a9y United States
12y Patent Application Publication (o) Pub. No.: US 2025/0077791 Al

Xu et al.

US 20250077791A1

43) Pub. Date: Mar. 6, 2025

(54)

(71)

(72)

(73)

(21)

(22)

LARGE LANGUAGE MODEL AND
DETERMINISTIC CALCULATOR SYSTEMS
AND METHODS

Applicant: INTUIT INC., Mountain View, CA
(US)

Inventors: Na Xu, Mountain View, CA (US);
Meng CHEN, Mountain View, CA
(US); Conrad De PEUTER, Mountain
View, CA (US); Sricharan Kallur Palli
KUMAR, Mountain View, CA (US)

Assignee: INTUIT INC., Mountain View, CA
(US)

Appl. No.: 18/458,142

Filed: Aug. 29, 2023

Publication Classification

(51) Int. CL.

GOGF 40/40 (2006.01)
(52) U.S. CL

CPC oo, GOGF 40/40 (2020.01)
(57) ABSTRACT

A first large language model (LLM) instance may be
instructed to request data while being prevented from per-
forming calculations using the data. A second LLLM instance
may be 1nstructed to provide a response to the request for
data based on a known complete data set. The response may
be translated into a machine-readable response in a format
configured for processing by a calculation engine. The
calculation engine may process the machine-readable
response, thereby generating a calculation engine output. A
mismatch between the calculation engine output and a
known result obtained using the known complete data set
may be 1dentified, and the instruction to the first LLM may
be modified 1n response.

200

202 — feed LLM initial prompt including data model and role instructions

204 — conversation with user, ask about data model elements

'

206 — receive user response including some or all data model elements

208 — determine which elements are updated by user response

-

210 — perform structured update of data model

'

212 — perform calculations using updated data model

214 — determine next question for user

R

216 — if data model is incomplete, repeat 204-214

Patent Application Publication Mar. 6, 2025 Sheet 1 of 8 US 2025/0077791 Al

l System 100

Calculation Engine

_ Orchestration

110 Engine 130

Client 20 LLM 120

Network 10

Instance C 126

‘ Instance B 124

|
|
|
|
|
|
|
|
Instance A 122 I
|
|
|
|
|
|
|
|

Wmmmm

FIG. 1A

Patent Application Publication Mar. 6, 2025 Sheet 2 of 8 US 2025/0077791 Al

System 100

Calculation Engine Orchestration

110 Engine 130

Client 20 LLMs 120

instance A 122

‘ Instance B 124

Network 10

Instance C 126

FIG. 1B

Patent Application Publication Mar. 6, 2025 Sheet 3 of 8 US 2025/0077791 Al

200

202 — feed LLM initial prompt including data model and role instructions

204 — conversation with user, ask about data model elements

206 — receive user response including some or all data model elements

208 — determine which elements are updated by user response

210 — perform structured update of data model

212 — perform calculations using updated data model

214 — determine next question for user

216 — if data model is incomplete, repeat 204-214

FIG. 2

Patent Application Publication Mar. 6, 2025 Sheet 4 of 8 US 2025/0077791 Al

300

302 — generate instruction to cause LLM to request data while preventing LLM
from performing calculations

304 - present Ul including LLM output

306 — process instruction by LLM to thereby request data through the Ul

308 — receive user response through Ul

310 — translate user response into machine readable response

312 — process machine readable response, thereby generating KE output

314 — modify Ul on basis of KE output

316 — if data model is incomplete, repeat process 300

FIG. 3

Patent Application Publication Mar. 6, 2025 Sheet 5 of 8 US 2025/0077791 Al

400

402 — receive unstructured text

404 - send unstructured text to LLM to attempt to complete data model

406 — receive bindings and possible next set of questions for completeness

408 — convert bindings to KE request

FIG. 4

US 2025/0077791 Al

Mar. 6, 2025 Sheet 6 of 8

Patent Application Publication

L N N R N N N N N N N A A R

S 94

L A I R A A A O NN N

- o M o W W M E M E O EEm oo, . e L LN T e E e e E s s S EEEsEE——...-—-—-———— LN TEE e s --—-————
L]
1 " " K " * ! * D H “ ’ -
4 ' .- L] . L] L L] L + . L]
4 1 .- * . L] L L] L N . L]
1 1 1 - - * " * r * * * * N
- . . *
2 A R e LT S pomndn g snamanus | . 3 ro ..Ku. By : i,%? $ 0CC- coMEAM O
. i, e Al LW " " LM Bt r. ¥ o ” . - 'Y e ..!... _.] v . [, . -._..... H “ %] I \
1 ' A ’ * . K ' . - ’ . . .
1 1 1 * " * ! * N ¢ * N
4 1 .- L] . L] L] L] L + . L]
4 .] L]] L] L L]
.-..-..-..-..-..-..-..-..-..-..-..-..-___.-..-..-..-..-..-..-..-..-..-..-..-..._..- fol U T B N R ..-..-..-..-..-..-..-..-..-.-..-..-..-..-..__.-.-..-..-..-..-..-..-..-..-.-..-..-.t.. s Er B E R EREAEEREEREEE R -_.1.-..-..-..-..-..-..-.'..-..-..-..-..-..-..-..-..-
] . * [-
% * o - r "
M . -
." * I H " “
r1.1.1.1:'1.1;1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.'.1.1.1.1.1.1.1.1.1.1.1.1.1._...1.1_...__11_..11_..11_..11_..11_...1.1._...1_1.1.1.1+$1111.
. h h
h - . i] . i
” " * ..- .__ ..._...._....._...._...._....._...._...._....._...._...._....._...._...._....._...._...._....._...._..-_....._.._.._...._....._...._...._....._...._...._....._...._...._....._...._...._....._..-._.- K
. *]] " [
* . . , , !
SR : _, P v
* . ' . h 'y mr'e _-_._l |lm.. u_',_.-l—m s - N] - u.-.-mﬁ. .
. Voo * ! .) EL R, AR _.Tn_ﬁ. w4 .__:_.ﬂ._. Hor “.._._.l._,-..._._m -_..__l_____.._. _."__W_. ...u.._ ._m.._ ;.n._.u.u. K ;
* ’ ' * i - -
- A * b - .I. H “
* r “_ " * -...._..__..__..._..__..__..._..__..__..._..__..__..._..__..__..._..__..__..._..__..__..._..__..__..._..__..__..._..__..__..._..__..__..._..__..__.-.._..__..__..._..__..__..._..__..__..._..__..l.l.__..l.l.__..l.l.__..l.l.__..l.l.__..l.l.__..l.l.__..l.l.__. Yy
-] L 3 - .
d
. X - r . N . . . -
- ' * .- . I_...I__...-..-.l.-.__.-_ - & .-_-.I_.-.ll_.._.-.__.-_.l_ .-...-_...ET-.. 1
' - " i
” .. * . * .
o : 4 . U’ mﬁmﬂmmmmg :
“ .' . -l - 0 . l
] *
l
* ! * ! * ’ :
L] ! " - , - .
- . e T e IlIIIIlI.I.ILIlIIllnlul.Inllll-l.l.l.llllul?...l. » ..
- . b ' * - + -
* L . - r ﬁ F.ﬁj%mx . ! v 4
-] N v " - 2 .
* % m * ¥ ! L Lo ! r “
m M 4]] .
“ .) . . . : . » -y * y
a .'. -] .__ L 5 A
. . létttttttttttt.r.r..1..1..1..1..1..1..1..1.r.r.r.r.r.r.r..1..1.r..1..1..1..1..1.r..1..1..1..1..1!..1..1.r.r.r..1..1..1..1..1..1.r..1..1..1..1..1..1..1..1.r..1..1..1..1..1..1..1..1.r..1..1..1..1..1..1..1..1.r..1..1..1..1..1..1.....r..1..1..1..1..1..1.r..1..1..1..1..1..1..1..1.rttttttttttttttttttttttt- . [
r L} L} -
X [
- _' ” .” . . » ." K] ..
] : 21ep Josnl IBpoInCu + 3 Do
B [
- % . ” ! i . . . £ » ." » Y
“ O . . . H . . H 4
. e " L L i L] A * = S " & " & - S " & L LN L I e w » L & "] i
- % * r - 111111111111.-_?-.-.- ¥ by
. ' - .1 1 * . 4
- "\ i. r mﬁ Qﬂ . . l 1 ..- N a
: : , icdews andu) 0 . ! : :
” '.' [] -1 H 4 1 [] *. -l
. .' L} ! . i -......_...._........._...._........._...._........._...._........._....1__ N 1
. . - .] i
. L]]] . d
*] . ; * . V- Y
L] '.- . . *] .'. b a
*] . . ' " - N ,
. . . B T el el T Sl R e TR lﬂ{f . K
& % * . ..' L) . ! N “
L]] ' L] mm m [+ -
. L]] . [] . d
‘ y b -l . ﬁga H H " -1- ' : -l
L]] [L) - H) F] -
. h - " X] - i
L] .r “ . ! * " i “
v . .
* I R R N LI R R A e I L N N R R R L IR R A Wk ke e A -k dn o o cdm M e ok o A odmr e, ok - o LA ok - &~ & - .I_....-..-.l.r.._.r..r..?" . . Yy
“ N - " ' * “u ! ..
. . - ' . u
Lo : {1593} .. : ._ Lo
L r . . - * + -
- % * . b * ! I} “
L] .-”.- " .- L] .- , - ..
.) ﬁ'""":""'""""'""""'"""'*"""'"""""""'""""'"""""""‘.""""'""""""""""""'E""""" -1 h. -l
Co : : Lo
- [
L]] L] -] -
- l_.. 1 ! : iy
'] . [
L] .'] e ‘ .'u .-
- . R e . ' . ..
L] L] . . E. e + u
. - . . ' $111__.._..._1__.._..._...__.._..._...__.._..._...__.._..._...__.._..._...i.l.l.i.l.l.i.l.l.i.l.l.i.l.l.i.l.- o Y
f .
' -' - -. .] - . . * -l
o ¥ . .. fIiag 1sa3e) 18803 B IV ‘10 1twosdisadessaw} ;o
» " f » Y
- r ' . T " T . . . T N) H T " M -
* W * ¥ " I
" - N [
L]] . L] - 4 -
Y - r : 1 v i
* | N o L S P U g) ?
L]] . * [L] -
* L .i r . r u 1
' L]]] - i
“ N - . * “ m“ " 1 a4
. . Y
. B : L * y : g
L r " - * ' - "
- b ! . * ' I} -
. prm =l minm e e mm’al el malm alm e mm mrlm, mam.aim o smomn o= Fiml L lmiim t.m owmomLr mlS E. m.a.m mm fmoarmr.E.c.m .moalm om.m m.- m.rE. .=, = oa.mE.m o= om.c.E, .m.im.E am ms mrE. .m, .m LEommmmaromc.s .=iE s) a . u
- % * . . r - ! N “
* [I " . . - ' .
. : : %NGW ! - ! ~ “
.] ? . v o - - .
- * L N] o “
f .
» - b H . . .” » " » Y
- $t1tTtTTTTTTTT.TE.TE.TETE.TETT.TE..1..1..1..1..1..1..1..1..1..1..1..1..1..1..1..1..1..1.....r..1..1..1..1.....r..1..1..1..1..1..1..1..1..1..1..1..1..1..1..1..1.....r..1..1..1..1..1..1..1..1..1..1..1..1..1..1..1..1.....r..1..1..1..1.....r..1..1..1..1..1..1..1..1..1..1.....r..1..1..1..1TtTtTtTtTtTtTtTtTtTtm W : ..
v .
+ ¥ : i + . $ g
- .1 . X) uﬁy ' ¥ ' - .
* ¥ M . 1. . . 2 B H“— i . . ¥ Y
- . R . ' o ¥ ﬁm m * ' " ,
i .
. . : L ! IQUdAsg i ; :
- F " e “n * u
- . h - . I A
.ﬂiii_..._...__.._._._...__.._..._...__.._..._...__.._..._...__.._..._...111111111111111111. [
- r .. ' » -
! * r] . d
.] . W .+ L Om.m - ..
- I . . + h * s v .
L] '. * r . . .] a
' L}]]]
X , . L SR T . #ummmm ONJ @5 m. :
. r" v L) * A & A Svieivieiviein- L L - * LR w - N » * Nvliivivin = L S * & W M :
L] .' ” ! . - ". !
a"r°r" .._u..q.q r’r-r “ror” r’r- r’r-r °r “rTr” T°r°r r°r”° q-q._.._ T°r°r r’r-r “rTr” rr-r “rTr” r’r-r rr-r “r'r" rr-i rertr “r°r- “rTr” T°r°r -7 ‘r'r"a rr-r °Tror ‘r’r” r’r-r r’r-r I r'r-i rr-r “ror°. “rti r’r-r “r°r- r’r- r’r-r -q-q- ‘r'r"a “r- r’r-r 1u
v " .
: . : ¢ » » RN ' & - S i 4 *
-] h » h . . - . K] ..
[]] ' L] - = [] -
. \ * & : . ! .“.Hm u_ ﬁw:m.“, i 4
* ¥ : ' * Se F!W L] - [
- % * r - !) r) “
"] r
S , _. : . R
. . > o Y . ?
v , : . . :_ummwmﬁw mDm.& :
y .) *) [
“ ¥ N ., N ! :
r] L] . . .
. Y .__ r . ! . w . ,
o _ : S] anewasy
- % * b * L . . “
lIIII.--III.__llIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII III|IIlIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIl-IIIIIIIIIIIIIIIII
b " X
] . + . F.
¥ " b 1
y . [e I A R A A A L A N B N R N T S .-._..._.....1................._.. N A I I A I A e e N%.- -
' L]] [} -
' * . [} 1 s
! : .. ﬁ.m mﬁ . "
h - .] .
. .] .
) . % - b - K]
- + + - .
" L]] ﬁ.l,..l.l....l.l,.l.I....l.I....l.I....l.I....l.I....l.I....l.I....l.I....l.I....l.I....l.I....l.I....l.I....l.I....l.I....l.I....l.I....l.I....l.I....-....i....l.l....l.I....l.I....l.I....l.I....l.I....l.I....l.I....l.I....l.I....l.I....l.I....l.I....l.I....l.I....l.I....l.I....l.I....l.I....l..l- i ‘
] ' L] +
% * ! - N
) .__ _.. ' . . F]
\ : , _.,...hm_ .“l..__.__ TOlsagessawi}
"]
] L] 4
' L] .- . -
¥ “ * ...&1:.-.-.r.-.-r.-.-rrrrrrrrrrrrrrrrrrrrrr..__.
. a .
' L]] [} .
L - ' * i + .
! * ¥ M ! N
! a .]
p . . L Aninininininiey » M Jininininininly * + B ‘alinininininiin » +iainininininly &« 9 winininininlink - L «Jininininininks . &.
]) h . * . [
r ' » —
Y L] o . mom T...l.....-..-..-..-.....-. - .-___.l_.-.l.-_.._.-._..-..l. .-.-.-.... .__.
] ' L] -H mmm Mﬂ_— +
.r * -1 : - HEQ m duw mm. “ 1..
. + r ’ .
! - " ." ’ ..-
' L]] - .
.' * .1 i - 4
' ” .” * Qm "illlllIIIlIIIIIlIIIIIIIIlIIIIIII..
) T ¥ : 1
_, . _ : AL 1isafessauu :
o ' - . "
% * ! - - . . L +
] ' L] - -
u * r . L e
¥ - f P h 1 . .
) - r . 1 » e e e .-
L]
¥ N " * - L] — L]
: *) ’ ' i .
. " r . - d r
] v ¥ b ¥ — ..w .w...._ .rnw.._._l »
i * - . ! . b #L—,__.... M“b __u-l."._... r
] * 5 * ! ¥ 1]
. - .) [. i -
: L] b T y l tr' . .
] . h .k . N Fode de e de e e e e e e de e e e e e e ke e e e e b A O
r - L . +
% * ! * ¥ ¥
. o e e e e e e e e e e e e e e e e e e
' ' " _ .
{ * y . ’ oA . ¥
_, : , ; P . :
h . r N ' - L
Y . ’ . ’ oo -...._._.am.-.l.l-. -...._ _.... i ﬂh »
' [[] .] . 4 +
-
.' L] ! . r ¥ o A +
! - 3 L} . R RN NN N
L]] g
_' . -I- L] -.r 5
r " . + ' i N N N RN RN
] h » . F) i :
r [] L]] r - . []
*] - L] d
% ! - - + i R S ..._l... . . .“_.'.-. -
. .
, . . . S U £y e e B R B
% * ! - ! x 1+ II..I.E.-i...‘_-.I . "yt L ...l.._ “-
' £l o . -] lll]
' L] r ' r . . ll
T L] r . ’ : EIC RN N R R BT R R R N R R R R N R N R N]
h - . [- . .
1.-.IIIIIIIIIIII.lIIIIIIIIIIIIq ...IIIIIIIIIIIIIiIIIIIIIIIIIII.- -IIIIIIIIIIIIIIIIl'IIIIIIIIIIIIIIII_-r \IIIIIIIIIIIIII.rIIIIIIIIIIIIIJ... .n.lllIIIIIIII-IIIIIIIIII- .rIIIIIII.l.IIIIIII.-..
L]
‘1 " " * " . ! - - ” ” .
4 ' .- L] . L] L L] L + . L]
4 1 .- L] . L] L L] L N N L]
4 1 .- L] . L] L L] L * . L]
1 .ﬂ.__.-l-.. 4 e . L L] - * L]] L] LY * F - L] * - L] [L] L]
' - p i X i . " ,.__.._ T - L oo ._. e Tl . .___.- .. P - * L Y A A
DLy Uy sl D sndn e od USRI ISR 1Y R T O JuRe : T Tce TR I
[] r. . - . - [3 . [] -
1 ...r " " L .r. a . ” " . Y -_I - M M] I. -_...-.‘ - - [l_l.-.! - H “ i - '_ll. N L "
ot ' ! . : . . . Y . . . N : .
4 1 .- * . L]] L] L N N L]
1 1 1 * " * ! * * ' * N
4 . * L]] L] L] L]
e e e e s E R R R R - 4 L] e X R N T T e

Patent Application Publication = Mar. 6, 2025 Sheet 7 of 8 US 2025/0077791 Al

600

602 — generate instruction to cause first LLM instance to request data while
preventing LLM from performing calculations

604 — generate instruction to cause second LLM instance to respond to request
using known complete data set

606 — process instructions by LLM to simulate conversation

608 — receive simulated response

610 — translate simulated response into machine readable response

612 — process machine readable response, thereby generating KE output

614 — determine no mismatch or determine mismatch and moditfy instructions

616 — for regression testing, repeat process 600

FIG. 6

Patent Application Publication = Mar. 6, 2025 Sheet 8 of 8 US 2025/0077791 Al

A)— 800

702 704

Processor(s) Input Device(s)
712
Operating System 714
Network Sico

ertaces
System 100 Component(s) 718
L 720

708 706 Application(s)

r

710

FIG. 7

US 2025/0077791 Al

LARGE LANGUAGE MODEL AND
DETERMINISTIC CALCULATOR SYSTEMS
AND METHODS

BACKGROUND

[0001] Many computer systems employ very complex
calculations and require similarly complex user interfaces
and complex hardware/software integration. To give one
example, computing an individual’s tax burden 1s a process
which requires hundreds of inputs as well as many nested
calculations, with a backend calculation engine to take the
inputs and run them through the calculation tree. Building
soltware to enable this requires building many data collec-
tion screens as well as orchestration across those screens.
The result 1s an extremely complex tree structure which 1s
difficult and costly to maintain. Moreover, data collection 1s
hard-coded, only enables the system to ask about one
component at a time, and does not handle free-form text to
data model disambiguation. Some view large language mod-
cls (LLMs) as presenting a possible opportunity to automate
away from some of these complexities, but many LLMs
have been shown to struggle with complex calculations and
maintaining consistency.

BRIEF DESCRIPTIONS OF THE

[0002] FIG. 1A shows an example of an interconnected
large language model and calculation system according to
some embodiments of the disclosure.

[0003] FIG. 1B shows another example of an intercon-
nected large language model and calculation system accord-
ing to some embodiments of the disclosure.

[0004] FIG. 2 shows an example process of interaction
between a client and the interconnected system according to
some embodiments of the disclosure.

[0005] FIG. 3 shows an example integrated LLLM/calcu-
lation process according to some embodiments of the dis-
closure.

[0006] FIG. 4 shows an example translation process
according to some embodiments of the disclosure.

[0007] FIG. 5 shows an example integrated LLLLM/calcu-
lation call sequence according to some embodiments of the
disclosure.

[0008] FIG. 6 shows an example integrated LLLLM/calcu-
lation test and configuration process according to some
embodiments of the disclosure.

[0009] FIG. 7 shows a computing device according to
some embodiments of the disclosure.

DRAWINGS

DETAILED DESCRIPTION OF SEVERAL
EMBODIMENTS

[0010] Systems and methods described herein can lever-
age LLMs as data collection tools. For example, LLMs can
obtain data from users through a conversation 1n a user
interface (Ul) setting instead of, or in combination with, tree
structure-based Ul systems. Indeed, using an LLM 1nstead
of a tree structure-based Ul system can allow such data
collection systems to greatly reduce their own internal
complexities. There may be no need to maintain, update,
debug, and check a tree structure. Instead, any systemic
complexities can be offloaded to the LLLM system, which can
be hosted and maintained separately from the data collection
system, i1mproving performance and latency of the data
collection system.

Mar. 6, 2025

[0011] At the same time, care may be taken to ensure that
any processing or calculations using the data collected by
the LLM are handled by appropriate processing or calcula-
tion systems, and not by the LLM. The LLM and the
processing/ calculation backend may be integrated so that the
LLM 1s prevented from making calculations, and the LLM
provides data to the backend that 1s seamlessly ingestible
and usable by the backend.

[0012] In some embodiments, the disclosed systems and
methods can incorporate techniques, methods, and compo-
nents that maintain consistency between non-deterministic
LLM elements and deterministic elements such as process-
ing/calculation backend elements. Alternatively or addition-
ally, the features that maintain consistency between non-
deterministic and deterministic elements can be employed 1n
other contexts besides the LLM/KE combinations proposed
herein.

[0013] For example, LLMs can offer a wide range of
features, including translation, robustness to misspelled
inputs, intelligent routing, and more. When building a LLM
application, small tweaks 1n the input prompt or training data
can lead to regression 1n unexpected behaviors and diverge
from expected behavior, even when the tweaks are seem-
ingly unrelated to the behavior loss. However, a robust
testing framework can solve the 1ssues that standard testing
does not accommodate for LLM workilows. To give an
illustrative, non-limiting example, 11 a user tells an LLM that
they have a dependent, then the information about the
C
C

lependent must be collected by the LLM, but if there 1s no
lependent, 1t must be ensured that the LLLM does not collect
erroneous information about a dependent.

[0014] By employing LLM-based bots to simulate con-
versations and/or a robust regression testing framework,
disclosed embodiments can improve reliability of LLM
behaviors through prompt changes. Utilizing a combination
of an LLM model and a deterministic calculation engine,
these embodiments can provide a robust testing process that

mirrors traditional regression tests while handling the sto-
chastic nature of LLM outputs.

[0015] FIGS. 1A and 1B show examples of interconnected
LL.M and calculation engine (KE) system 100 configurations
according to some embodiments of the disclosure. System
100 may include a variety of hardware, firmware, and/or
soltware components that interact with one another, such as
KE 110 and LLM 120. The operations of KE 110 and LLM
120 are described 1n greater detail below, but 1n general, KE
110 can be any computing services performing calculations
and/or other processing operations on data (e.g., data
received from client 20), and LLM 120 can be any comput-
ing services providing a non-deterministic interface for
interaction with client 20 and/or other computing services.
System 100 can also include orchestration engine 130,
which can coordinate the operations of KE 110 and LLM
120, as described 1n detail below. Some components may
communicate with one another and/or with client(s), such as
client 20, through one or more networks 10 (e.g., the
Internet, an intranet, and/or one or more networks that
provide a cloud environment). For example, as described in
detail below, client 20 can display a Ul with elements
provided by LLM 120, and LLM 120 can obtain data from
a user of client 20 via interactions through the Ul. In some
embodiments, such as the example of FIG. 1A, system 100
components can be provided by separate computing devices
communicating with one another through network 10. For

US 2025/0077791 Al

example, KE 110 and LLM 120 may be respectively pro-
vided within different computing environments connected
by network 10 (e.g., KE 110 may be part of a data processing,
environment and LLM 120 may be provided by a dedicated
LLM service). In other embodiments, such as that of FIG.
2B, KE 110 and LLM 120 may be part of the same
computing environment. Fach component may be imple-

mented by one or more computers (€.g., as described below
with respect to FIG. 7).

[0016] As described in detail below, system 100 can use
LLM 120 to collect data from client 20 for processing by KE
110. Furthermore, 1n some embodiments, system 100 may
include features that improve and/or maintain consistency of
LLM 120 operation. For example, FIGS. 2-6 illustrate the
tfunctioning of the illustrated components in detail.

[0017] System 100 can reduce the complexity of data
collection and processing systems through the combination
of LLM 120 and KE 110. By leveraging the LLM 120 for
data collection, and completely decoupling data collection
with calculations made by KE 110, the engineering com-
plexity of system 100 1s greatly reduced, with no loss to the
calculation complexity. Moreover, while LLMs are notori-
ously weak at anthmetic, system 100 can leverage the
language strengths of LLMs while eliminating the risk of

[LLLM arithmetic mistakes.

[0018] In system 100, calculations and data collections
can be completely decoupled. LLM 120 can handle the data
collection processing, while KE 110 can handle calculations.
As described 1n detail below, 1n an mnitial prompt, LLM 120
can be fed the complete data model to collect and can be
configured to repeatedly question the user until the data
model 1s completely filled.

[0019] Throughout processing, orchestration engine 130
can handle orchestration and state, as described 1n detail
below. For example, orchestration engine 130 can maintain
a data model for each customer. For every customer
response, orchestration engine 130 can send an extra request
to LLM 120 asking for the latest updates to the data model,
and what question should be asked to the customer next.
LLM 120 can handle disambiguation of the customer ver-
biage to the explicit data model (e.g., “1 have no kids”->
“num_dependents=07). If LLM 120 has been tramned to
support multiple languages, those will work out of the box
in system 100.

[0020] Flements illustrated in FIGS. 1A and 1B (e.g.,
system 100 including KE 110, LLM 120, and/or orchestra-
tion engine 130), network 10, and/or client 20) are each
depicted as Single blocks for ease of i1llustration, but those of
ordinary skill 1in the art will appreciate that these may be
embodied 1n different forms for different implementations.

For example, while KE 110, LLM 120, and orchestration
engine 130 are depicted separately, any combination of these
clements may be part of a combined hardware, firmware,
and/or software element. Likewise, while KE 110, LLM
120, and orchestration engine 130 are each depicted as parts
of a single system 100, any combination of these elements
may be distributed among multiple logical and/or physical
locations. Indeed, the disclosed embodiments provide
improvements to distributed computing arrangements.

Moreover, FIGS. 1A and 1B each show a single instance of
KE 110 and orchestration engine 130 and three instances of
LLM 120 (instance A 122, mstance B 124, and instance C
126) for ease of explanation of certain operations, varying

numbers of instances of KE 110, LLLM 120, and/or orches-

Mar. 6, 2025

tration engine 130 may be possible in various embodiments.
Also, while one network 10, one client 20, and one system
100 are 1llustrated, this 1s for clarity only, and multiples of
any of the above elements may be present. In practice, there
may be single mstances or multiples of any of the 1llustrated
clements, and/or these elements may be combined or co-
located.

[0021] In the following descriptions of how system 100
functions, several examples are presented. These examples
are 1n the context of tax calculation processing on data
obtained from client 10. However, those of ordinary skill 1n
the art will appreciate that these examples are merely for
illustration, and system 100 and i1ts methods of use and
operation are extendable to other application and data con-
texts.

[0022] FIG. 2 shows an example process 200 of interac-
tion between client 20 and system 100 according to some
embodiments of the disclosure. Process 200 1s an example of
how a user of client 20 can have a conversation with LLM
120 of system 100 and thereby supply information used by
KE 110. This example 1s provided to give context for the
following descriptions of the mner functioning of these and
other system 100 elements.

[0023] At 202, system 100 can feed LLM 120 an mitial
prompt including a data model and instructions relating to
the role to be played by the LLM 120. For example, as
described in detail below, system 100 can use prompt
engineering to formulate a prompt. The prompt can be
configured to at least relatively constrain LLM 120 to a
conversation focused on eliciting answers that include data
that fills 1n open portions of the data model.

[0024] At 204, LLM 120 of system 100 can 1nitiate a
conversation with the user. In the conversation, LLM 120
can ask customer about data model elements. For example,
if the data model 1s a tax data model configured to obtain
information used to fill out a tax return, questions may be
related to obtaining such information (e.g., “are you mar-
ried?”).

[0025] At 206, system 100 can receive a response from the
user 1n plain text. The response may include a partial or
complete answer to the question(s) posed by LLM 120.

[0026] At 208, system 100 can determine which, 11 any,
clements of the data model are updated by the response
received at 206. LLM 120 may include out of the box
multi-language support, enabling LLLM 120 to translate an
answer given 1n any language known to the LLM 120 into
a language expected for filling 1n the data model. LLM 120
may also perform free-form data mput to structured data
model disambiguation (e.g., “we got hitched” may be con-
verted to ““1s_married’=True”).

[0027] Assuming one or more elements of the data model
can be updated using information in the response, at 210,
system 100 can perform a structured update of the data
model, which may include filling 1n the relevant data model
clements using data from the user’s response (e.g., filling 1n
the entry for “marriage status” with “married” or a number
chosen to represent married status).

[0028] At 212, KE 110 of system 100 can receive the
complete data model, or the data model as far as 1t has been
completed thus far, and perform calculations to further
complete the model. Using the tax form model as an
example, KE 110 can perform tax return calculations based
on the data in the model (e.g., estimated refund, eligible
credits+deductions, etc., any of which may be aflected by

US 2025/0077791 Al

marital status). These calculation results and/or data derived
therefrom can be presented to the user (e.g., “your estimated

retund 1s X7).

[0029] At 214, system 100 can determine what 1s the next
best question to ask the customer. I the entire data model 1s
complete, the answer may be that there are no more ques-
tions required, or that the conversation can move to another
topic. However, if the data model remains incomplete,
system 100 can determine what remains to be filled 1n, and
the questions can be constructed to elicit information to il
in remaining portions of the data model.

[0030] At 216, system 100 can repeat processing at 204-
214 i1 the data model 1s incomplete. Once the data model 1s
complete, process 200 can end. At this point, the data model
may be ready for use (e.g., a tax return may be prepared,
approved, and/or filed), and/or LLM 120 can move on to
other conversation topics with the user.

[0031] FIG. 3 shows an example integrated LLLLM/calcu-
lation process 300 according to some embodiments of the
disclosure. System 100 can perform process 300 1n order to
implement an interaction such as that presented in the
context of process 200, thereby gathering information using
a non-deterministic component and processing the informa-
tion using a deterministic component. Certain technical
details of system 100 component functioning in some
embodiments are also described in the context of process

300 below.

[0032] At 302, system 100 can generate an instruction
configured to cause LLM 120 to request data from a user
while preventing LLM 120 from performing calculations
using the data. In an example wherein LLM 120 1s config-
ured specifically for the purpose of functioning within
system 100, the instruction can be hard-coded into LLM
120. If an off-the-shelf or otherwise more general purpose
LLM 120 1s used, the instruction can be in the form of a
prompt given to LLM 120. The mstruction may be supplied
to the LLM 120 as required by the configuration of the LLM
120, for example using an application programming inter-
tace (API) of LLM 120 and/or by entering a textual prompt
into a text form of LLM 120. A non-limiting example of a
prompt that could be used to istruct LLM 120 to avoid
calculating and only to collect information may be as
follows 1n some embodiments: “You are not able to do
calculations such as estimate or explain refund. Your only
goal 1s to collect the information in the data model. When a
user asks how you calculated their refund, explain that your
role 1s to collect data and you are not calculating the refund
yourself.”

[0033] In some embodiments, the instruction can include
a data model to be completed by data entered in response to
questions posed by LLM 120. To continue the example
wherein an mtegrated LLM 120/KE 110 1s being used to fill
in a tax return instead of a fully deterministic tax return
system, the instructions can include the entire existing data
model, or a portion thereof, that would otherwise have been
traversed deterministically to complete the tax return. In
some embodiments, the instruction can include a textual
representation of the content of the data model. Including
this as some or all of the prompt or context input to LLM 120
may allow LLM 120 to respond 1n a tailored (e.g., tax savvy)
tashion, which may improve outcomes and satisfaction for
the user. Alternatively or additionally, in the tax example, the
instruction can include Internal Revenue Service (IRS)
provided instructions for completing a tax return.

Mar. 6, 2025

[0034] The data model may have multiple components
thereof, so that the data the LLM 120 1s tasked with
obtaining from the user comprises multiple parts. In this
case, the mstruction can be configured to cause the LLM 120
to attempt to obtain a plurality of the multiple parts 1n a
single user-generated response, or as few responses as
possible. For example, LLM 120 can combine multiple
questions 1nto one, such as “Do you have any dividend or
interest income?” In some cases, this can be context-sensi-
tive (e.g., the previous question may be presented when
income 1s below a threshold and the answer 1s likely “no” to
both, whereas separate “Do you have interest,” “Do you
have dividends™ questions can be posed when income 1s
above the threshold and a *“yes” answer becomes more

likely).

[0035] In some embodiments, the instruction can restrict
or prevent LLM 120 from processing the received data in the
manner in which 1t 1s to be processed by KE 110. For
example, LLM 120 can be directed not to perform calcula-
tions (e.g., tax calculations) using the data received from the
user. In this way, system 100 can ensure that KE 110 1s the
component responsible for processing the received data
(e.g., KE 110 1s the component that ultimately performs
calculations using the received data).

[0036] In some embodiments, the mstruction can be con-
structed to ensure consistency based on consistency assur-
ance testing performed by system 100. Details about such
testing are provided below, and 1t will be understood by
those of ordinary skill 1n the art that instructions improved
by the testing techniques disclosed herein may be employed
within process 300.

[0037] At 304, system 100 can present a Ul including
output of LLM 120 to the user. For example, LLM 120
output can be integrated into a Ul of a broader system (e.g.,
a tax return preparation application or any other application
having a deterministic processing backed element coupled
with an LLM). Inputs made into the LLM 120 output Ul
clement (e.g., free-form text mto a text field) may also be
collected by the LLM 120. For example, system 100 may
send data to client 20, through network 10, causing display
of the Ul on a display element of client 20. An input device
of client 20 may capture input made by a user and send the
iput to system 100 through network 10.

[0038] In some embodiments, integration of the LLM 120
output mto a Ul presented using client 20 may include the
following. Client 20 may be in communication with system
100 through network 10, and orchestration engine 130 may
create a session specific to the current user interaction being
facilitated by client 20. Creating the session may include
creating a cookie. Client 20 can store the cookie 1n its local
browser. Orchestration engine 130 may expose an unauthen-
ticated end point of LLM 120 that can take raw user input
and return a raw text output as described in more detail
below. The cookie value from the session can be used for
further conversations, and all calls to LLM 120 for the
conversation in question can be sandboxed in this manner.

[0039] During the session, context can be tracked and
updated by system 100, so that as the LLM 120 1s invoked
moving forward, the current state of the data model and the
conversation can persist. The session can have a timeout
time or period, after which system 100 can close the chat,
thereby preventing too many active connections with LLM

120.

US 2025/0077791 Al

[0040] At 306, system 100 can process, by LLM 120, the
instruction to thereby provide the request for data through
the Ul. For example, as discussed above, LLM 120 can
generate a question intended to elicit an answer including
data for filling 1n a tax return data model. As non-limiting
examples, the following questions may be provided 1in
embodiments wherein LLM 120 1s gathering data for filling
in the tax return data model: “Did you or your spouse
participate 1n a retirement plan or contribute to an IRA? IT
s0, how much did each of you contribute?”” “Do you or your
spouse have any dependents? If yes, please provide the
number of dependents and their age categories (under 13,
under 17, or students aged 17 to 23).” “Did you have any
taxable wages or other mncome sources, like social security,
interests or ordinary or qualified dividends?”

[0041] At 308, system 100 can receive, through the Ul
(c.g., from client 20 through network 10), a user-generated
response to the request for data. The user-generated response
may include at least a portion of the data. In some embodi-
ments, LLM 120 can determine whether the user’s response
1s compliant with a moderation policy. LLM 120 can gen-
crate a message indicating the response 1s out of compliance
if such a determination 1s made, and client 20 can display the
message 1in the Ul For example, 1f the above example
questions are asked, a user could respond with answers such
as “l contributed $21000 to an IRA.” “I have 2 children
under 13,” and “I recerved social security benefits,” respec-
tively, or with other answers that may (or may not, 1n some
cases) mclude a portion of the data.

[0042] At 310, system 100 can translate the user-generated
response 1nto a machine-readable response 1 a format
configured for processing by KE 110. In some embodiments,
translating can include generating a translation instruction
configured to cause LLM 120 to convert the user-generated
response into the machine-readable response. LLM 120 can
process the translation instruction, and KE 110 can receive
the machine-readable response from LLM 120.

[0043] For example, FIG. 4 shows an example translation
process according to some embodiments of the disclosure.
At 402, orchestration engine 130 can intercept the user-
generated response received by LLM 120 when the user
responds to the LLM 120 question in the UI. The user-
generated response can be 1n the form of unstructured text.
Orchestration engine 130 can drive the orchestration of KE
110 calculations based on the response, which can begin by

structuring the response 1n a format suitable for processing
by KE 110.

[0044] At 404, orchestration engine 130 can send the
unstructured text to LLM 120 with instructions configured to
cause LLM 120 to use the unstructured text to try to
complete the data model. In some embodiments, different
instances of LLM 120 may perform diflerent portions of the
process. For example, mstance A 122 can carry on the
conversation with the user, and instance B 124 can try to
complete the data model. The instructions provided to each
respective mstance can dictate the task of each respective
instance. For example, mstance A 122 can be provided
instructions like those given at 302 of process 300 config-
ured to cause LLM 120 to request data from a user while
preventing LLM 120 from performing calculations using the
data. Instance B 124 can be given 1nstructions configured to
cause 1t to complete the data model, such as the following,
non-limiting example instructions:

Mar. 6, 2025

[0045] You are an information extractor that always
responds with a JSON object. You will be given a JSON data
model and a conversation. You need to extract the values

from the conversation provided and use them to update the
data model given below.

Examples

>> Input
Data Model: {{“info”:{{*full _name”:*string”, “birthdate:“date”}}}}
assistant: What 1s your name and birthdate?

user: my name 1s John Doe and my birthdate 1s jan 1 2012.
>> Qutput
{{*“info”:{{*“full _name”:*John Doe”}}}}

>> Input
Data Model: {{*“item”:{{*“amount’:*“float”, “type”:“string”}}} }
assistant: What was the amount?

user: $1701.12
>> Qutput
{{“item”:{{*amount™:1701.12}} } }

>> Input
Data Model: {{“section1”:{{*valuel”:*boolean”}}}}

assistant: What 1s your value for sectionl: valuel?
user: False

>> Qutput

{{*“sectionl”:{{“valuel”:False}}}}

[0046] At 406, LLLM 120 can produce bindings (e.g., a
tully qualified name defining bindings, such as the example
outputs 1n the preceding paragraph) and a possible next set
of questions that may produce completeness of the data
model or at least tend to further complete the data model. For
example, LLM 120 can use information indicating what data
has been received and/or what data has not yet been
received, and select a question configured to obtain data that
has not yet been received.

[0047] At 408, LLM 120 can convert the bindings to a
request to KE 110 formulated to cause KE 110 to perform
calculations using the data in the data model. In some
embodiments, yet another mnstance of LLM 120 may per-
form this portion of the process. For example, instance C
126 can convert the bindings to a KE 110 request. For
example, LLM 120 can use a predefined mapping from an
LILM 120 data model to a KE 110 data model, which can be
used when the respective models have different formats or
languages. For example, in some embodiments the LLM 120
data model 1s JSON and the KE 110 data model 1s XML, so
a mapping between the two 1s used. This may be necessary
because some LLMs 120 do not perform well using XML,
so the LLM 120 can use JSON even 1f KE 110 uses XML.
In some embodiments, the data model used by LLM 120 can
be equivalent to the one used by KE 110, and no mapping
would be necessary i such embodiments.

[0048] In some embodiments, translating can include
applying a data extraction model to the user-generated
response, thereby generating the machine-readable
response. For example, rather than requesting bindings from
LLM 120, system 100 can compare the unstructured text (or
a processed version thereol, for example with extraneous
conversational data removed) with the data model to 1identity
data that matches elements of the model. This may be
ellective 1n cases where the LLM 120 asks the user for small
amounts ol information at a time (e.g., “what 1s your

US 2025/0077791 Al

salary?””), because system 100 can use the known question
topic to find and fill the appropriate entry within the data
model.

[0049] Returning to FIG. 3, at 312, system 100 can pro-
cess, by KE 110, the machine-readable response, thereby
generating a calculation engine output. KE 110 can perform
calculations or other processing using the available data that
has been added to or otherwise related to the model through
processing at 310. Using the tax calculation example, KE
110 can update an expected refund based on the information
provided by the user thus far, for example.

[0050] At 314, system 100 can modify the Ul to include an
indication of the calculation engine output. For example,
system 100 can send KE 110 output from 312, or an
indication thereof, to client 20 through network 10, and
client 20 can display this information in the Ul. Again using
the tax calculation example, client 20 can show an updated
expected refund after each answer 1s provided by the user
and each round of processing by KE 110 1s performed.

[0051] At 316, system 100 can repeat process 300 11 the
data model 1s 1ncomplete For example, system 100 can
determine that the data that has been receirved provides less
than all of the data required to complete the data model,
LLM 120 can make at least one additional request for at least
a portion of remaining data 1in the manner described above.
Additional instructions to LLM 120 can maintain the pre-
vention against performing calculations but can prompt
LLM 120 to ask diflerent questions to obtain different data
than in the previous iteration(s) of process 300. Additional
answers can be received, translated, and processed as
described above.

[0052] FIG. 5 shows an example integrated LLLM/calcu-
lation call sequence 500 according to some embodiments of
the disclosure. In the ladder diagram of call sequence 500,
device elements are mapped to their equivalents 1 FIGS.
1A-1B and messages are mapped to their equivalents 1n FIG.

3. For example, the call sequence involves client 20 (TTO
Web), KE 110 (Knowledge Engine), LLM 120 (GenStudio

Chat API, Open Al Moderation API, and Open Al Chat API,
which are APIs providing specific portions of LLM func-
tionality in some example LLM 120 systems), and orches-
tration engine 130 (ADTP Service). Messages correspond
with processing at 304-314 of process 300.

[0053] In some embodiments, system 100 may be config-
ured to ensure and/or improve consistency ol operations
involving KE 110 and LLM 120 working in combination.
System 100 may be configured to ensure and/or improve
such consistency for other systems (e.g., where system 100
1s a test system and other systems which may or may not be
configured similarly to system 100 are runtime systems),
system 100 may be configured to ensure and/or improve
consistency of its own operations, or a combination thereof.

[0054] As described 1n detail below, system 100 may be
configured to develop effective prompts and train LLM 120.
This may include providing LLM 120 with deterministic
data sets, targeting specific types of input data, and explicitly
defining the desired output data format to effectively guide
LLM 120 1n generating the required outputs.

[0055] System 100 may simulate Al-assisted conversa-
tions, for example by executing a multi-stage Al interaction
process 1ncluding the following roles: a requesting bot
configured to formulate queries and request specific mput
data, a responding bot configured to provide the correspond-
ing data by simulating a human user 1n a production setting

Mar. 6, 2025

answering the requesting AI’s questions based on LLM 120
guidance, and/or a summarizing bot configured to compile
and summarize data obtained from the interaction into an
expected output format. In some embodiments, different
examples or “personas” of responding bots may be used to
simulate conversations diflerently (e.g., “talkative and
responds to everything,” “skips questions,” “tries to guide
the conversation off-topic,” etc.).

[0056] As with the runtime implementations described
above, system 100 may include integration with a determin-
istic KE 110. System 100 may send the data generated by the
LLM 120 through the multi-stage Al conversation to KE 110
to check for consistent and accurate computation of test
results.

[0057] System 100 may perform regression tests by per-
forming the tests multiple times to assess the operational
ellectiveness, ensuring a predetermined success threshold 1s
consistently met. Regression tests may have randomness
built 1n to ensure that the LLM 120 can be robust to many
different types of inputs by users. For example, system 100
can set a temperature parameter of LLM 120 high so that
LLM 120 provides relatively distinct responses with each
regression test. The inclusion of regression tests in the
process can increase the robustness ol the system 100
evaluation, allowing 1t to handle the uncertainties of LLM
120 outputs.

[0058] The above-described operations allow for the cre-
ation of a system 100 that effectively combines the nuances
of non-deterministic language models and deterministic
calculation engines through the application of regression
tests to ensure accurate and consistent outcomes.

[0059] Consistency testing and assurance embodiments of
system 100 can leverage the multiple instances of LLM 120
(e.g., mstance A 122, mstance B 124, instance C 126, and/or
additional instances (not pictured)). One or more instance
may be provided with deterministic data sets, targeting
specific types of input data, and with an explicit definition of
the desired output data format to effectively guide the model
in generating desired outputs.

[0060] The mnstances may be configured to simulate an
Al-assisted conversation through a multi-stage Al 1interac-
tion process including the following roles. One instance
(e.g., mstance A 122) may be configured to generate text for
a requesting bot that formulates queries and requests specific
input data. Another instance (e.g., instance B 124) may be
configured to generate text for a respondmg bot providing
the corresponding data by answering the requesting bot’s
questions. Yet another instance (e.g., instance C 126) may be
configured to generate text for a summarizing bot that
compiles and summarizes data obtained from the interaction
into a desired output format (e.g., a format useable by KE

110, as described above).

[0061] System 100 can send the data generated by the
LLM 120 through the multi-stage Al conversation to KE
110, which can perform calculations based on the data
derived from the conversation to check the data and thereby
ensure the consistent and accurate computation of test
results.

[0062] System 100 can perform regression tests by run-
ning the above-referenced conversations multiple times to
assess the operational eflectiveness, ensuring a predeter-
mined success threshold 1s consistently met. The inclusion

US 2025/0077791 Al

of regression tests in the process can increase the robustness
of the evaluation, allowing 1t to handle the uncertainties of

LLM 120 outputs.

[0063] FIG. 6 shows an example integrated LLM/calcu-
lation test and configuration process 600 according to some
embodiments of the disclosure. System 100 can perform
process 600 1n order to test for correct functioning of LLM
120 and/or improve 1ts functioning to enable live interaction
such as that presented in the context of process 200.

[0064] At 602, system 100 can generate an instruction
(e.g., a first test mstruction) configured to cause one mstance
of LLM 120 (e.g., instance A 122) to request data from a user
while preventing instance A 122 from performing calcula-
tions using the data. These instructions may be similar to, or
the same as, those used at 602 of process 300 as described
above. In an example wherein mstance A 122 1s configured
specifically for the purpose of functioning within system
100, the instruction can be hard-coded into LLLM 120. If an
ofl-the-shelf or otherwise more general purpose LLM 120 1s
used, the 1nstruction can be 1n the form of a prompt given to
instance A 122. The instruction may be supplied to instance
A 122 as required by the configuration of the LLM 120, for
example using an API of LLM 120 and/or by entering a
textual prompt nto a text form of LLM 120.

[0065] In some embodiments, the imstruction can include
a data model to be completed by data entered in response to
questions posed by istance A 122. To continue the example
wherein an integrated LLM 120/KE 110 1s being used to {ill
in a tax return instead of a fully determimstic tax return
system, the mstructions can include the entire existing data
model, or a portion thereof, that would otherwise have been
traversed deterministically to complete the tax return. In
some embodiments, the instruction can include a textual
representation of the content of the data model. Including
this as some or all of the prompt or context input to instance
A 122 may allow instance A 122 to respond in a tailored
(e.g., tax savvy) fashion, which causes instance A 122 to
function similarly to LLM 120 1in process 300, making
process 600 an eflective simulation of process 300. Alter-
natively or additionally, in the tax example, the instruction
can 1include Internal Revenue Service (IRS) provided
instructions for completing a tax return.

[0066] The data model may have multiple components
thereol, so that the data instance A 122 1s tasked with
obtaining from the user comprises multiple parts. In this
case, the instruction can be configured to cause instance A
122 to attempt to obtain a plurality of the multiple parts 1n
a single user-generated response, or as few responses as
possible. For example, instance A 122 can combine multiple
questions 1nto one, such as “Do you have any dividend or
interest income?” In some cases, this can be context-sensi-
tive (e.g., the previous question may be presented when
income 1s below a threshold and the answer 1s likely “no” to
both, whereas separate “Do you have interest,” “Do vou
have dividends™ questions can be posed when income 1s
above the threshold and a *yes” answer becomes more
likely).

[0067] In some embodiments, the instruction can restrict
or prevent instance A 122 from processing the received data
in the manner 1n which 1t 1s to be processed by KE 110. For
example, instance A 122 can be directed not to perform
calculations (e.g., tax calculations) using the data received

from the user. In this way, system 100 can ensure that KE
110 1s the component responsible for processing the received

Mar. 6, 2025

data (e.g., KE 110 1s the component that ultimately performs
calculations using the received data).

[0068] At 604, system 100 can generate an instruction
(e.g., a second test mnstruction) configured to cause another
instance of LLM 120 (e.g., mnstance B 124) to respond to a
request from instance A 122 as though instance B 124 were
a user attempting to perform the tasks enabled by system 100
(e.g., tax document preparation. For example, the instruction
can attempt to simulate user input received 1n process 300 as
described above. The instruction to instance B 124 can
include a known complete data set. The known complete
data set can be a completely filled-1n data model or a full set
of data needed to completely fill 1n the data model. The
values of the data of the known complete data set may be
known 1n order to facilitate checking of LLM 120 perfor-
mance as described 1n detail below. In an example wherein
instance B 124 1s configured specifically for the purpose of
functioning within system 100, the mstruction can be hard-
coded mto LLM 120. If an ofi-the-shelf or otherwise more
general purpose LLM 120 1s used, the mnstruction can be 1n
the form of a prompt given to instance B 124. The instruc-
tion may be supplied to instance B 124 as required by the
configuration of the LLM 120, for example using an API of
LLM 120 and/or by entering a textual prompt mnto a text
form of LLM 120. A non-limiting example of an instruction
configured to simulate a user may be as follows:

[0069] You are an individual in the US looking to {file
your taxes and you are talking to a tax expert.

[0070] You need to answer the expert questions based
on your information, {persona_str} This is your infor-
mation:

{

json.dumps(user__data__model, indent=4)

h

[details on user personality. e.g. ““‘you have a tendency to bring the
conversation off-topic™]

[0071] At 606, LLM 120 can process the instructions
generated at 602 and 604 to simulate a conversation. For
example, mstance A 122 can process the first test instruction
to thereby provide the request for data to instance B 124.
Using the tax example discussed above, instance A 122 can
ask a conversational text question such as “Do you have
chuldren?” or the like. Instance B 124 can process the second
test struction to thereby provide a response to the request
for data generated by instance A 122. The response can
include at least a portion of the data for filling 1n the data
model (e.g., “Yes I have two children” or the like).

[0072] In some embodiments, system 100 can determine
that the response by instance B 124 includes less than all of
the data required to fill 1n the data model, which may suggest
that the conversation should continue until all such data 1s
collected. For example, the instructions to mnstance A 122
may indicate that, upon receiving some of the data that 1s
less than all data required to {ill 1n the data model, 1t should
make at least one additional request for at least a portion of
remaining data. In response, mstance B 124 can provide at
least one additional response to the at least one additional
request, thereby providing more of the data for completing
the model. The following 1s a non-limiting example of
possible structions to mnstance A 122:

US 2025/0077791 Al

Rules for Ending Conversation:

[0073] The conversation ends only when all the fields in
the data model have been answered by the user.
[0074] Moreover, in some embodiments, KE 110 may be
configured to supply instance A 122 with information
regarding whether the fields 1n the data model have been
answered by the user. For example, KE 110 may have
mstructions encoded so that for each 1item 1n the data model,
1f the 1tem 1s not filled 1n after an answer 1s received, KE 110
can return a request to formulate a question for collection of
the 1tem. This can help prevent 1ssues wherein LLM 120
attempts to end the conversation early, 1f for some reason
LLM 120 thinks the data model has been filled when 1t 1s
not. In these scenarios, the deterministic completeness sys-
tem can be used to ensure the conversation does not sufler

from early stopping.

[0075] At 608, system 100 can receive some or all of the
outcome of the simulated conversation between LLM 120
instances. The data received at 608 can 1nclude at least the
simulated response by instance B 124, or a portion thereof,
including the data for filling 1n the model.

[0076] At 610, system 100 can translate the simulate
response 1nto a machine-readable response in a format
configured for processing by KE 110. In some embodiments,
translating can include generating a translation instruction
configured to cause LLM 120 to convert the user-generated
response 1nto the machine-readable response. LLM 120 can
process the translation instruction, and KE 110 can receive
the machine-readable response from LLM 120. In some
embodiments, the translation instruction can be given to a
third mstance of LLM 120 (e.g., instance C 126). Instance C
126 can perform processing described as being performed
by LLM 120 in the description of process 400 given above
with respect to FIG. 4, for example. When multiple
responses to multiple questions have been generated by
instance B 124, the translating can include translating all
responses to {ill in the data model as much as possible.
[0077] At 612, system 100 can process, by KE 110, the
machine-readable response, thereby generating a calculation
engine output. KE 110 can perform calculations or other
processing using the available data that has been added to or
otherwise related to the model through processing at 310.
Using the tax calculation example, KE 110 can update an
expected refund based on the information provided by the
simulated conversation, for example.

[0078] At 614, system 100 can determine whether or not
there 1s a mismatch between the data collected through the
simulated conversation and the data within the known
complete data set. For example, KE 110 can process the data
within the known complete data set to generate another
calculation engine output, and orchestration engine 130
and/or KE 110 can compare the output generated at 612 with
this output. In some embodiments, KE 110 may have
previously perform the calculations using the known com-
plete data set and may have access to a stored known result
of such previously performed calculations. If the outputs are
different, system 100 can determine that the wrong infor-
mation was collected through the simulated conversation. It
may be inferred that the questions asked by instance A 122
were not ellective in obtaining accurate information from
instance B 124, and the mstructions may be modified to
more accurately collect the information 1n a future attempt.
[0079] At 616, system 100 can repeat process 600 to
perform regression testing. If modifications to the mnstruc-

Mar. 6, 2025

tions were made at 614, repeating process 600 can determine
whether the modifications 1mprove the accuracy of data
collection. On the other hand, even 1f no modifications were
made, regression testing can be performed to ensure that
repeated uses of the same instructions will provide repeat-
edly consistent results. If the accuracy of results degrades
with repeated regression testing, system 100 can make
modifications 1n future iterations ol processing at 614, for
example.

[0080] FIG. 7 shows a computing device 700 according to
some embodiments of the disclosure. For example, comput-
ing device 700 may function as a single system 100 or any
portion(s) thereof, or multiple computing devices 700 may
function as a system 100.

[0081] Computing device 700 may be implemented on
any electronic device that runs software applications derived
from compiled instructions, including without limitation
personal computers, servers, smart phones, media players,
clectronic tablets, game consoles, email devices, etc. In
some 1mplementations, computing device 700 may include
one or more processors 702, one or more input devices 704,
one or more display devices 706, one or more network
interfaces 708, and one or more computer-readable mediums
710. Each of these components may be coupled by bus 712,
and 1n some embodiments, these components may be dis-
tributed among multiple physical locations and coupled by
a network.

[0082] Display device 706 may be any known display
technology, including but not limited to display devices
using Liquid Crystal Display (LCD) or Light Emitting
Diode (LED) technology. Processor(s) 702 may use any
known processor technology, including but not limited to
graphics processors and multi-core processors. Input device
704 may be any known input device technology, including
but not limited to a keyboard (including a virtual keyboard),
mouse, track ball, and touch-sensitive pad or display. Bus

712 may be any known internal or external bus technology,
including but not limited to ISA, EISA, PCI, PCI Express,

NuBus, USB, Serial ATA or FireWire. In some embodi-
ments, some or all devices shown as coupled by bus 712 may
not be coupled to one another by a physical bus, but by a
network connection, for example. Computer-readable
medium 710 may be any medium that participates 1n pro-
viding 1nstructions to processor(s) 702 for execution, includ-
ing without limitation, non-volatile storage media (e.g.,
optical disks, magnetic disks, flash drives, etc.), or volatile
media (e.g., SDRAM, ROM, etc.).

[0083] Computer-readable medium 710 may include vari-
ous nstructions 714 for implementing an operating system
(e.g., Mac OS®, Windows®, Linux). The operating system
may be multi-user, multiprocessing, multitasking, multi-
threading, real-time, and the like. The operating system may
perform basic tasks, including but not limited to: recogniz-
ing mput from input device 704; sending output to display
device 706; keeping track of files and directories on com-
puter-readable medium 710; controlling peripheral devices
(e.g., disk dnives, printers, etc.) which can be controlled
directly or through an I/O controller; and managing trailic on
bus 712. Network communications instructions 716 may
establish and maintain network connections (e.g., soltware

for implementing communication protocols, such as TCP/IP,
HTTP, Ethernet, telephony, etc.).

[0084] System 100 components 718 may include the sys-
tem elements and/or the instructions that enable computing

US 2025/0077791 Al

device 700 to perform functions of system 100 as described
above. Application(s) 720 may be an application that uses or
implements the outcome of processes described herein and/
or other processes. In some embodiments, the various pro-
cesses may also be implemented 1n operating system 714.

[0085] The described features may be implemented 1n one
or more computer programs that may be executable on a
programmable system including at least one programmable
processor coupled to receive data and 1nstructions from, and
to transmit data and instructions to, a data storage system, at
least one put device, and at least one output device. A
computer program 1s a set of instructions that can be used,
directly or indirectly, in a computer to perform a certain
activity or bring about a certain result. A computer program
may be written in any form of programming language (e.g.,
Objective-C, Java), including compiled or interpreted lan-
guages, and it may be deployed 1n any form, including as a
stand-alone program or as a module, component, subroutine,
or other unit suitable for use 1n a computing environment. In
some cases, mstructions, as a whole or 1n part, may be 1n the
form of prompts given to a large language model or other
machine learning and/or artificial intelligence system. As
those of ordinary skill 1n the art will appreciate, instructions
in the form of prompts configure the system being prompted
to perform a certain task programmatically. Even 1t the
program 1s non-deterministic 1n nature, 1t 1s still a program
being executed by a machine. As such, “prompt engineer-
ing” to configure prompts to achieve a desired computing
result 1s considered heremn as a form of implementing the
described features by a computer program.

[0086] Suitable processors for the execution of a program
of instructions may include, by way of example, both
general and special purpose microprocessors, and the sole
processor or one of multiple processors or cores, of any kind
of computer. Generally, a processor may recerve mstructions
and data from a read-only memory or a random access
memory or both. The essential elements of a computer may
include a processor for executing instructions and one or
more memories for storing instructions and data. Generally,
a computer may also include, or be operatively coupled to
communicate with, one or more mass storage devices for
storing data files; such devices include magnetic disks, such
as internal hard disks and removable disks; magneto-optical
disks; and optical disks. Storage devices suitable for tangi-
bly embodying computer program instructions and data may
include all forms of non-volatile memory, including by way
of example semiconductor memory devices, such as
EPROM, EEPROM, and flash memory devices; magnetic
disks such as internal hard disks and removable disks;
magneto-optical disks; and CD-ROM and DVD-ROM disks.
The processor and the memory may be supplemented by, or
incorporated i, ASICs (application-specific integrated cir-
cuits).

[0087] To provide for interaction with a user, the features
may be implemented on a computer having a display device
such as an LED or LCD monitor for displaying information
to the user and a keyboard and a pointing device such as a
mouse or a trackball by which the user can provide mput to
the computer.

[0088] The features may be implemented 1n a computer
system that includes a back-end component, such as a data
server, or that includes a middleware component, such as an
application server or an Internet server, or that includes a
front-end component, such as a client computer having a

Mar. 6, 2025

graphical user interface or an Internet browser, or any
combination thereof. The components of the system may be
connected by any form or medium of digital data commu-
nication such as a communication network. Examples of
communication networks include, e.g., a telephone network,
a LAN, a WAN, and the computers and networks forming
the Internet.

[0089] The computer system may include clients and
servers. A client and server may generally be remote from
cach other and may typically interact through a network. The
relationship of client and server may arise by virtue of
computer programs running on the respective computers and
having a client-server relationship to each other.

[0090] One or more features or steps of the disclosed
embodiments may be implemented using an API and/or
SDK, 1n addition to those functions specifically described
above as being implemented using an API and/or SDK. An
API may define one or more parameters that are passed
between a calling application and other software code (e.g.,
an operating system, library routine, function) that provides
a service, that provides data, or that performs an operation
or a computation. SDKs can include APIs (or multiple
APIs), integrated development environments (IDEs), docu-
mentation, libraries, code samples, and other utilities.

[0091] The API and/or SDK may be implemented as one
or more calls 1n program code that send or receive one or
more parameters through a parameter list or other structure
based on a call convention defined in an API and/or SDK
specification document. A parameter may be a constant, a
key, a data structure, an object, an object class, a variable, a
data type, a pointer, an array, a list, or another call. API
and/or SDK calls and parameters may be implemented 1n
any programming language. The programming language
may define the vocabulary and calling convention that a
programmer will employ to access functions supporting the

API and/or SDK.

[0092] In some implementations, an API and/or SDK call
may report to an application the capabilities of a device
running the application, such as iput capability, output
capability, processing capability, power capability, commu-
nications capability, etc.

[0093] While various embodiments have been described
above, 1t should be understood that they have been presented
by way of example and not limitation. It will be apparent to
persons skilled 1n the relevant art(s) that various changes in
form and detail can be made therein without departing from
the spirit and scope. In fact, after reading the above descrip-
tion, 1t will be apparent to one skilled 1n the relevant art(s)
how to implement alternative embodiments. For example,
other steps may be provided, or steps may be eliminated,
from the described flows, and other components may be
added to, or removed from, the described systems. Accord-
ingly, other implementations are within the scope of the
following claims.

[0094] In addition, it should be understood that any figures
which highlight the functionality and advantages are pre-
sented for example purposes only. The disclosed methodol-
ogy and system are each sufliciently tlexible and configur-
able such that they may be utilized 1n ways other than that

shown.
[0095] Although the term ““at least one” may oiten be used
in the specification, claims and drawings, the terms *“a”,
“an”, “the”, “said”, etc. also signity *“at least one” or “the at

least one™ 1n the specification, claims and drawings.

US 2025/0077791 Al

[0096] Finally, it 1s the applicant’s 1ntent that only claims
that include the express language “means for” or “step for”
be interpreted under 35 U.S.C. 112 (1). Claims that do not
expressly include the phrase “means for” or “step for” are

not to be mterpreted under 35 U.S.C. 112 (1).

What 1s claimed 1s:

1. A method comprising:

generating, by at least one processor, a first test instruction
configured to cause a first large language model (LLM)
instance to request data while preventing the first LLM
instance from performing calculations using the data;

generating, by the at least one processor, a second test
instruction configured to cause a second LLM instance
to respond to the request, wherein the second test
instruction includes a known complete data set;

receiving a response to the request for data generated by
the second LLM instance, the response including at
least a portion of the data;

translating the response 1nto a machine-readable response
in a format configured for processing by a calculation
engine executed by the at least one processor;

processing, by the calculation engine executed by the at
least one processor, the machine-readable response,
thereby generating a calculation engine output;

identifying, by the at least one processor, a mismatch
between the calculation engine output and a known
result obtained using the known complete data set; and

moditying, by the at least one processor, the first test
instruction 1n response to the mismatch.

2. The method of claim 1, wherein:

the recerving comprises determining that the response
includes less than all of the data;

the first LLM 1instance makes at least one additional
request for at least a portion of remaining data and the
second LLM 1nstance makes at least one additional
response to the at least one additional request; and

the translating includes translating the response and the at
least one additional response.

3. The method of claim 1, wherein:
the data comprises multiple parts; and

the first test istruction 1s further configured to cause the
first LLM 1nstance to attempt to obtain a plurality of the
multiple parts 1n a single response.

4. The method of claim 1, wherein the translating com-
Prises:

generating, by the at least one processor, a translation

instruction configured to cause a third LLM 1nstance to
convert the response mto the machine-readable
response; and

receiving, by the at least one processor, the machine-

readable response from the third LLM instance.

5. The method of claim 1, wherein the translating com-
prises applying, by the at least one processor, a data extrac-
tion model to the response, thereby generating the machine-
readable response.

6. The method of claim 1, turther comprising processing,
by the calculation engine executed by the at least one
processor, the known complete data set, thereby generating
the known result.

7. A method comprising:

generating, by at least one processor, a first test instruction
configured to cause a first large language model (LLM)
instance to request data while preventing the first LLM
instance from performing calculations using the data;

Mar. 6, 2025

generating, by the at least one processor, a second test
istruction configured to cause a second LLM 1nstance
to respond to the request, wherein the second test
instruction includes a known complete data set;

processing, by the first LLM instance executed by the at
least one processor, the first test instruction to thereby
provide the request for data to the second LLM
instance;

processing, by the second LLM 1nstance executed by the
at least one processor, the second test instruction to
thereby provide a response to the request for data
generated by the first LLM 1nstance, the response
including at least a portion of the data;

translating the response into a machine-readable response
in a format configured for processing by a calculation
engine executed by the at least one processor;

processing, by the calculation engine executed by the at
least one processor, the machine-readable response,
thereby generating a calculation engine output;

identifying, by the at least one processor, a mismatch
between the calculation engine output and a known
result obtained using the known complete data set; and

modifying, by the at least one processor, the first test
instruction 1n response to the mismatch.

8. The method of claim 7, wherein:

the receiving comprises determining that the response
includes less than all of the data;

the first LLM 1instance makes at least one additional
request for at least a portion of remaining data and the
second LLM 1nstance makes at least one additional
response to the at least one additional request; and

the translating includes translating the response and the at
least one additional response.

9. The method of claim 7, wherein:
the data comprises multiple parts; and

the first test mnstruction 1s further configured to cause the
first LLM 1nstance to attempt to obtain a plurality of the
multiple parts 1n a single response.

10. The method of claim 7, wheremn the translating
COmprises:

generating, by the at least one processor, a translation
instruction configured to cause a third LLM 1nstance to
convert the a user-generated response into the machine-
readable response; and

processing, by the third LLM 1nstance executed by the at
least one processor, the translation instruction to
thereby convert the response 1nto the machine-readable
response.

11. The method of claim 7, further comprising processing,
by the calculation engine executed by the at least one
processor, the known complete data set, thereby generating
the known result.

12. A system comprising;:

at least one processor; and

at least one non-transitory computer-readable memory
storing instructions that, when executed by the at least
one processor, cause the at least one processor to
perform processing comprising:
generating a first test mstruction configured to cause a
first large language model (LLLLM) instance to request
data while preventing the first LLM instance from
performing calculations using the data;

US 2025/0077791 Al

generating a second test instruction configured to cause
a second LLM instance to respond to the request,
wherein the second test imstruction includes a known
complete data set;
receiving a response to the request for data generated
by the second LLM instance, the response including
at least a portion of the data;
translating the response 1into a machine-readable
response 1n a format configured for processing by a
calculation engine executed by the at least one
Processor;
processing, by the calculation engine, the machine-
readable response, thereby generating a calculation
engine output;
identifying a mismatch between the calculation engine
output and a known result obtained using the known
complete data set; and
moditying the first test instruction in response to the
mismatch.
13. The system of claim 12, wherein:
the receiving comprises determining that the response
includes less than all of the data;
the first LLM 1nstance makes at least one additional
request for at least a portion of remaining data and the
second LLLM 1nstance makes at least one additional
response to the at least one additional request; and
the translating includes translating the response and the at
least one additional response.
14. The system of claim 12, wherein:
the data comprises multiple parts; and
the first test istruction 1s further configured to cause the
first LLM 1nstance to attempt to obtain a plurality of the
multiple parts 1n a single response.
15. The system of claam 12, wherein the translating
COmMprises:

Mar. 6, 2025

generating a translation istruction configured to cause a
third LLM 1nstance to convert the response mnto the
machine-readable response; and

recerving the machine-readable response from the third
LM 1instance.

16. The system of claim 12, wherein the translating
comprises applying a data extraction model to the response,
thereby generating the machine-readable response.

17. The system of claim 12, wherein the processing
turther comprises processing, by the calculation engine, the
known complete data set, thereby generating the known
result.

18. The system of claim 12, wherein the processing
further comprises:

processing, by the first LLM instance, the first test instruc-
tion to thereby provide the request for data to the
second LLLM 1nstance;

processing, by the second LLM instance, the second test
instruction to thereby provide a response to the request
for data generated by the second LLM instance, the
response including at least a portion of the data;

19. The system of claim 12, wheremn the translating

COmMprises:

generating a translation istruction configured to cause a
third LLM 1nstance to convert the a user-generated
response into the machine-readable response; and

processing, by the third LLM instance, the translation
instruction to thereby convert the response ito the
machine-readable response.

20. The system of claim 12, wherein the at least one
processor comprises a lirst processor configured to perform
the processing and a second processor configured to operate
the first LLM 1nstance and the second LLM instance.

¥ o # ¥ ¥

	Front Page
	Drawings
	Specification
	Claims

