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(57) ABSTRACT

Disclosed herein are techniques and architectures for encod-
ing data within a hyperdimensional computing (HDC)
framework, enabling the transformation of input data into
high-dimensional vector space representations. Embodi-
ments herein facilitate the segmentation of data into multiple
windows, selection of level hypervectors corresponding to
data elements, application of permutation operations for
positional encoding, and execution of binary operations to
synthesize window hypervectors. The aggregation of such
window hypervectors yields an encoded hypervector that
encapsulates a representation of the original data 1n HDC
space. The disclosed embodiments are adept at handling
various data types, including textual, image, voice, or sensor
data, providing for broad applicability and adaptability 1n
encoding for hyperdimensional computing applications.
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Algorithm 1:Example Training Process
Inputs: model {{rained), X, free filters, pattern_dict, {s
Output: PatterNet model
1: for iter from 1 {0 epochs®batches do
muodel « SGD{model, A
for { in model.conviayers do

for f in model filters{¢} do
if f in free filters{¢] then

Wbt

e Pg
“v

model. weight{f}[$] « k-means({, G)

end if
if f in pattern_dict{f] then

3 model, weight{f}] f | K pmjm:tmwﬁghts(f, pattern_dict)
11z end for
12 end for
13: end for
14: return moded

B S A

FIG. 16
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HIGH-DIMENSIONAL VECTOR SPACE
ENCODING TECHNIQUES FOR
HYPERDIMENSIONAL COMPUTING
SYSTEMS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of U.S. Provi-
sional Application No. 63/485,128, entitled “Methods, Cir-
cuits, And Systems Including *'ﬁelent Learning Engine On
Edge Using Hyperdimensional Computing And Eifhcient
Deep Neural Network Acceleration With Filter Sharmg,,”
filed on Feb. 15, 2023, the disclosure of which 1s hereby

incorporated by reference in 1ts enfirety.

[0002] This application 1s being filed on Feb. 14, 2024,
concurrently with the following U.S. patent application,
which 1s incorporated by reference herein in its entirety:

Attorney Docket

No. Patent Application Title Filing Date

170964-00078A2 Deep Neural Network Operation Feb. 14, 2024

Via Patterned Filter Clustering
And Activation Group Reuse

STATEMENT OF GOVERNMENT SUPPORT

[0003] This invention was made with government support
under Grant No. HR0011-18-3-0004 awarded by the Depart-
ment of Defense Advanced Research Projects Agency
(DARPA). The government has certain rights in the mven-
tion.

FIELD

[0004] The present disclosure generally relates to infor-
mation processing systems and, more particularly, to meth-
ods and systems for encoding data within hyperdimensional
computing frameworks.

BACKGROUND

[0005] Hyperdimensional Computing (HDC) 1s a brain-
ispired learning paradigm based on the observation that
brains perform cognitive tasks by mapping sensory inputs to
high-dimensional neural representation. The paradigm
cnables the brain to carry out simple, low-power, error-
resilient, and parallelizable operations all 1n the hyperspace.
Such characteristics of HDC make 1t appealing for a wide
variety of applications such as IoT domain that generates an
increasing amount of data with tight resource and energy
constraints. Conventional processing platforms such as
CPUs and GPUs may not take full advantage of the highly-
parallel bit-level operations of HDC. Furthermore, existing,
HDC encoding techniques often do not cover a broad range
ol applications to make a custom design plausible.

[0006] The increasing effectiveness of Deep Neural Net-
works (DNNs) across various application areas 1s paralleled
by an expansion in both the size and computational require-
ments of their models. To address the challenges related to
the memory and computational demands of DNNs, consid-
erable research eflorts have been dedicated to developing
compression techniques. These techniques include weight
quantization, pruning, clustering, and filter pruning, with

Aug. 15,2024

particular emphasis on enhancing hardware efliciency
through hardware-aware quantization and structured prun-
ing. In the context of weight quantization, 1t can include the
assignment of network parameters to a predefined set of
values, such as in uniform quantization.

[0007] Weight clustering 1s an eflective technique {for
compressing deep neural networks (DNNs) memory by
using a limited number of unique weights and low-bit
welght 1ndexes to store clustering information. Weight clus-
tering consolidates weights into clusters, assigning a single
value to all weights within a cluster. This allows for the
storage of just the cluster index or ID for each weight 1n an
index table, accompanied by a smaller table mapping these
indexes to actual weight values. Prior studies have demon-
strated that maintaining approximately 16 unique weights
can preserve model accuracy, effectively doubling memory
clliciency by replacing 8-bit weight representations with
4-bit index values.

SUMMARY

[0008] Some embodiments of the present disclosure relate
to encoding techniques that can enhance accuracy for a wide
array of applications. Disclosed herein 1s an Application-
Specific Integrated Circuits (ASIC) accelerator system that
leverages the encoding techniques and can be optimized for
edge computing environments. The ASIC accelerator system
can support classification (e.g., encompassing both training
and 1nference) and clustering for unsupervised learning,
demonstrating an adaptabaility to various application require-
ments and hypervectors dimensionality. Such adaptability
can enable the ASIC accelerator system to dynamically
adjust between accuracy and energy/performance efliciency
on demand. In some cases, the ASIC accelerator system can
be augmented with application-opportunistic power-gating
and voltage over-scaling strategies, exploiting the inherent
error resilience of Hyperdimensional Computing (HDC) for
further reductions 1n energy consumption. The encoding
techniques described herein can significantly improve pre-
diction accuracy over existing HDC and machine learning
techniques, setting a new standard 1n the field. Further, the
ASIC accelerator system can ofler substantial improvements
in energy efliciency over previous solutions, marking a
significant advancement in ASIC accelerator technology for
edge computing applications.

[0009] Some embodiments of the present disclosure relate
to techniques and architectures for encoding data within a
hyperdimensional computing (HDC) framework, enabling
the transformation of input data mto high-dimensional vec-
tor space representations. Embodiments herein facilitate the
segmentation of data into multiple windows, selection of
level hypervectors corresponding to data elements, applica-
tion of permutation operations for positional encoding, and
execution of binary operations to synthesize window hyper-
vectors. The aggregation of such window hypervectors
yields an encoded hypervector that encapsulates a represen-
tation of the original data in HDC space. This process can
include the use of exclusive OR (XOR) operations for binary
execution, predefined sets of level hypervectors for quanti-
zation, or unique identifier hypervectors for incorporating
global sequence information. The disclosed embodiments
are adept at handling various data types, including textual,
image, voice, or sensor data, providing for broad applica-
bility and adaptability in encoding for hyperdimensional
computing applications.
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[0010] Some embodiments of the present disclosure relate
to a pattern clustering system, which can be designed to
enforce shared clustering topologies on filters, thereby lead-
ing to a significant reduction in memory usage through the
reuse of index information. The pattern clustering system
can eflectively factorize input activations and post-process
unique weights, substantially decreasing the requirement for
multiplication operations. In some cases, the pattern clus-
tering system can reduce the number of addition operations
by leveraging the fact that filters sharing a clustering pattern
have i1dentical factorized terms. Some embodiments of the
present disclosure relate to techniques for determining and
assigning clustering patterns, as well as for tramning a
network to adhere to these target patterns. Some embodi-
ments ol the present disclosure relate to an eflicient accel-
erator based on the patterned filters. The pattern clustering
system can reduce both the memory footprint and the
operation count, while maintaining accuracy comparable to
that of baseline models. Furthermore, the accelerator for the
pattern clustering system can significantly enhance energy
elliciency, surpassing the performance of conventional tech-
nologies and setting a new benchmark in the field.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] Throughout the drawings, reference numbers can
be re-used to indicate correspondence between referenced
clements. The drawings are provided to 1illustrate embodi-
ments of the present disclosure and do not to limit the scope
thereof.

[0012] FIGS. 1A-1C demonstrate example HDC training
and inference. FIG. 1A illustrates an example initial training
(initialization) phase, FIG. 1B illustrates an example infer-
ence phase, and

[0013] FIG. 1C 1llustrates an example retraining phase of
an HDC model.

[0014] FIG. 2A illustrates an example association of
hypervectors with raw input features, known as level hyper-
vectors, which represent scalar elements 1 hyperspace.
[0015] FIG. 2B illustrates an example permutation encod-
ing process where level hypervectors are circularly shifted
for positional encoding in HDC.

[0016] FIG. 2C 1llustrates an example random projection
(RP) encoding technique, showing how 1nput indices can be
combined with their levels using a binary XOR operation.
[0017] FIG. 3A 1llustrates an example encoding method 1n
accordance with aspects of the inventive concept, focusing
on processing sliding windows of length n and applying
permutation encoding to achieve higher accuracy across
various applications.

[0018] FIG. 3B illustrates Table 1, which presents
example accuracy results of various encoding techniques
including random projection, multi-layer perceptron, sup-
port vector machine, and random {forest, highlighting the
superior accuracy of the ASIC accelerator system encoding
compared to these techniques.

[0019] FIG. 4A graphically represents the energy con-
sumed during the training and inference phases of various
algorithms, including HDC and ML, on different computa-
tional platforms such as Raspberry Pi1, CPU, and eGPU,
providing a comparison ol energy efliciency.

[0020] FIG. 4B depicts the time required to complete the
training and inference phases for the algorithms and plat-
forms of FIG. 4A, providing a comparison of relative
computational speed and performance etliciency.
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[0021] FIG. 5 shows an example ASIC accelerator system,
according to embodiment of the present inventive concept.
[0022] FIG. 6 1illustrates the impact of using constant
versus updated L2 norms 1n the ASIC accelerator system,
showing the accuracy differences i EEG and ISOLET
datasets.

[0023] FIG. 7 shows an example relationship between
class memory error rate and accuracy in different bench-
marks.

[0024] FIG. 8 provides a breakdown of the area and power
consumption of the ASIC accelerator system.

[0025] FIG. 9 compares the training energy and execution
time of the ASIC accelerator system with other methods.
[0026] FIG. 10A compares the energy consumption of the
ASIC accelerator system and baselines.

[0027] FIG. 10B illustrates Table 2, which compares the
normalized mutual imnformation score of the K-means and
HDC for the FCPS benchmarks and the Iris flower dataset.
[0028] FIG. 11 compares the per-input energy consump-
tion of the ASIC accelerator system with K-means clustering
on different hardware.

[0029] FIGS. 12A and 12B 1illustrate an example convo-
lution operation 1n CNNs.

[0030] FIG. 13 illustrates the convolution layer param-
cters, 1llustrating output activation generation via dot-prod-
ucts of filters with input windows.

[0031] FIG. 14 illustrates parameter memory and opera-
tion reduction in patterned VGG-16 layers, emphasizing
elliciency through shared clustering patterns.

[0032] FIG. 15 illustrates the pattern selection process,
displaying filter weight clustering into groups for similar
pattern assignment.

[0033] FIG. 16 illustrates an example algorithm for an
example training process in the pattern clustering system.
[0034] FIG. 17A illustrates the pattern clustering system
accelerator’s architecture and data flow.

[0035] FIG. 17B illustrates Table 3, which summarizes the
accuracy, operation count (ADD and MUL), and memory
for the aforementioned models and datasets.

[0036] FIG. 17C 1llustrates Table 4, which reports the size
of the pattern clustering system memories.

[0037] FIG. 17D 1illustrates Table 5, which shows the
per-component area and delay of the pattern clustering
system.

[0038] FIGS. 18A and 18B show the scalability of the

pattern clustering system, comparing performance across
different array sizes for image processing.

[0039] FIG. 19 1illustrates the energy efliciency of the
pattern clustering system compared with other architectures.

DETAILED DESCRIPTION

[0040] Hyperdimensional Computing (HDC) often uses
algorithms to encode raw inputs to a high-dimensional
representation of hypervectors with D, =~2-5K dimensions.
The encoding can take place by deterministically associating
cach element of an mput with a binary or bipolar (x1)
hypervector and bundling (element-wise addition) the
hypervectors of all elements to create the encoded hyper-
vector. Training can mvolve bundling all encoded hypervec-
tors of the same category. For inference, the query input can
be encoded to a hypervector in the same or similar fashion
and compared with all class hypervectors using a simple
similarity metric, such as cosine.
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[0041] In some cases, the bit-level massively parallel
operations of HDC do not accord well with conventional
CPUs/GPUs due to, e.g., memory latency and data move-
ment of large vectors or the fact that these devices are
over-provisioned for majorly binary operations of HDC.
Furthermore, solutions for custom HDC accelerators often
sufler from limitations such as supporting only a narrow
range of applications, achieving lower accuracy compared to
baseline ML algorithms, or consuming significantly more
energy.

[0042] Disclosed herein are iventive concepts that
address these or other problems. Some inventive concepts
herein relate to an ASIC accelerator system (sometimes
referred to as a ighly eflicient learning engine on edge using,
hyperdimensional computing or GENERIC) for eflicient and
accurate trainable classification and clustering. The ASIC
accelerator system can be compact and low-power (e.g., to
meet year-long battery-powered operation) and/or can be
fast during training and burst inference, e.g., when it serves
as an lo1 gateway.

[0043] Some mventive concepts herein relate to an HDC
encoding that yields high accuracy in various benchmarks.
Some mventive concepts herein relate to an ASIC accelera-
tor system that can implement accurate HDC-based trainable
classification and clustering. The ASIC accelerator system
can beneflt from extreme energy reduction techniques such
as, but not limited to, application-opportunistic power gat-
ing, on-demand dimension reduction, and error-resilient
voltage over-scaling. The ASIC accelerator system can
improve the classification accuracy (e.g., by 3.5% over
previous HDC techniques and 6.5% over ML techniques).
The ASIC accelerator system can improve energy consump-
tion (e.g., by 4.1x and 15.7xcompared to previous HDC
accelerators).

[0044] FIGS. 1A-1C demonstrate example HDC training
and inference. During training, each mput X 1s encoded to a
hypervector H(X) and added up to 1ts class hypervector. In
the inference, the query 1s likewise encoded and compared
with class hypervectors. The class index with the highest
similarity score 1s returned as the prediction result. In this
example, cosine distance of the query and class hypervectors
as the similanty metric. The accuracy of an HDC model can
be improved by retraining iterations where the encoded train
data are compared with the HDC model, and 1in case of
misprediction, the model 1s updated by subtracting the

encoded hypervector from the mispredicted class and adding
it to the correct class.

[0045] The similanty of hypervectors indicates their prox-
imity, which can be used to cluster data 1n the hyperspace.
Initially, k encoded hypervectors are selected as clusters
centroids. At each iteration, all encoded inputs are compared
with the centroids and added to the closest (highest score)
centroid hypervector. In classification, the model 1s updated
right away. However, in clustering, the model 1s fixed and
used for finding the similarities, and a new model 1s created
from scratch, which replaces the current model 1n the next
iteration.

[0046] FIG. 2A illustrates an example association of
hypervectors with raw input features, known as level hyper-
vectors, which represent scalar elements 1n hyperspace. FIG.
2B illustrates an example permutation encoding process
where level hypervectors are circularly shifted for positional
encoding i HDC. FIG. 2C illustrates an example random
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projection (RP) encoding technique, showing how input
indices can be combined with their levels using a binary
XOR operation.

[0047] Encoding can be an important step of HDC. Some
encoding techniques map the mputs to high dimensional
space. Most encodings associate hypervectors with the raw
input features (elements), called level hypervector (see FIG.
2A), which are hyperspace representative of scalar elements.
Usually, inputs are quantized ito bins to limit the number
of levels. If there 1s a meaningful distance between the mnput
clements (as in the values of white and black pixels), this
distance can be preserved when generating the levels.

[0048] FEncoding of an mput can be accomplished by
aggregating the level hypervectors of 1ts elements. To handle
the positional order of elements, which can be important in
most datasets such as image or voice, HDC can use variants
of binding. The permutation encoding of FIG. 2B carries out
binding by circular shift of the level hypervectors; the level
hypervector of mth feature 1s permuted by m indexes. Some
other encodings such as random projection (RP), shown 1n
FIG. 2C, or level-1d use 1d hypervectors for binding. In these
encodings, each input index has a random (but constant)
binary 1d, which 1s multiplied (XOR 1n the binary domain)
with 1ts level, and the result vector 1s aggregated with that of
other indexes.

[0049] Conventional encoding techniques can achieve low
accuracy for certain datasets such as language 1dentification
which generally need extracting local subsequences of con-
secutive features, without considering the global order of
these subsequences. Some previous studies use ngram
encoding for such datasets. Ngram encoding extracts all
subsequences of length n (usually n&{3-5}) in a given input,
encodes all these subsequences and aggregates them to
produce the encoded hypervector. However, ngram encod-
ing may achieve very low accuracy for datasets such as
images or voices in which the spatio-temporal information
of should be taken into account. Disclosed herein 1s a new
encoding that can advantageously cover a more versatile set
ol applications.

[0050] FIG. 3A illustrates an example encoding method 1n
accordance with aspects of the inventive concept, focusing
on processing shiding windows of length n and applying
permutation encoding to achieve higher accuracy across
various applications. That 1s, for every window consisting of
elements {x,, X,_,, X, .} (for n=3), three level hypervectors

are selected, where 1 (x,), £ (x,_,), and U (x,_,) are permuted
by O, 1, and 2 indexes, respectively. The permuted hyper-
vectors can be XORed elementwise to create the window
hypervector. The permutation accounts for positional 1nfor-
mation within a window, e.g., to distinguish “ab¢” and
“bca”. To account for global order of features, a random but
constant 1d hypervector can be associated with each window,
which can be XORed with the window hypervector to
perform binding. In some cases, the global binding 1s
omitted. For example, in certain applications, 1d hypervec-

tors are set to {0}Prv

[0051] Equation (1) outlines an example encoding pro-
cess, 1n accordance with aspects of the inventive concept. In
Equation (1), pY” indicates permutation by j indexes, II
multiplies (XOR 1n binary) the levels of 1th window, 1d,
applies the binding 1d, and 2 adds up the window hyper-
vector for all windows of d elements.
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[0052] In this example, n=3 as it achieved the highest
accuracy (on average) for the examined benchmarks. How-
ever, the value of n can vary across embodiment. In some
cases, the ASIC accelerator system can adjust the value of n
for every application.

[0053] As shown 1n Table 1, eleven datasets were com-
piled from different domains, including certain benchmarks,
seizure detection by skull surface EEG signals, and user
activity recognition by motion sensors. In this example, the
HDC algorithms were implemented using an optimized
Python implementation that leverages SIMD operations. For
ML techniques, a Python scikit-learn library was used. Some
of results of logistic regression and k-nearest neighbors were
discarded, as they achieved lower accuracy. For DNN mod-
els of benchmarks, an AutoKeras library for automated
model exploration was used.

[0054] Table 1 summarizes the accuracy results (RP: ran-
dom projection, MLP: multi-layer perceptron, SVM: sup-
port vector machine, RF: random forest). As shown, in this
example, the disclosed ASIC accelerator system encoding
achieves 3.5% higher accuracy than the best baseline HDC

(level-1d), 6.3% higher than best baseline ML (SVM), and
1.0% higher than DNN. The RP encoding fails in time-series
datasets that require temporal information (e.g., EEG). In
some cases, the ngram encoding does not capture the global
relation of the features, so 1t fails 1n datasets such as speech
(ISOLET) and image recognition (MNIST). In some cases,
except for the ngram and the disclosed ASIC accelerator
system, other HDC techniques fail in the LANG (text
classification) as they enforce capturing sequential informa-
fion and 1gnore subsequences.

[0055] HDC’s operations can be simple and highly paral-
lelizable. However, conventional processors may not be
optimized for binary operations such as one-bit accumula-
tion. Also, the size of hypervectors in most settings can
become larger than the cache size of low-end edge proces-
sors, which may 1mpose significant performance overhead.
The HDC and ML algorithms can be implemented on the
datasets on a Raspberry P1 3 embedded processor and
NVIDIA Jetson TX2 low-power edge GPU, and also a
desktop CPU (Intel Core 17-8700 at 3.2 GHz) with a larger
cache. A Hioki 3334 power meter was used to measure the
power of the Raspberry Pi.

[0056] FIGS. 4A and 4B compare the training and infer-
ence (a) energy consumption and (b) execution time of the
algorithms, reported as the geometric mean of all bench-
marks. For eGPU, the results of conventional ML were
omitted, as it performed worse than CPU for a variety of
libraries. As shown by FIGS. 4A and 4B, (1) conventional
ML algorithms, including DNN, can consume smaller
energy than HDC on all devices, (11) the ASIC accelerator
system encoding, due to processing multiple hypervectors
per window, can be less efficient than other HDC techniques,
and (1) the eGPU implementation, by data packing (for
parallel XOR) and memory reuse, can significantly improve
the HDC execution time and energy consumption. For
instance, eGPU can improve the energy usage and execution
time of the ASIC accelerator system inference by 134X and
252x over running on low-end Raspberry Pi1 (70X and 30X
over CPU). However, the ASIC accelerator system running
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on eGPU can consume 12X (3X) more inference (train)
energy, with 27X (111X) higher execution time than an
efficient baseline (random forest). Nonetheless, eGPU num-
bers 1mply substantial energy and runtime reduction poten-
tial for HDC by effectively taking advantage of low-preci-
s1on operations (achieved by bit-packing in eGPU) and high
parallelism.

[0057] FIG. 5 shows an example ASIC accelerator system
500, according to some embodiments of the present inven-
tive concept. Inputs to the ASIC accelerator system 500 can
include, but are not limited to, (1) an input port 502 to read
an input (including the label 1n case of training) from the
serial interface element by element and store 1n the input
memory before starting the encoding, (11) a config port 504
to load the level, and class hypervectors (in case of offline
training), and (1) a spec port 506 to provide the application
characteristics to the controller, such as P, dimensionality,
d elements per mput, n length of window, nC number of
classes or centroids, bw effective bit-width, and mode (train-
ing, inference, or clustering). OQutput port 508 can return the
labels of inference or clustering.

[0058] The controller 510, e.g., by using spec data,
handles the programmability of the ASIC accelerator system
500 and orchestrates the operations. For instance, the
encoder generates m=16 (architectural constant) partial
dimensions after each iteration over the stored input, where
the variable P, signals the end of encoding to finalize the
search result, d denotes the number of input memory rows
to be proceeded to fetch features (1.e., the exit condition for
counter), nC indicates the number of class memory rows that
need to be read for dot-product and so on. The class memory
layout of the ASIC accelerator system 500 can allow a
tradeotf between the hypervectors length 7,  and supported
classes nC. By default, the ASIC accelerator system class
memories can store P, =4K for up to nC=32 classes. For an
application with less than 32 classes, higher number of
dimensions can be used (e.g., 8K dimensions for 16 classes).
These application-specific input parameters enable the ASIC
accelerator system 500 the flexibility to implement various
applications without requiring a complex instruction set or
reconfigurable logic.

[0059] Features can be fetched one by one from the input
memory 520 and quantized to obtain the level bin, and
accordingly, m (16) bits of the proper level hypervector are
read. The levels are stored as m-bit rows 1n the level memory
530. The stacked registers (reg n to 1) facilitate storing and
on-the-fly sliding of level hypervectors of a window. Each
pass over the input features generates m encoding dimen-
sions, which can be used for dot-product with the classes.
The class hypervectors are distributed into m memories (CM
1 to CM m) to enable reading m consecutive dimensions at
once. The dot-product of partial encoding with each class
can be summed up in the pipelined adder 516, and accumu-
lated with the dot-product result of previous/next m dimen-
sions 1n the score memory 517.

Dy
[0060] After — 1iterations, all dimensions are generated,

and the dot-product scores are finalized. The system 500 can
use cosine similarity metric between the encoding vector H
and class C::
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The system 500 can normalize the dot-product result with
L.2 norms. The || A ||, can be removed from the denominator
as 1t 1s a constant and does not affect the rank of classes. In
addition, to eliminate the square root of ||C |, the system 500
can modily the metric to

C(H-C)
1C;113

i

without affecting the predictions. The norm2 memory 518
stores the squared L2 norms of classes, and similarly, the
squared score 1s passed to the divider 519. The system 500
can use an approximate log-based division.

Training and Retraining

[0061] In the first round of training, e.g., model 1nitializa-
tion, encoded 1inputs of the same class/label are accumulated.
It can be done through the adder 514 and mux 513 of all
class memories. The controller 510 uses the input label and
the iteration counter to activate the proper memory row. In
the next retraining epochs, the model 1s examined and
updated in case of misprediction (see FIGS. 1A-1C). Thus,
during retraining, meanwhile performing inference on the
training data, the encoded hypervector 1s stored 1n temporary
rows of the class memories (through the second input of mux
513). If updating a class 1s required, the class rows are read
and latched in the adder 514, followed by reading the
corresponding encoded dimensions from the temporary
rows and writing the new class dimensions back to the

Dy o
memory. Hence, each update takes 3X ™ cycles. Training

may also require calculating the squared L.2 norm of classes
in the norm2 memory 518. As it can be seen 1n FIG. 5, the
class memories are able to pass the output into both ports of
the multipliers (one direct and another through the mux) to
calculate and then accumulate the squared elements.

Clustering

[0062] The ASIC accelerator system 500 selects the first k
encoded 1nputs as the 1nitial cluster centroids and initializes
k centroids 1n the class memories. The system allocates two
sets of memory rows for temporary data; one for the
incoming encoding generated in the encoding module and
another for the copy centroids (clustering generates a new
copy 1nstead of direct update). Similarity checking of the
encoding dimensions with the centroids 1s done pipelined
similar to inference, but the encoded dimensions are stored
to be added to the copy centroid after finalizing the similarity
checking. After finding the most similar centroid, the copy
centroid 1s updated by adding the stored hypervector (similar
to retraining). The copy centroids serve as the new centroids
in the next epoch.

Energy Reduction

[0063] The ASIC accelerator system 500 can enable
energy efficiency. The following elaborates energy-saving
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techniques that benefit the ASIC accelerator system 3500.
These techniques can also be applied to other HDC accel-
erators.

1d Memory Compression

[0064] The 1d memory naturally needs 1Kx4K=512 KB
(for up to 1K features per input, and P, =4K dimensions)
which occupies a large area and consumes huge power.
However, the ASIC accelerator system 500 generates 1ds
on-the-fly using a seed 1d vector, where kth 1d 1s generated
by permuting the seed 1d by k indexes. Therefore, the 1d
memory shrinks to 4 Kbit, 1.e., 1024X reduction. Permuta-
fion preserves the orthogonality. It 1s implemented by the
tmp register 512, by which, for a new window, the reg 1d 1s
right-shifted and one bit of tmp 1s shifted in. The tmp register
helps to avoid frequent access to the 1d memory by reading
m (16) bits at once and feeding in the next m cycles.

Application-Opportunistic Power Gating

[0065] For an application with nC classes and using D, .
dimensions, the ASIC accelerator system 500 stripes the
dimensions 1 to m (16) of its 1st class vector 1n the 1st row
of m class memories, the 2nd class vector in the 2nd row, and
so on. The next m dimensions of the 1st class vector are
therefore written 1nto nc+1th row, followed by the other
classes. Thus, 1n some cases, the ASIC accelerator system
neXDyy,

500 always uses the first 3544 portion of class memories.
The applications can fill 28% of the class memories (mini-
mum 6% for EEG/FACE, and maximum 81% for ISOLET)
using 7, =4K dimensions. Accordingly, the ASIC accel-
erator system 500 can partition each class memory 1nto four
banks and power gates the unused banks. With four banks,
1.6 out of four banks are activated on average, leading to
39% power saving. With more fine-grained eight banks, 2.7
banks (out of eight) become active, saving 66% power.
However, eight banks impose 55% area overhead compared
to 20% of four banks. In some cases, the four bank con-
figuration yields the mimimum areaxXpower cost. Since the
power gating 1s static (permanent) for an application, no
wake-up latency or energy 1s involved.

On-Demand Dimension Reduction

[0066] The ASIC accelerator system 500 can trade the
energy consumption and performance with accuracy. Recall
that the ASIC accelerator system 500 generates m dimen-
sions of the encoding per iteration over the features. By
feeding a new D_hv value as input, the ASIC accelerator
system 500 can seamlessly use the new dimension count by
updating the counter exit condition, so smaller hypervectors
of the encoding and class hypervectors will be used. Nev-
ertheless, the ASIC accelerator system stores 500 the
squared 1.2 norms of the whole classes for similarity metric

. C;)?
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while for arbitrary reduced encoding dimensions, only the
corresponding elements (and their 1.2 norms) of the classes
are needed.
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[0067] FIG. 6 illustrates the impact of using constant
versus updated L2 norms in the ASIC accelerator system
500, showing the accuracy differences in EEG and ISOLET
datasets. As FIG. 6 shows, using the old (Constant) L2
values causes significant accuracy loss compared to using,
the recomputed (Updated) L2 norm of sub-hypervectors.
The difference can be up to 20.1%, or more, for EEG and
8.5% for ISOLET. To address this 1ssue, when calculating
the squared L2 norms during the training, the ASIC accel-
crator system 500 stores the L2 norms of every 128th-
dimension sub-class 1n a different row of the norm2 memory
518. Thus, dimensions can be reduced with a granularity of
128 while keeping the norm2 memory small (2 KB for 32
classes).

Voltage Over-Scaling

[0068] The ASIC accelerator system 500 can use 16-bit
class dimensions to support traiming. As a result, the large
class memories consume ~80% of the total power. HDC
exhibits notable tolerance to the bit-tlip of vectors, which
can be leveraged to over-scale the memory voltage without
performance loss.

[0069] FIG. 7 shows an example relationship between
class memory error rate and accuracy in different bench-
marks. In particular, FIG. 7 shows the accuracy of select
benchmarks (ISOLET and FACE) with respect to the class
memory error. The static (s) and dynamic (dyn) power
saving as a result of corresponding voltage scaling (without
reducing clock cycle) 1s also shown 1n the night axis. The
figure shows the result of the HDC models with different
bit-width (bw 1put parameter of the ASIC accelerator
system) of classes by loading a quantized HDC model (the
mask unit 512 1n the architecture masks out the unused bits).
As can be seen, error tolerance not only depends on appli-
cation but also on the bit-width. 1-bit FACE model shows a
high degree of error tolerance (hence, power saving) by up
to 7% bit-tlip error rate, while ISOLET provides acceptable
accuracy by up to 4% bit-flip using a 4-bit model. Quantized
clements also reduce the dynamic power of dot-product.

[0070] Voltage over-scaling also depends on the applica-
tion’s sensitivity to dimension reduction and its workload.
For instance, FACE has a higher tolerance to voltage scaling
than dimension reduction (see FIG. 6). On the other hand,
ISOLFET 1s more sensitive to voltage reduction but achueves
good accuracy down to 1K dimensions (FIG. 6), which
means 4x energy reduction compared to 4K dimensions.
Thus, voltage over-scaling for ISOLET 1s only preferred 1n
workloads with a higher i1dle time where the static power
dominates (voltage scaling reduces the static power more
significantly).

Results

[0071] The ASIC accelerator system 500 was imple-
mented at the RTL level 1n SystemVerilog and verified the
functionality in Modelsim. Synopsys Design Compiler was
used to synthesize The ASIC accelerator system 500 target-
ing 500 MHz clock with 14 nm Standard Cell Library of
GlobalFoundries. Artisan memory compiler was used to
generate the SRAM memories. The level memory 530 has a
total size of 64x4K=32 KB for 64 bins, the feature memory
1s 1024x8b, and class memories are 8Kx16b (16 KB each).
The power consumption was obtaimned using Synopsys
Power Compiler. The ASIC accelerator system 500 occupies
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an area of 0.30 mm~ and consumes a worst-case static power
of 0.25 mW when all memory banks are active. For datasets
of Section 3.2, the ASIC accelerator system 500 consumes
a static and dynamic power of 0.09 mW, and 1.79 mW,
respectively (without voltage scaling).

[0072] FIG. 8 provides a breakdown of the area and power
consumption of the ASIC accelerator system 500. Note that
the level memory 330 contributes to less than 10% of area
and power. Hence, using more levels does not considerably
allect the area or power.

Classification Evaluation

Training

[0073] Since previous HDC ASICs have not reported

training energy and performance, 1n this example, we com-
pared the per-input energy and execution time of the ASIC
accelerator system training with RF (random forest, most
cilicient baseline) and SVM (most accurate conventional
ML) on CPU, and DNN and HDC on eGPU.

[0074] FIG. 9 compares the training energy and execution
time of the ASIC accelerator system 500 with other methods.
For example, FIG. 9 shows the average energy and execu-
tion time for the datasets described herein. The ASIC
accelerator system 500 improves the energy consumption by
528x over RF, 1257x over DNN, and 694x over HDC on
eGPU (which, as discussed 1in Section 3.3, 1s the most
ellicient baseline device for HDC). The ASIC accelerator
system 500 consumes an average 2.06 mW of training
power. The ASIC accelerator system 500 has 11x faster train
time than DNN and 3.7x than HDC on eGPU. RF has 12x
smaller train time than the ASIC accelerator system 500, but
the overall energy consumption of the ASIC accelerator
system 500 1s significantly (528x) smaller than RF. Also,
constant 20 epochs were used for the ASIC accelerator
system training while the accuracy of most datasets saturates
alter a few epochs.

Inference

[0075] We compare the energy consumption of the ASIC
accelerator system inference with previous HDC platiorms,
and tiny-HD. We scale their report numbers to 14 nm for a
fair comparison. We also include the RF (most eflicient ML),
SVM (most-accurate ML) and DNN on HDC on eGPU
(most eflicient HDC baseline).

[0076] FIG. 10A compares the energy consumption of the
ASIC accelerator system and aforementioned baselines.
Since the ASIC accelerator system 500 achieves signifi-
cantly higher accuracy than previous work, the ASIC accel-
crator system-LP applies the low-power techniques
described herein to leverage this accuracy benefit. The ASIC
accelerator system-LP improves the baseline system energy
by 15.5x through dimension reduction and voltage over-
scaling. The ASIC accelerator system-LP consumes 15.7x
and 4.1x less energy compared to others. Note that despite
tiny-HD, the ASIC accelerator system supports training
which makes 1t to use larger memories. The ASIC accelera-
tor system 1s 1593x and 8796x more energy-eilicient than

the most-ethcient ML (RF) and eGPU-HDC, respectively.

Clustering Evaluation

[0077] Table 2 compares the normalized mutual informa-
tion score of the K-means and HDC for the FCPS bench-
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marks and the Iris flower dataset. On average, K-means
achieves slightly (0.031) higher score, but for datasets with
more features, the disclosed ASIC accelerator system can
better benefit from using windows (windows become less
effective 1n a smaller number of features).

[0078] FIG. 11 compares the per-input energy consump-
tion of the ASIC accelerator system with K-means clustering
running on CPU and Raspberry Pi. The ASIC accelerator
system 500 consumes only 0.068 pJ per input, which 1s
17,523% and 61,400x more efficient than K-means on Rasp-
berry P1 and CPU. The average per-input execution time of
Raspberry P1 and CPU 1s, respectively, 394 uSec and 248
uSec, while the ASIC accelerator system 500 achieves 9.6
uSec (41x and 26X faster than R-P1 and CPU, respectively).
[0079] Disclosed herein 1s an ASIC accelerator system, a
highly-eficient HDC accelerator that supports classification
(inference and training) and clustering using a novel encod-
ing technique that achieves 3.5% (6.5%) better accuracy
compared to other HDC (ML) algorithms. The ASIC accel-
erator system 500 benefits from power-gating, voltage over-
scaling, and dimension reduction for utmost energy saving.
The result described herein shows that the ASIC accelerator
system 500 improves the classification energy by 15.1X over
a previous trainable HDC accelerator, and 4.1X over an
inference-only accelerator. The ASIC accelerator system
HDC-based clustering consumes 17,523X lower energy with
41x higher performance than Raspberry P1 running K-means
with similar accuracy, facilitating ultra-efficient continuous
learning on edge.

Enhancing Deep Newral Network Efficiency Through
Patterned Filter Clustering and Computation Reuse

[0080] The ever-increasing efficacy of Deep Neural Net-
works (DNNs) 1n diverse application domains 1s coupled
with the increase 1n the size and computations of their
models. Extensive research has been done to alleviate the
memory and computational burden of DNNs. Primary com-
pression techniques include weight quantization, pruning,
clustering, and filter pruning, especially with a slant toward
hardware efficiency such as hardware-aware quantization
and structured pruning.

[0081] In weight quantization, the network parameters
take values from a set of predetermined values (e.g., —2' to
2511 in uniform quantization), while weight clustering
groups the weights into abstract clusters, where all weights
of a cluster share the same value. Thus, by clustering, one
can store the cluster index/1d of each weight (in index table),
along with a small table that maps the indexes to weight
values. Previous works show that ~16 unique weights can
retain the accuracy, which results 1n 2X memory compres-
sion by storing log, 16=4-bit indexes instead of the primary
8-bit weights.

[0082] FIGS. 12A and 125 illustrate an example convo-
lution operation in CNNs. FIG. 12A illustrates filter clus-
tering with two unique weights to demonstrate the reduction
of multiplication operations through input accumulation
based on weight clusters. FIG. 12B illustrates filters sharing
the same clustering pattern, highlighting memory and com-
putation reduction by reusing cluster-index information and
input sub-groups. As shown, the convolution operation 1n
CNNs 1s essentially a window-wise dot-product between a
multi-dimensional filter and the input activations to generate
output feature maps. Since clustering uses a limited number
of unique weights, 1t can be leveraged for computation
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efficiency by factorizing weights. The example of FIG. 12A
shows filters clustered with two unique weights w,; and w.,.
Clustering can reduce multiplications (MULS) by first accu-
mulating the inputs based on the weights clusters and
applying MULSs on the sum of factorized terms. For a filter
with nw weights (typically O(10°)), the number of MULs
reduces from nw to G (the number of unique weights or
clusters), where usually G=16 unique weights 1s sufficient as
alluded earlier. Factorization also results in common sub-
groups of inputs. In FIG. 12A, both filters f; and f, compu-
tations have overlapping sub-groups a,+a, and a,+a..
[0083] Described herein are techniques for enhancing
computation reuse and minimize memory usage through the
implementation of shared clustering patterns among filters.
Filters 1, and 1, 1n FIG. 12B share the same clustering. That
1s, a particular weight at index 1 of both f; and f, belong to
the same cluster. This 1s distinguished by using the same
background colors for clusters of f; and f,. However, unlike
baseline clustering that uses the same unique weights, in the
disclosed pattern clustering system each filter can have a
different set of G unique weights; hence, filters share clus-
tering patterns, not exact data. As a result of pattern sharing,
along with the reuse of whole activation groups between f,
and 1, (e.g., a,+as+a, 1s repeated for both filters), the same
cluster-index information can be used for both filters. There-
fore, 1, only needs to store its unique weights set (which 1s
negligible compared to the eliminated index information)
and carry out only G MULs on the pre-computed input
sub-groups that have already been accumulated when pro-
cessing f,.

[0084] Described herein, the potentials of patterned filters
are explored, introducing a mathematical formulation to
1identify the patterns and a training strategy to enforce these
patterns while maintaining model accuracy. Such an
approach represents a novel contribution to the field, mark-
ing the introduction of patterned filters to save memory and
computation of DNNs. Furthermore, as described herein,
discussion includes the dataflow, architecture, and process-
ing units of the pattern clustering system accelerator,
designed to support networks utilizing both patterned and
conventional weight clustering. Given that weight quanti-
zation 1s a form of clustering, the architecture can also be
compatible with quantized networks. The efficiency of the
pattern clustering system 1s evaluated across various datasets
and networks, focusing on computation and memory reduc-
tion, and comparisons are made with previously established
works.

Patterned Neural Network

[0085] FIG. 13 shows the parameters of a convolution
layer that comprises F filters of Cxkxk dimension. The depth
of each filter, C, 1s equal to the number of channels (feature
maps) of the input activations. An output pixel (activation)

of output channel ( is created by applying the filter Ft over
a particular Cxkxk window of the input. Thus, the number
of output feature maps 1s equal to the number of filters, F.
Multiplication of a filter and input window 1s essentially a
dot-product by flattening them. For an mput with HxH
channels, the output image has a dimension of RXR, for
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where S 1s the stride size (i.e., the sliding step of the filters).
[0086] Assuming every n,subset of a layer’s filters share
the same clustering pattern, the total parameter memory
consists of Cxkxkxlog G bits to store the common 1ndex
table (i.e., cluster indexes of weights instead of values), and
n xX(GX3b bits to store the actual weights of n filters assuming
8-bit weights. The total number of operations include total
Cxkxk ADD (in G groups/clusters), accompanied with G
MULs and ADDs for each filter to generate an output.
[0087] FIG. 14 shows the parameter memory and opera-
tion reduction of patterned VGG-16 layers over the 8-bit
quantized model for Ne {4, 8, 16} filters sharing one pattern
assuming G=16 unique weights per filter. For intermediate
layers, saving ranges from 7.2X to 22.1X depending on N,
and up to 28.8X 1n the last layers. It was assumed that a fixed
number of filters share a single pattern. In practice, each
pattern may contribute to a different number of filters of a
layer. Note that G=16 and 8-bit weights are a special case
that leads to the same memory and operation savings;
otherwise, the savings can be different.

Pattern Selection

[0088] Pattern selection can include determining the num-
ber of clustering patterns, the patterns themselves, and the
assignment of patterns to filters. Exploring inter-filter struc-
tural similarities 1s a proper starting point in determining the
common patterns and the filters that share these patterns.
Patterning 1s more complicated than other problems such as
filter pruning that considers the filters exclusively (e.g.,
pruning based on 11 norms or ranks of filters).

[0089] FIG. 15 illustrates an example pattern selection
process, displaying filter weight clustering into groups for
similar pattern assignment. FIG. 15 1s used to elaborate the
disclosed pattern selection approach. Using a pre-trained
model, the weights of each filter are clustered to G groups
using any conventional approach such as k-means. Note that
this step 1s a simple one-shot clustering merely to reduce the
number of unique weights of filters. In this illustrative
example, filters f;, and f, are clustered into four groups,
distinguished by dlfferent colors In patterned clustering, for
flexibility, each filter can have an arbitrary set of unique
welghts different than other filters (denoted by G,_, for {,
and H,_, for 1, 1n FIG. 15). The goal 1s to find the filters with
most similar clustering, indicated by how many same-cluster
weight indexes in f; are also 1n the same cluster in f,. One
approach 1s to correspond each cluster of f, with a cluster 1n
f; and count the overlaps, which results in G! combinations
(2><1013 for G=16).

[0090] We formulate the “similarity finding” as the Hun-
garian matching problem. For each pair of filters {; and t,, we
create the table of longest common subsequences between
all groups, ending up 1n a GXG table. For instance, in FIG.
15, cluster G, of f, has three common indexes with cluster
H, of {,, namely, indexes 2, 14, and 20. The Hungarian
matching algorithm, with a time complexity of O(G?), finds
the best matching of f1 and 1j groups that maximizes the
score (shared elements). The example of FIG. 15 obtained a
score of 20, meaning that by replacing clustering of f; with
f,, 20 (out of 27) weights of f; will be still in the same cluster
as before (1.e., only 7 of f; weights get a different value).
[0091] We obtain the similarity scores between all pairs of
filters and create an FXF distance matrix (distance defined as
1/score). Finally, we use the distance matrix to find P
(number of patterns) collections of filters, where filters of a

Aug. 15, 2024

collection have smaller distances to each other than to other
collections. For this end, we use the k-medoids algorithm to
cluster F filters into P collections. Unlike k-means that
calculates the Euclidean distance between data points, k-me-
doids works with custom cost functions, e.g., a distance
matrix. In addition, unlike k-means, k-medoids returns
actual data points of the collection as the center points,
leading to a greater interpretability of the centers. This 1s
essential in pattern selection as the returned centers will be
the filters with their clustering pattern selected to be shared.
Note that the number of filters 1n each of the P pattern
collections can be different.

Free Filters

[0092] Although imposing a limited number of patterns
among all the filters works for simpler datasets such as
Fashion-MNIST, 1n more complex datasets such as
CIFAR100, there 1s often an accuracy degradation. This 1s a
result of failing to extract certain pixel patterns because of
the cluster-sharing constraint between the filters. Therefore,
we relax the constraint of pattern sharing on certain filters 1n
a layer, dubbed as free filters. Free filters still comply with
weilght clustering (hence they still benefit from factorization)
but do not follow an enforced pattern.

[0093] To select the free filters, in the original pretrained
model, we sort the filters based on the singular value
decomposition (SVD) of their output feature maps using the
train data. SVD value indicates how many rows of a feature
map are linearly independent. The overall rank score of a
f1lter 1s the mean of the generated feature maps SVDs. Filters
with a rank higher than a threshold are deemed as more
informative filters and selected as pattern-free (or indeed
single-pattern) filters.

Patterned Model Training

[0094] After identifying the patterns associated with each
filter, we use projected gradient descent (PGD) to calibrate
the model toward the determined patterns. PGD solves
constrained optimization problems, which in this example 1s
“the solution W of the DNN must belong to pattern con-
straints Q”°, formally,

min f({W},,, ),

where L 1s the layers and X 1s the input data. Starting from
an 1nitial W0 €Q (e.g., by cluster-wise averaging of pre-
trained weights) PGD proceeds as follows:

Wiv1 = Po(W, — AV f (W), X)) (3)

[0095] P, projects the gradients such that W, , €Q as
well. The projection of the gradients 1tself 1s an optimization
problem:

Po(W}) = arg min|W — W3 (4)
Wel?
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[0096] Meaning that the new weights need to minimize
'W—W _|,~ while also adhering to Q. Since weights of the
solution W are clustered, 1.e. all weights of a cluster get the
same value, the solution of Equation (4) translates to mini-
mizing Y(x—w,)” for each cluster, in which w, s are the
post-gradient weights and x 1s the new weight of the cluster.
Thus, x=w, yields the optimal solution. Therefore, after
backpropagation of each batch, each updated weight can be
replaced with the average of its cluster.

[0097] FIG. 16 illustrates an example algorithm (Algo-
rithm 1) for an example training process in the pattern
clustering system. Algorithm 1 summarizes the pattern clus-
tering system training, where the project weights function of
line 9 carries out the weight projection explained above.

Example Architecture of the Pattern Clustering System

[0098] FIG. 17A 1llustrates an architecture of an example
pattern clustering system 1700 and data flow. The system
1700 1includes an R_XC _ array of processing elements (PEs).
Each PE i1s responsible for one pattern (which 1s shared with
one or multiple filters) and generates one/multiple output
pixels. PEs gradually receive all the inputs and pattern
cluster indexes of a window, accumulate each input in the
proper group based on the index, and eventually multiply the
unique weights (for all filters sharing the pattern) on the
accumulated groups.

[0099] To reduce the memory accesses, the pattern clus-
tering system 1700 uses a pattern-stationary data flow while
trying to maximize the data reuse, as well. To this end, the
PE array 1s logically split into row-groups, made up of two
consecutive rows (total R_/2 row-groups in our architec-
ture). All PEs 1n a row-group operate on the same inputs
(intra row-group data sharing), but each PE possesses a
different pattern. Thus, a row group generates multiple
channels of an output. The corresponding PEs 1n all row-
groups (e.g., PE,, PE.,, etc.) possess the same pattern (inter
row-group data sharing), but use different inputs. Therefore,
In a given time, the same channels of R _/2 outputs are on
progress. Once all the channels associated with the running
patterns are produced, the pattern clustering system 1700
scans another mput window to generate the next R /2
outputs. After scanning all input rows, the pattern clustering
system 1700 starts over with the next set of patterns (if any)
and repeats the same procedure to generate all the channels.

Data Flow

[0100] The data flow of the pattern clustering system 1700
can be elaborated using the 3x3 example convolution of
FIG. 17. A brick 1s a complete 1x1 window that includes all
the channels (z dimension). The pattern clustering system
1700 fetches the input activations as sub-bricks. The number
of channels (pixels) in a sub-brick 1s architectural parameter
(e.g., four pixels). As shown 1n FIG. 17A, the convolution
involving the input activation window

13 12 11

3 2 1

and the associated filter generates the right-most pixel of the
output feature map. To do this, fetching of inputs starts from
the bottom-right brick toward to top-left in a column-wise
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fashion (1.e., 16— . . . 13) by fetching all sub-bricks
commencing the next brick. This facilitates a great degree of
data reuse. Once a sub-brick 1s fetched, it 1s broadcast to all
PEs in a row-group. Along with the 1inputs, each PE receives
the pattern index corresponding to the fetched activations.

[0101] To recap, we first create activation sub-groups by
adding cluster specific activations, before multiplying with
the cluster’s weight value. To implement this, in every cycle,
a PE processes one activation and adds it to the correspond-
ing cluster group (out of ). After fetching and accumulating
all the 1input bricks of an input window, each PE fetches the
actual weights associated with the processed pattern. For
each filter that shares the current pattern, the PE fetches its
G unique weights cycle by cycle and multiplies with the
accumulated values of group-1 to group-G. The aforemen-
tioned window w1l produces the output pixels associated
with 32 patterns of PE, to PE;, of output brick 1 (i.e., at least
32 channels of the output feature map). The convolution
window 1s then shifted left. Hence, the row-group 1 will
generate the same channels of output brick 2 as i1t did for
output brick 1.

[0102] Multiple row-groups generate multiple output rows
simultaneously. As row-group 1 processes input window wl,
row-group 2 processes window w4 to generate 2nd output
row. All row-groups generate the same channels since they
use the same patterns (hence, filters). Once the row-groups
finish scanning the current mput rows (1.e., the windows
reach the left edge), each input window moves up by R_/2
(number of row-groups) rows. After scanning all the rows,
the pattern clustering system 1700 starts over from the first
row with a new set of patterns until all output channels are
created.

Data Reuse

[0103] The pattern clustering system 1700 can take advan-
tage of multiple levels of data sharing. The input activations
are shared among all PEs of a row-group, and clusters index
data are shared between all corresponding PEs in the row-
groups (e.g., PE,, PE.;, PE.., etc.). In addition, except the
edge of the image, in a 3X3 convolution window, an mnput
brick 1s shared between three windows of the same row. For
example, in FIG. 17A, input brick 3 1s used in windows w
w,, and w, (processed by RF1, RF2, and RF3 as explained
in the next subSection). Therefore, once a sub-brick of input
brick 3 is fetched, the pattern clustering system’s PE pro-
cesses computations for all the three windows (the PE also
fetches three index data in a cycle). This results in ~3X
speed-up 1n addition to memory access reduction. Further-
more, the kth row-group processes one input row ahead of
its previous row-group k—1. The pattern clustering system
1700 buifers the mput to be reused later for row-group k—1
and avoids DRAM accesses with a small buffer. For
instance, row-group 2 starts by operating on input brick 6,
which will be immediately required by row-group 1 upon
finishing mput brick 1. Stmilarly, row-group 3 starts by input
brick 11, which will be required by row-group 2 after
processing mput brick 6. This efficient data reuse 1s possible
due to the pattern clustering system’s data flow that simul-
taneously runs multiple vertically-adjacent windows, and
processing each window 1n a column-wise fashion. Thus,
when scanning the input image for the current patterns, each
iput 1s fetched only once from the DRAM.
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Processing Units

[0104] Processing FElements: FIG. 17A shows the internals
of the PE 1720. Top boxes are temporary registers regll to
reg24 that store the activations sub-bricks fetched from the
input buller. PEs of diflerent row-groups use the same 1mput
butler bus 1n a time-multiplexed fashion. Thus, these regis-
ters are required to store enough inputs until the round-robin

arbiter grants access to a row-group to fetch the next
sub-brick after R /2 cycles.

[0105] Register Files: An input brick may participate 1n
several adjacent windows. The register files RF1 to RF4
receive one 1nput activation as data, along with several
cluster indexes as the address to accumulate the input with
the proper group. One of the RFs 1s spare to avoid stalls,
explained below. The reg 1dx (index register) continuously
fetches these index data from the Index Lane bufler. Since
the windows sharing an input are adjacent (i.e., an activation
only differs 1n x dimension within the windows), the index
data of these windows can be aligned 1n one memory row.
Note that since corresponding PEs of row-groups process
the same pattern, the fetched index data 1s broadcast to all of
R /2 corresponding PEs of all row-groups using the com-
mon 1ndex bus of a column.

[0106] Accumulator: Once all mputs of a window are
accumulated 1n an RF, the PE loads unique weights w, to wG
one-by-one from the Weight Lane to the reg w, and reads the
accumulated sum of group-1 to group-G from that REF,
accumulates the multiplications in the reg out, and finally
transiers the output to Out Lane. Since each filter sharing a
pattern has 1ts own unique weights, these multiplications
need to be repeated for all filters sharing the pattern. A
benelit of the pattern clustering system 1700 1s that, once the
input sub-groups are computed a pattern, producing new
output channels (of shared filters) takes just G cycles per
filter. Since the first window (of horizontally adjacent win-
dows) 1s several input bricks ahead from the other two, 1n a
given time, the results of only one window becomes ready
in a PE. A PE contains one extra RF, so when an RF 1s stuck
to finalize the multiplications, the fourth RF replaces 1t to
process new 1nput bricks and avoid stall.

[0107] Output Lanes: PEs 1n a column time-multiplex the
same output bus to transfer the output activation to the Out
Lane. The bus 1s granted 1n a round-robin fashion, but it does
not cause performance overhead as outputs of all PEs of a
column can be transferred to Out Lane before generating the
outputs of next window. The Out Lane temporarily stores a
tew adjacent horizontal outputs (from the same PE), or
adjacent vertical outputs (from the corresponding PEs of
different row-groups) for pooling operation before writing to
DRAM. The output data layout written into the DRAM 1s the
same as mnput bricks, 1.e., continuous pixels of an output
brick are written 1n the same DRAM row.

Experiments and Results

[0108] The pattern clustering system concepts disclosed
herein (e.g., pattern and rankbased free filter selection and
training) were implemented using PyTorch. For training,
SGD optimizer was used, momentum of 0.9 with weight
decaying, and learning rate from 0.1 down to 0.0008 over
100 epochs. For parameter G (number of unique weights or
clusters per pattern) we found G=16 suflicient to retain
accuracy by sweeping across a spectrum of values. Simi-
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larly, we tried a range of values for P (number of patterns)
and found P=16 suflicient for accuracy.

[0109] We mmplemented the pattern clustering system

accelerator 1n SystemVerilog and venfied its functionality
with Modelsim. We synthesized it using TSMC 40 nm

standard cell library at 0.9 V using Synopsys Design Com-
piler for a target frequency of 500 MHz. We used Artisan
memory compiler with the same technology to generate
SRAM buflers and register files. Power consumption of all
clements 1s obtained using Synopsys Power Compiler. For

DRAM access energy model, we used Destiny. Our primary
architecture includes R_=8 rows (four row-groups) and

C =16 (32 PEs per row-group).

Operation and Memory Reduction

[0110] We evaluate the eflectiveness of the pattern clus-
tering system 1700 by comparing 1t with a filter pruming
approach dubbed Hrank. We use VGG16, Resnetl8, and
Resnet50 networks with CIFAR10 and CIFAR100 datasets,
and a 200-class subset of ImageNet (‘Tiny ImageNet). The
patterned filters run ADDs to accumulate the input activa-
tions for P filters, followed by MULSs of their unique weights
on the resulted groups. The free filters are special cases of
patterned filters, where a free filter has one independent
pattern. Thus, free filters also benefit from factorization to
reduce the number of MULs, as well as weight clustering to
reduce memory.

[0111] 'Table 3 summarizes the accuracy, operation count
(ADD and MUL), and memory for the aforementioned
models and datasets. The Base column indicates the baseline
8-bit model, and Hrank column 1s the filter pruning. We
selected the pruming ratios of Hrank layers according to its
original work.

[0112] CIFARI10: As compared to the baseline VGG16
network, while HRank provides 56.1% reduction 1n opera-
tion count and 62.2% reduction in parameters, the disclosed
techniques offer 72.4% reduction in operation count and
7'7.9% reduction 1n parameters, with 0.3% better accuracy.
For residual networks such as ResNetl8, while the operation
reduction 1n HRank 1s 54.4%, the disclosed techmques offer
69.4% reduction. We observe a similar trend for ResNet50;
68% operation reduction in the pattern clustering system
1700 as compared to 46% reduction of HRank. The pattern
clustering system 1700 shrinks parameters size significantly
(80.2% vs HRank’s 66.8%) for Resnetl8 and (64.1% vs
HRank’s 45.7%) for Resnet50, along with better accuracy
metrics as compared to HRank.

[0113] CIFARI100: For CIFAR100, we achieve 73.1%
operation count reduction using VGG16, 61.5% using Res-
Netl8 and 68.6% using ResNet50. The reduction in param-
eters 1s considerably better than HRank’s reductions (77.4%
vs 61.1%, 71% vs 48.8% and 64% vs 46.2%) for VGG16,
ResNetl8 and ResNet50 respectively.

[0114] TinylmageNet: We observe a similar trend with the
Tiny ImageNet dataset. Along with an improved operation
reduction (up to 72%) and parameter reduction (up to
70.7%) as compared to the baseline, the improvements
disclosed herein are better than HRank while achieving
improved accuracy metrics (1-2%) over HRank.

[0115] In summary, among other things, the pattern clus-
tering system 1700 shrinks the model memory up to 80.2%
and operation count up to 73.1%, with a similar accuracy as
compared to the 8-bit baseline models.
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The Pattern Clustering System Accelerator

[0116] 'The architecture of the pattern clustering system
1700 can include four row-groups (R_=8) and 16 columns
(C_=16). Table 4 reports the size of the pattern clustering
system memories. The mput bufler stores the entire brick of
a row-group for reuse by the preceding row-group. The
image depth goes up to 2048 channels 1n Resnet50, thus, the
input bufler should store 2048x4 input activations of four
row-groups, packed as 2048x32b (four inputs of a brick are
packed 1n a row and fetched at once to a row-group). The
index memory stores all 4-bit indexes, which 1s 512x3x3 for
the largest filter. Since three indexes per pattern 1s read 1n a
column (and there are two patterns mm a column), the
memory has a 768x(6x4) layout. The weight memory sup-
plies the unique weights of a column’s filters. Each pattern
1s shared with up to 32 filters; thus, it stores up to 64 weights.
Similarly, the out lane stores all outputs generated by a
column (four row-groups and 64 filters). In addition, 1t stores
the adjacent pixels for pooling, requiring a total of 512 rows
and 20-bit per row for each output pixel. Finally, each RF
has 16 rows for accumulation of G=16 groups.

[0117] Table 5 shows the per-component area and delay of
the pattern clustering system 1700. The 8x16 architecture of
the pattern clustering system 1700 occupies an area of 1.84
mm” (at 40 nm). The compact area is mainly due to sharing
a weight index lane and an output lane within an entire
column, and a small input activation memory that buflers the
inputs for reuse so the pattern clustering system 1700 uses
only 70 KB on-chip memory. The design consumes a peak
(worst-case) power of 145,77 mW: 29.4 mW leakage, and
maximum dynamic power of 116.3 mW (at 500 MHz), 34%
of which 1s the DRAM access power. The data reuse of the
pattern clustering system 1700 makes an effective DRAM
access rate of ~1 Byte/cycle, the same rate as PEs consume
inputs 1n a shared fashion.

Scalability of the Pattern Clustering System

[0118] FIGS. 18A and 18B show the scalability of the
pattern clustering system (1mplementing VGG16 model) as
the array size increases from 8x16 to 8x32 (2x columns),
16x16 (2x rows), and 16x32 (2x columns and rows) for
32x32 mmages and ImageNet-scale 224x224 images. The
area 1n both cases 1s the same and imput-independent. Except
for the PE utilization that shows the actual quantities, the
other parameters are normalized to 8x16 array values (Table
4 shows the actual values of the baseline 8x16 architecture).
For large images, the pattern clustering system architecture
shows better scalability, 1.e., 3.6x higher performance (in-
put/sec) when both rows and columns duplicate. However,
for small 1images, PE utilization rate reduces down to 46%
in the 16x32 array. As a result, it achieves only 2.6x
performance gain. The average utilization rate for large
images 1s 90% 1n the baseline 8x16 array and 76% in the

largest array. The area 1s not scaled by 4x since the size of

index lane and weight lane builers remains the same, and
their number only increases by 2x. Finally, for large images,
the largest array (16x32) shows better energy/input. This can
be mainly because the DRAM access power ratio signifi-
cantly reduces (down to 9.3%) because the fetched inputs
are reused between more row-groups.
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Comparison with Previous Work

[0119] FIG. 19 illustrates the energy efliciency of the
pattern clustering system compared with other architectures,
illustrating superior performance-per-watt in 1mage process-
ing.

[0120] We compare performance-per-watt of the pattern
clustering system with the FuseKNA, which also reuses the
overlapping ADDs among kernels in a bit-serial accelerator,
and with SCNN, which 1s a MAC-based sparse (zero-
skipping) accelerator (results compiled from [13]). FIG. 19
shows the performance-per-watt (energy per image) normal-
1zed to Nvidia 1080 GTX GPU, all designs running 224x224

images. The pattern clustering system surpasses GPU energy
elliciency by 107x, SCNN by 3.6x, and FuseKNA by 2.2x.

[0121] Described herein, the introduction of the concept of
patterned cluster sharing among DNN filters 1s highlighted,
demonstrating significant advancements i memory and
operation efliciency through the reuse of clustering indexes
and weight factorization. Techniques for the determination
and assignment ol patterns across filters, coupled with a
strategic training approach to achieve desired patterns, are
claborated. The eflectiveness of f{ilter patterning was
assessed using a variety of datasets and networks, showcas-
ing substantial reductions 1 memory and operational
demands, with 1mpr0vements exceedmg traditional filter
pruning methods in terms of both efliciency and accuracy.
Furthermore, the development of the pattern clustering sys-
tem accelerator, embodying the principles discussed, 1s
revealed to have achieved enhanced energy elliciency, out-
performing contemporary accelerators by a notable margin.

EXAMPLE EMBODIMENTS

[0122] Various examples of methods and systems for
selectively communicating medication data field values to a
patient information system can be found in the following
clauses:

[0123] Clause 1. A method for encoding within a hyper-
dimensional computing framework, comprising:

[0124] obtaining data to be encoded;

[0125] segmenting the obtained data into a plurality of
windows, wherein each window of the plurality of windows
comprises a sequence of data elements;

[0126] {for each window of the plurality of overlapping
window:
[0127] {for each data element within a particular win-

dow, selecting a level hypervector from a set of level
hypervectors, wherein each level hypervector of the set
of level hypervectors represents a quantized value of
the respective data element 1n high-dimensional space,

[0128] {for each selected level hypervector, applying a
permutation operation to the respective selected level
hypervector based on a sequential position of a corre-
sponding data element within the window, wherein the
applying results in a set of permuted level hypervectors
for the particular window,

[0129] performing a binary operation on the set of
permuted level hypervectors to generate a window
hypervector that that represents the sequence of data
clements for that particular window; and

[0130] aggregating the window hypervectors for each
window of the plurality of windows to generate an encoded
hypervector, wherein the encoded hypervector 1s represen-
tative of obtained data 1n a hyperdimensional vector space.
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[0131] Clause 2. The method of clause 1, wherein the
obtained data comprises at least one of textual data, image
data, voice data, or sensor data.

[0132] Clause 3. The method of clause 1, wherein the
binary operation executed on the set of permuted level
hypervectors 1s an exclusive OR (XOR) operation.

[0133] Clause 4. The method of clause 1, wherein the
permutation operation applied to each selected level hyper-
vector 1s based on a predetermined number of positions
reflective of an order of the sequence of data elements within
the particular window.

[0134] Clause 5. The method of clause 1, wherein the set
of level hypervectors i1s predefined, each representing a
distinct quantized value corresponding to possible values of
data elements.

[0135] Clause 6. The method of clause 1, further compris-
ing associating each window hypervector with a unique
identifier hypervector through an XOR operation to incor-
porate global sequence information into the encoding.
[0136] Clause 7. The method of clause 6, wheremn decod-
ing the encoded hypervector includes utilizing the unique
identifier hypervector to reconstruct the sequence of data
clements from the encoded hypervector based on the global
sequence mnformation encoded by the umique 1dentifiers.
[0137] Clause 8. The method of clause 1, wherein aggre-
gating the window hypervectors includes a weighted aggre-
gation based on a predetermined i1mportance criterion
assigned to each window.

[0138] Clause 9. The method of clause 1, further compris-
ing normalizing the aggregated encoded hypervector to
obtain a uniform vector magnitude across diflerent instances
ol encoded data.

[0139] Clause 10. The method of clause 1, wherein adja-
cent windows of the plurality of windows have a shared
subset of data elements at their interface so as to define an
overlap of one or more final data elements from a {first
window and one or more beginmng data elements of a
subsequent window.

[0140] Clause 11. The method of clause 10, wherein a size
ol an overlapping portion between consecutive windows 1s
adjusted according to a predetermined criterion related to
sequential dependencies 1mherent 1n the obtained data.
[0141] Clause 12. Non-transitory physical computer stor-
age comprising computer-executable instructions stored
thereon that, when executed by one or more processors of a
mobile device, are configured to implement a process com-
prising:

[0142] obtaining data to be encoded;

[0143] segmenting the obtained data into a plurality of
windows, wherein each window of the plurality of windows
comprises a sequence of data elements;

[0144] {for each window of the plurality of overlapping
window:
[0145] {for each data element withuin a particular window,

selecting a level hypervector from a set of level hypervec-
tors, wherein each level hypervector of the set of level
hypervectors represents a quantized value of the respective
data element 1n high-dimensional space,

[0146] {for each selected level hypervector, applying a
permutation operation to the respective selected level hyper-
vector based on a sequential position of a corresponding data
clement within the window, wherein the applying results 1n
a set ol permuted level hypervectors for the particular
window,
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[0147] performing a binary operation on the set of per-
muted level hypervectors to generate a window hypervector
that that represents the sequence of data elements for that
particular window; and

[0148] aggregating the window hypervectors for each
window of the plurality of windows to generate an encoded
hypervector, wherein the encoded hypervector 1s represen-
tative of obtained data 1n a hyperdimensional vector space.

[0149] Clause 13. An ASIC accelerator system for hyper-
dimensional computing (HDC) encoding, comprising:

[0150] a processor configured to:
[0151] receive data to be encoded via an input interface;
[0152] segment the received data mto a plurality of win-

dows, each comprising a sequence ol data elements;

[0153] select, for each data element within a window, a
corresponding level hypervector from a stored set of level
hypervectors, where each level hypervector represents a
quantized value of the data element 1n high-dimensional
space;

[0154] apply permutation operations to each selected level
hypervector based on 1its sequential position within the
window to generate a set of permuted level hypervectors;

[0155] execute a binary operation on the set of permuted
level hypervectors to produce a window hypervector repre-
senting the sequence of data elements for that window;

[0156] aggregate the window hypervectors from each win-
dow to generate an encoded hypervector, representative of
the obtained data 1n a hyperdimensional vector space; and

[0157] output the encoded hypervector via an output inter-
face.
[0158] Clause 14. The system of clause 12, further com-

prising a memory module communicatively coupled to the
processor, wherein the memory module stores the set of
level hypervectors.

[0159] Clause 15. The system of clause 12, further com-
prising computer-readable instructions stored on a non-
transitory computer-readable medium, wherein the mnstruc-
tions, when executed by the processor, cause the processor
to perform the tasks of receiving the data; segmenting the
received data; selecting the corresponding level hypervec-
tor; applying permutation operations; executing the binary
operation; aggregating the window hypervectors; and out-
putting the encoded hypervector.

[0160] Clause 16. The system of clause 12, wherein the
received data comprises at least one of textual data, image
data, voice data, or sensor data.

[0161] Clause 17. The system of clause 12, wherein the
binary operation executed on the set of permuted level
hypervectors 1s an exclusive OR (XOR) operation.

[0162] Clause 18. An ASIC accelerator system for hyper-
dimensional computing (HDC) encoding, comprising:

[0163] an mnput interface for recerving data to be encoded;

[0164] a data segmentation unit configured to segment the
received data into a plurality of windows, each window
comprising a sequence of data elements;

[0165] a level hypervector selection unit configured to
select, for each data element within a window, a correspond-
ing level hypervector from a set of level hypervectors stored
in a level hypervector memory, wherein each level hyper-
vector represents a quantized value of the data element in
high-dimensional space;

[0166] a permutation umt configured to apply permutation
operations to each selected level hypervector based on 1ts



US 2024/0273407 Al

sequential position within the window, resulting 1n a set of
permuted level hypervectors for that window;

[0167] a binary operation unit configured to perform a
binary operation on the set of permuted level hypervectors
to produce a window hypervector representing the sequence
of data elements for that window; and

[0168] an aggregation unit configured to aggregate the
window hypervectors from each window to generate an
encoded hypervector, representative of the obtained data 1n
a hyperdimensional vector space.

[0169] Clause 19. The system of clause 18, further com-
prising;:
[0170] an output interface configured to output the

encoded hypervector;

[0171] a level hypervector memory for storing the set of
level hypervectors; and

[0172] an identifier hypervector memory for storing 1den-
tifier hypervectors used 1n associating window hypervectors
with unique 1dentifiers.

[0173] Clause 20. The system of clause 18, wherein at
least one of the data segmentation unit, the level hypervector
selection unit, the permutation unit, the binary operation
unit, or the aggregation unit 1s implemented by at least one
processor configured to execute 1nstructions for performing,
respective functions of that unait.

[0174] Clause 21. The system of clause 18, wherein adja-
cent windows of the plurality of windows have a shared
subset of data elements at their interface so as to define an
overlap of one or more final data elements from a first
window and one or more beginmng data elements of a
subsequent window.

[0175] Clause 22. A method for enhancing computational
elliciency 1n Deep Neural Networks (DNNs) through use of
shared clustering patterns, the method comprising:

[0176] establishing a plurality of shared clustering pat-
terns across a plurality of filters within DNNs, each filter
having a unique set of weights and being associated with at
least one of the shared clustering patterns to facilitate
computation reuse and memory efliciency; and

[0177] 1teratively adjusting the weights of the filters to
enforce the shared clustering patterns, thereby reducing

computational load and memory requirements during opera-
tion of the DNNS.

[0178] Clause 23. The method of clause 22, further com-
prising;:
[0179] 1dentifying activation groups processed by a first

filter of a plurality of filters within the DNNs, each filter
associated with at least one shared clustering pattern; and

[0180] applying the identified activation groups to at least
one subsequent filter within the plurality of filters that i1s
associated with an i1dentical shared clustering pattern as the
first filter, thereby reusing activation groups across the
plurality of filters.

[0181] Clause 24. The method of clause 23, wherein no
additional computational operations are required for pro-
cessing similar activation patterns across different filters
within the plurality of filters due to reuse of activation
groups.

[0182] Clause 25. The method of clause 23, wherein the

reusing activation groups leads to a reduction 1 a total
number of computational operations required by the DNNs
and enhances an operational efliciency of the DNNs by
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climinating computational redundancy incurred in process-
ing similar activation patterns across diflerent filters of the
plurality of filters.

[0183] Clause 26. The method of clause 22, wheren
establishing the plurality of shared clustering patterns
includes analyzing structural characteristics of the filters to
determine pattern similarities and variances, utilizing a
clustering algorithm to categorize the filters based on their
operational similarities.

[0184] Clause 27. The method of clause 22, further com-

prising generating shared cluster-index information for the
plurality of filters to minimize multiplication operations by
leveraging pre-computed activations common to filters asso-
ciated with the same clustering pattern.

[0185] Clause 28. The method of clause 22, wherein
iteratively adjusting the weights involves applying a targeted
training strategy, the targeted training strategy incorporating,
backpropagation and gradient descent techniques to align
the weights with the shared clustering patterns.

[0186] Clause 29. The method of clause 28, wherein the
targeted traiming strategy includes employing projected gra-
dient descent to ensure the weights of the filters conform to
the shared clustering patterns while maintaining or 1mprov-
ing an accuracy of the DNNs.

[0187] Clause 30. The method of clause 22, further com-
prising analyzing a performance of the DNNs before and
alter enforcement of the shared clustering patterns to quan-
tify improvements in computational efliciency and memory
usage.

[0188] Clause 31. The method of clause 30, further com-

prising optimizing the shared clustering patterns based on
the analyzing to further enhance the computational efli-
ciency and memory usage of the DNNs, wherein the opti-
mizing includes selecting optimal clustering patterns that
maximize computation reuse while minimizing memory
footprint.

[0189] Cllause 32. The method of clause 31, further com-
prising applying the optimized shared clustering patterns to
the plurality of filters 1n a deployment phase of the DNNs,
ensuring that the computational etliciency and memory
usage improvements are realized in actual operating condi-
tions.

[0190] Clause 33. The method of clause 22, further com-
prising generating a mapping of input activations to the
shared clustering patterns, the mapping facilitating eflicient
computation by identifying common activations across the
plurality of filters and reducing redundant computations.

[0191] Clause 34. The method of clause 22, further com-
prising employing a gradient descent algorithm to iteratively
refine the weights of the filters in accordance with the shared
clustering patterns, the refinement being guided by an objec-
tive Tunction that quantifies a performance of the DNNs.

[0192] Clause 35. Non-transitory physical computer stor-
age comprising computer-executable instructions stored
thereon that, when executed by one or more processors of a
mobile device, are configured to implement a process com-
prising:

[0193] establishing a plurality of shared clustering pat-
terns across a plurality of filters within DNNs, each filter
having a unique set of weights and being associated with at
least one of the shared clustering patterns to facilitate
computation reuse and memory efliciency; and
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[0194] 1teratively adjusting the weights of the filters to
enforce the shared clustering patterns, thereby reducing

computational load and memory requirements during opera-
tion of the DNNSs.

[0195] Clause 36. A non-transitory computer-readable
storage medium storing computer-executable instructions
that, when executed by one or more processors, cause the
one or more processors to:

[0196] receive data representing a plurality of filters
within deep neural networks (DNNs), each filter having a
unique set ol weights;

[0197] establish shared clustering patterns across the plu-
rality of filters by associating each filter with at least one
shared clustering pattern to facilitate computation reuse and
enhance memory efliciency; and

[0198] 1teratively adjust the weights of the filters based on
the established shared clustering patterns to reduce compu-

tational load and memory requirements during operation of
the DNNs.

[0199] Clause 37. The non-transitory computer-readable
storage medium of clause 36, wherein the computer-execut-
able 1nstructions further cause the one or more processors to:

[0200] 1dentity activation groups processed by a first filter
within the plurality of filters, each associated with at least
one shared clustering pattern;

[0201] apply the identified activation groups to at least one
subsequent filter within the plurality of filters that shares the
identical clustering pattern with the first filter, thereby
reusing activation groups across the filters.

[0202] Clause 38. The non-transitory computer-readable
storage medium of clause 36, wherein the reuse of activation
groups e¢liminates the need for additional computational
operations for processing similar activation patterns across
different filters within the plurality, leading to a reduction 1n
a total number of computational operations required by the

IDNNs.

[0203] Clause 39. A system for enhancing efliciency 1n
deep neural networks (DNNs) through implementation of
shared clustering patterns, the system comprising:

[0204] one or more processors; and

[0205] a non-transitory computer-readable medium com-
municatively coupled to the one or more processors, the
non-transitory computer-readable medium having stored
thereon instructions that, when executed by the one or more
processors, configure the system to:

[0206] establish shared clustering patterns across a plural-
ity of filters within the DNNs, wherein each filter comprises
a unique set of weights and 1s associated with at least one of
the shared clustering patterns to facilitate computation reuse
and reduce memory usage; and

[0207] 1iteratively adjust the weights of the filters 1n accor-
dance with the established shared clustering patterns to

decrease computational load and memory demands during
operation of the DNN.

[0208] Clause 40. The system of clause 39, wherein the
computer-executable instructions further cause the one or
more processors to:

[0209] 1dentify activation groups processed by a first filter
and apply the activation groups to at least one subsequent
filter sharing an 1dentical clustering pattern, thereby
enabling reuse of activation groups across the filters to
decrease a total number of computational operations

required by the DNNS.
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[0210] Clause 41. The system of clause 39, wherein the
computer-executable instructions further cause the one or
more processors to:

[0211] implement an index table that maps cluster indexes
of weights 1n lieu of actual weight values, and a weight table
for storing the unique weight set for each filter, thereby
reducing storage requirements for cluster-index information;
and

[0212] assign clustering patterns to filters based on struc-
tural similanities through mathematical formulations and
algorithms.

[0213] Clause 42. The system of clause 39, wherein the
computer-executable instructions further cause the one or
more processors to:

[0214] employ projected gradient descent (PGD) to cali-
brate a model in alignment with the shared clustering
patterns, ensuring adherence to pattern constraints with
reduced deviation from initial weight configurations; and
[0215] facilitate eflicient execution of the pattern cluster-
ing system through an accelerator architecture that com-
prises processing units, register files, accumulators, and
output lanes, designed to facilitate eflicient data processing
and reduced memory access.

Terminology

[0216] Conjunctive language such as the phrase “at least
one of X, Y and Z,” unless specifically stated otherwise, 1s
otherwise understood with the context as used 1n general to
convey that an 1tem, term, etc. may be either X, Y or Z. Thus,
such conjunctive language 1s not generally intended to imply
that certain embodiments require at least one of X, at least
one of Y and at least one of Z to each be present.

[0217] Conditional language, such as, among others,
“can,” “could,” “might,” or “can,” unless specifically stated
otherwise, or otherwise understood within the context as
used, 1s generally intended to convey that certain embodi-
ments include, while other embodiments do not include,
certain features, elements, and/or steps. Thus, such condi-
tional language 1s not generally intended to imply that
features, elements and/or steps are i any way required for
one or more embodiments or that one or more embodiments
necessarily include logic for deciding, with or without user
input or prompting, whether these features, elements and/or
steps are included or are to be performed 1n any particular
embodiment.

[0218] Unless the context clearly requires otherwise,
throughout the description and the claims, the words “com-
prise,” “comprising,” and the like are to be construed 1n an
inclusive sense, as opposed to an exclusive or exhaustive
sense; that 1s to say, 1n the sense of “including, but not
limited t0.” As wused herein, the terms ‘“connected.”
“coupled,” or any varnant thereof means any connection or
coupling, either direct or indirect, between two or more
clements; the coupling or connection between the elements
can be physical, logical, or a combination thereof. Addition-
ally, the words “herein,” “above,” “below,” and words of
similar import, when used 1n this application, refer to this
application as a whole and not to any particular portions of
this application. Where the context permits, words 1n the
above detailed description using the singular or plural num-
ber can also include the plural or singular number respec-
tively. The word “or” 1n reference to a list of two or more
items, covers all of the following interpretations of the word:
any one of the 1tems 1n the list, all of the items 1n the list, and
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any combination of the 1tems in the list. Likewise, the term
“and/or” 1n reference to a list of two or more items, covers
all of the following interpretations of the word: any one of
the items in the list, all of the i1tems in the list, and any
combination of the items in the list.

[0219] Depending on the embodiment, certain operations,
acts, events, or functions of any of the algorithms described
herein can be performed 1in a different sequence, can be
added, merged, or left out altogether (for example, not all are
necessary for the practice of the algorithms). Moreover, in
certain embodiments, operations, acts, functions, or events
can be performed concurrently, for example, through multi-
threaded processing, interrupt processing, or multiple pro-
cessors or processor cores or on other parallel architectures,
rather than sequentially.

[0220] Systems and modules described herein can com-
prise solftware, firmware, hardware, or any combination(s)
of software, firmware, or hardware suitable for the purposes
described herein. Software and other modules can reside and
execute on servers, workstations, personal computers, com-
puterized tablets, PDAs, and other computing devices suit-
able for the purposes described herein. Software and other
modules can be accessible via local memory, via a network,
via a browser, or via other means suitable for the purposes
described herein. Data structures described herein can com-
prise computer files, variables, programming arrays, pro-
gramming structures, or any electronic information storage
schemes or methods, or any combinations thereot, suitable
for the purposes described herein. User interface elements
described herein can comprise elements from graphical user
interfaces, interactive voice response, command line inter-
faces, and other suitable interfaces.

[0221] Further, the processing of the various components
of the illustrated systems can be distributed across multiple
machines, networks, and other computing resources. In
addition, two or more components of a system can be
combined mto fewer components. Various components of
the 1llustrated systems can be implemented 1n one or more
virtual machines, rather than 1in dedicated computer hard-
ware systems and/or computing devices. Likewise, the data
storage devices shown can represent physical and/or logical
data storage, including, for example, storage area networks
or other distributed storage systems. Moreover, the connec-
tions between the components shown can represent possible
paths of data flow, rather than actual connections between
hardware. While some examples of possible connections are
shown, any of the subset of the components shown can
communicate with any other subset of components 1n vari-
ous 1mplementations.

[0222] Embodiments are also described above with refer-
ence to tlow chart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts. Each block of the flow chart illustrations and/or block
diagrams, and combinations of blocks in the flow chart
illustrations and/or block diagrams, can be implemented by
computer program instructions. Such instructions can be
provided to a processor of a general purpose computer,
special purpose computer, specially-equipped computer (for
example, comprising a high-performance database server, a
graphics subsystem, etc.) or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor(s) of the com-
puter or other programmable data processing apparatus,
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create means for implementing the acts specified in the tlow
chart and/or block diagram block or blocks.

[0223] These computer program instructions can also be
stored 1n a non-transitory computer-readable memory that
can direct a computer or other programmable data process-
ing apparatus to operate in a particular manner, such that the
instructions stored 1n the computer-readable memory pro-
duce an article of manufacture including instruction means
which implement the acts specified in the flow chart and/or
block diagram block or blocks. The computer program
instructions can also be loaded onto a computing device or
other programmable data processing apparatus to cause a
series ol operations to be performed on the computing
device or other programmable apparatus to produce a com-
puter implemented process such that the instructions which
execute on the computer or other programmable apparatus
provide steps for implementing the acts specified 1n the flow
chart and/or block diagram block or blocks.

[0224] Any patents and applications and other references
noted above, including any that can be listed 1n accompa-
nying filing papers, are incorporated herein by reference.
Aspects of the disclosure can be modified, if necessary, to
employ the systems, functions, and concepts of the various
references described above to provide yet further implemen-
tations of the disclosure.

[0225] These and other changes can be made 1n light of the
above detailed description. While the above description
describes certain examples of the disclosure, and describes
the best mode contemplated, no matter how detailed the
above appears 1n text, the disclosure can be practiced 1n
many ways. Details of the system can vary considerably in
its specific implementation, while still being encompassed
by the disclosure disclosed herein. As noted above, particu-
lar terminology used when describing certain features or
aspects of the disclosure should not be taken to imply that
the terminology 1s being redefined herein to be restricted to
any specific characteristics, features, or aspects of the dis-
closure with which that terminology 1s associated. In gen-
eral, the terms used 1n the following claims should not be
construed to limit the disclosure to the specific examples
disclosed in the specification, unless the above detailed
description section explicitly defines such terms. Accord-
ingly, the actual scope of the disclosure encompasses not
only the disclosed examples, but also all equivalent ways of
practicing or implementing the disclosure under the claims.

1. A method for encoding within a hyperdimensional
computing framework, comprising:
obtaining data to be encoded;
segmenting the obtained data into a plurality of windows,
wherein each window of the plurality of windows
comprises a sequence of data elements;
for each window of the plurality of windows:
for each data element within a particular window,
selecting a level hypervector from a set of level
hypervectors, wherein each level hypervector of the
set of level hypervectors represents a quantized value
ol the respective data element 1n high-dimensional
space,
for each selected level hypervector, applying a permu-
tation operation to the respective selected level
hypervector based on a sequential position of a
corresponding data element within the window,
wherein the applying results in a set of permuted
level hypervectors for the particular window,
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performing a binary operation on the set of permuted

level hypervectors to generate a window hypervector
that that represents the sequence of data elements for
that particular window; and

aggregating the window hypervectors for each window of
the plurality of windows to generate an encoded hyper-
vector, wherein the encoded hypervector 1s represen-
tative ol obtained data 1n a hyperdimensional vector
space.

2. The method of claim 1, wherein the obtained data
comprises at least one of textual data, image data, voice data,
or sensor data.

3. The method of claim 1, wherein the binary operation

executed on the set of permuted level hypervectors 1s at least
one of a AND, OR, XOR, NAND, NOR, or XNOR opera-
tion.

4. The method of claim 1, wherein the permutation
operation applied to each selected level hypervector 1s based
on a predetermined number of positions reflective of an
order of the sequence of data elements within the particular
window.

5. The method of claim 1, wherein the set of level
hypervectors 1s predefined, each representing a distinct
quantized value corresponding to possible values of data
clements.

6. The method of claim 1, further comprising associating
cach window hypervector with a unique identifier hyper-
vector through a binary operation to incorporate global
sequence information into the encoding.

7. The method of claim 6, wherein decoding the encoded
hypervector includes utilizing the unique 1dentifier hyper-
vector to reconstruct the sequence of data elements from the
encoded hypervector based on the global sequence informa-
tion encoded by the umique 1dentifiers.

8. The method of claim 1, wherein aggregating the
window hypervectors includes a weighted aggregation
based on a predetermined importance criterion assigned to
cach window.

9. The method of claim 1, further comprising normalizing
the encoded hypervector to obtain a uniform vector magni-
tude across different instances of encoded data.

10. The method of claim 1, wherein adjacent windows of
the plurality of windows have a shared subset of data
clements at their interface so as to define an overlap of one
or more final data elements from a first window and one or
more beginning data elements of a subsequent window.

11. The method of claam 10, wherein a size of an
overlapping portion between consecutive windows 1s
adjusted according to a predetermined criterion related to
sequential dependencies inherent 1n the obtained data.

12. An ASIC accelerator system for hyperdimensional
computing (HDC) encoding, comprising:
a processor configured to:
receive data to be encoded via an mput interface;

segment the received data into a plurality of windows,
cach comprising a sequence of data elements;

select, for each data element within a window, a cor-
responding level hypervector from a stored set of
level hypervectors, where each level hypervector
represents a quantized value of the data element 1n
high-dimensional space;

16

Aug. 15,2024

apply permutation operations to each selected level
hypervector based on 1ts sequential position within
the window to generate a set of permuted level
hypervectors;

execute a binary operation on the set of permuted level
hypervectors to produce a window hypervector rep-
resenting the sequence of data elements for that
window;

aggregate the window hypervectors from each window
to generate an encoded hypervector, representative
of the receive data 1in a hyperdimensional vector
space; and

output the encoded hypervector via an output interface.

13. The system of claim 12, further comprising a memory
module commumnicatively coupled to the processor, wherein
the memory module stores the set of level hypervectors.

14. The system of claim 12, further comprising computer-
readable instructions stored on a non-transitory computer-
readable medium, wherein the instructions, when executed
by the processor, cause the processor to perform tasks of
receiving the data; segmenting the received data; selecting
the corresponding level hypervector; applying permutation
operations; executing the binary operation; aggregating the
window hypervectors; and outputting the encoded hyper-
vector.

15. The system of claim 12, wherein the received data
comprises at least one of textual data, image data, voice data,
or sensor data.

16. The system of claim 12, wherein the binary operation
executed on the set of permuted level hypervectors 1s at least
one of a AND, OR, XOR, NAND, NOR, or XNOR opera-
tion.

17. An ASIC accelerator system for hyperdimensional

computing (HDC) encoding, comprising:

an input interface for receiving data to be encoded;

a data segmentation unit configured to segment the
received data into a plurality of windows, each window
comprising a sequence of data elements;

a level hypervector selection unit configured to select, for
cach data element within a window, a corresponding
level hypervector from a set of level hypervectors
stored 1 a level hypervector memory, wherein each
level hypervector represents a quantized value of the
data element 1n high-dimensional space;

a permutation umt configured to apply permutation opera-
tions to each selected level hypervector based on 1its
sequential position within the window, resulting 1n a set
of permuted level hypervectors for that window;

a binary operation unit configured to perform a binary
operation on the set of permuted level hypervectors to
produce a window hypervector representing the
sequence ol data elements for that window; and

an aggregation umt configured to aggregate the window

hypervectors from each window to generate an encoded
hypervector, representative of the recerve data in a
hyperdimensional vector space.

18. The system of claim 17, further comprising:

an output intertace configured to output the encoded
hypervector;

a level hypervector memory for storing the set of level
hypervectors; and

an 1dentifier hypervector memory for storing identifier
hypervectors used 1n associating window hypervectors
with unique 1dentifiers.
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19. The system of claim 17, wherein at least one of the

data segmentation unit, t

e level hypervector selection unit,

the permutation unit, t

ne binary operation unit, or the

aggregation unit 1s 1implemented by at least one processor
configured to execute mnstructions for performing respective

functions of that unit.

20. The system of claim 17, wherein adjacent windows of

the plurality of windows have a shared subset of data

elements at their interfac

¢ so as to define an overlap of one

or more final data elements trom a first window and one or
more beginning data elements of a subsequent window.

21-29. (canceled)
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