a9y United States
12y Patent Application Publication o) Pub. No.: US 2025/0058214 Al

SUNDARAM et al.

US 20250058214A1

43) Pub. Date: Feb. 20, 2025

(52) U.S. CL
CPC

AG3F 13/28 (2014.09); A63F 13/67
(2014.09); A63F 13/79 (2014.09)

(37) ABSTRACT

Systems and methods are disclosed for expanding the output
modalities of a gameplay session. Gameplay imnput data, such
as audio data, video data, haptics data, and Gameplay
context data, can be processed using machine learning (ML)
models to generate output state vectors, which can be used
to drive state changes 1n remote devices, such as smarthome
devices (e.g., smart lightbulbs, smart light switches, smart
fans, smart thermostats, smart blinds, smart speakers, etc.).
To generate the output state vectors, first gameplay features
are extracted from the gameplay input data, then the game-
play features are processed by a state vector generation
model to generate the state vectors. Each modality of
gameplay input data can be processed by a corresponding
feature extractor. Gameplay sessions can be evaluated to
train the ML models.

200
4

i
I
va
I
I
I
I
i
I
I
;
I
i
I
I
i
;
va
I
;
I
i
I
;
I
I
|
I
I
;
I
|
i
i

L]

(54) MODALITY-EXPANDING GAMING
EXPERIENCE
(71) Applicant: SONY INTERACTIVE
ENTERTAINMENT LLC, San Mateo,
CA (US)
(72) Inventors: Chockalingam Ravi SUNDARAM,
Belmont, CA (US); Lakshmish
KAUSHIK, San Jose, CA (US); Ayush
RAINA, Foster City, CA (US); Kusha
SRIDHAR, Foster City, CA (US)
(21) Appl. No.: 18/235,676
(22) Filed: Aug. 18, 2023
Publication Classification
(51) Int. CL
A63F 13/28 (2006.01)
A63F 13/67 (2006.01)
A63F 13/79 (2006.01)
210\
' GAMEPLAY INPUTDATA |
2 GAMEPLAY |
2 wiooaa |
: | S},
5 GAMEPLAY § \
24 yipropaTA |
: IS WACHINE LEARNING
i i SYSTEM
505 A GAMEPLAY 7
: HAPTICS DATA | _
i , i CooutuT
! GAMEPLAY | ..
208 N | , MODALITY
: | CONTE)(.DATA | ; 238 N CAPABILITY
e INFORMATION

| STATEVECTOR(S) @ 1 REMOTEDEVICES)
i - 214
%]J\ZZG S \ [;
i o1 | ——»{LIGHT(S)/BLUB(S) i
: B 216
; Z "
| . Ff —— FAN(S) :
: ! 218
i — {‘230 R | A
——»{ S3 > THERMOSTAT(S) ;
: T m
: r — V.
i 4 —————+—>» BLINDS ;
i L !
5 S Vo
i S5 —— SPFAKER :

US 2025/0058214 Al

Feb. 20, 2025 Sheet 1 of 9

Patent Application Publication

1
! 1
- 1
- 1
, 1
i :
- “ 1
. !
| ! :
- 1
, 1
_ 70l '
,]
_ 1
- I
— I
: MRASANRARRARARAS |
" AT I
, 1
- 1
: 1
, i
U T
, !
- 1
- 1
- 1
, 1
, 1
. 1
_ 1
_ 1
- i
, i
; 1
! I
, 1
i

L "914d

4OSSD0Md '

L1

" NOILYZINOYHONAS |

74!

(Ll

%

<

-

& “ ,

7 ” - ”

S M NS e 55 | NOLYHEOIN T “

-~ ! | | “ .. | "

m e 1 el w ALITYQOIN st ﬁm%_ﬁ%%u 30C

= ” | “ INdLNO “ “
” SONME je—1— b m “ m

N “ # “ , “ _

- - 02C 1 (el _ | YIYA SILAVYH "

S ” - m i — wawo [~

b m SIMISONHL 14— i ONINYYIT INHIVA m m

- 917 - 0EC _ - vLlva03ain a

S ” ! ” | AYIdIAYD "

S m (SINV4 — H __ L m “

S 917 1 8l ” | vveoiany | o
” - m | V14N “

E [osmemone————— 15 | ! “ “

E g 9 m VIVOUNANIATIINYD

- m Fy , | e - .

— “ by ”

m (ODIACIONT) (SHODININIS f

.m e e ﬂ::,_ o e ﬁ..m 0L

=

< 97 97

—

= gm\»

US 2025/0058214 Al

Feb. 20, 2025 Sheet 3 0of 9

Patent Application Publication

L€

m v m

0CE | \
m 5 et

8l m

m s [

k: “

m s F o

YL m

o (OIS !

42
00t \,

g 0§€
300N NOILWYINID [“
JODINIYIS [T doDwiLa m
| INLY3 03AIN “
9\ o«
\ ¥0DviLa u
| nvdolany |
M = “
” o143 “
- SYOLVHLXT JUNLYAS
INTLSAS DONINYYIT INIHOYI pEs
i

d0LValX3
J4N1Y3d IXINO)

(ke

d0LVYLX
J4(11V31 S)ILdVH

AV 1ddNYS)

VIVQA LNdNIAVTddINYD

m V1VQd LX41INOD 20¢
m AV 1ddINYD
m v1vad o1dany 706

Olt

Patent Application Publication Feb. 20, 2025 Sheet 4 of 9 US 2025/0058214 Al

/ 400

40/

RECEIVE GAMEPLAY INPUT DATA

404
EXTRACT GAMEPLAY FEATURE(S) FROM GAMEPLAY INPUT DATA BY
APPLYING THE GAMEPLAY INPUT DATA TO A MACHINE LEARNING
SYSTEM
406 _
GENERATE AT LEAST ONE STATE VECTOR BASED ON THE GAMEPLAY
FEATURE(S) BY APPLYING THE GAMEPLAY FEATURE(S) TO A STATE
VECTOR GENERATOR MODEL
408
FACILITATE CONTROL OF THE REMOTE DEVICE BASED ON THE
GENERATED STATE VECTOR(S)
410
\“—\‘ _____________________ R
] DETERMINE GAMEPLAY EAPERIENCE QUALITY SCORE :
4127
\ e e ——— - Y e e e m -

UPDATE MACHINE LEARNING SYSTEM BASED ON GAMEPLAY i
EXPERIENCE QUALITY SCORE :

S "9ld

US 2025/0058214 Al

_ _ “ “ . | I 305
m muo m p . ' ¢ " q . . , __
S ;
=
v 90S
% . 90
h " ::::::::::::::::: .m 111111111111111111 "
7p. :
X SUNLYA ;
I~ m . m M :
2-.., m m Q _”. : ¢ | : " : . . ; O UJUINAV IOV, |~
— P .m : r : “ : : : “ ; ”
“ femmremresnerenres s 705
=
= 2
01
S .m

(05

llllllllllllllllllllllllllllll

SRERVENTS SANIE:;

ttttttt .iiilllltl tliiil.#titi

 SIVISONYIHL

llllllllllllllllll ‘tltit

008 \ Q14O ONILHOIIM ¥OLVIINID YOLDIA 3LV

Patent Application Publication
QO
L

Patent Application Publication Feb. 20, 2025 Sheet 6 of 9 US 2025/0058214 Al

/ 600

__ DENTIFYREVOTE DEVICES) 10

I

 IDENTIFY REMOTE DEVICE »
RECEIVE GAMEPLAY INPUT DATA ; ATENCY

—————————————————

606
DETERMINE ONE OR MORE
FUTURE STATE VECTORS
608

EFFECT CONTROL OF REMOTE

DEVICE USING THE ONE OR MORE
FUTURE STATE VECTORS

FIG. 6

L 914

US 2025/0058214 Al

JVIBMLINE

m /| N1Y3H DAINDD |
% ! " 0L “
= ” " "
= S0 “ (300wl "
g ” “ , N | NI IdVH |

. | _ w_«m !
2 90, “ a W_oz%,_ﬁ_mw_\uocm\, HUOW 20LvdiN " "
z., ” ! I OLANTC INIDS-0L-J4NLYH [4ODWILG “
S ” “ ‘ "L nunvaoan |
e i u _ _
. o %
- - V0L “ 87/ 92/ YEERIE m
3 ” _u | NNy |
I W
¥ . _ _ _
. U “ - SYOLVILA NIV
= ” “ T30 NOLLVAINID YOLD3A 3LVLS I L
S - (SYODINIWIS ! f
= _ “
= e vl 27
N
= (1L

8 9id

US 2025/0058214 Al

m H m T300IN J0LYHINID ¥OL1DIA ILVLS HLdH vEg

018 e

” b e 1300 YOLVIINID YOLD3A ILVLS HLYNO: 268 [¥oDwiLe m
- ” . “ /| LY AINOD |
o0 . 808 | “ "
g ” “ “ o
- _ u) B) _ l
” m H “ T300W YOLYYINID YO1DIA LVLS QYIHL 0£8 | d0DVILE _
< _ “ A UNLY ILYH |
~ ' 908 “ " "
2 ” “ 818 " sk
S m H “ 1300 YOLVYINID ¥01DIA ILYLS ANODIS | d0DWHLK “

. “ - JNLYH 030N |
- . 08 ! ! “
.m ” “ " 918 "
m ” S “ | T300IN YOLYYINID YOI TLVLS LSHH [yoDwLg m
m 08 m N JEEIE DI
= m “ 1300 NOILVYINID YOLDIA 1YLS WIHDUVHIIH " e
S - (SHODIAIVIS | . SYOLOVHLXI JUNLY3S
.m S o 778 e !
N f
= (18 (8

6 9l

((b

US 2025/0058214 Al

816

(16 06
1IN0 AV1dSId (S)DVAYIINI NIOMLIN

(SINOILYDIddY

916

NJLSAS DNILVEAdO

Feb. 20, 2025 Sheet 9 of 9

06

T3 6 | | 9% 706

(SIDIAIA LNdNI AJOWAIN | (SHOSSID0Yd d3T1I0UINGD INALSAS

Patent Application Publication

w.” ™ (06

US 2025/0058214 Al

MODALITY-EXPANDING GAMING
EXPERIENCE

[0001] The present disclosure relates to remotely con-
trolled home devices generally and more specifically to
synchronizing such devices to gameplay.

BACKGROUND

[0002] New and immersive gaming experiences are oiten
sought out by users (e.g., gamers), and can play an extremely
important role in increasing user enjoyment, promoting
sales, and driving further mnnovation and development. The
evolution of virtual reality (VR) and augmented reality (AR)
gaming experiences has created new opportunities for game
developers to engage their audience. While these technolo-
gies are uselul for some users, they may rely on technology
(e.g., a VR headset) that other users may not have or may not
wish to use. Many users play game at their home, which
often makes use of televisions, computer screens, and
accompanying speakers.

[0003] There 1s a need for new and immersive gaming
experiences.

BRIEF SUMMARY
[0004] In one aspect, a method, includes receiving game-

play 1mput data associated with a user engaging 1n a game-
play session 1n an environment. The method also includes
processing the gameplay input data by a machine learning,
system to generate one or more state vectors, where pro-
cessing the gameplay mput data by the machine learning
system 1ncludes extracting one or more gameplay features
from the gameplay mput data, and generating the one or
more state vectors based on the one or more gameplay
teatures. The method also includes facilitating a state change
in one or more remote devices based at least in part on the
one or more state vectors, the state change being perceivable
in the environment.

[0005] The method may also include where the gameplay
input data includes 1) gameplay audio data; 1) Gameplay
video data; 111) Gameplay haptics data; 1v) Gameplay context
data; or v) any combination of 1-1v.

[0006] The method may also include where extracting the
one or more gameplay features includes applying the game-
play input data to one or more feature extractors, each of the
one or more feature extractors being a machine learning
model trained according to a umique 1nput modality.
[0007] The method may also include where the gameplay
input data includes a plurality of gameplay data streams,
cach of the plurality of gameplay data streams being asso-
ciated with a different one of a plurality of input modalities,
the one or more feature extractors including a plurality of
feature extractors, each of the plurality of feature extractors
being associated with a different one of the plurality of input
modalities, and where extracting the one or more gameplay
features from the gameplay mmput data includes applying
cach of the plurality of gameplay data streams to a respective
one of the plurality of feature extractors according to that
gameplay data stream’s respective input modality.

[0008] The method may also include where generating the
at least one state vector based on the one or more gameplay
teatures 1ncludes applying the one or more gameplay fea-
tures to a state vector generation model.

[0009] The method may also include where the state
vector generation model 1s a probabilistic generative model.

Feb. 20, 2025

[0010] The method may also include where applying the
one or more gameplay features to the state vector generation
model includes applying a weighting value for each of the
one or more gameplay features, and determining the one or
more state vectors based at least in part on the one or more
weighted gameplay features.

[0011] The method may also include further includes
determining a gameplay experience quality score associated
with the gameplay session, and adjusting the one or more
welghting values based at least in part on the gameplay
experience quality score to improve the gameplay experi-
ence quality score.

[0012] The method may also include where determining
the gameplay experience quality score includes receiving
user feedback associated with the gameplay session, and
processing the user feedback to determine the gameplay
experience quality score.

[0013] The method may also include where the state
vector generation model 1s pretrained according to a baseline
model, the method further includes recerving user feedback
associated with the gameplay session, and updating the state
vector generation model based at least 1n part on the user
teedback.

[0014] The method may also include further includes
determining a set of changeable states associated with the
one or more available remote devices, where generating the
at least one state vector includes generating, for each of the
set of changeable states, a corresponding state vector.
[0015] The method may also include where facilitating the
state change includes transmitting a command signal via a
wired connection or a wireless connection, the command
signal usable to alter a state of at least one of the one or more
remote devices.

[0016] The method may also include further includes
determining, for each of the one or more remote devices, a
latency value, where processing the gameplay input data to
generate the one or more state vectors 1s further based at
least 1n part on the latency values, such that corresponding
latency 1s compensated for when facilitating the state change
of each of the one or more remote devices.

[0017] The method may also include where extracting the
one or more gameplay features from the gameplay input data
includes predicting values for at least one of the one or more
gameplay features up to a future time equal to a current time
plus a largest latency value of the one or more latency
values, where generating the one or more state vectors 1s
based at least in part on the one or more latency values such
that for a given one of the one or more remote devices, the
respective generated state vector accounts for the respective
latency value.

[0018] The method may also include where processing the
gameplay mput data to generate the one or more state
vectors occurs on a server that 1s communicatively coupled
to a gaming device being used by a user to engage 1n the
gameplay session, and where facilitating the state change
includes transmitting the one or more state vectors to the
gaming device.

[0019] The method may also include where facilitating the
state change includes transmitting, from the gaming device,
a command signal via a wired connection or a wireless
connection, the command signal usable to alter a state of at
least one of the one or more remote devices.

[0020] The method may also include where the one or
more state vectors includes a plurality of state vectors across

US 2025/0058214 Al

a plurality of output modalities 1ncluding at least a first
output modality and a second output modality, where the
plurality of state vectors, when recerved by the gaming
device, are processed to excluded each of the plurality of
state vectors associated with the first output modality.

[0021] The method may also include further includes
receiving output modality capability information indicative
of a set of one or more output modalities capable of being
engaged 1n association with the environment, where gener-
ating the one or more state vectors 1s based at least 1 part
on the output modality capability information such that each
of the one or more state vectors 1s associated with one of the
set of one or more output modalities.

[0022] The method may also include further includes
receiving gameplay output modality state data associated
with the user engaging in the gameplay session, the game-
play output modality state data indicative of one or more
desired states associated with one or more possible output
modalities and associated with the gameplay session, where
tacilitating the state change 1s further based at least 1 part
on the gameplay output modality state data.

[0023] The method may also include further includes
determining relative position information for each of the one
or more remote devices, the relative position information
indicative of a relative position with respect to an expected
location of the user, where processing the gameplay nput
data to generate the one or more state vectors 1s further based
at least 1n part on the relative position information.

[0024] The method may also include where the one or
more remote devices mcludes 1) a light source; 11) a fan; 1)
a thermostat; 1v) a window blinds controller; v) a speaker,
the speaker not directly outputting the gameplay audio data;
v1) a switch; vi1) a dimmer; or vii1) any combination of 1-vii.
[0025] The method may also include where facilitating the
state change includes employing an application program-
ming interface associated with at least one of the one or
more remote devices.

[0026] In one aspect, a system comprises a control system
including one or more processors; and a memory having
stored thereon machine readable instructions; wherein the
control system 1s coupled to the memory, and any one of the
alorementioned methods 1s implemented when the machine
executable instructions 1in the memory are executed by at
least one of the one or more processors of the control system.

[0027] In one aspect, a system for expanding gameplay
output modalities includes a control system configured to
implement any one of the alorementioned methods.

[0028] In one aspect, a computer program product com-
prises instructions which, when executed by a computer,
cause the computer to carry out any one of the aloremen-
tioned methods. In some cases, the computer program
product 1s a non-transitory computer readable medium.

[0029] Other technical features may be readily apparent to
one skilled in the art from the following figures, descrip-
tions, and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0030] FIG. 1 1s a schematic diagram of a system {for
gameplay synchronization, according to certain aspects of
the present disclosure.

[0031] FIG. 2 i1s a schematic diagram of a gameplay
synchronization system, according to certain aspects of the
present disclosure.

Feb. 20, 2025

[0032] FIG. 3 15 a schematic diagram of a machine learn-
ing system of a gameplay synchronization system, according
to certain aspects of the present disclosure.

[0033] FIG. 4 1s a flowchart depicting a process for
synchronizing gameplay with remote devices, according to
certain aspects of the present disclosure.

[0034] FIG. 5 1s a diagram of a state vector generator
welghting grid, according to certain aspects of the present
disclosure.

[0035] FIG. 6 1s a flowchart depicting a process for
determining future state vectors, according to certain aspects
of the present disclosure.

[0036] FIG. 7 1s a schematic diagram of a state vector

generation model of a gameplay synchronization system,
according to certain aspects of the present disclosure.

[0037] FIG. 8 1s a schematic diagram of a hierarchical
state vector generation model of a gameplay synchronization
system, according to certain aspects of the present disclo-
SUre

[0038] FIG. 9 1s a block diagram of an example system
architecture for implementing features and processes of the
present disclosure.

DETAILED DESCRIPTION

[0039] Certain aspects and features of the present disclo-
sure relate to systems and methods for expanding the output
modalities of a gameplay session. Gameplay mput data, such
as audio data, video data, haptics data, and Gameplay
context data, can be processed using machine learning (ML)
models to generate output state vectors, which can be used
to drive state changes in remote devices, such as smarthome
devices (e.g., smart lightbulbs, smart light switches, smart
fans, smart thermostats, smart blinds, smart speakers (e.g.,
digital personal assistants or other smart speaker products),
etc.). To generate the output state vectors, first gameplay
features are extracted from the gameplay input data, then the
gameplay features are processed by a state vector generation
model to generate the state vectors. Fach modality of
gameplay input data can be processed by a corresponding
feature extractor. Gameplay sessions can be evaluated to
train the ML models.

[0040] Certain aspects and features of the present disclo-
sure are especially useful to improve the gameplay experi-
ence of video games or any games that involve the use of a
display device (e.g., a computer monitor, a television, a
screen ol a portable device, or the like). These games can be
played using any suitable hardware, such as a personal
computer, a smartphone, a portable console, or a console
device. In some cases, a combination of hardware can be
used. The individual hardware or combination of hardware
used to play or otherwise engage with a game can be known
as a gaming device.

[0041] A gaming session can be any period of time 1n
which a user 1s engaging with a gaming device. The gaming
session can commence when the user beings using the
gaming device, when the user opens the desired game on the
gaming device, or when the user starts actively playing the
game (e.g., after pressing “start” on a start screen of the
game). The gaming session can conclude when the user
stops actively playing the game, closes the game on the
gaming device, or shuts down or otherwise ceases to use the
gaming device. In some cases, a gaming session can mnclude
breaks between 1ts commencement and conclusion.

US 2025/0058214 Al

[0042] Certain aspects and features of the present disclo-
sure are described with reference to a user (e.g., gamer)
engaging 1 a gaming session. Often, this user engaging 1n
the gaming session will be an individual actively participat-
ing i or otherwise playing the game. In some cases,
however, a user engaging in a gaming session can include an
individual viewing another individual playing a game,
whether or not 1n the same environment.

[0043] As used herein, the term Environment 1s intended
to refer to any location 1n which a user i1s engaging in a
gaming session, such as a region of a room, a room, a set of
rooms, a tloor of a building, a home, a region of land, and
the like. In some cases, an environment can be made up of
multiple sub-environments (e.g., a floor comprising multiple
rooms). In some cases, a gaming session can itself be
associated with multiple environments, such as a first envi-
ronment 1n which a first user 1s playing the game and a
second environment 1n which a second user 1s viewing the
first user playing the game (e.g., via a streaming service). In
some cases, a gaming session can move between multiple
environments. Certain aspects and features of the present
disclosure can automatically detect in which environment
the gaming session 1s occurring (e.g., via detect the user’s
location or detecting the gaming device being used, such as
a console device 1n a first room as compared to a console
device mn a second room), and switch from controlling
remote devices 1n the first environment to controlling remote
devices 1n the second environment.

[0044] Certain aspects and features of the present disclo-
sure mvolve a machine learning system generating state
vector(s) from gameplay input data. Gameplay mput data 1s
a collection of data coming from the game being played. The
gameplay mput data can relate to multiple modalities, such
as 1) audio data; 11) video data; 111) haptics data; and 1v)
Gameplay context data.

[0045] Gameplay audio data 1s data that relates to audio to
be generated and presented to the user while engaging 1n the
game. Gameplay audio data can take any suitable form such
as a description of sound eflects, a raw audio wavetform,
compressed audio content, and the like. In some cases, the
gameplay audio data 1s simply the raw audio output from the
game across any suitable number of channels (e.g., monau-
ral, stereo, surround, etc.). In some cases, the gameplay
audio data includes more complex information, such as
individual audio tracks (e.g., background audio, character
voicing, object effects) that are otherwise mixed together to
create the raw audio output from the game.

[0046] Gameplay video data 1s data that relates to video or
visuals (e.g., still images) to be generated and presented to
the user while engaging in the game. Gameplay video data
can take any suitable form such as a description of visual
clements, a still image, a collection of still images, a video
file, and the like. In some cases, the Gameplay video data 1s
simply the raw video output from the game (e.g., the video
output that 1s presented on a display device while the user
engages 1n the game). In some cases, the Gameplay video
data includes more complex information, such as video
information outside of the current field of view being
displayed to the user (e.g., pre-rendered video content of
portions of a room outside of the playable game character’s

field of view).

[0047] Gameplay haptics data 1s data that relates to tactile
or haptic feedback to be generated and presented to the user
(e.g., via a haptic motor, haptic actuator, electrical stimulus,

Feb. 20, 2025

ctc.) while engaging 1n the game. Gameplay haptics data can
take any suitable form, such as a binary signal of when
haptic feedback should be provided, a description of what
haptic feedback to provide, a signal of how haptic feedback
should be provided (e.g., a signal controlling the attack,
intensity, and decay of a haptic effect), a collection of signals
relating to multiple haptic feedback devices, and the like. In
some cases, the gameplay haptic data 1s simply the raw
signals output from the game to be used by a haptic feedback
device (e.g., the signals that are output to driver of a haptic
feedback device while the user engages 1n the game). In
some cases, the gameplay haptic data includes more com-
plex information.

[0048] Gameplay context data 1s data that relates to con-
textual elements of the gameplay while the user 1s engaging,
in the game. These contextual elements can be based on the
type of game itself and whether or not the game developer
provided additional information (e.g., metadata) that can be
leveraged as contextual elements. Gameplay context data
can be mformation about a game state, such as from an
application programming interface (API) of a game engine.
For example, a traditional platformer game may include
contextual elements such as 1) the current level or stage
being played; 11) the current character selected for play; 111)
the language selected for gameplay; 1v) the number of
collectables (e.g., coins, stars, points, etc.) obtained by the
player; v) a stage of progression of the game (e.g., whether
or not certain storyline elements have yet occurred for the
player); and others. While described herein as a single
modality, 1n some cases gameplay context data can 1itself be
subdivided into additional sub-modalities (e.g., gameplay
context data related to overall game progress and gameplay
context data related to the current actions being taken by the
player). As described 1n further detail herein, 1n some cases
the gameplay context data 1s processed by a context feature
extractor to extract gameplay features. In some cases, each
sub-modality of the gameplay context data 1s processed by
a unique context feature extractor associated with that
sub-modality (e.g., trained for that sub-modality).

[0049] Gameplay mput data 1s processed by one or more
feature extractors to obtain gameplay features. Gameplay
features can by any suitable feature that can be extracted
from the gameplay input data, whether readily discernable to
a human (e.g., a discernable feature such as a listing of
objects depicted in a scene) or not practically discernable to
a human (e.g., the spectral centroid of an audio signal). In
some cases the gameplay features that are extracted include
at least one feature that 1s not practically discernable to a
human.

[0050] While any number of feature extractors can be
used, 1n some cases each modality of gameplay mnput data
(e.g., each mput modality) 1s associated with 1ts own feature
extractor, which 1s trained on gameplay mput data of that

modality. For example, gameplay audio data 1s processed by
an audio feature extractor, while gameplay context data 1s

processed by a context feature extractor.

[0051] The gameplay features that are determined can
relate to the different input modalities. For example, audio-
related features can be determined, such as the spectral
centroid of the incoming audio signal; video-related features
can be determined, such as a listing of visual objects 1n a
scene, spectral information about the entire scene spectrum,
and the like; haptics-related features can be determined, such
as vibration patterns, spectral information about vibrations,

US 2025/0058214 Al

and other haptic events; and context-related features can be
determined, which can depend on the context provided (e.g.,
a game progress feature indicating the player’s progress 1n
the game, such as based on the current stage or level, based
on the number of coins, trophies, or other collectables
collected 1n the game, or based on other aspects).

[0052] The gameplay features can be provided as input to
a state vector generation model. The state vector generation
model can take these gameplay features and output a set of
one or more state vectors. In some cases, the state vector
generation model can apply weightings to each of the
gameplay features, which can be adjusted and modified as
necessary during initial training (e.g., training to create a
baseline model for initial use by all users) or subsequent
training (e.g., personalized training to update a model
according to a user’s personal prelferences or experience).
The state vector generation model can be a generative model
(e.g., a probabilistic generative model), such that the state
vector generation model does not necessarily output the
same set ol one or more state vectors when processing the
same gameplay features on different occasions.

[0053] While gameplay features are described herein as
the input to the state vector generation model, in some cases
other mputs can be used 1n addition or mstead of the
gameplay features. For example, 1n some cases output
modality capability information (e.g., information about
what output modalities are available for use, and thus what
state vectors are available for use) can be provided as an
input to the state vector generation model so the state vector
generation model can output the correct set of state vectors.
As another example, 1n some cases some or all of the
gameplay nput data can be provided directly to the state
vector generation model without features being first
extracted. As used herein, the term output modality 1is
intended to refer to a category of controllable state and/or
controllable remote device. Output modalities can be
defined 1n various degrees of abstraction. For example, a
first output modality may refer to all controllable states
associated with affecting light (e.g., the on/ofl state of a
controllable light and the open/close state of controllable
blinds) and a second output modality may refer to all
controllable states associated with aflecting air movement
(e.g., the on/ofl state of a controllable fan and an appropriate
state of a controllable thermostat). In another example, a first
output modality may refer to all controllable lights (e.g., all
remote devices that are controllable lights, which may not
include other devices aflecting light, such as blinds) and a
second output modality may refer to all controllable ther-
mostats (e.g., all remote devices that are controllable ther-
mostats, which may not include other devices aflecting
temperature or airflow, such as fans). As used herein, the
term output modality 1s intended to refer to outputs other
than the primary outputs used to engage 1n the gameplay
session. For example, for a user playing a console game via
a television screen, the primary outputs may be the video
being presented on the television screen, the audio being
played through the television’s speakers, and any audio or
haptics being presented through the user’s game controller.
The state vector generation model can output a set of one or
more state vectors, although often the set of state vectors
includes at least a plurality of state vectors. Each of the state
vectors can denote state information for how a particular
remote device should be controlled. In other words, the state
vector denotes the state into which the remote device should

Feb. 20, 2025

be placed or maintained. For example, for a fan (e.g., a smart
switch controlling an overhead fan), the available states may
be “on” and “ofl,” and the state vector for that fan may thus
indicate either “on” or “ofl.” As another example, for a light
source (e.g., a smart light bulb 1n a table lamp), the available
states may include “on”, “off”’, a dimming value (e.g., from
0-100 representing 0% to 100% brightness), and a color
value (e.g., a number indicative of a color or a color
temperature to be output by the light bulb), and the state
vector for that light source may thus indicate 1) “on” or “ofl”’,
11) a dimming value, 111) a color value, or 1v) any combina-
tion of 1-111.

[0054] Once generated, the state vector(s) can be lever-
aged to control one or more remote devices 1n or near the
environment. Remote devices are devices that can be con-
trolled by another device via a wired or wireless connection
(e.g., a wired network connection, such as a wired local area
network, a direct wireless connection, such as Bluetooth, or
the like). In some cases, remote devices can be controlled via
direct control, local intermediary control, or ofi-site inter-
mediary control. Direct control refers to sending a transmis-
sion to the device (e.g., via a direct connection like Blu-
ctooth or via a local area network connection) that, when
received by the device, causes the device to be controlled
according to the transmission. Local intermediary control
refers to sending a transmission to a local (e.g., via a local
network or otherwise without the need for an Internet
connection) mtermediary device that will itself interpret the
transmission and then control the remote device. An
example of local intermediary control 1s a hub that controls
a set of smart light bulbs 1n a house and acts as a bridge
between the smart light bulbs and the local area network.
Off-site intermediary control refers to sending a transmis-
sion to an ofl-site (e.g., not on a local network or via the
Internet) intermediary device that will 1itself interpret the
transmission and then control the remote device via an
Internet connection. An example of Ofl-site intermediary
control 1s a smart speaker that maintains an Internet con-
nection with a cloud server so that the speaker can be
controlled by interacting with an API hosted by the cloud

SCI'VCT.

[0055] In some cases, state vectors can be generated
locally (e.g., by a local gaming device). In some cases, only
state vectors associated with known controllable states or
known controllable remote devices are generated. In some
cases, however, a set of state vectors can be generated
without regard for the available controllable states or avail-
able controllable remote devices. For example, a large set of
state vectors can be generated remotely (e.g., by a cloud
server) and transmitted to a local device (e.g., local gaming
device). The local gaming device may know of what con-
trollable states or controllable remote devices are available,
and then can analyze the received state vectors to determine
that a first subset of the full set of state vectors can be
utilized and a second subset of the full set of state vectors
cannot be utilized, and are thus excluded. In an example, a
user may only have controllable lights (e.g., a first output
modality) and the local gaming device may receive state
vectors for lights (e.g., a first output modality) and fans (e.g.,
a second output modality). In such an example, the local
gaming device may exclude the state vectors for the fans and
use the state vectors for the lights to control the controllable
lights. In some cases, the excluded state vectors remain
unused. In some cases, however, the excluded state vectors

US 2025/0058214 Al

can be repurposed into additional state vectors for other
output modalities (e.g., using fan state vectors to determine
an additional set of state vectors for another type of remote
device, such as lights or blinds).

[0056] In an example use case of certain aspects and
teatures of the present disclosure, a user may be engaging 1n
a role playing game that involves exploring different
regions. When the user enters a desert region, the system
may control the user’s remote devices to turn up the heat in
the room where the user 1s playing the game (e.g., in the
gaming session’s environment) and cause lights 1n that room
to have a hotter color temperature, thus improving the user’s
immersion 1n the game’s hot desert. As the user plays and
moves 1nto a cave 1n that same game, the system may control
the user’s remote devices to turn down the heat in the room,
cause the lights 1 the room to dim and have a cooler
temperature, and turn on a humidifier 1n the room, thus
improving the user’s immersion in the game’s cold and
damp cave.

[0057] In some cases, the system can control remote
devices to improve the immersiveness of the user’s game-
play experience. In some cases, the system can control
remote devices to aid the user 1n playing the game, such as
to guide the user to a particular goal or location (e.g., a
hidden door 1n a wall may be indicated by a fan being turned
on to blow air when the player character approaches that
section of the wall containing the hidden door).

[0058] Certain aspects and features of the present disclo-
sure improve the technical field of gaming, especially com-
puter (e.g., personal computer, console, etc.) gaming, by
generating a more immersive experience for the user while
leveraging existing remote devices in the user’s environ-
ment. Further, certain aspects and features of the present
disclosure enable this improved immersive experience to
occur very fast, and in some cases, with prediction and/or
latency compensation, so as to improve the ability for the
remote devices to be controlled quickly and accurately (e.g.,
accurately with respect to events occurring in the game).

[0059] These 1llustrative examples are given to introduce
the reader to the general subject matter discussed here and
are not intended to limit the scope of the disclosed concepts.
The following sections describe various additional features
and examples with reference to the drawings 1n which like
numerals indicate like elements, and directional descriptions
are used to describe the illustrative embodiments but, like
the 1llustrative embodiments, should not be used to limit the
present disclosure. The elements included 1n the illustrations
herein may not be drawn to scale.

[0060] FIG. 1 1s a schematic diagram of a system 100 for
gameplay synchronization, according to certain aspects of
the present disclosure. The system 100 includes a gaming
device 120 and one or more remote devices 122. The system
100 can include a synchronization processor 124, which can
be a separate component or can be embodied 1n the gaming
device 120 or one or more of the remote devices 122.

[0061] The gaming device 120 can be any suitable gaming
device, such as a personal computer 102 (e.g., a desktop
computer or laptop), a mobile device 112 (e.g., a smart-
phone), or a console device 110 (e.g., a portable console or
stationary console). The gaming device 120 can be an active
gaming device used by a user to play or otherwise actively
participate 1n a game, or can be a passive gaming device
used by a user to view another user playing a game.

Feb. 20, 2025

[0062] A gaming device 120 can be embodied on a single
piece of hardware (e.g., a portable console) or can be
embodied on multiple pieces of hardware, whether co-
located or not. For example, in some cases a gaming device
120 can include a cloud-based server that runs the game
itself and 1s 1n communication with a local terminal (e.g.,
personal computer 102, mobile device 112, console device
110, or the like) that provides outputs to the user (e.g., video
and audio via a monitor and speakers) and receives nputs
from the user (e.g., button presses and the like).

[0063] The gaming device 120 can generate gameplay
data that will be referred to herein as gameplay input data.
This gameplay iput data can be generated by and optionally
output by the gaming device 120. A synchronization pro-
cessor 124 can receive the gameplay mput data and process
it to generate one or more state vectors. When the synchro-
nization processor 124 1s embodied 1n the gaming device
120, the gaming device 120 may generate the gameplay
input data for immediate reception by the synchronization
processor 124. When the synchronization processor 124 1s
not embodied m the gaming device 120, the gaming device
120 can output the gameplay input data to be received by the
synchronization processor 124.

[0064] The synchronization processor 124 can process the
gameplay mput data to generate one or more state vectors,
which can then be used to control the one or more remote

devices 122.

[0065] A set of example remote devices 122 1s depicted 1n
FIG. 1, although any number of and type of remote device
122 can be used. The examples shown in FIG. 1 include a
lighting device 114, a fan 116, a set of blinds 118, a
thermostat 106, a router 108, and a speaker 104. Each of the
remote devices 122 can have one more controllable states.
The controllable states of the lighting device 114 can include
an on/ofl state (e.g., on or ofl), a dimming (e.g., brightness)
state, a color state (e.g., a color or color temperature), and
the like. The controllable states of the fan 116 can include an
on/ofl state, a speed state (e.g., a speed setting), a rotation
direction state (e.g., a direction of rotation setting), and the
like. The controllable states of the blinds 118 can 1include an
up/down state, a rotation state (e.g., degree of rotation of flat
blinds, 11 available), and the like. The controllable states of
the thermostat 106 can include an on/ofl state, a temperature
state, a mode state (e.g., heating, cooling, heating, and
cooling), a fan state (e.g., on/ofl state of the fan, speed of the
fan, etc.), and the like. The controllable states of the router
108 can include an on/ofl state, a router setting (e.g., any
controllable setting of the router, such as quality of service
settings), and the like. The controllable states of the speaker
104 can include an on/ofl state, a volume state, a mute state,
a sound source state (e.g., a source of sound to play, such as
a network-accessible audio file), a sound data state (e.g., a
collection of compressed or uncompressed data representa-
tive of a sound to be played by the speaker 104, such as
Wavetorm Audio File (WAV) format data). Other remote
devices and/or controllable states can be used.

[0066] The synchronization processor 124 can generate
the one or more state vectors, which can then be received by
the appropriate remote devices remote device 122 to be
controlled according to the received state vector. In some
cases, a state vector can be transmitted by the synchroniza-
tion processor 124 directly to a remote device 122, although
that need not always be the case. In some cases, the

US 2025/0058214 Al

synchronization processor 124 can transmit the state vector
to an itermediary device that can then effect control of the
remote device 122.

[0067] FIG. 2 1s a schematic diagram of a gameplay
synchronization system 200, according to certain aspects of
the present disclosure. The gameplay synchronization sys-
tem 200 can include a machine learning system 212 that
receives gameplay mput data 210 and outputs one or more
state vector(s) 236.

[0068] The gameplay mput data 210 can originate from a
gaming device (e.g., gaming device 120 of FIG. 1). The
gameplay input data 210 can include one or more modalities
of gameplay input data, referred to as “input modalities.”
The mput modalities can include 1) gameplay audio data
202; 11) gameplay video data 204; 111) gameplay haptics data
206; 1v) gameplay context data 208; or v) any combination
of 1-1v.

[0069] The machine learning system 212 can receive the
one or more modalities of gameplay input data 210 as 1inputs.
In some cases, the machine learning system 212 can addi-
tionally receive output modality capability information 238
as an additional input. The output modality capability infor-
mation 238 can be data indicative of the remote devices 224
and/or output modalities available to be controlled. The
output modality capability information 238 can be sourced
from the gaming device 120, although that need not always
be the case. The output modality capability information 238
can be manually provided (e.g., via a user selecting what
types of output modalities are available), automatically
provided (e.g., via a network discovery process to automati-
cally identify controllable remote devices 122), or a com-
bination of manually and automatically provided.

[0070] Output modalities are categories of remote device
that can be controlled. All remote devices sharing the same
output modality can provide a similar type of output. For
example, an audio output modality can be a category cov-
ering all remote devices capable of reproducing sound
within the environment (e.g., remote-accessible speakers,
digital personal assistants, and the like). Similarly, a lighting
output modality can be a category covering all remote
devices capable of eflecting the lighting within the environ-
ment. In some cases, a remote device can fall into multiple
output modalities, in which case diflerent functions of the
remote device may be categorized to different output
modalities. Any suitable output modalities can be used, at
any level of granularity (e.g., an overall lighting modality
may 1tself be broken down 1nto an artificial lighting modality
and a natural lighting modality).

[0071] The machine learning system 212 can process its
inputs to generate a set of one or more state vector(s) 236.
Each of the one or more state vector(s) 236 can be directed
to one or more of the remote devices 224. In some cases,
cach of the one or more state vector(s) 236 can be directed
to one or more remote devices 224 of the same output
modality. For example, a first state vector 226 can be
associated with a lighting output modality and can be
provided to a light/blub 214 to control the light/blub 214; a
second state vector 228 can be associated with a fan output
modality and can be provided to a fan 216 to control the fan
216; a third state vector 230 can be associated with a
temperature output modality and can be provided to a
thermostat 218 to control the thermostat 218; a fourth state
vector 232 can be associated with a blinds output modality
and can be provided to a set of blinds 220 to control the set

Feb. 20, 2025

of blinds 220; and a fifth state vector 234 can be associated
with an audio output modality and can be provided to a

speaker 222 to control the speaker 222.

[0072] Machine learning system 212 can be trained using
training data. The training data can include training game-
play mput data. Feedback (e.g., user feedback) can be
provided based on the eflects of the one or more state
vector(s) 236 output from the machine learning system 212,
which can be used 1n the training of the machine learming
system 212. In some cases, a machine learning system 212
can be 1mtially trained with one or more baseline models,
which can then be further trained by a subset of users to
perform better for those users. This further training can be
iteratively performed on further subsets of the subset of
users as needed. The subset of users can be any logical
grouping of users, such as users sharing the same model of
gaming device, users sharing similar remote devices 224
(c.g., the same devices or similar devices), users sharing
similar output modalities, users sharing the same type of
environment, users sharing the same environment and/or
gaming device (e.g., multiple users in a household), and
individual users. Thus, baseline models can be further
trained to generate personalized models that are personal-
1zed to a subset of users (e.g., a grouping of users or a single
user). In some cases, personalized models can be further
personalized to generate second degree personalized models
(e.g., an 1individual’s personalized model that 1s based on a
personalized model for a group of users, which 1s 1itself
based on the baseline model). Second degree refers to the
number of degrees removed from the baseline model. Any
number of degrees can be used.

[0073] As described herein, 1n some cases the machine
learning system 212 can receive as input the output modality
capability information 238. In some cases, the machine
learning system 212 can apply the output modality capabil-
ity information 238 as an input to the machine learning
model(s) being performed on the machine learning system
212, although that need not always be the case. In some
cases, the output modality capability information 238 can be
used by the machine learning system 212 to filter out and/or
sort any state vector(s) 236 that were generated by the
underlying machine learning model(s).

[0074] While five state vectors 236 and five remote
devices 224 are depicted in FIG. 2, any number of state
vectors and remote devices can be used, such as fewer or
more than five.

[0075] FIG. 3 1s a schematic diagram of a machine learn-
ing system 312 of a gameplay synchronization system 300,
according to certain aspects of the present disclosure. The
gameplay mput data 310, machine learning system 312, and
state vector(s) 324 can be the same as or similar to gameplay
input data 210, machine learming system 212, and state
vector(s) 236 of FIG. 2, respectively.

[0076] The gameplay input data 310 can include one or
more of gameplay audio data 302, gameplay video data 304,
gameplay haptics data 306, and gameplay context data 308.
The gameplay input data 310 can be provided to the machine
learning system 312, which can then generate the one or
more state vector(s) 236. First state vector 314, second state
vector 316, third state vector 318, fourth state vector 320,
and fifth state vector 322 can be the same as or similar to
First state vector 226, second state vector 228, third state
vector 230, fourth state vector 232, and fifth state vector 234
of FIG. 2, respectively.

US 2025/0058214 Al

[0077] As depicted in FIG. 2, the machine learning system
312 can be split into two parts, a set of feature extractors 334
and a state vector generation model 336. Thus, the machine
learning system 312 can be split into a first model or set of
models that are trained to understand the game’s state (e.g.,
a current state or a predicted, future state), and a second
model or set of models that are traimned to generate state
vectors from that understanding of the game’s state.

[0078] In some cases, the set of feature extractors 334
includes a single feature extractor capable of extracting
teatures from all of the gameplay mput data 310 provided to
it, however that need not always be the case. In some cases,
the set of feature extractors 334 can include multiple feature
extractors, each covering a unique mput modality. In some
cases, the set of feature extractors 334 includes a separate
feature extractor for each of the input modalities of the
gameplay mmput data 310.

[0079] For example, gameplay audio data 302 can be
provided to an audio feature extractor 326 that has been
tramned on training gameplay audio data from a training
dataset; gameplay video data 304 can be provided to a video
feature extractor 328 that has been trained on training
gameplay video data from a traiming dataset; gameplay
haptics data 306 can be provided to a haptics feature
extractor 330 that has been trained on training gameplay
haptics data from a training dataset; and gameplay context
data 308 can be provided to a context feature extractor 332
that has been trained on training gameplay context data from
a training dataset. Each of the feature extractors 326, 328,
330, 332 can be trained to recerve their respective inputs and
output one or more features.

[0080] FEach of the features output by the feature extractors
334 can be provided to the state vector generation model
336. The state vector generation model 336 can use the
extracted features as an input and then generate the state
vector(s) 324 as an output.

[0081] The state vector generation model 336 can be a
probabilistic generative model that has been trained on
training feature data, which may have been obtained via
applying a training data set to the feature extractors 334. In
some cases, the state vector generation model 336 can
include a set of weighting values, which can be applied to
the mput features. In some cases, tramning as described
herein can include adjusting the weighting values of the state

vector generation model 336 to reach a more desirable set of
state vector(s) 324.

[0082] In some cases, the state vector generation model
336 can be selected based on information about the user, the
remote devices associated with the user’s environment,
and/or gaming devices associated with the user. For
example, 1n some cases, the particular state vector genera-
tion model 336 used for a user having a first type of gaming
device can be different than that of a user having a second
type of gaming device. In some cases, the state vector
generation model 336 can be selected based on information
about the game being played by the user. For example, a first
state vector generation model 336 may be used for a first
game, but a second state vector generation model 336 may
be used for a second game that 1s different from the first
game.

[0083] FIG. 4 15 a flowchart depicting a process 400 for
synchronmizing gameplay with remote devices, according to
certain aspects of the present disclosure. Process 400 can be
performed by any suitable hardware, such as a gaming

Feb. 20, 2025

device (e.g., gaming device 120 of FIG. 1), a remote device
(e.g., remote device 122 of FIG. 1), a cloud-based server, or
the like. In some cases, process 400 can be performed by a
combination of suitable hardware (e.g., a combination of a
gaming device and a cloud-based server).

[0084] At block 402, gameplay mput data 1s received.
Receiving gameplay input data can include receiving the
gameplay mput data from a gaming device. Receiving
gameplay input data can include recerving multiple 1nput
modalities of gameplay input data. In some cases, receiving
gameplay mput data can include receiving any combination
of one, two, three, or four of: 1) gameplay audio data; 11)
gameplay video data; 111) gameplay haptics data; and 1v)
gameplay context data.

[0085] The gameplay input data can be associated with a
user engaging in a gameplay session. The user can be
actively playing a game or the user can be passively watch-
ing another user play a game. The gameplay mput data can
be recerved in realtime or close to realtime as the gameplay
session proceeds.

[0086] Atblock 404, gameplay features are extracted from
the gameplay mput data. The gameplay mput data can be
applied to a machine learming system to extract the game-
play features. In some cases, applying the gameplay input
data to a machine learning system can include applying the
gameplay input data to one or more feature extractors that
have been trained to generate one or more gameplay features
from the gameplay input data. In some cases, applying the
gameplay input data to the one or more feature extractors
can include applying different input modalities of the game-
play mput data to respective feature extractors associated
with (e.g., trained for) the given input modality, such as
described 1n further detail with reference to gameplay syn-
chronization system 300 of FIG. 3.

[0087] At block 406, at least one state vector can be
generated based on the one or more gameplay features from
block 404. Generating one or more state vectors can include
applying one or more gameplay features to a state vector
generation model. The state vector generation model can be
trained to output appropriate state vectors given a set of
gameplay features. Applying the one or more gameplay
features to the state vector generation model can include
applying a weighting value to each of the gameplay features.
In some cases, the weighting value can be based on the
gameplay feature, in which case each gameplay feature can
be assigned 1ts own weighting value. In some cases, how-
ever, the weighting value can be based on the mput modality,
and thus all gameplay features associated with the given
input modality can be assigned the same weighting value.

[0088] In some cases, generating the at least one state
vector at block 406 can be based at least in part on relative
position information. Relative position information can be
information indicative of a relative position of the user (or
an expected location of the user, such as in front of the
gaming device or 1n front of a display device) with respect
to one or more remote devices. This relative position 1nfor-
mation can be leveraged to ensure certain eflects are
achieved 1n a desired location relative to the user. For
example, 1 the game being played involves the player
character exploring a dark cave and an opening to daylight
1s discovered to the player character’s right side, the system
can generate a state vector that can cause a light source
located towards the right of the user to turn on or brighten.

US 2025/0058214 Al

[0089] At block 408, control of a remote device can be
tacilitated based on the generated state vector(s) from block
406. Facilitating control of a remote device can include
generating a transmission, which, when received (e.g.,
received by a remote device or an intermediary device), can
aflect or eflect a state change 1n the remote device.

[0090] For example, 1n some cases, facilitating control of
a remote device at block 408 can include effecting a state
change based on the generated state vector. Effecting the
state change can include causing a remote device to change
from an original state to the desired state indicated by the
generated state vector.

[0091] In another example, 1n some cases, facilitating
control of a remote device at block 408 can include pre-
venting a state change (e.g., an unwanted state change)
based on the generated state vector. Preventing a state
change can include determiming that the current estimated
state of the remote device matches the state indicated by the
generated state vector, then generating a transmission,
which, when received (e.g., by the remote device or an
intermediary device) prevents the remote device from
changing state. For example, 11 a lighting device was set to
turn on for 30 seconds 28 seconds ago, and if the system
generates a state vector indicating that the lighting device
should remain on (e.g., for a set amount of time or indefi-
nitely), the system may generate a transmission that prevents
the remote device from turning off after the 30 seconds have
clapsed.

[0092] In some cases, Tacilitating control at block 408 can
include generating and sending a control transmission based
on the one or more state vectors from block 406. The control
transmission can be sent to the remote device(s) and/or one
or more intermediary devices. An intermediary device can
receive a control transmission and either relay it or generate
a new control transmission that can be sent to the remove
device(s) and/or another one or more 1intermediary devices.
In some cases, a remote device can act as an intermediary
device for another remote device.

[0093] In some cases, facilitating control of one or more
remote devices at block 408 can include interpreting the
generated state vectors from block 406 in light of the
available remote devices and/or available controllable states
of the available remote devices. For example, 1n some cases
the generated state vectors may include some unassignable
state vectors that are not reproducible using or are not
associated with any of the available remote devices, and thus
cannot be assigned to any particular remote device. In such
cases, facilitating control at block 408 can include analyzing
the unassignable state vectors and either not using the
unassignable state vectors or interpreting the unassignable
state vectors to eflect a diflerent change in one of the
available remote devices (e.g., if a state vector indicates a
light 1s to be turned on, but not lights are available to be
controlled, the system may actuate an available blinds
control to open blinds to let light 1nto the environment from
outside). Such interpretation can be especially useful 1n
cases where a full set of state vectors are generated on a
server and transmitted to a local gaming device, which can
then directly make use of a subset of the full set of state
vectors, optionally interpreting the remaining unassignable
state vectors to control available remote devices. In some
case, however, generating the at least one state vector at
block 406 can generate only those state vectors that are
capable of being reproduced using and/or associated with

Feb. 20, 2025

the available devices. For example, a local gaming device
and/or a remote server can receive a list of available con-
trollable states and/or available remote devices, which it can
then leverage to produce only those state vectors that can be
reproduced using and/or associated with the available
devices.

[0094] In some cases, facilitating control at block 408 can
include receiving feedback associated with the remote
device to determine whether or not control of the remote
device was successiul. For example, some remote devices
may be capable of reporting their current state, which can be
used by the system to determine 1f the current state matches
the desired state set by the respective state vector. If the
device’s current state does not match, an additional attempt
to control the remote device can be made. In some cases,
teedback associated with the remote device can be obtained
indirectly via another device. For example, to determine
whether or not a lighting device was turned on as desired, a
light sensor on a separate device (e.g., a gaming device or
another remote device) can measure changes 1 ambient
light 1n the environment, which can be used to determine 1f
the lighting device turned on.

[0095] In some cases, at optional block 410, a gameplay
experience quality score can be determined. The gameplay
experience quality score can be a metric representative of
the user’s enjoyment and/or engagement with the game
and/or gameplay session. In some cases, the gameplay
experience quality score can include an objective component
that 1s determined objectively, such as by measuring infor-
mation about the user’s engagement with the gaming device.
In some cases, the gameplay experience quality score can
include a subjective component that 1s derived from user
teedback. For example, a user can provide user feedback
(e.g., 1n response to a prompt or survey aiter completing a
game session, or otherwise) that can be used to determine
the gameplay experience quality score. The user feedback
can be directly related to the control of the remote devices
(e.g., an answer to a question asking 1 the lighting eflects
created by the remote devices improved the gameplay
experience) or can be indirectly related to the control of the
remote devices (e.g., an answer to a question about raking
the gameplay session’s immersiveness may indirectly indi-
cate whether or not control of the remote devices improved
the user’s immersion into the game).

[0096] At optional block 412, the gameplay experience
quality score can be leveraged to update the machine learn-
ing system. Updating the machine learning system can
include updating one or more feature extractors and/or
updating the state vector generation model. In some cases,
updating the machine learning system can include adjusting
one more weighting values of the state vector generation
model. The machine learning system can be updated (e.g.,
via updating weighting values of the state vector generation
model) to maximize the gameplay experience quality score.

[0097] While certain blocks are depicted with respect to
process 400, in some cases process 400 can include addi-
tional blocks, fewer blocks, or different blocks 1n different
orders. For example, 1n some cases, before receiving game-
play mput data at block 402, process 400 can include
determining available remote devices and/or determining
available changeable states associated with one or more
remote devices. In such cases, generating the at least one
state vector at block 406 can be based at least in part on the
determined available remote devices and/or determined

US 2025/0058214 Al

available changeable states. For example, 1f no controllable
lights are identified, the state vector generation model may
not generate any state vectors associated with lighting
controls. In another example, process 400 can include only

blocks 402, 404, 406, and 408, without blocks 410 and 412.

[0098] FIG. § 1s a diagram of a state vector generator
weighting grid 500, according to certain aspects of the
present disclosure. The state vector generator weighting grid
500 of FIG. 5 1s an example visualization of some under-
lying weightings used by the state vector generation model.
The state vector generator weighting grid 500 of FIG. 5 1s an
example provided for illustrative purposes. In some cases,
other weighting values may be used, other categories and
mappings of weighting values may be used, or other tech-
niques may be used to apply weightings other than those
visualizable by a state vector generator weighting grid 500.

[0099] The left side of the state vector generator weighting
orid 500 depicts groupings of features as produced by the
one or more feature extractors. For example, these groupings
can include gameplay audio features 502, gameplay video
teatures 504, gameplay haptics features 506, and gameplay
context features 508. While the groupings depicted 1n FIG.
5 are based on input modalities, that need not always be the
case, and 1n some cases features are not grouped together at
all, but are separate. The top side of the state vector
generator weighting grid 500 depicts groupings of remote
devices, such as lighting devices 510, fans 512, thermostats
514, blinds 516, and speakers 518. While these groupings
depicted 1n FIG. 5 are based on device types or output
modalities, that need not always be the case, and 1n some
cases remote devices are not grouped together at all, but are
separate.

[0100] As depicted in FIG. 5, each combination of feature
groupings and remote device groupings has a weighting
value. When determining state vectors for the different
remote device groupings (e.g., determiming a state vector for
a fan), the different feature groupings can be given diflerent
weightings. For example, when determining state vectors for
lighting devices 510, groupings such as gameplay audio 502,
gameplay haptics 506, and gameplay context 508 may have
relatively low weighting values, but gameplay video 504
may have a relatively high weighting value since the visuals
of the game are most likely to be more important to the
control of lighting devices 510 to achieve the desired eflects
(e.g., improved gameplay immersion). Likewise, gameplay
audio 502 may have a relatively high weighting value
compared to the other groupings for generating state vectors
for speakers 518.

[0101] In some cases, techniques other than weighting
values can be used to generate state vectors from gameplay
input data.

[0102] FIG. 6 1s a flowchart depicting a process 600 for
determining future state vectors, according to certain aspects
of the present disclosure. Process 600 can be performed by
any suitable hardware, such as a gaming device (e.g.,
gaming device 120 of FIG. 1), a remote device (e.g., remote
device 122 of FIG. 1), a cloud-based server, or the like. In
some cases, process 600 can be performed by a combination
of suitable hardware (e.g., a combination of a gaming device
and a cloud-based server).

[0103] In some optional cases, one or more available
remote devices can be identified at block 602. Identifying
available remote devices can include receiving device infor-
mation from a user (e.g., the user providing a list of remote

Feb. 20, 2025

devices or programming the remote device into the system),
automatically detecting available remote devices (e.g., via a
umversal plug and play protocol), or otherwise identifying
the remote devices. In some cases, 1dentifying one or more
remote devices at block 602 can include identifying one or
more controllable states associated with the one or more
remote devices.

[0104] At block 604, gameplay input data can be received.
Receiving gameplay input data at block 604 can be the same
as receiving gameplay input data at block 402.

[0105] At block 606, one or more future state vectors can
be determined. Determining a future state vector can include
determining a state vector for a time 1n the future. In some
cases, determining one or more future state vectors can
include generating the one or more state vectors from
predicted information. In an example, the system can use the
received gameplay mput data from block 604 to generate
predicted gameplay input data (e.g., gameplay input data for
x seconds 1n the future) that can be used to generate the
future state vector(s) similar to how gameplay mput data 1s
used to generate state vectors in process 400 of FIG. 4. In
such cases, the use of predicted gameplay input data allows
the future state vectors to be generated for a time in the
future (e.g., X seconds 1nto the future). In another example,
gameplay mput data can be processed by the one or more
feature extractors to produce predicted gameplay features
associated with a time 1n the future (e.g., X seconds in the
future). These predicted gameplay features can then be used
to generate the future state vector(s) similar to how game-
play features are used to generate state vectors i process
400 of FIG. 4. In such cases, the use of predicted gameplay
teatures allows the future state vectors to be generated for a
time 1n the future (e.g., X seconds into the future). In yet
another example, gameplay mput data and gameplay fea-
tures can be provided to a state vector generation model that
1s trained to generate predicted state vectors for some time
in the future (e.g., X seconds 1n the future).

[0106] Regardless of how the one or more future state
vectors are generated, the one or more future state vectors
can be used at block 608 to eflect control of one or more
remote devices.

[0107] In some cases, the use of one or more future state
vectors to control one or more remote devices can be used
to overcome device latency. For example, 1n some cases, at
optional block 610, latency can be identified for a remote
device. In some optional cases, the device latency can be
identified as part of or following i1dentification of the avail-
able remote device(s) at block 602. Identitying latency can
be based on user feedback (e.g., a user entering 1n a latency
value or interacting with the system to indicate when a
change 1n state for the remote device 1s detected by the user
aiter being nitiated by the system), can be automatic (e.g.,
based on measured latency values, such as via network
communications), or otherwise. Determining the one or
more future state vectors at block 606 can include using the
identified latency value from block 610 such that the state
vector for the given remote device 1s determined n milli-
seconds 1n the future, where n 1s or 1s based on the latency
value for the given remote device. Thus, when the future
state vector 1s used to eflect control of the remote device at
block 608, the latency inherent in the remote device 1s
accounted for and the eflect of the remote device’s state
change 1s discerned at the desired time. For example, a fan
may have a relatively large latency value due to 1) the time

US 2025/0058214 Al

it takes for network communications to be received by the
fan controller, 11) the time it takes for the fan controller to
turn on the fan, 111) the time 1t takes for the fan to spin up to
speed, 1v) the time 1t takes for the air movement from the fan
to be felt by the user, or v) any combination of 1-1v. The
system can determine a future state vector for this particular
remote device that 1s n milliseconds 1n the future, where n
1s the fan’s latency value 1n milliseconds. Thus, 11 the fan’s
latency 1s 3 seconds, and 1if a user 1s playing a game and 1t
1s predicted that 1n 3 seconds the user’s player character may
enter a windy region in the video game, the system can
determine that the future state vector for the fan 3 seconds
from now should be “on” and can eflect control of the
remote device now using that future state vector such that in
3 seconds, the fan’s eflect will be felt by the user as the
player character enters the windy region. In some cases, 1
gameplay actions indicate that a particular future state vector
1s no longer valid, a control can be eflected to rescind or
nullify the previously acted upon state vector. In the example
with the fan, 11 the user takes action to stop the play character
from entering the windy region, the system can automati-
cally eflect control of the remote device to turn the fan off,
thus reducing or minimizing any undesired eflects.

[0108] In some cases, the use of one or more future state
vectors can be leveraged for purposes other than compen-
sating for latency values. For example, predicting future
state vectors can be used to inform current state vectors. In
such an example, 11 a lighting device previously had a state
vector of “off” and 1s to have a state vector of “on” now, 1t
a predicted future state vector indicates that the lighting
device should have an even brighter intensity than now, the
current state vector can be set to “on” and “50%” while the
future state vector can be set to “on” and “100%.” If no
future state vector existed or if the future state vector merely
had the lighting device remain the same or turn ofl, the
current state vector may have been set to “on” and “100%.”

[0109] In some cases, prediction of gameplay mput data,
gameplay features, and/or state vectors can be performed on
remote server(s) to alleviate computing power use by the
gaming device.

[0110] While certain blocks are depicted with respect to
process 600, in some cases process 600 can include addi-
tional blocks, fewer blocks, or different blocks 1n diferent

orders. For example, 1n some cases, process 600 includes
only block 604, 606, and 608, without blocks 602 or 604.

[0111] FIG. 7 1s a schematic diagram of a state vector
generation model 724 of a gameplay synchronization sys-
tem, according to certain aspects of the present disclosure.
State vector generation model 724 can be state vector
generation model 336 of FIG. 3. The system can include one
or more feature extractors 722, such as an audio feature
extractor 714, a video feature extractor 716, a haptics feature
extractor 718, and a context feature extractor 720. The state
vector generation model 724 can generate one or more state
vector(s) 712, such as s first state vector 702, a second state
vector 704, a third state vector 706, a fourth state vector 708,
and a fifth state vector 710.

[0112] The one or more feature extractors 722 can output
gameplay Ifeatures to a feature-to-scene generator model
726. The feature-to-scene generator model 726 can output
scene data to a scene-to-state-vector generator model 728,
which can then output the one or more state vector(s) 712.
The feature-to-scene generator model 726 can generate
scene data from the gameplay features. The scene data can

Feb. 20, 2025

be indicative of the type of output effects that are desired to
be created by any available remote devices. For example, the
scene data may indicate that lighting should be dim, tem-
perature should be slightly lowered, and dripping noises
should be presented behind the user. In some cases the
feature-to-scene generator model 726 1s pre-trained to output
scene data. In some cases, the feature-to-scene generator
model 726 can be based at least 1n part on the available
remote devices, although that need not always be the case.

[0113] The scene-to-state-vector generator model 728 can
take the scene data as iput and output state vectors. In some
cases, the scene-to-state-vector generator model 728 can
take any scene data and output state vectors based on the
available remote devices. In the above example, 11 the
available remote devices include lighting devices, a thermo-
stat, and a speaker, the scene-to-state-vector generator
model 728 may take the scene data and generate state
vectors to turn the lighting devices down or off, turn the
thermostat to a lower temperature, and play a dripping sound
cellect from the speaker. If, however, the available remote
devices only include lighting devices and a fan, the scene-
to-state-vector generator model 728 may take the same
scene data and generate state vectors to turn the lighting
devices down or ofl and to turn the fan on to simulate a
decrease 1n temperature, and not generate state vectors for
the dripping sound eflect.

[0114] In some cases, the {feature-to-scene generator
model 726 can be implemented on a remote server, whereas
the scene-to-state-vector generator model 728 can be imple-
mented on a local gaming device, although that need not
always be the case.

[0115] FIG. 8 1s a schematic diagram of a hierarchical state
vector generation model of a gameplay synchromization
system, according to certain aspects of the present disclo-
sure. hierarchical state vector generation model 824 can be
state vector generation model 336 of FIG. 3. The system can
include one or more feature extractors 822, such as an audio
feature extractor 814, a video feature extractor 816, a haptics
feature extractor 818, and a context feature extractor 820.
The hierarchical state vector generation model 824 can
generate one or more state vector(s) 812, such as s first state

vector 802, a second state vector 804, a third state vector
806, a fourth state vector 808, and a fifth state vector 810.

[0116] The hierarchical state vector generation model 824
can 1tself be made up of a series of hierarchical models. The
gameplay features can be provided as mput to the first state
vector generator model 826, which can output the first state
vector 802 and first supplemental data. The first supplemen-
tal data can be provided to the second state vector generator
model 828, which can output the second state vector 804 and
second supplemental data. The second supplemental data
can be provided to the third state vector generator model
830, which can output the third state vector 806 and third
supplemental data. The third supplemental data can be
provided to the fourth state vector generator model 832,
which can output the fourth state vector 808 and fourth
supplemental data. The fourth supplemental data can be
provided to the fifth state vector generator model 834, which
can output the fifth state vector 810. Any number of hier-
archical models (or levels) can be used to makeup the
hierarchical state vector generation model 824.

[0117] When a hierarchical state vector generation model
824 1s used, the generation of a particular state vector can
allect the generation of subsequent state vectors. For

US 2025/0058214 Al

example, 11 the first state vector generator model 826 outputs
a particular state vector that 1s generated to achieve a
particular lighting eflect, the subsequent state vector gen-
erator models may not need to generate any state vectors to
achieve that particular lighting eflect since 1t has already
been addressed. However, 1f the first state vector generator
model 826 outputs a particular state vector that 1s generated
to achieve a diflerent lighting eflect, a subsequent state
vector generation model may generate a state vector to
achieve the particular lighting effect that had not already
been addressed by a prior state vector generation model. The
use of hierarchical state vector generation models 824 can
have other benefits.

[0118] FIG. 9 1s a block diagram of an example system
architecture 902 for implementing features and processes of
the present disclosure, such as those presented with refer-
ence to processes 400, 600 of FIG. 4 and FIG. 6, respec-
tively. The features and processes disclosed herein can be
implemented using one or multiple mstances of 902. The
system architecture 902 can be used to implement a server
(e.g., a cloud-accessible server), a user device (e.g., a
smartphone or personal computer), or any other suitable
device for performing some or all of the aspects of the
present disclosure. The system architecture 902 can be
implemented on any electronic device that runs software
applications derived from compiled 1nstructions, including
without limitation personal computers, servers, smart
phones, clectronic tablets, game consoles, email devices,
and the like. In some implementations, the system architec-
ture 902 can include one or more processors 906, one or
more input devices 914, one or more display devices 912,
one or more network interfaces 910, and one or more
computer-readable media 922. Each of these components
can be coupled by bus 920.

[0119] Dasplay device 912 can be any known display
technology, including but not limited to display devices
using Liquid Crystal Display (LCD) or Light Emitting
Diode (LED) technology. Processor(s) 802 can use any
known processor technology, including but not limited to
graphics processors and multi-core processors. Input device
914 can be any known mput device technology, including
but not limited to a keyboard (including a virtual keyboard),
mouse, track ball, and touch-sensitive pad or display. In
some cases, audio inputs can be used to provide audio
signals, such as audio signals of an individual speaking. Bus
920 can be any known internal or external bus technology,
including but not limited to Industry Standard Architecture
(ISA), Extended ISA (EISA), Peripheral Component Inter-
connect (PCI), PCI Express, NuBus, Universal Serial Bus
(USB), Serial Advanced Technology Attachment (ATA), or
FireWire.

[0120] Computer-readable medium 922 can be any
medium that participates 1n providing instructions to pro-
cessor 906 for execution, including without limitation, non-
volatile storage media (e.g., optical disks, magnetic disks,
flash drives, etc.) or volatile media (e.g., synchronous
dynamic random access memory (SDRAM), read only
memory (ROM), etc.). The computer-readable medium
(e.g., storage devices, mediums, and memories) can include,
for example, a cable or wireless signal containing a bit
stream and the like. However, when mentioned, non-transi-
tory computer-readable storage media expressly exclude
media such as energy, carrier signals, electromagnetic
waves, and signals per se.

Feb. 20, 2025

[0121] Computer-readable medium 922 can include vari-
ous 1nstructions for implementing operating system 916 and
applications 918 such as computer programs. The operating
system 916 can be multi-user, multiprocessing, multitask-
ing, multithreading, real-time and the like. The operating
system 916 performs basic tasks, including but not limited
to: recognizing input from 1nput device 914; sending output
to display device 912; keeping track of files and directories
on computer-readable medium 922; controlling peripheral
devices (e.g., storage drives, 1ntertace devices, etc.) which
can be controlled directly or through an 1I/O controller; and
managing traffic on bus 920. Computer-readable medium
922 can include various nstructions for implementing firm-
ware processes, such as a basic input output system (BIOS).
Computer-readable medium 922 can include various mstruc-
tions for implementing any of the processes described
herein, including at least processes 400, 600 of FIG. 4 and
FIG. 6, respectively.

[0122] Memory 908 can 1include high-speed random
access memory and/or non-volatile memory, such as one or
more magnetic disk storage devices, one or more optical
storage devices, and/or flash memory (e.g., NAND, NOR).
The memory 908 (e.g., computer-readable storage devices,
mediums, and memories) can include a cable or wireless
signal containing a bit stream and the like. However, when
mentioned, non-transitory computer-readable storage media
expressly exclude media such as energy, carrier signals,
clectromagnetic waves, and signals per se. The memory 908
can store an operating system, such as Darwin, RTXC,
LINUX, UNIX, OS X, WINDOWS, or an embedded oper-

ating system such as VxWorks.

[0123] System controller 904 can be a service processor
that operates independently of processor 906. In some
implementations, system controller 904 can be a baseboard
management controller (BMC). For example, a BMC 1s a
specialized service processor that monitors the physical state
of a computer, network server, or other hardware device
using sensors and communicating with the system admin-
istrator through an independent connection. The BMC 1s
configured on the motherboard or main circuit board of the
device to be monitored. The sensors of a BMC can measure
internal physical variables such as temperature, humidity,
power-supply voltage, fan speeds, communications param-
cters, and operating system (OS) functions.

[0124] The described features can be implemented advan-
tageously 1n one or more computer programs that are
executable on a programmable system 1ncluding at least one
programmable processor coupled to receive data and
instructions from, and to transmit data and instructions to, a
data storage system, at least one input device, and at least
one output device. A computer program 1s a set ol instruc-
tions that can be used, directly or indirectly, in a computer
to perform a certain activity or bring about a certain result.
A computer program can be written 1n any form of pro-
gramming language (e.g., Objective-C, Java), including
compiled or interpreted languages, and 1t can be deployed 1n
any form, including as a stand-alone program or as a
module, component, subroutine, or other unit suitable for
use 1n a computing environment.

[0125] Suitable processors for the execution of a program
of instructions include, by way of example, both general and
special purpose microprocessors, and the sole processor or
one of multiple processors or cores, of any kind of computer.
Generally, a processor will receive instructions and data

US 2025/0058214 Al

from a read-only memory or a random access memory or
both. The essential elements of a computer are a processor
for executing instructions and one or more memories for
storing instructions and data. Generally, a computer will also
include, or be operatively coupled to communicate with, one
or more mass storage devices for storing data files; such
devices include magnetic disks, such as internal hard disks
and removable disks; magneto-optical disks; and optical
disks. Storage devices suitable for tangibly embodying
computer program instructions and data include all forms of
non-volatile memory, including by way of example semi-
conductor memory devices, such as EPROM, EEPROM,
and flash memory devices; magnetic disks such as internal
hard disks and removable disks; magneto-optical disks; and
CD-ROM and DVD-ROM disks. The processor and the
memory can be supplemented by, or incorporated in, ASICs
(application-specific integrated circuits).

[0126] To provide for interaction with a user, the features
can be implemented on a computer having a display device
such as a CRT (cathode ray tube) or LCD (liquid crystal
display) monitor for displaying information to the user and
a keyboard and a pointing device such as a mouse or a
trackball by which the user can provide mput to the com-
puter.

[0127] The features can be implemented 1n a computing
system that includes a back-end component, such as a data
server, or that includes a middleware component, such as an
application server or an Internet server, or that includes a
front-end component, such as a client computer having a
graphical user interface or an Internet browser, or any
combination thereof. The components of the system can be
connected by any form or medium of digital data commu-
nication such as a communication network. Examples of
communication networks include, e.g., a LAN, a WAN, and
the computers and networks forming the Internet.

[0128] The computing system can include clients and
servers. A client and server are generally remote from each
other and typically interact through a network. The relation-
ship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other.

[0129] One or more features or steps of the disclosed
embodiments can be implemented using an application
programming interface (API). An API can define one or
more parameters that are passed between a calling applica-
tion and other software code (e.g., an operating system,
library routine, function) that provides a service, that pro-
vides data, or that performs an operation or a computation.

[0130] The API can be implemented as one or more calls
in program code that send or receive one or more parameters
through a parameter list or other structure based on a call
convention defined 1n an API specification document. A
parameter can be a constant, a key, a data structure, an
object, an object class, a variable, a data type, a pointer, an
array, a list, or another call. API calls and parameters can be
implemented 1n any programming language. The program-
ming language can define the vocabulary and calling con-
vention that a programmer will employ to access functions
supporting the API.

[0131] In some implementations, an API call can report to
an application the capabilities of a device running the
application, such as input capability, output capability, pro-
cessing capability, power capability, communications capa-
bility, and the like.

Feb. 20, 2025

[0132] The foregoing description of the embodiments,
including illustrated embodiments, has been presented only
for the purpose of illustration and description and 1s not
intended to be exhaustive or limiting to the precise forms
disclosed. Numerous modifications, adaptations, and uses
thereof will be apparent to those skilled 1n the art. Numerous
changes to the disclosed embodiments can be made 1n
accordance with the disclosure herein, without departing
from the spirit or scope of the disclosure. Thus, the breadth
and scope of the present disclosure should not be limited by
any of the above described embodiments.

[0133] Although certain aspects and features of the present
disclosure have been illustrated and described with respect
to one or more 1mplementations, equivalent alterations and
modifications will occur or be known to others skilled 1n the
art upon the reading and understanding of this specification
and the annexed drawings. In addition, while a particular
feature may have been disclosed with respect to only one of
several implementations, such feature may be combined
with one or more other features of the other implementations
as may be desired and advantageous for any given or
particular application.

[0134] The terminology used herein 1s for the purpose of
describing particular embodiments only, and 1s not intended
to be limiting of the disclosure. As used herein, the singular
forms “a,” “an,” and “the” are intended to include the plural
forms as well, unless the context clearly indicates otherwise.
Furthermore, to the extent that the terms “including,”
“includes,” “having,” “has,” “with,” or variants thereolf, are
used 1n either the detailed description and/or the claims, such
terms are intended to be inclusive in a manner similar to the
term “‘comprising.”

[0135] One or more elements or aspects or steps, or any
portion(s) thereof, from one or more of any of the claims
below can be combined with one or more elements or
aspects or steps, or any portion(s) thereof, from one or more
of any other of the claims below or combinations thereot, to
form one or more additional implementations and/or claims
of the present disclosure.

1. A method, comprising:
receiving gameplay input data associated with a user
engaging in a gameplay session in an environment;
processing the gameplay iput data by a machine learning
system to generate one or more state vectors, wherein
processing the gameplay mput data by the machine
learning system includes:
extracting one or more gameplay features from the
gameplay mput data; and
generating the one or more state vectors based on the
one or more gameplay features; and
facilitating a state change 1n one or more remote devices
based at least 1n part on the one or more state vectors,
the state change being perceivable 1n the environment.

2. The method of claim 1, wherein the gameplay input
data includes 1) gameplay audio data; 1) Gameplay video
data; 1) Gameplay haptics data; 1v) Gameplay context data;
or v) any combination of 1-1v.

3. The method of claim 1, wherein extracting the one or
more gameplay features includes applying the gameplay
input data to one or more feature extractors, each of the one
or more feature extractors being a machine learning model
trained according to a unique input modality.

4. The method of claim 3, wherein the gameplay 1nput
data includes a plurality of gameplay data streams, each of

US 2025/0058214 Al

the plurality of gameplay data streams being associated with
a different one of a plurality of mput modalities, the one or
more feature extractors including a plurality of feature
extractors, each of the plurality of feature extractors being
associated with a different one of the plurality of nput
modalities, and wherein extracting the one or more game-
play features from the gameplay input data includes apply-
ing c¢ach of the plurality of gameplay data streams to a
respective one of the plurality of feature extractors accord-
ing to that gameplay data stream’s respective mput modality.

5. The method of claim 1, wherein generating the at least
one state vector based on the one or more gameplay features
includes applying the one or more gameplay features to a
state vector generation model.

6. The method of claim 5, wherein the state vector
generation model 1s a probabilistic generative model.

7. The method of claim 5, wheremn applying the one or
more gameplay features to the state vector generation model
includes:

applying a weighting value for each of the one or more

gameplay features; and

determining the one or more state vectors based at least in

part on the one or more weighted gameplay features.

8. The method of claim 7, further comprising:

determining a gameplay experience quality score associ-

ated with the gameplay session; and

adjusting the one or more weighting values based at least

in part on the gameplay experience quality score to
improve the gameplay experience quality score.

9. The method of claim 8, wherein determining the
gameplay experience quality score includes:

receiving user feedback associated with the gameplay

session; and

processing the user feedback to determine the gameplay

experience quality score.

10. The method of claim 5, wherein the state vector
generation model 1s pretrained according to a baseline
model, the method further comprising;:

receiving user feedback associated with the gameplay

session; and

updating the state vector generation model based at least

in part on the user feedback.

11. The method of claim 1, further comprising determin-
ing a set of changeable states associated with the one or
more remote devices, wherein generating the at least one
state vector includes generating, for each of the set of
changeable states, a corresponding state vector.

12. The method of claim 1, wherein facilitating the state
change includes transmitting a command signal via a wired
connection or a wireless connection, the command signal
usable to alter a state of at least one of the one or more
remote devices.

13. The method of claim 1, further comprising determin-
ing, for each of the one or more remote devices, a latency
value, wherein processing the gameplay input data to gen-
crate the one or more state vectors 1s further based at least
in part on the latency values, such that corresponding latency
1s compensated for when facilitating the state change of each
of the one or more remote devices.

14. The method of claim 13, wherein extracting the one or
more gameplay features from the gameplay input data
includes predicting values for at least one of the one or more
gameplay features up to a future time equal to a current time
plus a largest latency value of the one or more latency

Feb. 20, 2025

values, wherein generating the one or more state vectors 1s
based at least in part on the one or more latency values such
that for a given one of the one or more remote devices, the
respective generated state vector accounts for the respective
latency value.

15. The method of claim 1, wherein processing the
gameplay imput data to generate the one or more state
vectors occurs on a server that 1s communicatively coupled
to a gaming device being used by a user to engage 1n the
gameplay session, and wherein facilitating the state change
includes transmitting the one or more state vectors to the
gaming device.

16. The method of claim 15, wherein facilitating the state
change includes transmitting, from the gaming device, a
command signal via a wired connection or a wireless

connection, the command signal usable to alter a state of at
least one of the one or more remote devices.

17. The method of claim 15, wherein the one or more state
vectors includes a plurality of state vectors across a plurality
of output modalities including at least a first output modality
and a second output modality, wherein the plurality of state
vectors, when received by the gaming device, are processed
to excluded each of the plurality of state vectors associated
with the first output modality.

18. The method of claim 1, further comprising receiving
output modality capability information indicative of a set of
one or more output modalities capable of being engaged 1n
association with the environment, wherein generating the
one or more state vectors 1s based at least i part on the
output modality capability information such that each of the
one or more state vectors 1s associated with one of the set of
one or more output modalities.

19. The method of claim 1, further comprising receiving
gameplay output modality state data associated with the user
engaging 1n the gameplay session, the gameplay output
modality state data indicative of one or more desired states
associated with one or more possible output modalities and
associated with the gameplay session, wherein facilitating
the state change 1s further based at least in part on the
gameplay output modality state data.

20. The method of claim 1, further comprising determin-
ing relative position information for each of the one or more
remote devices, the relative position information indicative
of a relative position with respect to an expected location of
the user, wherein processing the gameplay mput data to
generate the one or more state vectors 1s further based at
least 1in part on the relative position mnformation.

21. The method of claim 1, wherein the one or more
remote devices includes 1) a light source; 1) a fan; 111) a
thermostat; 1v) a window blinds controller; v) a speaker, the
speaker not directly outputting gameplay audio data; vi) a
switch; vi1) a dimmer; or viil) any combination of 1-vii.

22. The method of claim 1, wherein facilitating the state
change includes employing an application programming
interface associated with at least one of the one or more
remote devices.

23. A system comprising:
a control system including one or more processors; and

a memory having stored therecon machine readable
instructions;

wherein the control system 1s coupled to the memory, and
the method of claim 1 i1s implemented when the

US 2025/0058214 Al Feb. 20, 2025
14

machine executable instructions in the memory are
executed by at least one of the one or more processors

of the control system.
24. (canceled)
25. A computer program product, embodied on a non-
transitory computer readable medium, comprising instruc-
tions which, when executed by a computer, cause the

computer to carry out the method of claim 1.
26. (canceled)

	Front Page
	Drawings
	Specification
	Claims

