with an action performed by the user and a

number of times that the action 1s performed as described
with respect to FIG. 1.

[0059] FIG. 7 1s a block diagram of an example device
700. Device 700 illustrates an exemplary device configura-
tion for electronic device 105 of FIG. 1. While certain
specific features are illustrated, those skilled in the art waill
appreciate from the present disclosure that various other
features have not been 1llustrated for the sake of brevity, and
so as not to obscure more pertinent aspects of the 1mple-
mentations disclosed herein. To that end, as a non-limiting
example, 1n some 1implementations the device 700 includes
one or more processing units 702 (e.g., microprocessors,
ASICs, FPGAs, GPUs, CPUs, processing cores, and/or the
like), one or more mput/output (I/O) devices and sensors
706, one or more communication interfaces 708 (e.g., USB,
FIREWIRE, THUNDERBOLT, IEEE 802.3x, IEEE 802.
11x, IEEE 802.14x, GSM, CDMA, TDMA, GPS, IR, BLU-
ETOOTH, ZIGBEE, SPI, 12C, and/or the like type inter-
face), one or more programming (e.g., I/O) interfaces 710,
output devices (e.g., one or more displays) 712, one or more
interior and/or exterior facing 1image sensor systems 714, a
memory 720, and one or more communication buses 704 for
interconnecting these and various other components.

[0060] In some implementations, the one or more com-
munication buses 704 include circuitry that interconnects
and controls communications between system components.
In some implementations, the one or more I/O devices and
sensors 706 include at least one of an 1nertial measurement
unit (IMU), an accelerometer, a magnetometer, a gyroscope,
a thermometer, one or more physiological sensors (e.g.,
blood pressure monitor, heart rate monitor, blood oxygen
sensor, blood glucose sensor, etc.), one or more micro-
phones, one or more speakers, a haptics engine, one or more
depth sensors (e.g., a structured light, a time-of-tlight, or the
like), one or more cameras (e.g., mward facing cameras and
outward facing cameras of an HMD), one or more infrared
sensors, one or more heat map sensors, and/or the like.

[0061] In some implementations, the one or more displays
712 are configured to present a view of a physical environ-
ment, a graphical environment, an extended reality environ-
ment, etc. to the user. In some 1mplementations, the one or
more displays 712 are configured to present content (deter-
mined based on a determined user/object location of the user
within the physical environment) to the user. In some
implementations, the one or more displays 712 correspond
to holographic, digital light processing (DLP), liquid-crystal
display (LCD), liqmd-crystal on silicon (LCoS), organic
light-emitting field-eflect transitory (OLET), organic light-
emitting diode (OLED), surface-conduction electron-emitter
display (SED), field-emission display (FED), quantum-dot
light-emitting diode (QD-LED), micro-electromechanical
system (MEMS), and/or the like display types. In some
implementations, the one or more displays 712 correspond
to diffractive, retlective, polarized, holographic, etc. wave-
guide displays. In one example, the device 700 includes a
single display. In another example, the device 700 includes
a display for each eye of the user.




US 2025/0148623 Al

[0062] In some implementations, the one or more image
sensor systems 714 are configured to obtain image data that
corresponds to at least a portion of the physical environment
100. For example, the one or more image sensor systems 714
include one or more RGB cameras (e.g., with a complimen-
tary metal-oxide-semiconductor (CMOS) 1mage sensor or a
charge-coupled device (CCD) image sensor), monochrome
cameras, IR cameras, depth cameras, event-based cameras,
and/or the like. In various implementations, the one or more
image sensor systems 714 further include illumination
sources that emit light, such as a flash. In various 1mple-
mentations, the one or more 1mage sensor systems 714
turther include an on-camera 1mage signal processor (ISP)
configured to execute a plurality of processing operations on
the 1mage data.

[0063] In some implementations, sensor data may be
obtained by device(s) (e.g., device 1035 of FIG. 1) during a
scan of a room of a physical environment. The sensor data
may include a 3D point cloud and a sequence of 2D 1mages
corresponding to captured views of the room during the scan
of the room. In some implementations, the sensor data
includes image data (e.g., from an RGB camera), depth data
(c.g., a depth 1mage from a depth camera), ambient light
sensor data (e.g., from an ambient light sensor), and/or
motion data from one or more motion sensors (€.g., accel-
crometers, gyroscopes, IMU, etc.). In some implementa-
tions, the sensor data includes visual inertial odometry
(VIO) data determined based on image data. The 3D point
cloud may provide semantic information about one or more
clements of the room. The 3D point cloud may provide
information about the positions and appearance of surface
portions within the physical environment. In some 1mple-
mentations, the 3D point cloud 1s obtained over time, e.g.,
during a scan of the room, and the 3D point cloud may be
updated, and updated versions of the 3D point cloud
obtained over time. For example, a 3D representation may
be obtained (and analyzed/processed) as it 1s updated/ad-
justed over time (e.g., as the user scans a room).

[0064] In some implementations, sensor data may be
positioning information, some implementations include a
VIO to determine equivalent odometry information using
sequential camera 1images (e.g., light intensity image data)
and motion data (e.g., acquired from the IMU/motion sen-
sor) to estimate the distance traveled. Alternatively, some
implementations of the present disclosure may include a
simultaneous localization and mapping (SLAM) system
(e.g., position sensors). The SLAM system may include a
multidimensional (e.g., 3D) laser scanning and range-mea-
suring system that 1s GPS independent and that provides
real-time simultaneous location and mapping. The SLAM
system may generate and manage data for a very accurate
point cloud that results from reflections of laser scanming
from objects 1n an environment. Movements of any of the
points 1n the point cloud are accurately tracked over time, so
that the SLAM system can maintain precise understanding,
of 1ts location and orientation as 1t travels through an
environment, using the points 1n the point cloud as reference
points for the location.

[0065] In some implementations, the device 700 includes
an eye tracking system for detecting eye position and eye
movements (€.g., eye gaze detection). For example, an eye
tracking system may include one or more infrared (IR)
light-emitting diodes (LEDs), an eye tracking camera (e.g.,
near-IR (NIR) camera), and an 1llumination source (e.g., an
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NIR light source) that emits light (e.g., NIR light) towards
the eyes of the user. Moreover, the 1llumination source of the
device 700 may emit NIR light to 1lluminate the eyes of the
user and the NIR camera may capture images of the eyes of
the user. In some 1mplementations, 1images captured by the
eye tracking system may be analyzed to detect position and
movements of the eyes of the user, or to detect other
information about the eyes such as pupil dilation or pupil
diameter. Moreover, the point of gaze estimated from the eye
tracking i1mages may enable gaze-based interaction with
content shown on the near-eye display of the device 700.

[0066] The memory 720 includes high-speed random-
access memory, such as DRAM, SRAM, DDR RAM, or
other random-access solid-state memory devices. In some
implementations, the memory 720 1includes non-volatile
memory, such as one or more magnetic disk storage devices,
optical disk storage devices, tlash memory devices, or other
non-volatile solid-state storage devices. The memory 720
optionally includes one or more storage devices remotely
located from the one or more processing units 702. The
memory 720 includes a non-transitory computer readable
storage medium.

[0067] In some implementations, the memory 720 or the
non-transitory computer readable storage medium of the
memory 720 stores an optional operating system 730 and
one or more instruction set(s) 740. The operating system 730
includes procedures for handling various basic system ser-
vices and for performing hardware dependent tasks. In some
implementations, the mstruction set(s) 740 include execut-
able software defined by binary mmformation stored in the
form of electrical charge. In some implementations, the
instruction set(s) 740 are soitware that 1s executable by the
one or more processing units 702 to carry out one or more
of the techniques described herein.

[0068] The instruction set(s) 740 includes an 2D informa-

tion instruction set 742 and 3D information instruction set
744. The mstruction set(s) 740 may be embodied as a single
software executable or multiple software executables.

[0069] The 2D information instruction set 742 1s config-
ured with istructions executable by a processor to obtain
two-dimensional (2D) information (e.g., 2D joint locations)
corresponding to a continuous time light signal.

[0070] The 3D information instruction set 744 1s config-
ured with 1nstructions executable by a processor to deter-
mine 3D information about the user by inputting the 2D
information and the discretization information into a state
space model.

[0071] Although the instruction set(s) 740 are shown as
residing on a single device, it should be understood that in
other implementations, any combination of the elements
may be located in separate computing devices. Moreover,
FIG. 7 1s mtended more as functional description of the
various features which are present 1n a particular implemen-
tation as opposed to a structural schematic of the implemen-
tations described herein. As recognized by those of ordinary
skill 1n the art, items shown separately could be combined
and some 1tems could be separated. The actual number of
instructions sets and how features are allocated among them
may vary from one implementation to another and may
depend 1n part on the particular combination of hardware,
soltware, and/or firmware chosen for a particular implemen-
tation.

[0072] Those of ordinary skill 1n the art will appreciate
that well-known systems, methods, components, devices,
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and circuits have not been described 1n exhaustive detail so
as not to obscure more pertinent aspects ol the example
implementations described herein. Moreover, other eflective
aspects and/or variants do not include all of the specific
details described herein. Thus, several details are described
in order to provide a thorough understanding of the example
aspects as shown 1n the drawings. Moreover, the drawings
merely show some example embodiments of the present
disclosure and are therefore not to be considered limiting.

[0073] While this specification contains many specific
implementation details, these should not be construed as
limitations on the scope of any inventions or of what may be
claimed, but rather as descriptions of features specific to
particular embodiments of particular inventions. Certain
teatures that are described 1n this specification in the context
ol separate embodiments can also be implemented 1n com-
bination 1n a single embodiment. Conversely, various fea-
tures that are described in the context of a single embodi-
ment can also be mmplemented 1n multiple embodiments
separately or in any suitable subcombination. Moreover,
although {features may be described above as acting in
certain combinations and even mitially claimed as such, one
or more features from a claimed combination can in some
cases be excised from the combination, and the claimed
combination may be directed to a subcombination or varia-
tion of a subcombination.

[0074] Similarly, while operations are depicted in the
drawings 1n a particular order, this should not be understood
as requiring that such operations be performed 1n the par-
ticular order shown or in sequential order, or that all illus-
trated operations be performed, to achieve desirable results.
In certain circumstances, multitasking and parallel process-
ing may be advantageous. Moreover, the separation of
various system components in the embodiments described
above should not be understood as requiring such separation
in all embodiments, and i1t should be understood that the
described program components and systems can generally
be 1ntegrated together 1n a single software product or pack-
aged 1into multiple software products.

[0075] Thus, particular embodiments of the subject matter
have been described. Other embodiments are within the
scope of the following claims. In some cases, the actions
recited 1n the claims can be performed in a different order
and still achieve desirable results. In addition, the processes
depicted 1n the accompanying figures do not necessarily
require the particular order shown, or sequential order, to
achieve desirable results. In certain implementations, mul-
titasking and parallel processing may be advantageous.

[0076] Embodiments of the subject matter and the opera-
tions described 1n this specification can be implemented in
digital electronic circuitry, or 1n computer software, firm-
ware, or hardware, including the structures disclosed 1n this
specification and their structural equivalents, or in combi-
nations of one or more of them. Embodiments of the subject
matter described 1n this specification can be implemented as
one or more computer programs, €.g., one or more modules
of computer program instructions, encoded on computer
storage medium for execution by, or to control the operation
of, data processing apparatus. Alternatively, or additionally,
the program instructions can be encoded on an artificially
generated propagated signal, e.g., a machine-generated elec-
trical, optical, or electromagnetic signal, that 1s generated to
encode information for transmission to suitable receiver
apparatus for execution by a data processing apparatus. A
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computer storage medium can be, or be included 1n, a
computer-readable storage device, a computer-readable stor-
age substrate, a random or serial access memory array or
device, or a combination of one or more of them. Moreover,
while a computer storage medium 1s not a propagated signal,
a computer storage medium can be a source or destination of
computer program instructions encoded in an artificially
generated propagated signal. The computer storage medium
can also be, or be included 1n, one or more separate physical
components or media (e.g., multiple CDs, disks, or other
storage devices).

[0077] The term “data processing apparatus” encompasses
all kinds of apparatus, devices, and machines for processing
data, including by way of example a programmable proces-
sor, a computer, a system on a chip, or multiple ones, or
combinations, of the foregoing. The apparatus can include
special purpose logic circuitry, e.g., an FPGA (field pro-
grammable gate array) or an ASIC (application specific
integrated circuit). The apparatus can also include, 1n addi-
tion to hardware, code that creates an execution environment
for the computer program 1n question, €.g., code that con-
stitutes processor firmware, a protocol stack, a database
management system, an operating system, a cross-platform
runtime environment, a virtual machine, or a combination of
one or more of them. The apparatus and execution environ-
ment can realize various different computing model inira-
structures, such as web services, distributed computing and
orid computing inirastructures. Unless specifically stated
otherwise, 1t 1s appreciated that throughout this specification
discussions utilizing the terms such as “processing,” “com-
puting,”

calculating,” “determining,” and “identifying” or
the like refer to actions or processes of a computing device,
such as one or more computers or a similar electronic
computing device or devices, that manipulate or transform
data represented as physical electronic or magnetic quanti-
ties within memories, registers, or other information storage
devices, transmission devices, or display devices of the
computing platform.

[0078] The system or systems discussed herein are not
limited to any particular hardware architecture or configu-
ration. A computing device can include any suitable arrange-
ment of components that provides a result conditioned on
one or more inputs. Suitable computing devices include
multipurpose microprocessor-based computer systems
accessing stored software that programs or configures the
computing system from a general purpose computing appa-
ratus to a specialized computing apparatus 1mplementing
one or more implementations of the present subject matter.
Any suitable programming, scripting, or other type of lan-
guage or combinations of languages may be used to imple-
ment the teachings contained herein 1n software to be used
In programming or configuring a computing device.
[0079] Implementations of the methods disclosed herein
may be performed in the operation of such computing
devices. The order of the blocks presented 1n the examples
above can be varied for example, blocks can be re-ordered,
combined, and/or broken into sub-blocks. Certain blocks or
processes can be performed in parallel. The operations
described 1n this specification can be implemented as opera-
tions performed by a data processing apparatus on data
stored on one or more computer-readable storage devices or
received from other sources.

[0080] The use of “adapted to” or “configured to” herein
1s meant as open and inclusive language that does not
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foreclose devices adapted to or configured to perform addi-
tional tasks or steps. Additionally, the use of “based on™ 1s
meant to be open and inclusive, 1 that a process, step,
calculation, or other action “based on” one or more recited
conditions or values may, in practice, be based on additional
conditions or value beyond those recited. Headings, lists,
and numbering included herein are for ease of explanation
only and are not meant to be limiting.

[0081] It will also be understood that, although the terms
“first,” “second,” etc. may be used herein to describe various
clements, these elements should not be limited by these
terms. These terms are only used to distinguish one element
from another. For example, a first node could be termed a
second node, and, similarly, a second node could be termed
a first node, which changing the meaning of the description,
so long as all occurrences of the “first node” are renamed
consistently and all occurrences of the “second node” are
renamed consistently. The first node and the second node are
both nodes, but they are not the same node.

[0082] The terminology used herein 1s for the purpose of
describing particular i1mplementations only and 1s not
intended to be limiting of the claims. As used in the
description of the implementations and the appended claims,
the singular forms “a,” “an,” and “the” are ntended to
include the plural forms as well, unless the context clearly
indicates otherwise. It will also be understood that the term
“and/or” as used herein refers to and encompasses any and
all possible combinations of one or more of the associated
listed items. It will be further understood that the terms
“comprises”’ and/or “comprising,” when used 1n this speci-
fication, specily the presence of stated features, integers,
steps, operations, elements, and/or components, but do not
preclude the presence or addition of one or more other
features, integers, steps, operations, elements, components,
and/or groups thereof.

[0083] As used herein, the term “if” may be construed to
mean “when” or “upon’ or “in response to determining’” or
“in accordance with a determination™ or “in response to
detecting,” that a stated condition precedent 1s true, depend-
ing on the context. Similarly, the phrase “if it 1s determined
[that a stated condition precedent 1s true]” or “if [a stated
condition precedent 1s true]” or “when [a stated condition
precedent 1s true]” may be construed to mean “upon deter-
mimng”’ or “in response to determining” or “in accordance
with a determination” or “upon detecting” or *“in response to
detecting” that the stated condition precedent 1s ftrue,
depending on the context.

What 1s claimed 1s:
1. A method comprising:
at a device having a processor:

obtaining two-dimensional (2D) information corre-
sponding to a continuous time light signal providing
information about a user 1n a three-dimensional (3D)
environment, the 2D information based on frames
comprising i1mages capturing the continuous time
light signal at one or more frame rates;

obtaining discretization information corresponding to
the one or more {frame rates; and

determining 3D information about the user by inputting
the 2D information and the discretization informa-
tion 1nto a state space model, the state space model
1s a continuous time learnable framework for map-
ping between continuous time 2D scalar mputs and
continuous time scalar 3D outputs.
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2. The method of claim 1, wherein the discretization
information comprises delta information corresponding to
time periods between the frames.

3. The method of claiam 1, wherein the discretization
information comprises nformation associated with the at
least one or more frame rates.

4. The method of claim 1, wherein the 2D information
comprises information associated with 2D locations of joints
of the user.

5. The method of claim 1, wherein the 3D information
provides a 3D model representing at least a portion of the
user.

6. The method of claim 1, wherein the 3D information
provides a 3D representation of at least one joint of the user
at a specified location within the 3D environment.

7. The method of claim 1, wherein the 3D information
provides information associated with an action performed by
the user.

8. The method of claim 7, wherein 3D information
provides information associated with a number of times the
action 1s performed by the user.

9. The method of claim 1, wherein the 3D information
comprises mformation associated with a 3D mesh.

10. The method of claim 1, wherein the continuous time
light signal 1s captured by an image sensor.

11. A non-transitory computer-readable medium compris-
ing instructions that when executed by a processor cause the
processor to perform operations comprising:

obtaining two-dimensional (2D) information correspond-

ing to a continuous time light signal providing infor-
mation about a user 1n a three-dimensional (3D) envi-
ronment, the 2D information based on {rames
comprising images capturing the continuous time light
signal at one or more frame rates;

obtaining discretization information corresponding to the

one or more frame rates; and

determiming 3D information about the user by mnputting

the 2D information and the discretization information
into a state space model, the state space model 1s a
continuous time learnable framework for mapping
between continuous time 2D scalar inputs and continu-
ous time scalar 3D outputs.

12. An electronic device comprising:

a non-transitory computer-readable storage medium; and

one or more processors coupled to the non-transitory

computer-readable storage medium, wherein the non-
transitory computer-readable storage medium com-
prises program instructions that, when executed on the
one or more processors, cause the electronic device to
perform operations comprising:

obtaining two-dimensional (2D) information correspond-

ing to a continuous time light signal providing infor-
mation about a user 1n a three-dimensional (3D) envi-
ronment, the 2D information based on {frames
comprising images capturing the continuous time light
signal at one or more frame rates;

obtaining discretization information corresponding to the

one or more frame rates; and

determining 3D information about the user by inputting

the 2D information and the discretization information
into a state space model, the state space model 1s a
continuous time learnable framework for mapping
between continuous time 2D scalar inputs and continu-
ous time scalar 3D outputs.
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13. The electronic device of claim 12, wherein the dis-
cretization information comprises delta imformation corre-
sponding to time periods between the frames.

14. The electronic device of claim 12, wherein the dis-
cretization information comprises information associated
with the at least one or more frame rates.

15. The electronic device of claim 12, wherein the 2D
information comprises information associated with 2D loca-
tions of joints of the user.

16. The electronic device of claim 12, wherein the 3D
information provides a 3D model representing at least a
portion of the user.

17. The electronic device of claim 12, wherein the 3D
information provides a 3D representation of at least one joint
of the user at a specified location within the 3D environment.

18. The electronic device of claim 12, wherein the 3D
information provides information associated with an action
performed by the user.

19. The electronic device of claim 18, wherein 3D infor-
mation provides information associated with a number of
times the action 1s performed by the user.

20. The electronic device of claim 12, wherein the 3D
information comprises information associated with a 3D
mesh.
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