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Technology described herein provides a dynamically recon-
figurable processing core. The technology includes a plu-
rality of pipelines comprising a core, where the core 1s
reconiigurable into one of a plurality of core modes, a core
network to provide inter-pipeline connections for the pipe-
lines, and logic to receive a morph instruction including a
target core mode from an application running on the core,
determine a present core state for the core, and morph, based
on the present core state, the core to the target core mode. In
embodiments, to morph the core, the logic 1s to select, based
on the target core mode, which mter-pipeline connections
are active, where each pipeline includes at least one multi-
plexor via which the inter-pipeline connections are selected
to be active. In embodiments, to morph the core, the logic 1s
further to select, based on the target core mode, which
memory access paths are active.
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DYNAMICALLY RECONFIGURABLLE
PROCESSING CORE

GOVERNMENT INTEREST STATEMENT

[0001] This invention was made with government support
under contract No. W911NF-22-C-0081 awarded by the
Army Research Oflice and the Intelligence Advanced
Research Projects Activity (IARPA). The government has
certain rights 1n the mvention.

BACKGROUND

[0002] FEmerging software applications are trending
towards increasing needs of mixed-mode computing con-
s1sting of some combination of hyper-sparse graph analytics,
dense artificial intelligence (Al) tasks, and typical single-
thread serial work. All of these workload types have differ-
ent compute requirements, and currently there are only
widely different architectural approaches for handling each
of these workload types. Traditional approaches to mixed-
mode computing require copying data between compute
types e.g., between a central processing unit (CPU) and a
graphics processing unit (GPU)—and task-level parallelism
that distributes work over a heterogeneous architecture.
Such approaches, however, face fundamental efliciency and
performance limitations due to excessive data movement,
which also limits scalability.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] The various advantages of the embodiments will
become apparent to one skilled 1n the art by reading the
tollowing specification and appended claims, and by refer-
encing the following drawings, 1n which:

[0004] FIG. 1A provides a block diagram illustrating an
example of a socket using a plurality of compute tiles
according to one or more embodiments;

[0005] FIG. 1B provides a block diagram illustrating an
example computing system according to one or more
embodiments;

[0006] FIG. 2 provides a block diagram illustrating an
example of a slice 1n a compute tile according to one or more
embodiments;

[0007] FIG. 3 provides a block diagram illustrating an
example of a compute tile with a reconfigurable core accord-
ing to one or more embodiments;

[0008] FIG. 4A provides a block diagram illustrating an
example of an amorphous core engine for use 1 a recon-
figurable core according to one or more embodiments;

[0009] FIG. 4B provides a block diagram illustrating

aspects ol an example of a pipeline 1n a reconfigurable core
according to one or more embodiments;

[0010] FIGS. SA-5D provide diagrams 1illustrating

examples of core modes for a reconfigurable core according
to one or more embodiments;

[0011] FIG. 6 provides a flow diagram illustrating an
example method of morphing a reconfigurable core accord-
ing to one or more embodiments;

[0012] FIG. 7 provides a flow diagram illustrating an
example method of operating a computing system having a
reconiigurable core according to one or more embodiments;

[0013] FIG. 8 provides a block diagram illustrating an
example performance-enhanced computing system accord-
ing to one or more embodiments;
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[0014] FIG. 9 provides a block diagram illustrating an
example semiconductor apparatus for a reconfigurable core
according to one or more embodiments;

[0015] FIG. 10 15 a block diagram 1llustrating an example
processor core according to one or more embodiments; and
[0016] FIG. 11 1s a block diagram illustrating an example
of a multi-processor based computing system according to
one or more embodiments.

DESCRIPTION OF EMBODIMENTS

[0017] Improved processing technology as described
herein provides a hardware architecture that efliciently mir-
rors dynamic mode switching with limited excess data
movement across a computing system. The architecture 1s
based on dynamically reconfigurable processing cores that
support a variety of compute modes, mcluding modes for
use 1n sparse and dense computing applications. The
improved technology eliminates costly data transiers
between diflerent specialized hardware units, providing high
performance and efliciency in mixed-mode sparse and dense
computing applications while enabling scalability.

[0018] Embodiments as described herein provide a
dynamically reconfigurable processing core that supports
multiple compute modes, including: (1) a multiple mnstruc-
tion multiple data (MIMD) mode for handling sparse data
tasks (such as, for example, sparse graph analytics); (2) a
tensor mode for handling dense compute Al tasks (such as,
for example, general matrix multiplication and convolution
tasks 1n neural networks); (3) a single nstruction multiple
data (SIMD) mode for handling vectorizable tasks (such as,
for example, vector arithmetic tasks—e.g., C[1]=A[1]+B [1]);
and/or (4) a scalar (e.g., superscalar) mode for handling
single thread mode tasks (such as, for example, general
processing tasks handled by a CPU prior to launching or
oflloading Al tasks requiring specialized handling). Because
mixed-mode computing applications call upon most, if not
all, of these types ol processing tasks, the dynamically
reconiigurable processing core as described herein 1s able to
perform each of these tasks within a common application
using the mode best suited for the type of task, without the
need for inefhicient data replication between diflerent com-
pute units or running applications on ineflicient hardware
units that are ill-suited to the task.

[0019] FIG. 1A provides a block diagram illustrating an
example of a socket 100 according to one or more embodi-
ments, with reference to components and features described
herein including but not limited to the figures and associated
description. As shown i FIG. 1, the socket 100 includes a
plurality of compute tiles 110 and an intra-socket network
120. In some embodiments the socket 100 includes 16
compute tiles 110. In some embodiments, the socket 100
includes a number of compute tiles 110 that 1s greater than
or less than 16. Each compute tile 110 includes a recontig-
urable core 112, an execution slice 114 and a core network
116.

[0020] The reconfigurable core 112 includes a plurality of
individual pipelines which, 1n certain modes, are configured
into slices. As an example, 1n some embodiments the recon-
figurable core 112 includes 64 pipelines, where in certain
modes the pipelines are configured mto a set of eight slices,
where each slice includes eight pipelines. The pipelines
support multiple hardware threads (e.g., 2, 4, 8, 16 efc.
threads) and can be scalar in-order pipelines including
instruction fetch, decode, execute (which has an integer
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arithmetic logic unit (ALU) and floating-point unit (FPU)),
memory management and writeback stages. In some
embodiments the reconfigurable core 112 includes a number
of pipelines that 1s greater than or less than 64.

[0021] Thus, according to the example socket 100 1llus-
trated 1n FIG. 1A, there 1s included a hierarchy of processing,
clements: a hardware pipeline (which can be a multi-
threaded pipeline), a slice (which includes, e.g., eight pipe-
lines), a compute tile (which includes a core having, e.g.,
eight slices), and a socket (which includes, e.g., 16 tiles). In
addition, each compute tile 110 includes the execution slice
114, which 1s additional to the core slices and includes a
plurality of pipelines (e.g. eight pipelines) configured into a
slice. The execution slice 114 executes an operating system
(e.g., Linux) for the compute tile 110, which manages
overall tile operation—including, e.g., launching one or
more applications to execute on the reconfigurable core. In
embodiments the pipelines in the execution slice 114 include
the same hardware structure as the pipelines 1n the recon-
figurable core 112.

[0022] The core network 116 includes a network that
provides coupling (e.g., connections for data communica-
tion) between the pipelines, which supports both wide (e.g.,
dense datapath) and narrow (e.g., sparse datapath) accesses.
The core network 116 also provides a route for coupling
between the compute tile 110 and the intra-socket network
120 (e.g., via one or more ports). The core network 116
includes any type of network connections suitable for data
communications between and among the pipelines 1n the
reconfigurable core 112.

[0023] FEach compute tile 110 further includes one or more
connections to provide data to and from system memory. For
example, 1n some embodiments each pipeline in the recon-
figurable core can be connected to system memory. As
another example, 1n some embodiments certain pipelines 1n
a slice can be connected to system memory. System memory
can include double data rate (DDR) memory, dynamic
random access memory (DRAM), etc. Each socket has its
own system memory. Each compute tile 110 also has internal
memory such as data cache, instruction cache and/or

scratchpad SRAM (not shown 1n FIG. 1A).

[0024] The intra-socket network 120 provides a network
to couple (e.g., connections for data communication)
together the plurality of compute tiles 110. The intra-socket
network 120 includes any type of network connections
suitable for data communications between and among the
plurality of compute tiles 110.

[0025] Some or all components and/or features in the
socket 100 can be implemented using one or more of a
central processing unit (CPU), a graphics processing unit
(GPU), a reduced mstruction set computer (RISC) proces-
sor, an artificial intelligence (Al) accelerator, a field pro-
grammable gate array (FPGA) accelerator, an application
specific 1mtegrated circuit (ASIC), and/or via a processor
with software, or 1n a combination of a processor with
software and an FPGA or ASIC. More particularly, compo-
nents of the socket 100 can be implemented 1n one or more
modules as a set of program or logic structions stored in
a machine- or computer-readable storage medium such as
random access memory (RAM), read only memory (ROM),
programmable ROM (PROM), firmware, flash memory, etc.,
in hardware, or any combination thereol. For example,
hardware implementations can include configurable logic,
fixed-functionality logic, or any combination thereof.
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Examples of configurable logic include suitably configured
programmable logic arrays (PLAs), FPGAs, complex pro-
grammable logic devices (CPLDs), and general purpose
microprocessors. Examples of fixed-functionality logic
include suitably configured ASICs, combinational logic cir-
cuits, and sequential logic circuits. The configurable or
fixed-functionality logic can be implemented with comple-
mentary metal oxide semiconductor (CMOS) logic circuits,
transistor-transistor logic (1TL) logic circuits, or other cir-
cuits.

[0026] For example, computer program code to carry out
operations by the socket 100 can be written 1n any combi-
nation of one or more programming languages, including an
object-oriented programming language such as Java,
JavaScript, Python, C#, C++, Perl, Smalltalk, or the like and
conventional procedural programming languages, such as
the “C” programming language or similar programming
languages. Additionally, program or logic instructions might
include assembler instructions, instruction set architecture
(ISA) instructions, RISC nstructions (e.g., RISC-V ISA),
machine 1nstructions, machine dependent instructions,
microcode, state-setting data, configuration data for inte-
grated circuitry, state information that personalizes elec-
tronic circuitry and/or other structural components that are
native to hardware (e.g., host processor, central processing
umt/CPU, microcontroller, etc.).

[0027] FIG. 1B provides a block diagram illustrating an
example computing system 150 according to one or more
embodiments, with reference to components and features
described herein including but not limited to the figures and
associated description. The system 150 includes a plurality
of sockets 160 and a network 170. In embodiments each
socket 160 corresponds to the socket 100 (FIG. 1A, already
discussed). In embodiments the system 150 can include tens
of sockets 160, hundreds of sockets 160, thousands of
sockets 160, tens of thousands of sockets 160, hundreds of
thousands of sockets 160, etc., thus providing for a high
degree of scalability for the computing system 150. As such,
the computing system 150 can support, e.g., worktlows that
include both dense and sparse (graph) algorithmic tenden-
cies on large datasets that can extend up to or even beyond

10 peta bytes (PB).

[0028] The network 170 provides a network to couple
(c.g., connections for data communication) together the
plurality of sockets 160. In some embodiments, the network
170 includes an optical network. In some embodiments the
network 170 1s organized into a polar star network configu-
ration. In embodiments the network 170 includes any other
type of network connections suitable for data communica-
tions between and among the plurality of sockets 160.

[0029] In some embodiments, the system 150 also
includes a host processor 180. The host processor 180 can
include a CPU, GPU, RISC processor, etc. The host pro-
cessor 180 operates to coordinate tasks performed by the
plurality of sockets 160. For example, the host processor 180
serves to distribute an application 185 to the plurality of
sockets 160 (or a subset thereol) to be executed, to load data
to the plurality of sockets 160 (or instruct the sockets 160 to
fetch data), to instruct the sockets 160 to execute the
application 185 to perform compute tasks, and/or to collect
task results. In some embodiments, the host processor 180 1s
coupled directly to the network 170. In some embodiments,
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the host processor 180 1s coupled to the network 170 via a
network 175 suitable for connecting the host processor 180
to the network 170.

[0030] Some or all components and/or features in the
system 150 can be implemented using one or more of a CPU,
a GPU, a RISC processor, an Al accelerator, an FPGA
accelerator, an ASIC, and/or via a processor with software,
or 1n a combination of a processor with software and an
FPGA or ASIC. More particularly, components of the sys-
tem 150 can be implemented 1n one or more modules as a set
of program or logic instructions stored in a machine- or
computer-readable storage medium such as RAM, ROM,
PROM, firmware, flash memory, etc., in hardware, or any
combination thereof. For example, hardware implementa-
tions can include configurable logic, fixed-functionality
logic, or any combination thereof. Examples of configurable
logic include suitably configured programmable logic arrays
(PLAs), FPGAs, complex programmable logic devices
(CPLDs), and general purpose microprocessors. Examples
of fixed-functionality logic include suitably configured
ASICs, combinational logic circuits, and sequential logic
circuits. The configurable or fixed-tunctionality logic can be
implemented with complementary metal oxide semiconduc-
tor (CMOS) logic circuits, transistor-transistor logic (T'TL)
logic circuits, or other circuits.

[0031] For example, computer program code to carry out
operations by the system 150 can be written 1n any combi-
nation of one or more programming languages, including an
object-oriented programming language such as Java,
JavaScript, Python, C#, C++, Perl, Smalltalk, or the like and
conventional procedural programming languages, such as
the “C” programming language or similar programming,
languages. Additionally, program or logic mstructions might
include assembler instructions, ISA instructions, RISC
mstructions (e.g., RISC-V ISA), machine instructions,
machine dependent instructions, microcode, state-setting
data, configuration data for integrated circuitry, state infor-
mation that personalizes electronic circuitry and/or other
structural components that are native to hardware (e.g., host
processor, central processing unit/CPU, microcontroller,
etc.).

[0032] FIG. 2 provides a block diagram illustrating an
example of a slice 200 1n a compute tile (such as, e.g., the
compute tile 110 in FIG. 1A, already discussed) according to
one or more embodiments, with reference to components
and features described herein including but not limited to the
figures and associated description. The slice 200 1ncludes a
plurality of pipelines 210, where each pipeline 1s coupled to
a core network 230. The core network 230 provides coupling
(c.g., data communications) between pipelines 1n the slice
200 and between slices within a compute tile, and 1n
embodiments the core network 230 corresponds to the core
network 116 (FIG. 1A, already discussed). In the example
shown 1 FIG. 2, the slice 200 includes eight pipelines 210
(c.g., labeled as Pipe(0) . . . Pipe(7)). In embodiments, a
number of slices 200 (such as, e.g., eight slices) are coupled
to form a reconfigurable core (such as, e.g., the reconfigur-
able core 112 in FIG. 1A, already discussed). In embodi-
ments, an additional slice 200 forms an execution slice (e.g.,
the execution slice 114 1 FIG. 1A, already discussed). In
some embodiments, a slice 200 can include greater than or
less than eight pipelines.

[0033] FEach pipeline 210 includes several stages such as
an 1nstruction fetch (IF) stage 212, an instruction decode
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(ID) stage 214, an execution (EX) stage 216, a memory
(MEM) stage 218, and a writeback (WB) stage 219. Each
pipeline 210 also includes an instruction cache and a data
cache (not shown in FIG. 2). The IF stage 212 performs an
instruction fetch (e.g., from the instruction cache) and trans-
lates a program counter (e.g., from virtual to physical). The
ID stage 214 decodes the instruction, setting various pipe-
line control signals and reading register file operands. The
EX stage 216 executes the instruction (which can include
integer or tloating-point operations, etc.). The MEM stage
218 translates a load/store/atomic address from virtual to
physical and sends data to data cache or memory. The WB
stage 219 retires the instruction 1n program order, writing the
register {ile.

[0034] In certain compute modes, the EX stage 216 of
cach pipeline 1s configured to “feed forward™ its output to
the next pipeline 1n the slice. For example, the EX output
from Pipe(0) 1s fed as an EX mput to Pipe(1), the EX output
from Pipe(1) 1s fed as an EX mput to Pipe(2), and so on to
the end of the slice 200 where the EX output from Pipe(6)
1s fed as an EX mput to Pipe(7). The EX stage 216 of Pipe
0 (first pipeline 1n the slice 200 in the example shown 1n FIG.
2) can recerve data input (e.g., from another slice), and the
output of the EX stage 216 of Pipe 7 (last pipeline 1n the slice
200 1n the example shown in FIG. 2) can be stored or
provided to another slice.

[0035] Some or all components and/or features in the slice
200 can be mmplemented using one or more of a CPU, a
GPU, a RISC processor, an Al accelerator, an FPGA accel-
erator, an ASIC, and/or via a processor with software, or 1n
a combination of a processor with software and an FPGA or
ASIC. More particularly, components of the slice 200 can be
implemented 1n one or more modules as a set of program or
logic mstructions stored 1n a machine- or computer-readable
storage medium such as RAM, ROM, PROM, firmware,
flash memory, etc., 1n hardware, or any combination thereof.
For example, hardware implementations can include con-
figurable logic, fixed-functionality logic, or any combination
thereof. Examples of configurable logic include suitably
configured programmable logic arrays (PLAs), FPGAs,
complex programmable logic devices (CPLDs), and general
purpose microprocessors. Examples of fixed-functionality
logic 1include suitably configured ASICs, combinational
logic circuits, and sequential logic circuits. The configurable
or fixed-functionality logic can be implemented with
complementary metal oxide semiconductor (CMOS) logic
circuits, transistor-transistor logic (T'TL) logic circuits, or
other circuits.

[0036] For example, computer program code to carry out
operations by the slice 200 can be written 1n any combina-
tion of one or more programming languages, including an
object-oriented programming language such as Java,
JavaScript, Python, C#, C++, Perl, Smalltalk, or the like and
conventional procedural programming languages, such as
the “C” programming language or similar programming
languages. Additionally, program or logic istructions might
include assembler 1nstructions, ISA 1instructions, RISC
mstructions (e.g., RISC-V ISA), machine instructions,
machine dependent instructions, microcode, state-setting,
data, configuration data for integrated circuitry, state infor-
mation that personalizes electronic circuitry and/or other
structural components that are native to hardware (e.g., host
processor, central processing unit/CPU, microcontroller,
etc.).
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[0037] FIG. 3 provides a block diagram illustrating an
example of a compute tile 300 with a reconfigurable core
according to one or more embodiments, with reference to
components and features described herein including but not
limited to the figures and associated description. In embodi-
ments the compute tile corresponds to the compute tile 110
(FIG. 1A, already discussed). As illustrated 1n FIG. 3, the
compute tile 300 includes an amorphous core engine 310, a
plurality of slices 320, and a morphing bus 330. The
amorphous core engine 310, the plurality of slices 320, and
the morphing bus 330 collectively form a reconfigurable
core, where the reconfigurable core corresponds to the
reconiigurable core 112 1 FIG. 1A (already discussed).

[0038] Mode switching (morphing between compute
modes) on the reconfigurable core 1s controlled by the
application running on the reconfigurable core, which 1ssues
instructions (e.g., morph instructions) regarding mode
switching to the amorphous core engine 310. The applica-
tion determines when to switch modes 1n the reconfigurable
core and what mode to switch to.

[0039] When an application is first launched on the recon-
figurable core, 1t begins execution 1n the default mode (e.g.,
superscalar mode), which operates a single hardware thread.
Once the application reaches a point 1n execution where it 1s
advantageous to switch modes (e.g., morph to MIMD mode
to have parallel execution of a code segment), the applica-
tion 1ssues the morph instruction with the appropriate mode
encoding. In the case of a morph to MIMD mode, each
pipeline 1n the core will recerve the program counter (PC) in
which to begin execution, as well as a stack pointer (SP), and
begins execution. Once the MIMD code segment 1s done,
the thread 1ssues an unmorph 1nstruction (described further
herein) as an indication that 1t has completed the code
segment. Once all hardware threads of the mode have 1ssued
the unmorph 1nstruction, the core returns (1.e., 1s switched or
morphed) to the default (e.g., superscalar) mode.

[0040] The amorphous core engine 310 handles morphing
(switching) of the core mode from one mode to another
mode, based on instructions from the application running on
the reconfigurable core. The amorphous core engine 310
executes morphing instructions as well as synchronizing the
pipelines for any mode switching operation. For example,
when an application 1ssues a morph 1nstruction (e.g., via an
executing hardware thread on the core), the morph 1nstruc-
tion 1s delivered to the amorphous core engine 310 via the
core network 340. The amorphous core engine 310 will
decode the morph mstruction and signal all the pipelines via
the morphing bus 330. At this point all hardware threads for
the mode begin execution. When a hardware thread issues
the unmorph instruction, the hardware thread will signal the
amorphous core engine 310 when that thread 1s quiesced (all
pending instructions retired); once all threads on the core are
quiesced, the amorphous core engine 310 returns the core to
the default (e.g., superscalar) mode. Further details regard-
ing the amorphous core engine 310 are provided herein with

reference to FIG. 4A.

[0041] Fach of the slices 320 includes a plurality of
pipelines (as described above, the pipelines 1n the plurality
of slices 320 along with the amorphous core engine 310 and
the morphing bus 330 collectively form a reconfigurable
core of the compute tile 300). In the example illustrated 1n
FIG. 3, there are eight slices 320, where each slice 320
includes eight pipelines (providing a total of 64 pipelines for
the reconfigurable core). In embodiments, each slice 320
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corresponds to the slice 200 (FIG. 2, already discussed. In
some embodiments, the reconfigurable core includes greater
than or less than eight slices 320. In some embodiments,
cach slice 320 includes greater than or less than eight
pipelines.

[0042] The morphing bus 330 directly connects the amor-
phous core engine 310 to all pipelines in the reconfigurable
core, providing connectivity between the amorphous core
engine 310 and certain logic/switching points 1n each pipe-
line to enable the amorphous core engine 310 to control
morphing of the reconfigurable core. For example, via the
morphing bus 330, the amorphous core engine 310 will
broadcast to each pipeline an indicator that a morphing 1s
taking place and new program counters (PC) and stack
pointers (SP), and set the mode selector bits that drive which
logic and multiplexor selects are used for the given mode. In
embodiments, the morphing bus 330 includes a 64-bit data-
bus along with control signals, where individual lines are
connected to each pipeline. Further details regarding morph-

ing are provided herein with reference to FIGS. 4A-4B and
S5A-5D.

[0043] The compute tile 300 also includes the core net-
work 340 providing coupling (e.g., data communications)
between pipelines 1 the core. In embodiments the core
network 340 corresponds to the core network 116 (FIG. 1A)
and/or the core network 230 (FIG. 2), already discussed.

[0044] Some or all components and/or features in the
compute tile 300 can be implemented using one or more of
a CPU, a GPU, a RISC processor, an Al accelerator, an
FPGA accelerator, an ASIC, and/or via a processor with
soltware, or 1n a combination of a processor with software
and an FPGA or ASIC. More particularly, components of the
compute tile 300 can be implemented 1n one or more
modules as a set of program or logic instructions stored in
a machine- or computer-readable storage medium such as
RAM, ROM, PROM, firmware, flash memory, etc., 1n
hardware, or any combination thereof. For example, hard-
ware implementations can include configurable logic, fixed-
functionality logic, or any combination thereof. Examples of
configurable logic include swutably configured program-
mable logic arrays (PLAs), FPGAs, complex programmable
logic devices (CPLDs), and general purpose microproces-
sors. Examples of fixed-functionality logic include suitably
configured ASICs, combinational logic circuits, and sequen-
tial logic circuits. The configurable or fixed-functionality
logic can be implemented with complementary metal oxide
semiconductor (CMOS) logic circuits, transistor-transistor
logic ('TTL) logic circuits, or other circuits.

[0045] For example, computer program code to carry out
operations by the compute tile 300 can be written 1n any
combination of one or more programming languages,
including an object-oriented programming language such as
Java, JavaScript, Python, C #, C++, Perl, Smalltalk, or the
like and conventional procedural programming languages,
such as the “C” programming language or similar program-
ming languages. Additionally, program or logic instructions
might include assembler instructions, ISA 1nstructions,
RISC 1nstructions (e.g., RISC-V ISA), machine instructions,
machine dependent instructions, microcode, state-setting,
data, configuration data for integrated circuitry, state infor-
mation that personalizes electronic circuitry and/or other
structural components that are native to hardware (e.g., host
processor, central processing unit/CPU, microcontroller,
etc.).
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[0046] FIG. 4A provides a block diagram illustrating an
example of an amorphous core engine (AME) 400 for use 1n
a reconfigurable core according to one or more embodi-
ments, with reference to components and features described
herein including but not limited to the figures and associated
description. In embodiments the amorphous core engine 400
corresponds to the amorphous core engine 310 (FIG. 3,
already discussed). As 1llustrated 1n FI1G. 4A, the amorphous
core engine 400 includes an AME mstruction decoder 410,
an AME 1nstruction queue 420, an AME execution engine
430, and an AME core state register 440. The AME 400
receives instruction requests (label A in FIG. 4A), which are
provided to the AME instruction decoder 410. The AM
instruction decoder 410 decodes what instruction the AM.
received (e.g., a morph instruction, a context instruction,
etc.) and forwards to the AME instruction queue 420.

[0047] Control of the transition of compute modes 1n the
reconfigurable core 1s exposed to the application program-
mer via a morphing instruction set. The mstructions can be
provided, e.g., as a custom extension to the RISC-V ISA.
Examples of instructions in the instruction set handled by
the amorphous core engine 400 are provided in Table 1 and
the description following:

[T] [T

TABLE 1
Instruction: Arguments: Function:
Morph mode, PC, SP morph core into specified mode
Unmorph return core to default mode
Mode <mode> returns current core mode
Mode.Status <bitmask> returns state of each HW thread
Context.Id status, pointer, load pipeline context from memory
target thread
Context. St status, pointer, store pipeline context in memory
target thread
[0048] Morph: the morph 1nstruction 1s typically 1ssued to

the AME 400 while 1n a default mode. In embodiments the
default mode corresponds to the superscalar mode. The
Morph 1nstruction identifies the target mode that the core 1s
to be reconfigured 1n, and provides the AME 400 with a
program counter (PC) to morph to and a stack pointer (SP)
to morph with. The AME 400 will then broadcast the new
PC and SP to all hardware threads on the core (except for
tensor mode, which does not execute the normal instruction
set), and set mode bits used by the rest of the core which
selects which logic and datapaths are used.

[0049] Unmorph: the Unmorph instruction i1s i1ssued by
cach hardware thread at the end of a special mode code
segment (e.g., MIMD, SIMD), implicit for tensor). Once all
active hardware threads are quiesced after 1ssuing an
unmorph instruction, the AME 400 returns the reconfigur-
able core to the default mode.

[0050] Mode: i response to the Mode instruction, the
AME 400 returns a code indicating which mode the core 1s
currently configured 1n.

[0051] Mode.Status: 1 response to the Mode.Status
instruction, the AME 400 returns a status bitmask indicating
which hardware threads in the compute tile are still active.
For example, a “1” for a particular hardware thread indicates
that the thread 1s still active (e.g., runming), and a “0” for a
particular hardware thread indicates that the thread 1s inac-
tive (e.g., not running, and/or has 1ssued an Unmorph
instruction). The Mode.Status mstruction can be used, e.g.,
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as a debug tool to identily any long running or wedged
hardware threads for the given mode.

[0052] Context.Id: the Context.Id instruction 1s used to
pre-load a full hardware thread context to one or more given
pipeline(s) before a mode transition. For example, this waill
pre-load an entire register file and control/status register
(CSR) state before a mode switch, if just a PC and SP are
insuflicient for software needs. The context 1s loaded onto
the pipeline(s) from memory.

[0053] Context.St: the Context.St instruction 1s used to
save (store) an entire hardware thread’s context to memory.
It 1s essentially the reverse action of the Context.Id (load)
action.

[0054] The AME instruction queue 420 allocates the
received 1instruction 1mnto a queue for execution. Once execu-
tion 1s complete, the AME 1nstruction queue 420 will send
a response (label B 1n FIG. 4A), to whichever enftity (1.e. a
hardware thread) sent the instruction.

[0055] The AME execution engine 430 1s a state machine
which has behavior depending on which instruction 1t 1s
currently executing. As one example, for a Morph instruc-
tion, AME execution engine 430 (a) determines whether the
core 1s presently i a valid state (e.g., the default mode,
which 1n embodiments 1s the superscalar mode) for morph-
ing into the target mode (e.g., one of the SIMD mode, the
MIMD mode, or the tensor mode); (b) sets mode bits for the
reconiigura Jle core to eflect which logic and muxing 1n the
reconfigurable core 1s to become active (label C i FIG.
4 A)—this 1s what drives the mode switch to the new target
mode; and (¢) sends anew PC and SP (e.g., via the morphing
bus 330) to each new hardware thread that will be spawned
from the morph to the target mode (label D in FIG. 4A). As
another example, for a Context instruction (1.e., Context.Id
or Context.St), the AME execution engine 430 sends a
request to the target hardware thread(s) to load or save a
hardware context from/to memory (label D 1n FIG. 4A). As
another example, for an Unmorph nstruction AME execu-
tion engine 430 checks for active hardware threads, and once
all active hardware threads are quiesced the AME execution
engine 430 sets mode bits for the reconfigurable core to
return the core to the default mode.

[0056] The AME core state register 440 1s a bank of
registers that capture/keep track of various state(s) of the
reconfigurable core. For example, AME core state register
440 tracks the current mode that the reconfigurable core 1s
presently operating in——e.g., the current mode can be pro-
vided by the AME execution engine 430, and tracks the state
of the hardware threads—e.g., which threads are active and
which are 1nactive for the current mode (label E in FIG. 4A),
ctc. By reading the AME core state register 440, the AME
execution engine 430 1s able to determine the present core
state of the reconfigurable core.

[0057] Some or all components and/or features in the
amorphous core engine 400 can be implemented using one
or more of a CPU, a GPU, a RISC processor, an Al
accelerator, an FPGA accelerator, an ASIC, and/or via a
processor with software, or 1n a combination of a processor
with software and an FPGA or ASIC. More particularly,
components of the amorphous core engine 400 can be
implemented 1n one or more modules as a set of program or
logic mstructions stored 1n a machine- or computer-readable
storage medium such as RAM, ROM, PROM, firmware,
flash memory, etc., 1n hardware, or any combination thereof.
For example, hardware implementations can include con-
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figurable logic, fixed-functionality logic, or any combination
thereol. Examples of configurable logic include suitably
configured programmable logic arrays (PLAs), FPGAs,
complex programmable logic devices (CPLDs), and general
purpose microprocessors. Examples of fixed-functionality
logic include suitably configured ASICs, combinational
logic circuits, and sequential logic circuits. The configurable
or fixed-functionality logic can be implemented with
complementary metal oxide semiconductor (CMOS) logic
circuits, transistor-transistor logic (TTL) logic circuits, or
other circuits.

[0058] For example, computer program code to carry out
operations by the amorphous core engine 400 can be written
in any combination of one or more programming languages,
including an object-oriented programming language such as
Java, JavaScript, Python, C#, C++, Perl, Smalltalk, or the
like and conventional procedural programming languages,
such as the “C” programming language or similar program-
ming languages. Additionally, program or logic instructions

might include assembler instructions, ISA 1nstructions,
RISC nstructions (e.g., RISC-V ISA), machine instructions,
machine dependent instructions, microcode, state-setting,
data, configuration data for integrated circuitry, state infor-
mation that personalizes electronic circuitry and/or other
structural components that are native to hardware (e.g., host
processor, central processing unit/CPU, microcontroller,
etc.).

[0059] FIG. 4B provides a block diagram illustrating
aspects of an example of a pipeline 450 1n a reconfigurable
core according to one or more embodiments, with reference
to components and features described herein including but
not limited to the figures and associated description. In
embodiments the pipeline 450 corresponds to any of the
pipelines 1n the slice 200 (FIG. 2) and/or any of the pipelines
in the compute tile 300 (FIG. 3), already discussed. The
pipeline 450 includes logic 460, an instruction decoder 462,
one or more input multiplexors 465, an execution stage 470,
an arithmetic logic umt/tfloating point logic unit (ALU/FPU)
480, and an output multiplexor 490. The pipeline 450
receives mode select input 455 (e.g., mode select bits) from
the amorphous core engine (e.g., the AME 400 in FIG. 4A).
The mode select mput 1s provided through connections via
a morphing bus such as, e.g., the morphing bus 330 (FIG. 3,
already discussed). The logic 460 operates, based on the
mode select input 455 and the current nstruction from the
instruction decoder 462, to set the input multiplexor(s) 465
to select one of a set of inputs. For example, the inputs to the
multiplexor(s) 465 can include data input (label A 1n FIG.
4B) which 1s provided from memory (e.g., cache memory or
system memory), and/or a pipeline mput (label B 1n FIG.
4B). The data mput can be provided via direct memory
access (DMA) such as, e.g., a micro-DMA engine (not
shown 1n FI1G. 4B) that 1s part of the core. The pipeline input
can be provided from an output of an execution stage of
another pipeline. Multiplexor selections for inter-pipeline
connections can vary based on the instruction. As one
example, in SIMD mode a basic vector integer add operation
will result 1n no nter-pipeline muxing. As another example,
in SIMD mode a vector rotate instruction will result 1n
inter-pipeline muxing.

[0060] The output(s) of the multiplexor(s) 465 are pro-
vided to the execution stage 470. The current instruction
from the 1nstruction decoder 462 also passes through to the
execution stage 470. The execution stage 470 1includes logic
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that, for example, provides control signals and operands to
the ALU/FPU 480 for performing arithmetic operation(s).

While the ALU/FPU 480 1s shown as a single element, 1t will
be understood that the ALU/FPU 480 typically includes two
distinct units, an ALU and a FPU which can include two
distinct outputs. The output of the ALU/FPU 480 (e.g.,
which can include each of the ALU and FPU outputs) 1s
provided to the output multiplexor 490, which routes the
output to data output (label D 1n FIG. 4B) and/or one or two
pipeline outputs (labels C, E 1n FIG. 4B). The data output 1s
provided to memory (e.g., cache memory or system
memory), and can be provided via DMA such as, e.g., a
micro-DMA engine (not shown in FIG. 4B) that 1s part of the
core. The pipeline output(s) can be provided as mput(s) to
one or more other pipeline(s) (e.g., via an mput multiplexor
in the respective pipeline).

[0061] FIGS. 5A-5D provide diagrams illustrating
examples of core modes for a reconfigurable core according
to one or more embodiments, with reference to components
and features described herein including but not limited to the
figures and associated description. Each of the example core
modes as 1llustrated in FIGS. SA-5D employs a reconfigur-
able core having 64 pipelines arranged according to the
particular mode; the reconfigurable core can, 1 some
embodiments, include greater than or less than 64 pipelines.
In embodiments, the reconfigurable core that implements the
subject core modes 1llustrated 1n FIGS. 5A-5D corresponds
to the reconfigurable core 112 (FIG. 1A) and/or the recon-
figurable core in the compute tile 300 (FIG. 3), already
discussed.

[0062] Turning to FIG. 5A, shown 1s an example of a
superscalar core mode 510. In the superscalar core mode
510, the entire reconfigurable core executes as a single
hardware thread. The 64 pipelines are configured into SIMD
slices 520 (e.g., 8 pipelines per slice), where each pipeline
can be considered as operating as a single bit. Each slice 520
1s seen as a SIMD “way”, resulting in an 8-wide superscalar
SIMD thread. This takes advantage of Instruction Level
Parallelism (ILP) to provide the highest single threaded
performance. The core includes separate front-end logic (big
core frontend 522 and reorder buller 524) to provide, 1n the
superscalar core mode 510, a wide mstruction fetch and
decode, as well as mstruction 1ssue logic to feed istructions
from a single thread to the various compute slices across the
core. In embodiments the superscalar core mode 510 1s the
default mode, meaning any mode switch to MIMD mode,
SIMD mode, or tensor mode 1s 1nitiated from the superscalar
mode.

[0063] Turning now to FIG. 5B, shown 1s an example of
a MIMD core mode 530. In the MIMD core mode 530, the
pipelines operate effectively independently, where each of
the independent processing clements 540 consists of a
pipeline (e.g., scalar pipeline 542) with caches (e.g., instruc-
tion cache 344 and data cache 546), arbitrator 548, registers,
etc. The MIMD core mode 530 provides a configuration
which maximizes the number of hardware threads for a
compute tile—e.g., each pipeline 1s a separate hardware
thread. This enables high performance for sparse computa-
tion, where each thread has memory accesses that exhibit
little spatial or temporal locality. In this configuration, each
of the 64 pipelines 1n the reconfigurable core runs 1ts own
hardware thread, each pipeline has a full complement of
CSRs and register files (e.g., as defined by the hardware
environment, such as RISC-V), and each pipeline has 1ts
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own 1nstruction fetch, decode, execute, memory, and write
back stages. The hardware threads can run the same or
different instructions. The MIMD core mode 530 enables
cach thread to 1ssue many load/store operations, such that, in
aggregate, they are able to approach saturation of the
memory bandwidth with these sparse requests.

[0064] Turning now to FIG. 5C, shown 1s an example of
a SIMD core mode 550. For the SIMD core mode 550, all
eight pipelines within each single slice are eflectively con-
catenated together, providing a vector register width of
512-bits (64-bits per pipeline times eight pipelines). Each
slice 560 1ncludes a SIMD frontend 562 and eight pipelines
(processing elements) 566, and runs a single hardware
thread. In total, 1n SIMD core mode 550 the reconfigurable
core has eight concurrent SIMD hardware threads, where
cach thread has a 64-bit integer, 64-bit tloating point, and
512-bit vector register files. The SIMD core mode 350
reuses most resources present for the MIMD core mode 530
but, as configured, the SIMD core mode 550 enables
improved performance/watt versus MIMD mode for vector-
1zable code. The first pipeline 1n the slice 1s responsible for
fetching and retiring instructions, and any vector instruc-
tions are broadcast to all pipelines 1n the slice to execute the
different vector lanes 1n parallel. Non-vector instructions are
executed only by the first pipeline 1n the slice. The SIMD
core mode 350 additionally includes optimizations for inter-
lane functions including synchronizations, rotates, and

shuftles.

[0065] Turning now to FIG. 5D, shown 1s an example of
a tensor core mode 570. The tensor core mode 570 enables
enhanced dense computation performance, especially for
general matrix multiply (GEMM) and convolution opera-
tions. The tensor core mode 570 1s unique in that 1t does not
support a general hardware thread (i.e. in this mode the
reconfigurable core does not execute all ISA structions),
but 1s 1nstead utilized for executing certain operations such
as GEMM and convolution operations using the ALU/FPU
586 to perform math operations.

[0066] The core includes three micro-DMA (uUDMA)
engines 572, which are each a dense memory access engine
that uses a 64-byte wide datapath to read/write to memory.
In the tensor core mode 570 mode, the uDMA engines 572
are responsible for reading matrix operands from memory
and supplying it to the execution units 1n the pipelines, as
well as writing the results of the execution to memory in
bulk. These uDMA engines 572 also provide the configu-
ration information to the dense array as the data flows
through. Therefore, the array 1itself can be reconfigured on
the tly to support the application’s needs more efliciently.
The functions within the uDMA engines 572 are exposed via
a custom ISA and executed during a default (e.g. supersca-
lar) one-thread mode.

[0067] As illustrated 1n FIG. 5D, for tensor core mode 570
the datapath of the ALU/FPU units of each pipeline are
multiplexed together so that the result of one can quickly
flow to the next pipeline for the next sequence in the
computation. In embodiments the tensor core mode 570 also
implements an accumulation tree at the output layer of the
array in order to increase performance for the tensor opera-
tions. To enable the core to sustain peak throughput, the
uDMA engine {fetches the data directly from the local
memory over a wide low-latency data bus. This 1s 1deal for
GEMM operations that do not require intermediate storage
of values between tensor operations. For other operations
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like FF'Ts, a local SRAM (not shown 1n FIG. 5D) 1s provided
for fast reading and writing via the uDMA engines. Each

pipeline 580 performs an ALU/FPU operation based on the
op code (label E 1n FIG. 5D).

[0068] Intensor core mode 570, the configuration for each
pipeline 580 i1s set based 1n part on where in the array the
pipeline 1s located. As illustrated 1n the example of FIG. 3D,
for pipelines 1n the left-most column one 1nput comes from
a UDMA engine 572 and (except for the top pipeline 1n the
column) another mmput comes from the pipeline situated
above it. Thus for these pipelines one multiplexor 582 1s set
to select mput B (dense from pipeline above) and the other
multiplexor 584 1s set to select input C (uDMA 1nput). For
the top pipeline 1n the left column the multiplexor 582 1s set
to select input A (uDMA mput) and the other multiplexor
584 1s set to select mput C (uUDMA 1nput). For other
pipelines 1n the top row, the multiplexor 582 1s set to select
input A (uUDMA 1nput) and the other multiplexor 584 1s set
to select input D (dense from pipeline to the left). For
pipelines not 1n the top row or left-most column, the mputs
are selected from neighbor pipelines: the multiplexor 582 1s
set to select mnput B (dense from the pipeline above) and the
other multiplexor 584 1s set to select input D (dense from the
pipeline to the left). In embodiments, the multiplexor 582

and/or the multiplexor 384 correspond to one or more of the
multiplexor(s) 465 (FIG. 4B, already discussed).

[0069] Pipeline outputs are similarly switched using the
output multiplexor 588. For pipelines other than those 1n the
right-most column or bottom row, the output multiplexor
588 15 switched to provide the output F (dense to the pipeline
to the right) and the output H (dense to the pipeline below).
For pipelines 1n the right-most column (except bottom row),
the output multiplexor 588 1s switched to provide output G
(UDMA output) and output H (dense to the pipeline below).
For pipelines 1n the bottom row (except right-most column),
the output multiplexor 588 1s switched to provide the output
F (dense to the pipeline to the right). Finally, for the pipeline
in the right-most column, bottom row, the output multi-
plexor 588 1s switched to provide output G (uUDMA output).
In embodiments, the output multiplexor 588 corresponds to
the output multiplexor 490 (FIG. 4B, already discussed).

[0070] FIG. 6 provides a flow diagram illustrating an
example method 600 of morphing a reconfigurable core
according to one or more embodiments, with reference to
components and features described herein including but not
limited to the figures and associated description. The method
600 can generally be implemented 1n the compute tile 300
(FIG. 3, already discussed) and/or via components of the
socket 100 (e.g., the reconfigurable core 112 1n the compute
tile 110) and/or the computing system 150 (FIGS. 1A-1B,
already discussed). More particularly, the method 600 can be
implemented as one or more modules as a set of program or
logic mstructions stored 1n a machine- or computer-readable
storage medium such as RAM, ROM, PROM, firmware,
flash memory, etc., 1n hardware, or any combination thereof.
For example, hardware implementations can include con-
figurable logic, fixed-functionality logic, or any combination
thereof. Examples of configurable logic include suitably
configured programmable logic arrays (PLAs), FPGAs,
complex programmable logic devices (CPLDs), and general
purpose microprocessors. Examples of fixed-functionality
logic include suitably configured ASICs, combinational
logic circuits, and sequential logic circuits. The configurable
or fixed-functionality logic can be implemented with
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complementary metal oxide semiconductor (CMOS) logic
circuits, transistor-transistor logic (T'TL) logic circuits, or
other circuits.

[0071] For example, computer program code to carry out
operations for the method 600 and/or functions associated
therewith can be written 1n any combination of one or more
programming languages, including an object-oriented pro-
gramming language such as Java, JavaScript, Python, C #,
C++, Perl, Smalltalk, or the like and conventional procedural
programming languages, such as the “C” programming
language or similar programming languages. Additionally,
program or logic instructions might include assembler
istructions, ISA 1nstructions, RISC instructions (e.g.,
RISC-V ISA), machine instructions, machine dependent
instructions, microcode, state-setting data, configuration
data for integrated circuitry, state information that person-
alizes electronic circuitry and/or other structural compo-
nents that are native to hardware (e.g., host processor,
central processing umt/CPU, microcontroller, etc.).

[0072] Illustrated processing block 610 provides {for
receiving a morph 1nstruction including a target core mode
from an application running on a core. The core 1s comprised
of a plurality of pipelines and 1s reconfigurable 1nto one of
a plurality of core modes. Illustrated processing block 620
provides for determining a present core state for the core. In
some embodiments, the present core state (e.g., a current
core mode, and an identification of currently active pipe-
lines) 1s captured (e.g., tracked) by a core state register, and
determining the present core state includes reading the core
state register. Illustrated processing block 630 provides for
morphing, based on the present core state, the core to the
target core mode.

[0073] In some embodiments, morphing the core includes
selecting, based on the target core mode, which inter-
pipeline connections are active. In some embodiments, each
pipeline of the plurality of pipelines includes at least one
multiplexor via which one or more of the inter-pipeline
connections are selected to be active. In some embodiments,
a morphing bus 1s connected to each of the plurality of
pipelines to provide mode select bits. In some embodiments,
morphing the core further includes selecting, based on the
target core mode, which memory access paths are active.

[0074] In some embodiments, the plurality of core modes
include a default mode and one or more of a single mstruc-
tion multiple data (SIMD) mode, a multiple instruction
multiple data (MIMD) mode, or a tensor mode. In some
embodiments, the default mode 1s a superscalar mode. In
some embodiments, the present core state includes a current
core mode and an 1dentification of currently active pipelines,
and morphing the core includes determining that the current
core mode 1s the default mode, the target mode 1s a mode
other than the default mode, and there are no currently active
pipelines. In some embodiments, the method 600 further
includes morphing the core to the default mode when all
hardware threads for the current core mode have 1ssued an
unmorph 1nstruction.

[0075] FIG. 7 provides a flow diagram illustrating an
example method 700 of operating a computing system
having a reconfigurable core according to one or more
embodiments, with reference to components and features
described herein including but not limited to the figures and
associated description. The method 700 can generally be
implemented 1n the socket 100 (FIG. 1A, already discussed)
and/or the computing system 150 (FIG. 1B, already dis-
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cussed). More particularly, the method 700 can be 1mple-
mented as one or more modules as a set of program or logic
instructions stored 1n a machine- or computer-readable stor-
age medium such as RAM, ROM, PROM, firmware, flash
memory, etc., i hardware, or any combination thereof. For
example, hardware implementations can include configur-
able logic, fixed-functionality logic, or any combination
thereof. Examples of configurable logic include suitably
configured programmable logic arrays (PLAs), FPGAs,
complex programmable logic devices (CPLDs), and general
purpose microprocessors. Examples of fixed-functionality
logic include suitably configured ASICs, combinational
logic circuits, and sequential logic circuits. The configurable
or fixed-functionality logic can be implemented with
complementary metal oxide semiconductor (CMOS) logic
circuits, transistor-transistor logic (1'TL) logic circuits, or
other circuits.

[0076] For example, computer program code to carry out
operations for the method 700 and/or functions associated
therewith can be written 1n any combination of one or more
programming languages, including an object-oriented pro-
gramming language such as Java, JavaScript, Python, C#,
C++, Perl, Smalltalk, or the like and conventional procedural
programming languages, such as the “C” programming
language or similar programming languages. Additionally,
program or logic instructions might include assembler
instructions, ISA 1nstructions, RISC instructions (e.g.,
RISC-V ISA), machine instructions, machine dependent
instructions, microcode, state-setting data, configuration
data for integrated circuitry, state information that person-
alizes electronic circuitry and/or other structural compo-
nents that are native to hardware (e.g., host processor,
central processing unit/CPU, microcontroller, etc.).

[0077] Illustrated processing block 710 provides for 1ssu-
ing a first morph 1nstruction including a first target core
mode to a core, where at block 710a the core 1s reconfig-
urable 1to one of a plurality of core modes, and where at
block 7105 responsive to the first morph 1nstruction the core
1s morphed 1nto the first target core mode. Illustrated pro-
cessing block 720 provides for performing a first set of
compute tasks via the core in the first target core mode.
[llustrated processing block 730 provides for 1ssuing a
second morph instruction including a second target core
mode to the core, where at block 730a responsive to the
second morph 1nstruction the core 1s morphed into the
second target core mode. Illustrated processing block 740
provides for performing a second set of compute tasks via
the core 1n the second target core mode.

[0078] In some embodiments, the plurality of core modes
include a default mode and one or more of a single mstruc-
tion multiple data (SIMD) mode, a multiple instruction
multiple data (MIMD) mode, or a tensor mode. In some
embodiments, the first target core mode 1s the MIMD mode,
and the first set of compute tasks include tasks directed to
sparse data operations. In some embodiments, the first target
core mode 1s the SIMD mode, and wherein the first set of
compute tasks include vector operations. In some embodi-
ments, the first target core mode 1s the tensor mode, and
wherein the first set of compute tasks include one or more of
matrix multiplication operations or convolution operations.
In some embodiments, the core 1s morphed (e.g., returned)
to the default mode after the first set ol compute tasks 1s
completed and before the core 1s morphed into the second
core mode. In some embodiments, the method 700 includes
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issuing an unmorph instruction to morph the core to the
default mode prior to 1ssuing the second morph instruction.

[0079] FIG. 8 shows a block diagram illustrating an
example performance-enhanced computing system 10 for
performing compute tasks via a reconfigurable core accord-
ing to one or more embodiments, with reference to compo-
nents and features described herein including but not limited
to the figures and associated description. The system 10 can
generally be part of an electronic device/platform having
computing and/or communications functionality (e.g., a
server, cloud infrastructure controller, database controller,
notebook computer, desktop computer, personal digital
assistant/PDA, tablet computer, convertible tablet, smart
phone, etc.), imaging functionality (e.g., camera, cam-
corder), media playing functionality (e.g., smart television/
TV), wearable functionality (e.g., watch, eyewear, head-
wear, lootwear, jewelry, or other wearable devices),
vehicular functionality (e.g., car, truck, motorcycle), robotic
functionality (e.g., robot or autonomous robot), Internet of
Things (Io'T) functionality, etc., or any combination thereof.
In the illustrated example, the system 10 can include a host
processor 12 (e.g., central processing unit/CPU) having an
integrated memory controller (IMC) 14 that can be coupled
to system memory 20. The host processor 12 can include any
type ol processing device, such as, e.g., microcontroller,
microprocessor, RISC processor, ASIC, etc., along with
associated processing modules or circuitry. The system
memory 20 can include any non-transitory machine- or
computer-readable storage medium such as RAM, ROM,
PROM, EEPROM, firmware, flash memory, etc., configur-
able logic such as, for example, PLAs, FPGAs, CPLDs,
fixed-tfunctionality hardware logic using circuit technology
such as, for example, ASIC, CMOS or TTL technology, or

any combination thereof suitable for storing instructions 28.

[0080] The system 10 can also include an input/output
(I/O) module 16. The I/O module 16 can communicate with
for example, one or more mput/output (I/0) devices 17, a
network controller 24 (e.g., wired and/or wireless NIC), and
storage 22. The storage 22 can be comprised of any appro-
priate non-transitory machine- or computer-readable
memory type (e.g., flash memory, DRAM, SRAM (static
random access memory), solid state drive (SSD), hard disk
drive (HDD), optical disk, etc.). The storage 22 can include
mass storage. In some embodiments, the host processor 12
and/or the I/O module 16 can communicate with the storage
22 (all or portions thereof) via a network controller 24. The
system 10 includes (or connects to) one or more sockets 26
(e.g., socket(s) corresponding to the socket 100 1n FIG. 1A).

[0081] The host processor 12 and the I/O module 16 can
be implemented together on a semiconductor die as a system
on chip (SoC) 11, shown encased 1n a solid line. The SoC 11
can therefore operate as a computing apparatus for performs-
ing compute tasks via a reconfigurable core. In some
embodiments, the SoC 11 can also include one or more of
the system memory 20, the network controller 24, and/or the
graphics processor 26 (shown encased in dotted lines). In
some embodiments, the SoC 11 can also include other
components of the system 10.

[0082] The host processor 12 and/or the I/O module 16
can execute program instructions 28 retrieved from the
system memory 20 and/or the storage 22 to perform one or
more aspects of process 700 as described herein with
reference to FIG. 7, already discussed. In some embodi-
ments, the host processor 12 includes logic (e.g., configur-
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able hardware, fixed-functionality hardware, etc., or any
combination thereol) to implement one or more aspects of
the method 600 (FIG. 6), already discussed. The system 10
can implement one or more aspects of the socket 100 and/or
the system 150 as described herein with reference to FIGS.
1A-1B. The system 10 1s therefore considered to be perfor-
mance-enhanced at least to the extent that the technology
provides the ability to perform mixed-mode compute appli-
cations 1n different core modes via a reconfigurable core.

[0083] Computer program code to carry out the processes
described above can be written 1n any combination of one or
more programming languages, including an object-oriented
programming language such as JAVA, JAVASCRIPT,
PYTHON, SMALLTALK, C++ or the like and/or conven-
tional procedural programming languages, such as the “C”
programming language or similar programming languages,
and implemented as program 1instructions 28. Additionally,
program 1instructions 28 can include assembler instructions,
istruction set architecture (ISA) instructions, machine
instructions, machine dependent instructions, microcode,
state-setting data, configuration data for integrated circuitry,
state information that personalizes electronic circuitry and/
or other structural components that are native to hardware
(e.g., host processor, central processing unit/CPU, micro-
controller, microprocessor, etc.).

[0084] 1/O devices 17 can include one or more of mput
devices, such as a touchscreen, keyboard, mouse, cursor-
control device, microphone, digital camera, video recorder,
camcorder, biometric scanners and/or sensors; mput devices
can be used to enter information and interact with system 10
and/or with other devices. The /O devices 17 can also
include one or more of output devices, such as a display
(e.g., touchscreen, liquid crystal display/LCD, light emitting,
diode/LED display, plasma panels, etc.), speakers and/or
other visual or audio output devices. The input and/or output
devices can be used, e.g., to provide a user interface.

[0085] FIG. 9 shows a block diagram illustrating an
example semiconductor apparatus 30 for performing com-
pute tasks via a reconfigurable core according to one or more
embodiments, with reference to components and features
described herein including but not limited to the figures and
associated description. The semiconductor apparatus 30 can
be implemented, e.g., as a chup, die, or other semiconductor
package. The semiconductor apparatus 30 can include one or
more substrates 32 comprised of, e.g., silicon, sapphire,
gallium arsenide, etc. The semiconductor apparatus 30 can
also include logic 34 comprised of, e.g., transistor array(s)
and other integrated circuit (IC) components) coupled to the
substrate(s) 32. The logic 34 can be implemented at least
partly in configurable logic or fixed-functionality logic hard-
ware. The logic 34 can implement the system on chip (SoC)
11 described above with reference to FIG. 8. The logic 34
can implement one or more aspects of the processes
described above, including the process 700 and/or the pro-
cess 800. The logic 34 can implement one or more aspects
of the socket 100, the compute tile 110, the reconfigurable
core 112, the system 150, the slice 200, the compute tile 300,
the amorphous core engine 400, and/or the pipeline 450 as
described herein with reference to FIGS. 1A-1B, 2, 3,
4A-4B, and SA-5D. The apparatus 30 1s therefore consid-
ered to be performance-enhanced at least to the extent that
the technology provides the ability to perform mixed-mode
compute applications 1n different core modes via a recon-
figurable core.
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[0086] The semiconductor apparatus 30 can be con-
structed using any appropriate semiconductor manufactur-
ing processes or techniques. For example, the logic 34 can
include transistor channel regions that are positioned (e.g.,
embedded) within the substrate(s) 32. Thus, the interface
between the logic 34 and the substrate(s) 32 may not be an
abrupt junction. The logic 34 can also be considered to

include an epitaxial layer that 1s grown on an 1nitial water of
the substrate(s) 34.

[0087] FIG. 10 1s a block diagram 1llustrating an example
processor core 40 according to one or more embodiments,
with reference to components and features described herein
including but not limited to the figures and associated
description. The processor core 40 can be the core for any
type of processor, such as a micro-processor, an embedded
processor, a digital signal processor (DSP), a network pro-
cessor, a graphics processing unit (GPU), or other device to
execute code. Although only one processor core 40 is
illustrated 1n FIG. 10, a processing element can alternatively
include more than one of the processor core 40 1llustrated 1n
FIG. 10. The processor core 40 can be a single-threaded core
or, for at least one embodiment, the processor core 40 can be
multithreaded 1n that 1t can include more than one hardware
thread context (or “logical processor”) per core.

[0088] FIG. 10 also illustrates a memory 41 coupled to the
processor core 40. The memory 41 can be any of a wide
variety of memories (including various layers of memory
hierarchy) as are known or otherwise available to those of
skill in the art. The memory 41 can include one or more code
42 struction(s) to be executed by the processor core 40.
The code 42 can implement one or more aspects of the
processes 600 and/or 700 described above. The processor
core 40 can implement one or more aspects of the socket
100, the system 150, the slice 200, the compute tile 300, the
amorphous core engine 400, and/or the pipeline 450 as
described herein with reference to FIGS. 1A-1B, 2, 3,
4A-4B, and 5A-5D. The processor core 40 can follow a
program sequence of mstructions indicated by the code 42.
Each instruction can enter a front end portion 43 and be
processed by one or more decoders 44. The decoder 44 can
generate as 1ts output a micro operation such as a fixed width
micro operation 1n a predefined format, or can generate other
instructions, microinstructions, or control signals which
reflect the original code mstruction. The illustrated front end
portion 43 also includes register renaming logic 46 and
scheduling logic 48, which generally allocate resources and
queue the operation corresponding to the convert instruction
for execution.

[0089] The processor core 40 1s shown including execu-
tion logic 50 having a set of execution units 55-1 through
55-N. Some embodiments can include a number of execu-
tion units dedicated to specific functions or sets of functions.
Other embodiments can include only one execution unit or
one execution unit that can perform a particular function.
The illustrated execution logic 50 performs the operations
specified by code instructions.

[0090] After completion of execution of the operations
specified by the code mnstructions, back end logic 58 retires
the nstructions of code 42. In one embodiment, the proces-
sor core 40 allows out of order execution but requires 1n
order retirement of instructions. Retirement logic 59 can
take a variety of forms as known to those of skill in the art
(e.g., re-order buflers or the like). In this manner, the
processor core 40 1s transformed during execution of the
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code 42, at least 1n terms of the output generated by the
decoder, the hardware registers and tables utilized by the
register renaming logic 46, and any registers (not shown)
modified by the execution logic 50.

[0091] Although not illustrated i FIG. 10, a processing
clement can include other elements on chip with the pro-
cessor core 40. For example, a processing element can
include memory control logic along with the processor core
40. The processing element can include 1/O control logic
and/or can include I/0 control logic integrated with memory
control logic. The processing element can also include one
or more caches.

[0092] FIG. 11 1s a block diagram illustrating an example
of a multi-processor based computing system 60 according
to one or more embodiments, with reference to components
and features described herein including but not limited to the
figures and associated description. The multiprocessor sys-
tem 60 includes a first processing element 70 and a second
processing element 80. While two processing elements 70
and 80 are shown, 1t 1s to be understood that an embodiment
of the system 60 can also 1include only one such processing
clement.

[0093] The system 60 is 1llustrated as a point-to-point
interconnect system, wherein the first processing element 70
and the second processing element 80 are coupled via a
point-to-point iterconnect 71. It should be understood that
any or all of the mterconnects illustrated in FIG. 11 can be
implemented as a multi-drop bus rather than point-to-point
interconnect.

[0094] As shown i FIG. 11, each of the processing
clements 70 and 80 can be multicore processors, including
first and second processor cores (1.e., processor cores 74a
and 74b and processor cores 84a and 84b). Such cores 74a,
74b, 84a, 84b can be configured to execute instruction code

in a manner similar to that discussed above in connection
with FIG. 10.

[0095] FEach processing element 70, 80 can include at least
one shared cache 99a, 995. The shared cache 99a, 995 can
store data (e.g., istructions) that are utilized by one or more
components of the processor, such as the cores 74a, 74b and
84a, 84b, respectively. For example, the shared cache 99aq,
9956 can locally cache data stored in a memory 62, 63 for
faster access by components of the processor. In one or more
embodiments, the shared cache 99a, 9956 can include one or
more mid-level caches, such as level 2 (L2), level 3 (L3),
level 4 (LL4), or other levels of cache, a last level cache
(LLC), and/or combinations thereof.

[0096] While shown with only two processing elements
70, 80, it 1s to be understood that the scope of the embodi-
ments 15 not so limited. In other embodiments, one or more
additional processing elements can be present in a given
processor. Alternatively, one or more of the processing
clements 70, 80 can be an element other than a processor,
such as an accelerator or a field programmable gate array.
For example, additional processing element(s) can include
additional processors(s) that are the same as a first processor
70, additional processor(s) that are heterogeneous or asym-
metric to processor a first processor 70, accelerators (such
as, e¢.g., graphics accelerators or digital signal processing
(DSP) units), field programmable gate arrays, or any other
processing element. There can be a variety of differences
between the processing elements 70, 80 1 terms of a
spectrum of metrics of merit including architectural, micro
architectural, thermal, power consumption characteristics,
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and the like. These diflerences can eflectively manifest
themselves as asymmetry and heterogeneity amongst the
processing elements 70, 80. For at least one embodiment, the
various processing elements 70, 80 can reside 1n the same
die package.

[0097] The first processing element 70 can further include
memory controller logic (MC) 72 and point-to-point (P-P)
interfaces 76 and 78. Similarly, the second processing ele-
ment 80 can include a MC 82 and P-P interfaces 86 and 88.
As shown 1n FIG. 11, MC’s 72 and 82 couple the processors
to respective memories, namely a memory 62 and a memory
63, which can be portions of main memory locally attached
to the respective processors. While the MC 72 and 82 1s
illustrated as integrated into the processing elements 70, 80,
for alternative embodiments the MC logic can be discrete
logic outside the processing elements 70, 80 rather than
integrated therein.

[0098] The first processing element 70 and the second
processing element 80 can be coupled to an I/O subsystem
90 via P-P interconnects 76 and 86, respectively. As shown
in FIG. 11, the I/O subsystem 90 includes P-P interfaces 94
and 98. Furthermore, the I/O subsystem 90 includes an
interface 92 to couple I/O subsystem 90 with a high perfor-
mance graphics engine 64. In one embodiment, a bus 73 can
be used to couple the graphics engine 64 to the I/O subsys-
tem 90. Alternately, a point-to-point interconnect can couple
these components.

[0099] In turn, the I/O subsystem 90 can be coupled to a
first bus 65 via an interface 96. In one embodiment, the first
bus 65 can be a Peripheral Component Interconnect (PCI)
bus, or a bus such as a PCI Express bus or another third
generation 1/0 interconnect bus, although the scope of the
embodiments are not so limited.

[0100] As shown in FIG. 11, various I/O devices 654 (e.g.,
biometric scanners, speakers, cameras, and/or sensors) can
be coupled to the first bus 65, along with a bus bridge 66
which can couple the first bus 65 to a second bus 67. In one
embodiment, the second bus 67 can be a low pin count
(LPC) bus. Various devices can be coupled to the second bus
67 1including, for example, a keyboard/mouse 67a, commu-
nication device(s) 675, and a data storage umt 68 such as a
disk drive or other mass storage device which can include
code 69, in one embodiment. The illustrated code 69 can
implement one or more aspects of the processes described
above, including the process 600 and/or the process 700. The
illustrated code 69 can be similar to the code 42 (FIG. 10),
already discussed. Further, an audio I/O 67¢ can be coupled
to second bus 67 and a battery 61 can supply power to the
computing system 60. The system 60 can implement one or
more aspects of the socket 100, the system 1350, the slice
200, the compute tile 300, the amorphous core engine 400,

and/or the pipeline 450 as described herein with reference to
FIGS. 1A-1B, 2, 3, 4A-4B, and 5A-5D.

[0101] Note that other embodiments are contemplated. For
example, mstead of the point-to-point architecture of FIG.
11, a system can implement a multi-drop bus or another such
communication topology. Also, the elements of FIG. 11 can
alternatively be partitioned using more or fewer integrated

chips than shown 1n FIG. 11.

[0102] Embodiments of each of the above systems,
devices, components, features and/or methods, including the
socket 100, the compute tile 110, the reconfigurable core
112, the system 150, the slice 200, the compute tile 300, the
amorphous core engine 400, the pipeline 450, the method
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600, and/or the method 700, and/or any other system com-
ponents, can be implemented 1n hardware, software, or any
suitable combination thereof. For example, hardware imple-
mentations can include configurable logic, fixed-function-
ality logic, or any combination thereof. Examples of con-
figurable logic include suitably configured PLAs, FPGAs,
CPLDs, RISC processors and general purpose microproces-
sors. Examples of fixed-functionality logic include suitably
configured ASICs, combinational logic circuits, and sequen-
tial logic circuits. The configurable or fixed-functionality
logic can be implemented with CMOS logic circuits, TTL
logic circuits, or other circuits.

[0103] Alternatively, or additionally, all or portions of the
foregoing systems, devices, components, features and/or
methods can be implemented 1n one or more modules as a
set of program or logic instructions stored in a machine- or
computer-readable storage medium such as RAM, ROM,
PROM, firmware, flash memory, etc., to be executed by a
processor or computing device. For example, computer
program code to carry out the operations of the components
can be written 1n any combination of one or more operating
system (OS) applicable/appropriate programming lan-
guages, including an object-oriented programming language
such as Java, JavaScript, Python, C #, C++, Perl, Smalltalk,
or the like and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages.

Additional Notes and Examples

[0104] Example Al includes a semiconductor apparatus,
comprising a plurality of pipelines comprising a core,
wherein the core 1s reconfigurable into one of a plurality of
core modes, a core network to provide iter-pipeline con-
nections for the plurality of pipelines, one or more sub-
strates, and logic coupled to the plurality of pipelines and the
one or more substrates, wherein the logic 1s implemented at
least partly 1n one or more of configurable logic or fixed-
functionality hardware logic, the logic to receive a morph
instruction including a target core mode from an application
running on the core, determine a present core state for the
core, and morph, based on the present core state, the core to
the target core mode.

[0105] Example A2 includes the semiconductor apparatus
of Example Al, wherein to morph the core, the logic 1s to
select, based on the target core mode, which inter-pipeline
connections are active.

[0106] Example A3 includes the semiconductor apparatus
of Example Al or A2, wherein each pipeline of the plurality
of pipelines includes at least one multiplexor via which one
or more of the inter-pipeline connections are selected to be
active.

[0107] Example A4 includes the semiconductor apparatus
of any of Examples A1-A3, further comprising a morphing
bus connected to each of the plurality of pipelines to provide
mode select bits.

[0108] Example AS includes the semiconductor apparatus
of any of Examples Al-A4, wherein to morph the core, the
logic 1s further to select, based on the target core mode,
which memory access paths are active.

[0109] Example A6 includes the semiconductor apparatus
of any of Examples Al-AS, wherein the plurality of core
modes include a default mode and one or more of a single
instruction multiple data (SIMD) mode, a multiple mstruc-
tion multiple data (MIMD) mode, or a tensor mode.
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[0110] Example A7 includes the semiconductor apparatus
of any of Examples A1-A6, wherein the default mode 1s a
superscalar mode.

[0111] Example A8 includes the semiconductor apparatus
of any of Examples A1-A"7, wherein the present core state
includes a current core mode and an 1dentification of cur-
rently active pipelines, and wherein to morph the core
comprises to determine that the current core mode 1s the
default mode, the target mode 1s a mode other than the
default mode, and there are no currently active pipelines.
[0112] Example A9 includes the semiconductor apparatus
of any of Examples Al-AS8, wherein the logic 1s further to
morph the core to the default mode when all hardware
threads for the current core mode have 1ssued an unmorph
istruction.

[0113] Example S1 includes a performance-enhanced
computing system comprising a memory, and a plurality of
cores arranged 1n a first socket, the first socket coupled to the
memory, wherein each core of the plurality of cores com-
prises a plurality of pipelines, wherein the core 1s reconfig-
urable mto one of a plurality of core modes, a core network
to provide inter-pipeline connections for the plurality of
pipelines, and logic coupled to the plurality of pipelines,
wherein the logic 1s implemented at least partly in one or
more of configurable logic or fixed-functionality hardware
logic, the logic to receive a morph mstruction mcluding a
target core mode from an application running on the core,
determine a present core state for the core, and morph, based
on the present core state, the core to the target core mode.
[0114] Example S2 includes the system of Example S1,
wherein to morph the core, the logic 1s to select, based on the
target core mode, which inter-pipeline connections are
active.

[0115] Example S3 includes the system of Example S1 or
S2, wherein each pipeline of the plurality of pipelines
includes at least one multiplexor via which one or more of
the 1nter-pipeline connections are selected to be active.
[0116] Example S4 includes the system of any of
Examples S1-S3, wherein each core further comprises a
morphing bus connected to each of the plurality of pipelines
to provide mode select bits.

[0117] Example S5 includes the system of any of
Examples S1-S4, wherein to morph the core, the logic 1s
turther to select, based on the target core mode, which
memory access paths are active.

[0118] Example S6 includes the system of any of
Examples S1-S5, wherein the plurality of core modes
include a default mode and one or more of a single istruc-
tion multiple data (SIMD) mode, a multiple instruction
multiple data (MIMD) mode, or a tensor mode.

[0119] Example S7 includes the system of any of
Examples S1-S6, wherein the default mode 1s a superscalar
mode.

[0120] Example S8 includes the system of any of
Examples S1-S7, wherein the present core state includes a
current core mode and an identification of currently active
pipelines, and wherein to morph the core comprises to
determine that the current core mode 1s the default mode, the
target mode 1s a mode other than the default mode, and there
are no currently active pipelines.

[0121] Example S9 includes the system of any of
Examples S1-S8, wherein the logic 1s further to morph the
core to the default mode when all hardware threads for the
current core mode have 1ssued an unmorph instruction.
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[0122] Example S10 includes the system of any of
Examples S1-59, further comprising at least one additional
socket coupled to the first socket and the memory.

[0123] Example S11 includes the system of any of
Examples S1-S10, further comprising a host processor
coupled to the first socket and the at least one additional
socket via a network.

[0124] Example M1 includes a method comprising 1ssuing
a first morph 1nstruction including a first target core mode to
a core, wherein the core 1s reconfigurable 1nto one of a
plurality of core modes, and wherein responsive to the first
morph 1instruction the core 1s morphed into the first target
core mode, performing a first set of compute tasks via the
core 1n the first target core mode, 1ssuing a second morph
instruction including a second target core mode to the core,
wherein responsive to the second morph instruction the core
1s morphed 1nto the second target core mode, performing a
second set of compute tasks via the core 1n the second target
core mode.

[0125] Example M2 includes the method of Example M1,
wherein the plurality of core modes include a default mode
and one or more of a single mstruction multiple data (SIMD)
mode, a multiple instruction multiple data (MIMD) mode, or
a tensor mode.

[0126] Example M3 includes the method of Example M1
or M2, wherein the first target core mode 1s the MIMD
mode, and wherein the first set of compute tasks include
tasks directed to sparse data operations.

[0127] Example M4 includes the method of any of
Examples M1-M3, wherein the first target core mode 1s the
SIMD mode, and wherein the first set of compute tasks
include vector operations.

[0128] Example M35 includes the method of any of
Examples M1-M4, wherein the {first target core mode 1s the
tensor mode, and wherein the first set of compute tasks
include one or more of matrix multiplication operations or
convolution operations.

[0129] Example M6 includes the method of any of
Examples M1-M5, wherein the core 1s morphed to the
default mode after the first set of compute tasks 1s completed
and before the core 1s morphed 1nto the second core mode.
[0130] Example M7 includes the method of any of
Examples M1-M6, further comprising 1ssuing an unmorph
instruction to morph the core to the default mode prior to
1ssuing the second morph 1nstruction.

[0131] Example R1 includes an apparatus comprising

means for performing the method of any of Examples M1 to
M7.

[0132] Embodiments are applicable for use with all types
ol semiconductor integrated circuit (“IC”) chips. Examples
of these IC chips include but are not limited to processors,
controllers, chipset components, programmable logic arrays
(PLAs), memory chips, network chips, systems on chip
(SoCs), solid state drive (SSD)NAND drive controller
ASICs, and the like. In addition, in some of the drawings,
signal conductor lines are represented with lines. Some may
be different, to indicate more constituent signal paths, have
a number label, to indicate a number of constituent signal
paths, and/or have arrows at one or more ends, to mdicate
primary information flow direction. This, however, should
not be construed in a limiting manner. Rather, such added
detail may be used 1n connection with one or more exem-
plary embodiments to facilitate easier understanding of a
circuit. Any represented signal lines, whether or not having
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additional information, may actually comprise one or more
signals that may travel in multiple directions and may be
implemented with any suitable type of signal scheme, e.g.,
digital or analog lines implemented with differential pairs,
optical fiber lines, and/or single-ended lines.

[0133] Example sizes/models/values/ranges may have
been given, although embodiments are not limited to the
same. As manufacturing techniques (e.g., photolithography)
mature over time, 1t 1s expected that devices of smaller size
could be manufactured. In addition, well known power/
ground connections to IC chips and other components may
or may not be shown within the figures, for simplicity of
illustration and discussion, and so as not to obscure certain
aspects of the embodiments. Further, arrangements may be
shown 1n block diagram form in order to avoid obscuring
embodiments, and also in view of the fact that specifics with
respect to 1implementation of such block diagram arrange-
ments are highly dependent upon the platform within which
the embodiment 1s to be implemented, 1.e., such specifics
should be well within purview of one skilled 1n the art.
Where specific details (e.g., circuits) are set forth 1n order to
describe example embodiments, 1t should be apparent to one
skilled 1n the art that embodiments can be practiced without,
or with variation of, these specific details. The description 1s
thus to be regarded as illustrative instead of limiting.
[0134] The term “coupled” may be used herein to refer to
any type of relationship, direct or indirect, between the
components 1 question, and may apply to electrical,
mechanical, fluid, optical, electromagnetic, electromechani-
cal or other connections, including logical connections via
intermediate components (e.g., device A may be coupled to
device C wvia device B). In addition, the terms “first”,
“second”, etc. may be used herein only to facilitate discus-
sion, and carry no particular temporal or chronological
significance unless otherwise indicated.

[0135] As used 1n this application and 1n the claims, a list
of 1tems joined by the term “one or more of” may mean any
combination of the listed terms. For example, the phrases
“one or more of A, B or C” may mean A, B, C; A and B; A
and C; B and C; or A, B and C.

[0136] Those skilled in the art will appreciate from the
foregoing description that the broad techniques of the
embodiments can be implemented 1 a variety of forms.
Therefore, while the embodiments have been described in
connection with particular examples thereof, the true scope
of the embodiments should not be so limited since other
modifications will become apparent to the skilled practitio-
ner upon a study of the drawings, specification, and follow-
ing claims.

We claim:

1. A semiconductor apparatus, comprising:

a plurality of pipelines comprising a core, wherein the
core 1s reconfigurable into one of a plurality of core
modes;

a core network to provide inter-pipeline connections for
the plurality of pipelines;

one or more substrates; and

logic coupled to the plurality of pipelines and the one or
more substrates, wherein the logic 1s implemented at
least partly 1n one or more of configurable logic or
fixed-functionality hardware logic, the logic to:
receive a morph instruction including a target core

mode from an application running on the core;

determine a present core state for the core; and
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morph, based on the present core state, the core to the
target core mode.

2. The semiconductor apparatus of claim 1, wherein to
morph the core, the logic 1s to select, based on the target core
mode, which inter-pipeline connections are active.

3. The semiconductor apparatus of claim 2, wherein each
pipeline of the plurality of pipelines includes at least one
multiplexor via which one or more of the inter-pipeline
connections are selected to be active.

4. The semiconductor apparatus of claim 3, further com-
prising a morphing bus connected to each of the plurality of
pipelines to provide mode select bits.

5. The semiconductor apparatus of claim 2, wherein to
morph the core, the logic 1s further to select, based on the
target core mode, which memory access paths are active.

6. The semiconductor apparatus of claim 1, wherein the
plurality of core modes include a default mode and one or
more of a single instruction multiple data (SIMD) mode, a
multiple mstruction multiple data (MIMD) mode, or a tensor
mode.

7. The semiconductor apparatus of claim 6, wherein the
present core state includes a current core mode and an
identification of currently active pipelines, wherein to morph
the core comprises to determine that the current core mode
1s the default mode, the target mode 1s a mode other than the
default mode, and there are no currently active pipelines,
and wherein the logic 1s further to morph the core to the
default mode when all hardware threads for the current core
mode have i1ssued an unmorph nstruction.

8. A performance-enhanced computing system compris-
ng:

a memory; and

a plurality of cores arranged 1n a first socket, the first

socket coupled to the memory, wherein each core of the
plurality of cores comprises:

a plurality of pipelines, wherein the core 1s recontig-
urable into one of a plurality of core modes;

a core network to provide iter-pipeline connections for
the plurality of pipelines; and

logic coupled to the plurality of pipelines, wherein the
logic 1s implemented at least partly in one or more of
configurable logic or fixed-functionality hardware
logic, the logic to:
receive a morph instruction including a target core

mode from an application runmng on the core;

determine a present core state for the core; and

morph, based on the present core state, the core to the
target core mode.

9. The system of claim 8, wherein to morph the core, the
logic 1s to select, based on the target core mode, which
inter-pipeline connections are active.

10. The system of claim 9, wherein each pipeline of the
plurality of pipelines includes at least one multiplexor via
which one or more of the inter-pipeline connections are
selected to be active.

11. The system of claim 10, wherein each core further
comprises a morphing bus connected to each of the plurality
of pipelines to provide mode select bits.

12. The system of claim 9, wherein to morph the core, the
logic 1s further to select, based on the target core mode,
which memory access paths are active.

13. The system of claim 8, wherein the plurality of core
modes include a default mode and one or more of a single
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instruction multiple data (SIMD) mode, a multiple mstruc-
tion multiple data (MIMD) mode, or a tensor mode.

14. The system of claim 13, wherein the present core state
includes a current core mode and an i1dentification of cur-
rently active pipelines, wherein to morph the core comprises
to determine that the current core mode 1s the default mode,
the target mode 1s a mode other than the default mode, and
there are no currently active pipelines, and wherein the logic
1s turther to morph the core to the default mode when all
hardware threads for the current core mode have 1ssued an
unmorph 1nstruction.

15. The system of claim 8, further comprising:

at least one additional socket coupled to the first socket
and the memory; and

a host processor coupled to the first socket and the at least
one additional socket via a network.

16. A method comprising:

issuing a {irst morph instruction including a first target
core mode to a core, wherein the core 1s reconfigurable
into one of a plurality of core modes, and wherein
responsive to the first morph instruction the core 1s
morphed 1nto the first target core mode;

performing a first set ol compute tasks via the core 1n the
first target core mode;
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1ssuing a second morph instruction including a second
target core mode to the core, wherein responsive to the
second morph nstruction the core 1s morphed into the
second target core mode;

performing a second set of compute tasks via the core 1n

the second target core mode.

17. The method of claim 16, wherein the plurality of core
modes include a default mode and one or more of a single
instruction multiple data (SIMD) mode, a multiple mstruc-
tion multiple data (MIMD) mode, or a tensor mode.

18. The method of claim 17, wherein when the first target
core mode 1s the MIMD mode, the first set of compute tasks
include tasks directed to sparse data operations, wherein
when the first target core mode 1s the SIMD mode, the first
set of compute tasks include vector operations, and wherein
when the first target core mode 1s the tensor mode, the first
set of compute tasks include one or more of matrix multi-
plication operations or convolution operations.

19. The method of claim 17, wherein the core 1s morphed
to the default mode after the first set of compute tasks 1s
completed and before the core 1s morphed into the second
core mode.

20. The method of claim 19, further comprising issuing an
unmorph 1nstruction to morph the core to the default mode
prior to 1ssuing the second morph instruction.
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