a9y United States
12y Patent Application Publication o) Pub. No.: US 2024/0095341 Al

VENKATARAMANI et al.

US 20240095341A1

43) Pub. Date: Mar. 21, 2024

(54)

(71)

(72)

(21)
(22)

(60)

MAYA: A HARDWARE-BASED
CYBER-DECEPTION FRAMEWORK TO

Publication Classification

(51) Int. CL
COMBAT MALWARE GOGF 21/54 (2006.01)
Applicant: The George Washington University, GO6F 21756 (2006.01)
Washington, DC (US) (52) US. Cl.
CPC GO6F 21/54 (2013.01); GO6F 21/564
Inventors: Guru Prasadh V. (2013.01); GO6F 21/568 (2013.01)
VENKATARAMANI, Fairfax, VA
(US); Preet Derasari, Alexandria, VA (57) ABSTRACT
(US); Kailash Gogineni, Alexandria, A hardware framework for cyber-deception operations pro-
VA (US) vides tlexibility 1n formulating counterattacks and leverages
hardware support for efliciency. Hardware-assisted decep-
Appl. No.: 18/109,733 tion primitives are provided at kernel crossing boundaries to
Bilod: Feb. 14. 2023 privileged system features that propel the security defenses

Related U.S. Application Data
Provisional application No. 63/309,833, filed on Feb.

14, 2022.

EXCEPTION SINTHENS
MODULE

{81

- 3

| B

to dynamically manipulate the malware execution and pres-
ent a deceptive view of the system state to the attackers.
Malware may be in the form of various attack vectors
including ransomware, infostealers, bufller overtlow, and

side-channels.

START

7 | -

T

L

) [g FETCH / DISPATCH

DECEPTION TRIGGER

BUFEER

e R

4 HONEY QUHIYERS

SET/RESET (W PROGRAN INSTROCTION |

e
| — L

- - REGRDER BUFFER
SYSRET 110

TRACKER SUREY b oo piren

— N 104 i |

DECEPTION TABLE
108

RESUME

- | e

T

COMPLETION OF SYSCALL/SYSRET INSTRUCTIONS COMMIT

» {12

Patent Application Publication Mar. 21, 2024 Sheet 1 of 8 US 2024/0095341 Al

SUBRQUTINES 106

EXCEPTION SYNTHESIS
MODULE

102

HONEY QUIVERS
104

108

gl "Old

u m I
HHKROY m SNOLONYLSNT LIHSAS/TIVISAS 40 NOLLZ1dWOD IWASIY

US 2024/0095341 Al

bl

v -8l
ETRIERS — YL

134348

0t
434409 430407
NOIDAYISNT HYHD0Yd

Mar. 21, 2024 Sheet 2 of 8

13534/138

TIVISAS

431314
HILV4SIQ / H)L3

91}
YI9501 NOLdDIA

901 SINLLOOYENS

Patent Application Publication

Patent Application Publication Mar. 21, 2024 Sheet 3 of 8 US 2024/0095341 Al

500

-

o) wvmam

ST et e ey
1 PR LRI

guiver_stride,
wmay bvles,

beauitver, base, addy

Patent Application Publication

Mar. 21, 2024 Sheet 4 of 8

TABLE II: MAY A Defenses on Malware Categories

US 2024/0095341 Al

Malware
Family

Attack
Category

~ Deception
~ Strategies

Targets

MAYA Primitives

Defense
QOutcomes

WannaCryptOr

Ransomware

Diversion
_Exhaustion

Openat.write

"REPLACE_ENTER

Files Protected

Stealer

Fabrication

Read sendto

Protected

Petya

Ransomware

Daversion
Exhaustion

Connect.
Unlink

Files Protected

Return To-Libe

Bufter
Overflow

Fabrication

Execve

"REPLACE_ENTER

Pomnter
Protected

RSA Timing
- Attack

Tuning
Side-
Channel

Exhaustion

Clock gettime

"REPLACE_ENTER

Keys Protected |

Bad Rabbait

Ransomware

Fabrication,
- Diversion

Stat

"REPLACE RETURN,
REPLACE RETURN

Directories
Protected

Patent Application Publication Mar. 21, 2024 Sheet 5 of 8 US 2024/0095341 Al

TABLE HI: Execution latency in CPU cycles for syscalls (* denotes tactics that use RDRAND 1nstruction [241])

- Syseall Name MAYA Tactics Deception Strategies MAY A Subroutines APl

Openat "REPLACE ENTER | Diversion | 53% 1395%
Stat REPLACE RETURN | Fabrication | 25 518

Connect REPLACE ENTER | Diversion [53% 536
Read SCRAMBLE RETURN | Fabrication | 269* 1966*
Sendto REPLACE ENTER | Fabrication | 60* 601%

Clock gettime REPLACE RETURN | Exhaustion | 27 491

Patent Application Publication Mar. 21, 2024 Sheet 6 of 8 US 2024/0095341 Al

500A

-

502

DECEPTION!

SELECT DECEPTION-RELATED SUBROUTINE BASED ON SYSCALL

EXECUTE SELECTED SUBROUTINE INSTRUCTION(S)

EXECUTE SYSCALL INSTRUCTION, CONTINUE TO EXECUTE THE SYSTEM CALL EXECUTION |
ROUTINE
514 f

Patent Application Publication Mar. 21, 2024 Sheet 7 of 8 US 2024/0095341 Al

5008

- INTERCEPT SYSRET INSTRUCTION
550

TRACKER

EXECUTE DECEPTION-RELATED SUBROUTINE
INSTRUCTION(S)

EXECUTE SYSRET INSTRUCTION,

END

US 2024/0095341 Al

009

Mar. 21, 2024 Sheet 8 of 8

AY1dSIQ

Patent Application Publication

S49 —599 099 659 S¥9

{$h3a0) AELINYD
03QIA NHHOD

380108

YIM0d F9VH0LS AGOW N

JHYMAYYH

) HJYYO (S)IA30 LAY IOVMI

SHOSNIS 3D1A3C

0{9 (9 0<9

405530044 (§)23000 0100V INOHAOWDIM

409 ¢§9 0¢9

(5)43H¥3dS /

_ _ 009
19 0b9

TOVIEIING ¥38N

US 2024/0095341 Al

MAYA: A HARDWARE-BASED
CYBER-DECEPTION FRAMEWORK TO
COMBAT MALWARE

RELATED APPLICATION(S)

[0001] The present application claims prionty to U.S.
Provisional Patent Application No. 63/309,833, filed Feb.
14, 2022, which 1s hereby incorporated by reference 1n 1ts
entirety.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

[0002] This invention was made with government support
under N00014-21-1-2520 awarded by Ofilice of Naval
Research. The government has certain rights 1n the mnven-
tion.

BACKGROUND

[0003] Cybersecurity attacks on industrial operations have
been steadily rising 1n the past few years. To safeguard the
computing systems, popular defense strategies typically rely
on either detect-and-defend type solutions or system secu-
rity-hardeming strategies. Despite the successes of these
prior solutions against many attacks, 1t 1s still dithcult to
accurately predict the threat vectors ahead 1n time, and act
against the adversaries to eflectively protect the critical
system assets. This 1s evident from the unabated news about
cybersecurity attacks in many affected domains, including
manufacturing units, financial markets, and healthcare to
name a few.

[0004] Cyber-deception 1s a proactive defense that not
only traps the malicious actors but also creates an 1llusion of
successiul system penetration for the attackers to continue
their operations, thereby creating opportunities for the sys-
tem security architects to learn about adversarial targets and
behavior. This strategy can provide rich information toward
threat itelligence, decrease the attacker footprint by proac-
tively catching them, and create forensics for formulating
better defense procedures during cyberattacks. Prior studies
have shown 1ts strong potential for future-generation system
security even 1n Zero-Trust architectures.

[0005] Active deception-based deifenses continue to be
embraced to guard several mission-critical systems already.
Despite their growing popularity 1in the commercial market,
current cyber-deception frameworks largely rely on hooking
the soltware APIs and instrumenting the applications sig-
nificantly to trap an attacker and supply counterfeit infor-
mation using specialized honeypots. Often times, sophisti-
cated attackers use probing techniques to analyze their
execution environments. As such, software-based solutions
may lead to botched defenses since they require non-trivial
modifications to system implementation and create notice-
able changes to the application’s runtime execution profiles,
thereby providing plenty of opportunities for malware to
analyze the defenders more easily.

SUMMARY

[0006] In at least one embodiment a framework for cyber-
deception operations provides flexibility in formulating
counterattacks and leverages hardware support for efli-
ciency. Hardware-assisted deception primitives are provided
at kernel crossing boundaries to privileged system features
that propel the security defenses to dynamically mampulate

Mar. 21, 2024

the malware execution and present a deceptive view of the
system state to the attackers. Malware may be 1n the form of
various attack vectors including, but not limited to, ransom-
ware, 1nfostealers, bufler overflow, and side-channels. In
some embodiments, the disclosed framework can effectively
help defend against these various attack types and protect
valuable information, while incurring very a low perfor-
mance impact. Additionally, eflicient hardware support can
improve the defense effectiveness of a computing system by
being transparent, or invisible, to the attacker and by having
the ability to evade malware’s analysis through activating its
counter-oflenses stealthily at runtime.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] For a detailed description of various examples,
reference will now be made to the accompanying drawings.
[0008] FIGS. 1A and 1B 1illustrate an exemplary diagram
showing an exemplary network design 1n accordance with
one or more embodiments of the disclosure.

[0009] FIG. 2 illustrates a table of exemplary deception
tactic specifications for deception table entries 1n accordance
with one or more embodiments of the disclosure.

[0010] FIG. 3 illustrates a table of exemplary defenses on
various malware categories 1n accordance with one or more
embodiments of the disclosure.

[0011] FIG. 4 illustrates a table of exemplary latency 1n

CPU cycles for system calls (syscalls) 1n accordance with
one or more embodiments of the disclosure.

[0012] FIGS. 5A and 5B illustrate exemplary flow dia-

grams 500A and 500B i1n accordance with one or more
embodiments of the disclosure.

[0013] FIG. 6 illustrates an exemplary computing device
in accordance with one or more embodiments of the disclo-

SUIC.

DETAILED DESCRIPTION

[0014] Rapid rise 1n the incidence of malware attacks has
added significant costs to cyber operations across several
industry domains. As the adversaries evolve, defenses are
cllective when they not only prevent the malicious actors
from reaching their targets, but also provide an opportunity
to study their operational tactics. Cyber-deception 1s an
evolving defense paradigm in computer security that renders
the unique advantage to gather threat intelligence and cyber
forensics about adversarial behavior, while actively defend-
ing the computing systems by either manipulating the mal-
ware program execution flow to non-useful states or through
misrepresentation of critical system data.

[0015] In some embodiments of the disclosed technology,
technical improvements to network-based cyber-deception
techniques for computer system defense and hardware secu-
rity are provided. The disclosed technology provides a
framework for cyber-deception operations that offers flex-
ibility 1n formulating counterattacks and leverages hardware
support for efliciency. For example, the framework provides
hardware-assisted deception primitives at kernel crossing
boundaries to privileged system features that propel the
security defenses to dynamically manipulate the malware
execution and present a deceptive view of the system state
to the attackers. Malware may be categorized into various
attack vectors including, but not limited to, ransomware,
infostealers, buffer overflow, and side-channels. In some
embodiments, the disclosed framework may effectively help

US 2024/0095341 Al

defend against these various attack types and protect valu-
able information, while incurring very a low performance
impact.

[0016] In pursuit of effective cyber-deception frameworks
that can remain transparent to the attackers, the processor
hardware oflers certain unique advantages. For example,
hardware can deploy deception dynamically, reducing the
lead time made available to the adversaries to react and
re-calibrate their offenses. Additionally, hardware-based
deception results 1n a near-native execution profile of the
executing malware, thus causing a low-performance impact
and avoiding any noticeable changes to the system environ-
ment that may provoke an attacker.

[0017] In one example embodiment of the disclosure, a
cyber-deception architecture may be embodied either as an
ASIC module or hardware integrated with one or more
processors as described herein. While re-design costs and
complexity may need to be factored with such an eflort,
another example embodiment (albeit, performance-wise
expensive) option 1s realizing all of this as a standalone
FPGA module attached to pre-process the instructions held
in the instruction fetch unit, that does instruction insertion in
the Instruction-cache (similar to how dynamic binary instru-
mentation tools may operate 1n software) and let the CPU

carry on 1its mstruction execution as it normally would.

[0018] Another example demonstrates how the cyber-
deception architecture seamlessly switches the name of a file
to be opened by the monitored program (e.g., malware) by
moditying the relevant hardware register succeeding a call
to the fopen library function. In this example, a malicious
program 1s trying to open a {ile named “social_security.txt”
that holds the social security number (SSN) of the victim and
subsequently encrypt 1ts contents. Hardware deception may
be accomplished in one or more of the following ways
including, but not limited to, inserting deception-related
instructions dynamically using deception trigger logic, skip-
ping the execution of certain instructions or changing their
attributes, or intercepting system calls and altering their
functionality during malware runtime.

[0019] The register allocation hardware logic 1s respon-
sible for capturing the target registers of interest and allo-
cating the same to the deception mstructions during runtime.
For example, 1I the value “social_security.txt” 1s held 1n
register R1, the inserted deception instruction to overwrite
R1 has to know that it has to target R1 to replace 1ts value.
The deception template will simply hold MOV *“fake
social_secunty.txt”-><target_reg>. The Register allocation
logic 1s responsible for filling 1n the <target_reg> with R1 at
runtime.

[0020] In some embodiments, the instruction decoder-
based hardware deception operation i1s not limited to just
insertion of mnstructions, but can extend to deleting (skipping
execution) or changing instruction attributes as well (with-
out explicitly inserting new instructions).

[0021] Additionally, or alternatively, deception may be
done in various other microarchitecture units, including
hardware caches and their controllers (that can falsily values
loaded from memory), execution logic (that can alter the
values of memory addresses computed at runtime or that of
data) and register writeback/commit unit that can alter/avoid
updating registers when instructions complete their execu-
tion 1n the processor pipeline. Further, more robust rein-
forcement learning strategies may control the deception

Mar. 21, 2024

trigger logic to calibrate adversary’s information gain func-
tion to play the deception game better without spooking the
adversary.

[0022] In one embodiment of the disclosed technology, a
hardware framework for cyber-deception that supports
primitives oflering tlexibility to formulate a wide variety of
deception tactics against cybersecurity attacks 1s provided.
Deception tactics may be provided as input, such as by a
system administrator using a programmable deception table.
Deception tactics may counter malware during their kernel
boundary crossings, and are transparent to the application. In
some embodiments, the hardware framework builds on
hardware-supported exception handling mechanisms and
enforces 1ts deception actions when the hardware 1s about to
retire the system-call (*syscall”) and system-return (“sys-
ret”’) mstructions that serve to delineate the kernel crossings.
The deception primitives may be incorporated at these
boundaries to intercept the malware’s system service
requests and to enforce deception tactics using hardware
support and low-overhead exception handlers. To success-
tully carry out their attacks, almost all malware types utilize
system calls. System calls, or syscalls, may include, but are
not limited to, filesystem accesses, send/recerve data from
the networks, or the like. The hardware framework disclosed
herein may be designed to transparently manipulate these
system calls dynamically using hardware support and pro-
vide an eflective framework for cyber-deception against
malware.

[0023] At least one technological improvements and
advantage of the disclosed hardware framework includes a
flexible hardware-based cyber-deception framework to pre-
vent adversaries from obtaining sensitive information or
access to the system assets. The hardware framework pro-
vides a hardware-based deception architecture that transpar-
ently modifies the access to privileged features (e.g., system
calls) during program runtime, thereby crippling an adver-
sary’s ability to adapt to the framework’s counter-oflensive
tactics on malware.

[0024] In at least one embodiment, key hardware primi-
tives present an altered view of a program state to an
adversary during its operation. Primitives of the disclosed
hardware framework are building blocks for deception and
may be used to create deception tactics based on the sys-
tem’s security needs.

[0025] Retference 1 this disclosure to “one embodiment™
or to “an embodiment” means that a particular feature,
structure, or characteristic described 1n connection with the
embodiment 1s included in at least one embodiment, and
multiple references to “one embodiment™ or to “an embodi-
ment” should not be understood as necessarily all referring
to the same embodiment or to different embodiments.

Threat Model and Assumptions

[0026] Threat models include, but are not limited to,
memory corruption and information stealing attacks.
Notable examples of these attack classes include manipu-
lating file storage, exploiting memory vulnerabilities 1n
legacy programs to hijack their control-flow, stealing sen-
sitive information, and timing side channels. Attackers usu-
ally employ malicious applications like ransomware, spy-
ware (infostealers), or Remote Access Trojans (RATs) that
entaill executing malicious code on a victim system. Ran-
somware cannot successiully encrypt files without perform-

US 2024/0095341 Al

ing repetitive reads/writes on user files. Additionally, mnfos-
tealers aim to transmit the stolen information using network
calls.

[0027] One or more of the following assumptions may be
made about an attacker: 1. They have suflicient privileges on
the system to access and modily the directories and their
files, 2. They can locate memory addresses 1nside the victim
programs through address reverse mapping or disclosure
vulnerabilities, and 3. They may measure the timing of
specific code regions with reasonable accuracy. Such capa-
bilities allow the adversaries to eflectively intrude on the
system using above-mentioned threat models, and even
probe the presence of malware analysis modules (system
defenders) to avoid from being detected. State-oi-the-art
techniques like DNN-based malware detection have
reported over 97% accuracy 1n detecting malicious binaries
at program load time. It may be assumed that a victim
system 1s equipped with similar malware detectors to clas-
sify an unknown application’s intentions (malicious vs.
benign) with reasonably high accuracy. Once classified as
malware, a system administrator can either naively purge the
binary from the system (lost opportunity to learn about the
malware) or allow 1t to execute on a cyber-deception frame-
work described herein. The latter approach protects the
system from damage and enlightens the defenders about the
attacker’s intent using the profile data collected during 1ts
runtime.

The Deception Framework

[0028] FIGS. 1A and 1B show an exemplary hardware
framework for cyber-deception, including hardware design
considerations and system-level support for deception tac-
tics.

[0029] Cyber-deception may involve several strategies
that lures away or stalls an adversary from gaining access to
security sensitive system resources. This may include direct-
ing the adversary to a honey resource or honeypot (i.e.,
dummy resources meant to create an 1llusion that the
attacker successiully reached its target) or draining adver-
sary’s resources when they seek access to sensitive assets.
The disclosed framework sigmificantly raises the cost of
attack and ultimately reduces the value of information
obtained by the mounted attack.

[0030] The deception strategies used by practical system
defenders can be divided into three major categories, diver-
sion, fabrication, and exhaustion. Diversion involves redi-
recting the attacker away from sensitive resources to hon-
cypots. Fabrication entails misrepresenting certain sensitive
information desired by the attacker, that could lead to
changing their perception of the victim system. Exhaustion
1s achieved by pinning down the attacker and making them
drain their performance aiter they strike a tripwire (usually
a honey resource). The deception tactics supported by the
system to enable the above strategies can allow 1ts admin-
istrator to silently observe an adversary’s actions while
leading the malware to believe that their process 1s being
taithiully executed.

[0031] In terms of operating mechanism, malware appli-
cations subvert system protection layers and attempt to
invoke various system-level services like filesystem, process
control, timers and network sockets/ports to achieve their
intended functions. These services are typically supported
by the Operating System via a system call interface that
allows a user process to execute privileged tasks 1n kernel

Mar. 21, 2024

mode. The hardware framework disclosed herein taps these
kernel crossing points to implement its cyber-deception
tactics. In many Instruction Set Architectures (ISA), the
kernel boundary crossing (system call and return) 1s delin-
cated with specific mstructions. For example, in the widely-
used x86-based ISA, the syscall instruction invokes the
System Call Handler module to execute the kernel code. The
syscall type (number) 1s stored 1n the % rax register and 1ts
argument register allocation 1s done in the following order:
% rd1, % rs1, % rdx, %r 10, %r 8, and % r9 depending on the
number of inputs. Once the handler finishes execution of
system code, control 1s returned to user code by executing a
sysret istruction. Such well-defined interfaces provide for
an eflicient integration of the disclosed cyber-deception
primitives into the processor hardware.

[0032] FIGS. 1A and 1B present an overview of a hard-
ware cyber deception framework disclosed herein. Elements
102, 104, 106, 108, 114, 116, and 118 show structures that
may be 1tegrated into existing processors. Two main mod-
ules may be provided, such as Exception Routine 106, a
vector of lightweight subroutines implemented as hardware-
supported exceptions to transparently alter the CPU archi-
tectural state at the system call/return interfaces, and the
Deception Trigger 116 hardware that serves to intercept the
syscall and sysret instructions originating from malware
code and mnvoke the appropriate exception subroutine to
implement an effective deception strategy.

[0033] FIG. 1A illustrates a Pre-runtime Setup Module
that enables the tlexibility to populate the components used
later by the hardware framework of FIG. 1B for runtime
deception against given malware. The tactics can be speci-
fied in the Deception Table 108 either by a system admin-
istrator directly or through interface modules with auto-
mated deception strategy generators. The deception table
entries are then used by a software-based Exception synthe-
sis module 102 that can synthesize the following during
program load time: 1. exception subroutines 106 (to be
executed during system calls), and 2. Honey (resource)
quivers 104, that act as a stash for supplying honey objects
dynamically needed by the deception tactics. Honey quivers
may be created prior to runtime. Additionally, or alterna-
tively, honey quivers may be changed during runtime based,
at least in part, on a deception tactic or deception strategy.

Exception Routine

[0034] The Exception Routine 106 mmvokes lightweight
system call-specific subroutines needed for cyber-deception
during kernel crossings. Deception Table 108 may contain a
list of entries showing the deception primitives and modes
(jointly referred to as ‘tactics’) for each syscall. The Excep-
tion Synthesis Module 102 may generate exception subrou-
tines 106 based on the table entries during program load
time, along with populating the Honey (Resource) Quivers
104 to supply one or more exception routines with the
necessary honey objects at runtime.

[0035] Deception Table 108 1s a structure that represents
the key mput for the disclosed hardware framework that
specifies the administrator-desired tactics to be used against
the adversary at kernel boundaries. FIG. 2 presents the
format for different deception primitives supported by the
disclosed hardware framework. Each syscall type (<sys_
num>) may involve the use of multiple deception tactics

specified by the <num_entries>. A tactic 1s composed of a

US 2024/0095341 Al

combination of deception primitives and modes. Three
exemplary deception primitives iclude:

[0036] REPLACE_ENTER: Replaces the contents of
target field with a honey resource before completing
syscall 1nstruction;

[0037] REPLACE_RETURN: Replaces the contents of
target field with a honey resource before completing
sysret instruction; and

[0038] SCRAMBLE RETURN: Randomizes the con-
tents of target field before completing sysret instruc-
tion.

[0039] Mode serves as the format specifier for the honey
resource that ultimately modifies the target field (<target_
location>) as part of deception. There are four modes of
operation:

[0040] DIRECT: Overwrite the target field with honey_
value.

[0041] INDIRECT: Modity the target field’s contents
with a random entry from a honey quiver. A valid honey
re-source specifier entry 1s supplied through comput-
ing: quiver_base_addr+(rd_rand*quiver_stride) MOD
(max_bytes/quiver_stride) where quiver stride denotes
the size of a quiver entry 1n bytes, the total quiver size
1s max bytes, and rd rand 1s the result of a hardware
random number generator supported 1n modern proces-
sors like the Intel RDRAND instruction (e.g., replacing
the filepath argument 1n openat syscall with a randomly
chosen dummy filepath pointer of length quiver stride
bytes, from a honey quiver of size max bytes).

[0042] REG: Specifies the architectural register, reg
name, that provides additional information to the
deception primitive (e.g., scrambling the buller
returned by read syscall, whose size 1s specified in the
register, reg_name).

[0043] INDIRECT_REG: A combination mode where
the quver resource 1dentifier calculation may need
additional information from a syscall argument register.
(e.g., replacing the bufller used by sendto syscall with a
dummy bufler taken from a honey quiver supplying
garbage values; the size of this dummy bufler 1s speci-
fied 1n an argument register).

[0044] Populating the entries 1n deception table 108 may
be automated using deception strategy generators against
specific malware types. Various combinations of deception
primitives and modes may be used.

[0045] The exception synthesis module 102 may act as a
code generator which translates the tactics from deception
table entries 108 1nto exception subroutines 106. That 1s, the
synthesis module 102 receives an input call signal, deter-
mines a detection on the mput call signal based on the
deception table 108 (e.g., a comparison), and selects a
desired one of the subroutines 106 based on the determined
deception. The synthesizer module 102 generates individual
subroutines for each tactic that will modity the <target_
location> with honey resource identifiers. For example,
syscalls that require REPLACE_RETURN or SCRAM-
BLE_RETURN deception primitives, the framework may
execute exception subroutines at the end of system call
procedures. In such cases, the synthesis module 102 splits
the corresponding deception tactic into two separate syscall
entry and return-time subroutines. At runtime, the subroutine
executed at syscall entry sets a hardware flag (Sysret
Tracker) to trigger deception at the time of completing sysret
istruction.

Mar. 21, 2024

[0046] The synthesis module 102 may also populate the
honey quivers 104 with a stash of dummy or fake resources
that can eflectively trick malware into continuing their
execution. The honey quvers 104 may be individually
synthesized for different purposes depending on the syscall
arguments.

[0047] Path Quiver: Contains a stash of filepaths pointing
to honey, such as files, directories, and executables that are
scattered throughout the file system to assist with deception
tactics.

[0048] Struct Quiver: Contains a stash of addresses to
honey structs that may be used to assist deception tactics
involving stat, clock_gettime and similar syscalls.

[0049] Garbage Quiver: Contains a stash of byte arrays
with randomized values for use 1n deception tactics 1nvolv-
ing syscalls with bullers as arguments.

[0050] For INDIRECT and INDIRECT_REG deception
modes, the synthesis module 102 inserts the appropnate
honey quiver-related information like base address, stride,
and max bytes mto the associated exception subroutines.

[0051] Adfter the pre-runtime setup process for the frame-
work 1s complete, the hardware-assisted dynamic deception
1s activated against malicious processes during 1ts execution.
In terms of spotting malware applications for deception, at
least two possibilities exist. In a first embodiment, assume
conservatively that every externally developed (non-trusted)
application 1s malware and let the framework perform
deception until a privileged system monitor can carefully
analyze the application behavior and deem its status as
benign or not. In a second embodiment, during program load
time, utilize zero-day malware detection frameworks to tag
potentially malicious applications for deception. For
example, DNN-based malware detection techniques use
features like raw binary bytes at program load time to
analyze an untrusted application.

[0052] Once the targeted process has been loaded for
execution, trigger hardware serves to mvoke the deception-
related subroutines during its kernel crossings. The hard-
ware Iramework may be integrated into the backend of a
pipeline (e.g., 109/110) to minmimize the changes needed in
hardware. The deception hardware monitors the instructions
flowing through the pipeline and creates traps for all syscall
istructions associated with the targeted process. FIG. 1B
shows an example processor pipeline depicting the flow of
instructions from Instruction cache 109 to the Commit stage
112, where structions complete their execution. In most
modern processors, the mstructions are fetched and decoded
in program order until they reach the dispatch/issue stage.
The ready-to-dispatch instructions are then sent to the res-
ervation stations 1n an out-of-order manner 1nto their respec-
tive execution lanes (based on the type of operation per-
formed). These dispatched instructions are tracked using the
Reorder Bufler (ROB) 110. When an exception or interrupt
occurs, they are usually serviced during the commit stage
112 to support precise exception handling. Hardware excep-
tion handler mechanisms may be leveraged to realize decep-
tion hardware.

[0053] When a syscall mnstruction 1s marked completed
and reaches the head of ROB 110, 1t normally gets tagged to
raise an exception, which gets serviced after retiring the
instructions older than the syscall instruction from ROB 110
and flushing younger instructions. The exception handler
consults an Interrupt Descriptor Table (IDT) to transfer
control over to the appropriate Interrupt Sub-Routine (ISR)

US 2024/0095341 Al

for the system call. Deception trigger 116 may be imple-
mented right before the system exception handler invokes an

ISR.

[0054] The hardware framework may include an op-code
filter (OP Filter) 114 that allows it to trigger deception.
When completing syscall instructions, the Deception Trigger
116 reads the syscall type/number (usually stored in the %
rax register 1 x86 architectures) and records this value in
one of the reserved registers for future potential use during
sysret execution. It then calls the Exception routine, which
invokes the syscall specific subroutine indexed using a
combination of syscall number and Sysret Tracker flag. For
all syscalls, the default Sysret Tracker flag 1s ‘0’. If the
deception primitive specifies return-time manipulation of
target fields (REPLACE_RETURN, SCRAMBLE_RE-

TURN), Sysret Tracker flag 1s set to *1° by the correspondihg
exception subroutine from subroutines 106.

[0055] For those syscalls that have multiple deception
tactics, the framework may select a random exception sub-
routine among them that creates a state of confusion through
perturbing the adversary’s observation patterns between
successive mvocations of the syscall. To support this func-
tionality, a hardware random number generator may be
utilized to randomly 1ndex into one of the subroutines 106
when 1nvoked by the deception framework. In some
embodiments, the framework may trigger deception a ran-
dom number of times for each syscall, each time with a
randomly selected tactic (1.e., exception subroutine).

[0056] Once the exception subroutine related to a syscall
completes, the hardware proceeds to execute the system
exception handler. Since some deception tactics are
designed to deliberately sabotage such system service invo-
cations by the targeted process, the subsequent (originally
requested) syscall results 1n an altered functionality not
desired by the attacker. When the Commut stage 112 of the
pipeline encounters a sysret 1nstruction, the deception trig-
ger 1s only invoked if the Sysret Tracker 118 was set earlier
by the syscall mstruction. The exception routine uses the
(stored) syscall number and the sysret tracker value (1.e. ‘1)
to 1index into the appropriate subroutine for return-time
deception. For both syscall and sysret instructions, after
servicing the framework’s exception subroutines, the pipe-
line proceeds to retire the corresponding nstructions 1n the
processor pipeline.

[0057] FIG. 3 illustrates a table providing a summary of
malware types used in one or more embodiments of the
disclosed hardware framework. FIG. 3 provides exemplary
malware families and their attack categories. It also shows
exemplary Deception Strategies that may be formulated for
different Deception Targets, 1.¢., the syscalls, and the Primi-
tives used to achieve deception. Outcomes are provided that
l1st the sensitive assets that would normally fall victim to the
malware process but are protected by the disclosed cyber-
deception framework.

[0058] FIG. 4 illustrates a table showing the latency (CPU
clock cycles) for the disclosed hardware framework and API
hooking, averaged over multiple runs. Some of the decep-
tion strategies use a random number generator (RNG) to
select a random entry within the respective quivers for
deception. In such cases, an additional 25 clock cycles may
be included for the RDRAND instruction (marked with a *
next to the latency wvalues). The RDRAND latency 1s
obtained from performance statistics reported by Intel’s

Digital Random Number Generator (DRNG). Hardware-

Mar. 21, 2024

supported deception offers an order of magnitude improve-
ment 1n performance (7x—20x) compared to software-based
API hooking techniques. The worst-case latency was
observed 1n the read syscall (269 cycles) with a SCRAM-
BLE_RETURN tactic due to the repetitive writes required to
overwrite each byte of the target bufller. Nonetheless, the
clock cycle latency for the same to modity 16 bytes of data
1s 7/x faster than 1ts software counterpart. An average excep-
tion routine 1nvoked by syscall handler can take hundreds to
thousands of CPU cycles. Therefore, the disclosed hardware
framework has a very low impact on runtime and remains
transparent to the application. For example, a bad actor will
not experience noticeable delay in having their malware
code executed by the disclosed cyber-deception framework.
In addition, the framework 1s transparent because it 1s
implemented at runtime and not prior to runtime. For
example, the deception strategy 1s implemented when the
syscall, or more specifically, the syscall number, 1s received/
read, and ends when the sysret 1s recerved/read.

[0059] FIGS. 5A and 5B show, in flow chart form, an
example method for cyber-deception tactic implementation,
flow diagrams S00A and 500B, respectively. The method
may be implemented by the disclosed hardware framework
described above with respect to FIGS. 1A and 1B. For

purposes of explanation, the {following steps will be
described 1n the context of FIGS. 1A and 1B. However, the
various actions may be taken by alternate components, such
as a processing device. In addition, the various actions may
be performed 1n a different order. Further, some actions may
be performed simultaneously, and some may not be
required, or others may be added.

[0060] Flow chart 500A begins at step 502 with the
implementation of a pre-runtime process. According to one
or more embodiments, the pre-runtime process may be
comprised of multiple steps described herein. Pre-runtime
process 502 may include populating one or more compo-
nents (e.g., tactics, strategies) to be used later against
malware. Tactics may be created, such as by a system
administrator, and stored in a table (e.g., Deception Table
108 of FIG. 1A). Based on the table of deception tactics, a
plurality of subroutines (e.g., execution files) may be gen-
crated and stored 1n a database for subsequent retrieval (e.g.,
during runtime), such as in subroutines database 106. Sub-
routines may be generated by exception synthesis module
102, as described herein. Stored subroutines may include
istructions to manipulate syscalls dynamically using hard-
ware support. Each of the subroutines may be associated
with one or more honey quivers, such as honey quivers 104,
based on the corresponding deception tactic. In some
embodiments, entries 1n the deception table may be auto-
matically generated using a deception strategy generator
against specific malware types.

[0061] The flow chart continues at 504 where hardware-
assisted dynamic deception 1s activated against a malicious
process. In some embodiments, the hardware-assisted
dynamic deception 1s activated during execution of the
malicious process. Deception may be activated against every
externally developed (e.g., non-trusted) application, thereby
assuming that every application 1s malware. This activation
may be performed, for example, until a privileged system
can carelully monitor application behavior. Additionally, or
alternatively, deception may be activated when malware 1s
detected during program load. For example, during program
load time, a zero-day malware detection framework, or the

US 2024/0095341 Al

like, may tag potentially malicious applications and cause
deception to be activated. Additionally, or alternatively,
malware may be detected by a filter at runtime, such as OP
Filter 114 of FIG. 1B. Once activated, the deception process
intercepts a syscall 506.

[0062] The flow chart continues at decision block 508,
determining whether the intercepted syscall qualifies for
cyber-deception. If the itercepted syscall does not qualily
for cyber-deception (e.g., the intercepted syscall 1s not
resulting from a malicious attack or part of malware), then
the flow chart continues to 514 and the syscall 1s executed
normally. Otherwise, 1f the intercepted syscall does qualily
for cyber-deception 1n that 1t 1s part of or results from a
malicious attack, then the flow chart continues to step 510.

[0063] The flow chart continues at 510 where the hard-
ware-assisted dynamic deception selects at least one decep-
tion-related subroutine. A subroutine may be selected from
subroutines database 106 based on characteristics of the
syscall, such as a number (e.g., a unique integer) of the
syscall assigned by the operating system. Deceptive subrou-
tines may be indexed by syscall numbers. That 1s, the
deception trigger unit 116 of FIG. 1B, for example, reads the
syscall number 1n the syscall and selects the subroutine that
1s associated with that syscall number. For example, the
subroutines may be indexed in subroutines table 106. In
some embodiments, a syscall identified as malware may be
associated with multiple deception tactics. When this occurs,
a single deception tactic may be selected by using, for
example, a random number generator. For example, a hard-
ware random number generator may be utilized to randomly
index into one of the subroutines associated with deception
tactics. Deception strategies may include, but are not limited
to, diversion, exhaustion, or fabrication. Subroutines may
include, but are not limited to, instructions to protect files,

credentials, or directories, using code primitives to 1mple-
ment deception (e.g., “REPLACE_ENTER” or “SCRAM-

BLE_RETURN™).

[0064] The flow chart continues at 512 to execute the
selected subroutine related to the syscall. Upon completion
ol the subroutine, the hardware-assisted dynamic deception
executes the system exception handler. In some embodi-
ments, a selected tactic may include a return-time deception
(e.g., sysret). During execution of the selected deception
routine, 1I the tactic includes a return-time deception, a
sysret tracker flag may be set. For example, sysret tracker
118 may be set to “1”. Deception tactics may be designed to
deliberately sabotage system service invocations by the
targeted process. The subsequent syscall, once executed,
results 1n an altered functionality not desired by the mali-
cious actor.

[0065] Referring now to FIG. 5B, flow diagram S500B
illustrates an example where a syscall includes a companion
sysret mstruction. The flow diagram S00B starts by inter-
cepting 550 a sysret mnstruction. The sysret instruction may
be intercepted by OP Filter 114, for example. When tracker
flag 552 1s not set (e.g., flag 1s “0”), then there 1s no
corresponding deception tactic and/or syscall (e.g., syscall
originating from malware) and the sysret instruction 1is
executed normally. The tracker flag may be stored in Sysret
Tracker 118. Otherwise, when tracker tlag 552 1s set (e.g.,
flag 1s “17"), thus indicates that the intercepted sysret corre-
sponds to a syscall identified as malicious. The process
would then continue to execute 534 the deception-related
subroutine instruction(s), such as a subroutine of subroutines

Mar. 21, 2024

106. Flow 500B would then move to execute 356 the sysret
instruction. The exception subroutines may be executed as
described herein with respect to syscall and sysret mstruc-
tions. After completion of the exception subroutines, the
process ends.

[0066] Referring now to FIG. 6, a simplified functional
block diagram of illustrative multifunction device 600 1s
shown according to one embodiment. Multifunction elec-
tronic device 600 may include processor 605, display 610,
user interface 615, graphics hardware 620, device sensors
625 (e.g., proximity sensor/ambient light sensor, accelerom-
cter and/or gyroscope), microphone 630, audio codec(s)
635, speaker(s) 640, communications circuitry 645, digital
image capture circuitry 650 (e.g., including camera system)
video codec(s) 655 (e.g., 1n support of digital image capture
unit), memory 660, storage device 665, and communications
bus 670. Multitunction electronmic device 600 may be, for
example, a personal computer, laptop, or a personal elec-
tronic device such as a personal digital assistant (PDA),
personal music player, mobile telephone, or a tablet com-
puter.

[0067] Processor 605 may execute mstructions necessary
to carry out or control the operation of many functions
performed by device 600 (e.g., the generation and/or pro-
cessing ol deception tactics or subroutines as disclosed
herein). For istance, processor 605 may execute instruc-
tions 1ncluding, but not limited to, exception synthesis
module 102 or subroutines 106 of FIG. 1A, or elements of
deception trigger 116 or OP Filter 114 of FIG. 1B. Processor
605 may, for instance, drive display 610 and receive user
input from user interface 615. User interface 615 may allow
a user to interact with device 600. For example, user
interface 6135 can take a variety of forms, such as a button,
keypad, dial, a click wheel, keyboard, display screen and/or
a touch screen. Processor 605 may also, for example, be a
system-on-chip such as those found 1n mobile devices and
include a dedicated graphics processing unit (GPU). Pro-
cessor 605 may be based on reduced instruction-set com-
puter (RISC) or complex instruction-set computer (CISC)
architectures or any other suitable architecture and may
include one or more processing cores. Graphics hardware
620 may be special purpose computational hardware for
processing graphics and/or assisting processor 605 to pro-
cess graphics information. In one embodiment, graphics
hardware 620 may include a programmable GPU.

[0068] Deception tactics and subroutines may be stored 1n
memory 660 and/or storage 665. Memory 660 may include
one or more different types of media used by processor 605
and graphics hardware 620 to perform device functions. For
example, memory 660 may include memory cache, read-
only memory (ROM), and/or random access memory
(RAM). Storage 665 may store media (e.g., audio, 1mage
and video files), computer program instructions or software,
preference information, device profile information, and any
other suitable data. Storage 665 may include one more
non-transitory computer-readable storage mediums 1nclud-
ing, for example, magnetic disks (fixed, floppy, and remov-
able) and tape, optical media such as CD-ROMs and digital
video disks (DVDs), and semiconductor memory devices
such as Electrically Programmable Read-Only Memory
(EPROM), and Electrically Erasable Programmable Read-
Only Memory (EEPROM). Memory 660 and storage 665
may be used to tangibly retain computer program instruc-
tions or code organized into one or more modules and

US 2024/0095341 Al

written 1 any desired computer programming language.
When executed by, for example, processor 605 such com-
puter program code may implement one or more of the
methods described herein.

Implementation Examples

[0069] In the following examples, exemplary implemen-
tations of the disclosed technology 1s provided, each of
which are non-limiting. The exemplary implementations are
provided showing how to formulate deception tactics against
s1x different malware families representing various attack
types. Additionally, performance overheads of the hardware
framework and its eflectiveness with a comparison against
soltware-based deception methods and Moving Target
Defense techniques are provided.

Experimental Setup

[0070] For the examples, a x86 build of Gem3 version
22.0.0.2 1s used. The hardware deception framework 1s built
on top of the existing Gem5 DerivO3 CPU model, which 1s
an out-of-order core based on the Alpha 21264 micropro-
cessor. The system configuration model used 1n the exem-
plary implementations 1s listed 1n Table I below. All simu-
lations are single process context run 1 the syscall
emulation (SE) mode of Gem3.

TABL.

.
5,]
-

Gem) simulator configuration

Core Type DerivO3CPU (Out-of-Order)
CPU Frequency 2 GHz

Cache Line Size 64 B

L1 Instruction Cache Size 32 KB

.1 Data Cache Size 64 KB

L.2 Unified Cache Size 2 MB

Memory Type DDR4_2400_ 8 x &
Memory Size 8 GB

Security Analysis—Case Studies

[0071] Malware samples of the exemplary implementa-
tions represent some of the major cybersecurity attack
vectors. The testbed consists of three ransomware, a buller
overtlow attack, an infostealer, and a timing-based side-
channel on the RSA cryptography algorithm.

[0072] A summary ol malware types used in the security
evaluation 1s shown 1n Table II, shown 1n FIG. 3. Table 11
presents the malware families and their attack categories.
Table II also demonstrates the Deception Strategies that
were formulated for different Deception Targets, 1.e., the
syscalls, and the Primitives used to achieve deception.
Expected outcomes of the evaluation are provided under
Detfense Outcomes that list the sensitive assets that would
normally fall victim to the malware process but are protected
by the disclosed cyber-deception framework.

[0073] The following presents a detailed description of the
exemplary implementations, suitable deception tactics, and
how the disclosed framework implements them at runtime.

Mar. 21, 2024

Malware 1 Ransomware (WannaCyptOr)

procedure GET_DIR_PATHS(dir list)

for each dir_path in dir_list do

encrypt_files(dir_path)

end for
end procedure

procedure ENCRYPT FILES(dir path)

for each file path in dir path do

fileptr <= openat(0, file path, O_RDWR, 0)

read(fileptr, buf, sizeof(buf))

butf < encrypted but
write(fileptr, bui, sizeof(buf))

end for
end procedure

[0074] Ransomware—WannaCryptOr: WannaCryptOr 1s a
part of the WannaCry ransomware family that uses a pro-
prietary EternalBlue exploit to invade legacy computers and
encrypt specific files 1n the victim system. Its evaluation
sample targets a pre-defined list of directories, and then
opens, reads, and overwrites all the files contained within
them using ciphertext. A Diversion strategy 1s used that uses
honey files from the path quiver as decoys to deceive the
ransomware and safeguard the sensitive files.

[0075] Malware 1 illustrates the ransomware sample’s
operation and the deception target (“openat(0, file path,
O_RDWR, 0) and “wrnte(fileptr, bul, sizeof(bul))”). get_
dir_paths() calls encrpt_files() for each di-rectory listed 1n
dir_list. The encrypt_files() procedure recursively encrypts
all files 1 a dir_path by openming and overwriting them with
encrypted values. To perform deception using diversion, the
openat syscall 1s targeted.

[0076] openat(int did, char *pathname, 1nt tlags, int mode)
requires four arguments, of which the pathname points to a
bufler 1n the process’ memory that stores the directory path
as a string of characters. The syscall procedure returns an
integer value from the file descriptor table (FDT) 11 the file
was opened without errors. The second argument to the
syscall 1s stored i the % rs1 register before the kernel
handler 1s invoked. To perform diversion-based deception on
this syscall, the exception subroutine targets the % rsi
register and switches its value with the address of a honey
file path. Accordingly, the deception table entry for openat
syscall will be 1mtialized with the following parameters:
<257, 1, REPLACE_ENTER, % rs1, INDIRECT, <path_

quiver_base, path_size, max_bytes>>.

[0077] During the application runtime, the syscall instruc-
tion for openat gets intercepted by the deception trigger
hardware, which will invoke the exception subroutine. The
indexing into the subroutine 1s done using its syscall number
(2577) and the Sysret Tracker value (0 by default). Based on
the deception primitive and its mode of operation, the
subroutine will replace the contents of % rsi—which, 1n this
case, 1s a memory address pointing to the target sensitive
directory with that of a random entry from the path honey
quiver. The location of a valid random target entry may be
calculated as follows:

US 2024/0095341 Al

h-::nney resource_ addf’ =path_quiver_base+(path

strlde)

[0078] Once the subroutine finishes execution, the hard-
ware continues to service the openat syscall. When the
kernel transfers control back to the malware process after
servicing openat call, 1t will have opened the honey file
instead of the targeted sensitive file.

[0079] Other Deception Strategies: Besides diversion,
another deception strategy against this ransomware 1s tar-
geting the write syscall. To disrupt the ransomware’s
encryption, an Exhaustion based deception strategy may be
formulated such that the ransomware 1s never allowed to
overwrite the victim files with encrypted values. The write
syscall copies size number of bytes (pushed into % rsi1 for the
syscall) from buf into the target fileptr. REPLACE_ENTER
deception primitive in DIRECT mode may be used to
replace the % rs1 register value with a 0. This deception
strategy exhausts the adversary’s efforts by making 1t open,
read, and encrypt a file’s contents continually but never
letting the writes reflect back into the filesystem.

[0080] Ransomware—Bad Rabbit: The Bad Rabbit ran-
somware family targets sensitive databases inside vulnerable
corporate networks. Its evaluation kernel starts traversal
from a target directory, creates a list of all paths within it,
and then for all file paths, it opens, reads, and overwrites
them with encrypted contents (e.g., using an AES-256-CBC
algorithm), and finally renames the files with a custom
extension. A Fabrication deception tactic may included
using modifications to the path information yielded by a stat
syscall.

[0081] Malware 2 below describes the ransomware’s file
path extraction and encryption using pseudocode. In this
example, the list_paths() function adds all paths within the
target_dir to a path_list and then calls the encrypt_files()
procedure. A stat syscall 1s mnvoked for each path 1n the list,
and 1f the path 1s a regular file (S ISREG(statbuf.st mode))
it 1s overwritten with the encrypted contents and then
renamed with a ““.blackcat” extension.

Malware 2 Ransomware (Bad Rabbit)

procedure LIST PATHS(target dir)

for each path in target dir do

path_list < path
end for

encrypt_files(path_list)

end procedure

procedure ENCRYPT_FILES(path_list)

declare struct stat *statbuf

for each path 1n path_list do
stat(path, statbuf)

if S ISREG(statbuf.st_mode) then
fileptr <= openat(0, path, O RDWR, 0)

read, and overwrite path with encrypted contents

rename(path, path.blackcat)
end 1f

end for
end procedure

Mar. 21, 2024

[0082] The stat(char *path, struct stat *statbuf) syscall
fetches information about a file system entity like device 1D,
user 1D, access mode, file type, file size, etc., and returns 1t
into the statbuf structure. To present a false view of the target
directory’s contents, the file (path) type 1.e., st_mode value
in a statbuf structure 1s fabricated to show that a path 1s a
sub-directory even if it 1s a file. Since the ransomware only
operates on files (S ISREG(statbui.st mode)), any damage to
the user files may be avoided. The deception table entry to
support the subroutine for such a fabrication tactic contains
the following information to be translated into a subroutine:
<4, 1, REPLACE_RETURN, ofiset[% rs1], DIRECT, <hon-
cy_value>>,

[0083] During ransomware execution, the syscall mstruc-
tion corresponding to stat syscalls are trapped by the frame-
work, and the syscall number (e.g., “4”) 1s stored 1 a
reserved register. The Deception Trigger calls the exception
routine, which then invokes the exception subroutine cor-
responding to stat. Since the tactic involves a return-time
deception, the Sysret Tracker flag 1s set. Subsequently, when
executing the sysret instruction, the deception trigger logic
invokes an exception subroutine that corresponds to the
syscall number (4), previously stored 1n a reserved register
at the time of syscall. The fabrication strategy for this
ransomware deploys the REPLACE_RETURN primitive in
DIRECT mode. The target location oflset[% rs1] points to
the st mode field in the statbuf structure and 1s modified
with the <honey_value>.

[0084] The honey_value 1s an integer mput that changes
the file type to a directory. On the account of direct modi-
fication, the ransomware will receive a falsified st _mode
value once the sysret mstruction reaches the commit stage
and 1s retired from the pipeline.

[0085] Other Deception Strategies: Diversion may also be
used on this ransomware with REPLACE_RETURN primi-
tive in INDIRECT mode that will replace the statbuf struc-
ture pointer argument of the (stat) syscall with the poiter to
a randomly selected honey entry from the statbuf struct
quiver. The struct quivers, as described herein, hold fake
structures such as stat, sockaddr, or timespec for their related
syscalls. The honey resource specifier format 1s equivalent to
the one described for Wannacry ransomware above. The
honey resource 1dentifier in the deception table may specily
the base address of the statbuf struct quiver, stride being the
s1ze of each statbuf pointer, and max bytes equal to the total
quiver size. By replacing the returned statbuf with a honey
structure, the ransomware 1s redirected to honey files.

[0086] Ransomware—Petya: The Petya ransomware fam-
illy targets a victim’s Master Boot Record (MBR) and
encrypts all files. Its evaluation sample generates a 256-bit
key and sends 1t to the Command and Control (C&C) server
using the IPv4 protocol. Each unencrypted file in the target
directory 1s duplicated with a custom extension, and the
original files are deleted after their contents are encrypted
(using symmetric encryption) and stored 1n the ransomware-
created duplicate files. This process 1s repeated until 1t
observes complete encryption of previously missed or newly
added files. A diversion deception strategy 1s provided that

can redirect the network connection to one of the honey
Servers.

[0087] Malware 3 shows the key generation and transmis-
sion functionality within the generate_and_send_key() pro-
cedure. After generating a random key of key_len bytes, the
ransomware 1nitializes a sockaddr structure with the C&C

US 2024/0095341 Al

server’s IP address. It creates an AF_INET type socket file
descriptor, sockid, and then establishes the ransomware
payload’s connection to a remote C&C server using a
connect syscall. Upon a successtul connection, 1t sends the
encryption key and then begins encrypting the files of a
target_dir. A diversion-based deception 1s shown at the
connect system call to itercept the encryption key from the
ransomware and use 1t for decryption.

[0088] In this example, the connect(int sockid, struct
sockaddr *saddr, int addrlen) syscall creates a connection to
the open socket identified by sockid according to the param-
cters defined in the sa_family and sa_data fields of the
sockaddr structure. For successtul redirection to a honey
server, the pointer to the attacker’s sockaddr structure 1s
replaced with a honey sockaddr structure from the struct
quiver. The subroutine for this tactic may be generated using
the followmg deception table entry: <42, 1, REPLACE_
ENTER, % rs1, INDIRECT, <struct_quwer_base, sockaddr

s1Zze, max_bytes>>

Malware 3 Ransomware (Petya)

initialize key_len <= 256

initialize sruct sockaddr *saddr < C&C IP address

procedure GENERATE_AND_SEND_KEY

keylkey len| <= random alphanumeric values

socktd <= socket(AF_INET, SOCK STREAM, 0)

connect(sockid, saddr, addrlen)

sendto(sockid, key, key_len, saddr, addrlen)

encrypt_files(key)
end procedure

procedure ENCRYPT_ FILES(key)

for each file in target dir do

1f not file.encrypted then

fileptr < open file

read(fileptr. buf, sizeoi(buf))

buf < buf encrypted with key

enciileptr < create file.encrypted

write(enciileptr, bui, sizeof(buf))

unlink(file)
end if

end for
for each file in target dir do

1f not all file.encrypted then

encrypt_files(key)
end 1f

end for
end procedure

[0089] During the malware execution, the syscall mstruc-
tions corresponding to connect will direct the deception
trigger to index into the exception routine using the syscall
number, 42. The target location to be replaced 1s stored 1n the
% rs1 register, which 1n turn points to the C&C server’s
information as a sockaddr structure. The deception tactic
selects a random honey server’s configurations from the
socketaddr struct quiver with the base address of the quiver,
the si1ze of a sockaddr struct pointer as stride, and the max

Mar. 21, 2024

bytes value, which 1s a product of the number of honey
sockaddr struct addresses and stride value.

[0090] The deception tactic uses a REPLACE_ENTER
primitive in INDIRECT mode, the Sysret Tracker will not be
set for any return time exceptions, and the target location 1s
replaced with a poimnter to the randomly chosen honey
sockaddr struct address. Upon completion, the connect sys-
call will have created a connection between the ransomware
and the honey server. Eventually, the ransomware sends the
encryption keys via a sendto syscall to the C&C server,
which 1s now going to be intercepted by a honey server
without raising any alarms for the ransomware payload.
[0091] Other Deception Strategies: This ransomware fam-
i1ly may also be deceived using Exhaustion inside the file

encryption procedure, encrypt_files(). The deception tactic
with REPLACE_ENTER primitive can modlfy the file argu-

ment of each unlink syscall to honey files 1n INDIRECT
mode of deception. The honey files are selected from the
honey path quiver, where the honey resource specifier fields
are similar to our prior case studies. The ransomware will
not be able to remove the original unencrypted files from a
target directory, thus trapping it 1n an infinite loop of
re-encryption as 1t keeps checking for any remaining unen-
crypted files as shown 1n Malware 3.

Malware 4 Buffer Overflow (Return-to-Libc)

procedure PERFORM_ATTACK
declare butter|len]

initialize stack func_ptr < &dummy_function()

target addr - &stack func ptr

overflow_ptr < &execve()

size < target addr - buffer + &
payload « ['A" * (size - S)] + overflow_ptr

memcpy(butfer, payload, size)

call stack_func_ptr(*/bin/sh”)

end procedure

[0092] Bufler Overflow—Return-to-Libc: The RIPE but-
ter overtlow benchmark suite may be used to evaluate a
return-to-libc attack. The application mnvokes the execve
syscall to launch an unauthornized command. In this
example, the attacker spawns a shell (*/bin/sh™) 1n privi-
leged mode to execute arbitrary commands. A test sample
may be built according to RIPE’s configuration directives
that allow a vulnerable code to perform bufler overtlow. The
resulting sample tries to overwrite a function pointer located
on the stack by abusing the lack of boundary checks within
a memcpy() function, which allows the attacker to move
contents at the destination bufler. A Fabrication deception
strategy may be formulated that can thwart this adversary by
switching the privileged shell’s executable path with a
honey executable which starts an interactive shell with
limited privileges.

[0093] From the bufller overtlow example 1n Malware 4 1t
can be seen that the sample misuses the memcpy() function
to overtlow the bufler such that it writes the execve syscall’s
address to the stack_func_ptr function pointer. The sample
then calls stack_func_ptr(*/bin/sh™) to spawn a shell using
the execve syscall.

US 2024/0095341 Al

[0094] In this example, execve(char *pathname, char
*const argv|], char *const envp[]) replaces the caller appli-
cation with a program referred to by pathname. argv|[] points
to an array of strings passed to the new program as its
command-line arguments, and envp|[] points to an array of
strings passed as the environment of the new program. To
perform fabrication, the pathname may be replaced with a
honey executable from the path honey quiver. The deception
table entry for execve may be nitialized with the following
parameters: <89, 1, REPLACE_ENTER, % rs1, INDIRECT,
<path_quiver_base, path_size, max_bytes>>

[0095] The similarity in deception table entries for the
many tactics that modify the pathname (e.g., files, directo-
ries, and executables) can be leveraged to reduce the burden
of hardware deception framework’s exception synthesis
module 1n creating the corresponding subroutines. The run-
time deception trigger sequence, along with the honey
resource 1dentifier computation, 1s similar to the one
described 1n prior examples except the syscall number used
for indexing 1s 59. The subroutine for execve may use the
REPLACE_ENTER primitive i INDIRECT mode to
switch the target field % rs1 with the address of a randomly
picked honey executable before the syscall instruction 1s
serviced by the kernel. The execve system call procedure
replaces the caller process with the honey executable, which
in turn spawns a fake shell with limited privileges. The type
of Take shell, 1ts privilege level and executable paths may be
decided oflline by a system administrator.

Malware 5 Credential Stealer (Infostealer)

declare but

declare buf len

initialize browser_passwd <« “path/to/password/file”

initialize struct sockaddr * saddr < C&C IP address

sockid < socket(AF_INET, SOCK_STREAM, 0)

connect(sockid, saddr, sizeof(saddr))

if browser_passwd exists then

fileptr «— openat(browser passwd, O_RDONLY)

do
but_len < Iseek(fileptr, O, SEEK HOLE)

read(fileptr, buf, buf_len)

sendto(socktd, but, buf_len, saddr, sizeof(saddr)

while fileptr reaches end of browser_passwd

end if

[0096] Infostealer—Credential Stealer: In this example,
the Credential Stealer malware from the infostealer family 1s
provided. This malware infiltrates a victim system and
exfiltrates important user credentials such as, for example,
passwords, browser cookies, history, and encryption keys.
Prior works, such as Dodgelron have established Hon-
eyThings (e.g., honey files, honey registries, honey configu-
rations) to misinform infostealers as an eflective deception
scheme.

[0097] The infostealer sample used 1n this example targets
browser password files stored at predetermined locations
inside victim systems. This stealer confirms the presence of

Mar. 21, 2024

the password file, reads all the information, and then sends
it to a C&C server. To counter this malware, a Fabrication
based deception may be formulated. The aim 1s to misrep-
resent credential data from sensitive files when requested by
the malware. Using Malware 5, the application establishes a
connection with the C&C server, opens the browser_passwd
file that stores the user’s passwords on the system, reads the
passwords and sends them to the adversary with repetitive
read and sendto syscalls until 1t reaches the end of the file.
The deception strategy 1n this example targets the buller
(bul) populated by the kernel after returning from the read
syscall. For example, read(int 1d, char *buf, size_t count)
fetches count number of bytes from an open file with the file
descriptor 1d into the memory location pointed to by buf.
The values returned into buf may be falsified by writing
garbage values into the bytes. This creates misinformation
about the victim for the malicious process and, 1n turn, the
remote attacker. The {following deception entries are

required to formulate the subroutine for this tactic: <0, 1,
SCRAMBLE RFETURN, [% rs1], REG, % rdx

[0098] For every invocation of the read syscall instruction,
the deception trigger mvokes the appropriate subroutine
indexed with the syscall number 0. Since this1s a _RETURN
type deception primitive, the subroutine enables the Sysret
Tracker flag for deception. The deception trigger mnvokes
another exception subroutine for this syscall before the
sysret instruction retires from the pipeline.

[0099] The contents pointed to by the target location, [%
rs1] register, are modified using the SCRAMBLE_RETURN
primitive, which randomizes each byte value in REG mode
of operation. The honey resource specifier indicates that %
rdx contains some relevant information for the deception
tactic, which for a read syscall specifies the number of bytes
to scramble starting from [% rsi1]. The scrambling mecha-
nism 1s a loop that iterates based on the value held 1 % rdx
register (buller size). Once the memory operations are
completed by the subroutine, the sysret instruction can
commit and retire hence retflecting the deception-related
modifications 1n the buffer. As a result, when the malware
process mvokes a sendto syscall, 1t transmits the scrambled
bufler (password) to the attacker. This fabrication operation
repeats for all passwords read from browser passwd until
the malware reaches completion.

[0100] Other Deception Strategies: In this malware, a
Fabrication strategy may be depoloyed for the sendto syscall
using the REPLACE_ENTER primitive in INDIRECT_
REG mode. The target field for such a strategy 1s the % rsi
register that stores a pointer to the bufler’s (buf) memory
location. Since 1t 1s an _ENTER type of deception, the
exemplary exception subroutine 1s only executed for the
syscall instruction. The honey resource specifier format
stores <garbage quiver_base, garbage stride, max_bytes, %
rdx> where the base address of the garbage quiver will be
added to a random address calculated as: honey_resource_
addr=garbage quiver_base+(garbage stride*rd_rand)
MOD (max_bytes—% rdx).

[0101] The quiver stride for a honey (garbage) quiver with
char data 1s 1, and the % rdx register determines the range
for picking the starting byte of honey bufler without going
over the garbage quiver size. The subroutine for sendto
switches the % rsi register from the builer’s memory to that
of the honey_resource_address and 1s subsequently trans-
mitted upon the syscall’s completion. Similarly, for every

US 2024/0095341 Al

sendto syscall procedure, a sequence of garbage values may
be sent to the C&C server, thus realizing the fabrication
strategy.

Malware 6 Timing Side-Channel (RSA Timing Attack)

d 1s the private decryption key
N 1s the product of two primes
C 1s the ciphertext to decrypt

struct timespec start, stop

procedure MODULAR _EXPONENTIATION(, C, N)

n < size of d i bits

X < C

<1

for each | less than n do

clock gettime(CLOCK_REALTIME, &start)

X — x* mod N

if dj equals 1 then
X < x * Cmod N
end if
J<= 1+ 1
clock gettime(CLOCK_REALTIME, &stop)

end for
time_diff secs < stop.tv_secs - start.tv secs

time_diff nsecs < stop.tv nsecs - start.tv nsecs

return x
end procedure

[0102] Timing Side-Channel—RSA Timing Attack: An
RSA Timing Attack works by observing the timing difler-
ence caused by a compute-intensive modular exponentiation
algorithm used to encrypt/decrypt a message with the
respective public/private keys 1n an RSA-based encryption
scheme. The algorithm uses two prime numbers p and g to
compute N=p*q and selects two random exponents ¢ and d
that satisly the condition e*d=1 mod (p-1)*(g-1). Then it
uses a public key (e,N) to encrypt and a private key (d) to
decrypt a message M. The encrypted message 1s stored 1n
C=Me mod N, where C 1s the resulting ciphertext.

[0103] The side-channel (Malware 6) performs a modular

exponentiation function that 1s needed to decrypt C using the
binary value of private key d. The attack exploits a timing
difference 1 the computation of M=Cd mod N due to the

additional x=x*C mod N for each ‘1’ bit of d. Whereas x=x2
mod N 1s the only computation done for ‘0’ bits.

[0104] The attacker invokes the modular exponentiation
operation for several carefully crafted ciphertexts, C. By
timing this computation and analyzing the timing difference
in each iteration, the attacker can retrieve the exponent value
d bit- by-bit with fairly high accuracy. A user-level process
in Linux can read the timer’s value using the clock gettime
syscall (e.g., “clock_gettime(CLOCK_REALTIME, &start”
and “clock_gettime(CLOCK_REALTIME, &stop)™).

[0105] In this example, clock gettime(clockid_t clockid,
struct timespec*res) returns the current time in seconds
(res.tv_sec) and nanoseconds (res.tv_nsec) relative to the
starting epoch which i1s determined by the clockid argument.
An Exhaustion deception strategy may be used where the
timer values may be modified from the clock getime syscall
by adding a fixed oflset for every successive syscall 1nvo-
cation. This prevents the attacker from extracting the actual
timing differences corresponding to the key wvalue. The
deception table entry contains the following information to

11

Mar. 21, 2024

implement the strategy: <228, 1, REPLACE
rs1], DIRECT, <honey_value>.

[0106] For all clock gettime syscall instructions, the
deception trigger resets the Sysret Tracker and finds the
exception subroutine using 1ts syscall number, 228 and
Sysret Tracker value, 0. It stores the syscall number 1n a
reserved register for return time usage and starts the decep-
tion tactic subroutine. Since this 1s a _RETURN type decep-
tion tactic, the subroutine sets the Sysret Tracker flag and
lets the kernel handle the syscall. When the framework
encounters a sysret instruction, 1t signals the trigger to
lookup the subroutine indexed with <228, 1> and begins 1ts
execution.

[0107] The deception tactic for this subroutine uses the
REPLACE_RETURN primitive i DIRECT mode fto
modily the target location 1.e. the timespec struct pointed to
by the [% rs1] register with the honey resource specifier,
<honey_value>. At the first invocation of clock time, the
honey value 1s a fixed oflset (preferably 1n nanoseconds)
which 1s added to the timespec struct’s tv_nsec and tv_sec
fields. The subroutine then records the oflset 1n a reserved
physical register and updates the honey_value to store the
resulting time 1n nanoseconds. For every subsequent invo-
cation of clock_gettime() the deception tactic will replace
the timer value with the honey_value+oflset. As a result,
when the malware calculates the timing difference, 1t wall
observe that the modular exponentiation takes a fixed time
to execute for both ‘0’ and ‘1’ bits of the decryption key.
Thus, the exhaustion strategy essentially negates the eflorts
of the attacker.

RETURN, [%

Performance Overhead Analysis

[0108] Exemplary experiments to analyze the perfor-
mance overheads of the disclosed hardware deception
framework are provided herein. In these examples, hardware
modifications are provied using the Gem5 simulator and
implemented subroutines as precise exceptions described
above. For comparison, the performance of software decep-
tion based on Application Programming Interface (API)
hooking 1s provided. Inline API hooking of the syscalls 1s
performed to insert trampolines that use jump instructions to
transier control of the syscall over to hook procedures for
deception. These hooks are intermediary functions invoked
by the trampolines that parse and handle the syscall argu-
ments before executing the actual syscall. Example imple-
mentations for comparison include API hooking on syscalls
related to filesystem (openat, stat, read), networking (con-
nect, sendto) and timer (clock_gettime) categories.

[0109] As shown in FIG. 4, Table III shows the latency
(CPU clock cycles) for the disclosed framework (e.g.,
“MAYA subroutines”) and API hooking (e.g., “API
Hooks”), averaged over multiple runs. Some of the decep-
tion strategies needed a random number generator (RNG) to
select a random entry within the respective quivers for
deception. In such cases, an additional 25 clock cycles were
included for the RDRAND instruction (marked with a * next
to the latency values). The RDRAND latency was obtained
from performance statistics reported by Intel’s Digital Ran-
dom Number Generator (DRNG).

[0110] Experimental results show that hardware-sup-
ported deception oflers a magnitude improvement 1n perfor-
mance (/x-20x) compared to soltware-based API hooking
techniques. The worst-case latency was observed 1n the read

syscall (269 cycles) with a SCRAMBLE_RETURN tactic

US 2024/0095341 Al

due to the repetitive writes required to overwrite each byte
of the target buller. Nonetheless, the clock cycle latency for
the same to modily 16 bytes of data 1s 7x faster than its
soltware counterpart. It 1s known that an average exception
routine mvoked by a syscall handler can take hundreds to
thousands of CPU cycles. Therefore, the disclosed hard-
ware-based deception framework has a very low impact on
runtime and remains transparent to the application.

[0111] Alternatively, Moving Target Defense (MTD)
based defenses, such as Morpheus, use a combination of
program value displacement (e.g., code, data, and pointers)
and encryption along with a churn that re-randomizes the
program values at frequent time intervals using hardware.
The performance analysis reported on the RIPE buller
overflow benchmark showed an average of 13% 1n perfor-
mance overhead for a continuous churn period on top of
hardware implementation costs. For the same benchmark,
the disclosed framework’s REPLACE_ENTER primitive—
that replaces the privileged shell’s executable path with a
honey executable—incurs negligible overhead due to tar-
geted modification and invoking low-overhead exception
subroutine with minimal hardware support compared to
Morpheus, which needs to continuously displace and
encrypt all of the code, data, and pointer values 1n hardware.

Effectiveness of the Deception Framework

[0112] The experimental results described herein show
low latency and efliciency 1in achieving cyber-deception with
mimmal hardware support at the backend of the pipeline.
This also demonstrates eflectiveness for a defense strategy
where stealth 1s paramount, without which the adversary
may be alerted and may lead to a failed opportunity to profile
its behavior. For example, an attacker employing timers
during its operations may get suspicious when their process
takes an unexpectedly long time to execute due to the
presence of an API hooking mechanism. In contrast, the
disclosed framework adds minmimal latency (as low as 25
clock cycles) that would appear mostly as noise, especially
in real system settings.

[0113] In another example, the execution traces of two
prominent and destructive threats—ransomware, and cre-
dential stealers, may be considered. In this example, strace,
a Linux command-line debugging tool, may be used to
generate a sequence of unique syscalls for each attack type.
A typical ransomware process invokes the following
sequence of syscalls: getdents—openat—1sta-
t—read—rename—write—close—unlink—socket—con-
nect—sendto—shutdown to read a directory structure,
encrypt all files, and then communicate (usually to send the
encryption key) with the C&C server. In the case of cre-
dential stealers, an average exploit included a syscall
sequence like uname—access—openat—read—socket-
—connect—sendto—close—=shutdown to exfiltrate system
information and/or contents of sensitive files.

[0114] The disclosed framework can engage a malicious
process with low-overhead exception routines until the end
of 1ts execution. This presents an opportunity for a security
monitor to observe the attacker’s actions entirely (for the
longest time) and formulate eflective defenses against them.
The disclosed framework has also shown how to extend an
attacker’s interaction with a honey server by targeting net-
work-based syscalls like connect and sendto with low over-
head exception subroutines. This can help system monitors

Mar. 21, 2024

to capture the adversarial commumications with external
entities 1n a manner that 1s transparent to the attacker.
[0115] While the disclosure has been described with
respect to the figures, 1t will be appreciated that many
modifications and changes may be made by those skilled in
the art without departing from the spirit of the disclosure.
Any variation and derivation from the above description and
figures are included 1n the scope of the present disclosure as
defined by the claims.

What 1s claimed 1s:

1. A cyber-deception system comprising:

a hardware deception trigger umit, wherein the hardware

deception trigger unit 1s configured to:

intercept a system call; and

select at least one subroutine amongst a plurality of
subroutines based on the intercepted system call; and

a subroutine unit, wherein the subroutine unit 1s config-

ured to implement, based on the system call, at least
one deception strategy amongst a plurality of deception
strategies, wherein the at least one deception strategy 1s
implemented by executing one or more instructions of
the selected at least one subroutine.

2. The cyber-deception system of claim 1, further com-
prising a service unit, wherein the service unit 1s configured
to:

execute one or more istructions of the intercepted system

call; and

return at least one result of the executed one or more

instructions of the intercepted system call.

3. The cyber-deception system of claim 1, wherein the
intercepted system call 1s determined to have originated
from a malicious actor.

4. The cyber-deception system of claim 1, wherein the
intercepted system call includes at least one attack vector
including data integrity corruption, ransomware, privilege
escalation, infostealers, bufler overtlow exploits, privacy
leakage, side-channels, or a combination thereof.

5. The cyber-deception system of claim 1, wherein the at
least one deception strategy i1s at least one of a diversion
strategy, a fabrication strategy, and an exhaustion strategy.

6. The cyber-deception system of claim 1, wherein the
selected at least one subroutine invokes at least one excep-
tion.

7. The cyber-deception system of claim 1, further com-
prising a pre-runtime setup module including an exception
synthesis module, one or more honey quivers, and a decep-
tion table.

8. The cyber-deception system of claim 1, wherein the at
least one deception strategy 1s selected using a random
number generator.

9. The cyber-deception system of claim 1, wherein the
deception table 1s populated with entries recerved from one
or more deception strategy generators used against malware
types.

10. The cyber-deception system of claim 1, wherein the at
least one subroutine 1s selected based on a number of the
intercepted system call.

11. A method for cyber-deception, the method compris-
ng:
intercepting a system call from an attacker;
selecting at least one subroutine amongst a plurality of
subroutines based on the intercepted system call;
implementing, based on the interception system call, at
least one deception strategy amongst a plurality of

US 2024/0095341 Al

deception strategies, wherein the at least one deception
strategy 1s 1mplemented by executing one or more
instructions of the selected at least one subroutine;
execute one or more instructions of the intercepted system
call; and
return at least one result of the executed one or more
instructions of the intercepted system call.
12. The method of claim 11, wherein the system call 1s
intercepted at a kernel boundary crossing.
13. The method of claim 11, wherein implementation of
the at least one deception strategy is transparent to the
attacker.

14. A deception trigger device, comprising;:
a processing device; and
a memory coupled to the processing device, the memory

having instructions stored thereon that when executed
by the processing device implement:

receiving a syscall associated with an attacker, the
syscall having a syscall number;

reading the syscall number of the received syscall;
recording the syscall number 1n a register;

invoking a syscall-specific subroutine amongst a plu-
rality of syscall-specific subroutines, based on the
syscall number of the received syscall; and

Mar. 21, 2024

implementing at least one deception strategy by execut-
ing the mvoked syscall-specific subroutine.
15. The deception trigger device of claim 16, wherein the
at least one deception strategy includes one or more decep-

tion primitives.

16. The deception trigger device of claim 17, wherein, in
response to the one or more deception primitives specilying,
at least one return-time manipulation of target fields, a sysret
tracker flag 1s set to 1.

17. The deception trigger device of claim 18, wherein the
at least one deception strategy 1s mnvoked for a sysret when
the sysret tracker flag 1s set to 1 by the received syscall.

18. The deception trigger device of claim 19, wherein the
at least one deception strategy invoked for the sysret uses the
recorded number 1n the register and the sysret tracker flag
value to index a subroutine for return-time deception.

19. The deception trigger device of claim 11, wherein the
at least one deception strategy includes a return-time decep-
tion, wherein at least one deception subroutine 1s executed
during time of return for the received syscall.

20. The deception trigger device of claim 19, wherein the
at least one deception strategy includes a deception tactic to
provide useless bytes to the attacker by scrambling a read

butier.

	Front Page
	Drawings
	Specification
	Claims

