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VISION-AIDED INERTIAL NAVIGATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application 1s a continuation of U.S. patent
application Ser. No. 17/4577,022, filed on Nov. 30, 2021 and

entitled “VISION-AIDED INERTIAL NAVIGATION,”,
which 1s a continuation of U.S. patent application Ser. No.
16/8°71,560, filed on May 11, 2020 and entitled “VISION-
AIDED INERTIAL NAVIGATION,” which 1s a continua-
tion of U.S. patent application Ser. No. 15/706,149, filed on
Sep. 15, 2017 and entitled “EXTENDED KALMAN FIL-
TER FOR 3D LOCALIZATION AND VISION-AIDED
INERTIAL NAVIGATION,” which 1s a continuation of U.S.
patent application Ser. No. 12/383,371, filed on Mar. 23,
2009 and entitled “VISION-AIDED INERTIAL NAVIGA-
TION,” which claims the benefit of Provisional U.S. Patent
Application No. 61/040,473, filed Mar. 28, 2008 and entitled
“VISION-AIDED INERTIAL NAVIGATION,” the disclo-
sures of which are incorporated herein by reference in their
entireties.

STATEMENT OF GOVERNMENT RIGHTS

[0002] This invention was made with Government support
under Grant Number MTP-1263201 awarded by the NASA

Mars Technology Program, and support under Grant Num-
ber EIA-0324864, 115-0643680 awarded by the National

Science Foundation. The Government has certain rights in
this invention.

TECHNICAL FIELD

[0003] This document pertains generally to navigation,
and more particularly, but not by way of limitation, to
vision-aided inertial navigation.

BACKGROUND

[0004] Existing technologies for navigation are not with-
out shortcomings. For example, global positioning system
(GPS) based navigation systems require good signal recep-
tion from satellites 1 orbit. With a GPS -based system,
navigation in urban areas and indoor navigation 1s some-
times compromised because of poor signal reception. In
addition, GPS -based systems are unable to provide close-
quarter navigation for vehicular accident avoidance. Other
navigation systems suller from sensor errors (arising from
slippage, for example) and an 1nability to detect humans or
other obstacles.

OVERVIEW

[0005] This document discloses a system for processing
visual information from a camera, for example, and 1nertial
sensor data to provide an estimate of pose or other local-
ization information. The camera provides data including
images having a number of features visible 1in the environ-
ment and the inertial sensor provides data with respect to
detected motion. A processor executes an algorithm to
combine the camera data and the inertial sensor data to
determine position, orientation, speed, acceleration or other
higher order dernivative information.

[0006] A number of features within the environment are
tracked. The tracked features correlate with relative move-
ment as to the frame of reference with respect to the
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environment. As the number of features increases, the com-
plexity of the data processing also rises. One example of the
present subject matter uses an Extended Kalman filter (EKFE)
having a computational complexity that varies linearly with
the number of tracked features.

[0007] In one example, a first sensor provides data for
tracking the environmental features and a second sensor
provides data corresponding to movement of the frame of
reference with respect to the environment. A first sensor can
include a camera and a second sensor can include an inertial
SENSor.

[0008] Other types of sensors can also be used. Each
sensor can be classified as a motion sensor or as a motion
inferring sensor. One example of a sensor that directly
detects motion 1s a Doppler radar system and an example of
a sensor that detects a parameter from which motion can be
inferred 1s a camera.

[0009] In one example, a single sensor provides data
corresponding to the tracked features as well as data corre-
sponding to relative movement of the frame of reference
within the environment. Data from the single sensor can be
multiplexed 1n time, 1n space, or 1n another parameter.
[0010] The sensors can be located on (or coupled to),
either or both of the frame of reference and the environment.
Relative movement as to the frame of reference and the
environment can occur by virtue of movement of the frame
of reference within a stationary environment or 1t can occur
by virtue of a stationary frame of reference and a traveling
environment.

[0011] Data provided by the at least one sensor is pro-
cessed using a processor that implements a filter algorithm.
The filter algorithm, 1 one example, includes an EKEF,
however, other filters are also contemplated.

[0012] Inoneexample, a system includes a feature tracker,
a motion sensor and a processor. The feature tracker is
configured to provide feature data for a plurality of features
relative to a frame of reference 1n an environment for a
period of time. The motion sensor 1s configured to provide
motion data for navigation of the frame of reference 1n the
environment for the period of time. The processor 1s com-
municatively coupled to the feature tracker and communi-
catively coupled to the motion sensor. The processor is
configured to generate at least one of navigation information
for the frame of reference and the processor 1s configured to
carry out the estimation at a computational complexity linear
with the number of tracked features. Linear computational
complexity 1s attamned by simultaneously using each fea-
ture’s measurements to 1mpose constraints between the
poses from which the feature was observed. This 1s 1mple-
mented by manipulating the residual of the feature measure-
ments to remove the eflects of the feature estimate error
(either exactly or to a good approximation).

[0013] This overview 1s mtended to provide an overview
ol subject matter of the present patent application. It 1s not
intended to provide an exclusive or exhaustive explanation
of the mvention. The detailed description 1s included to
provide further information about the present patent appli-
cation.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] Inthe drawings, which are not necessarily drawn to
scale, like numerals may describe similar components 1n
different views. Like numerals having different letter sui-
fixes may represent diflerent instances of similar compo-
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nents. The drawings 1llustrate generally, by way of example,
but not by way of limitation, various embodiments discussed
in the present document.

[0015] FIG. 11illustrates a composite view of time sampled
travel of a frame of reference relative to an environment.

[0016] FIG. 2 illustrates a block diagram of a system.
[0017] FIGS. 3A-3D illustrates selected images from a
dataset.

[0018] FIG. 4 illustrates an estimated trajectory overlaid
on a map.

[0019] FIGS. SA-5C illustrates position, attitude and

velocity for x-axis, y-axis, and z-axis.

DETAILED DESCRIPTION

[0020] FIG. 1 illustrates a composite view of five time-
sampled positions during travel of frame of reference 15
within environment 20. Environment 20 includes two fea-
tures 1llustrated here as a tree and a U.S. postal mailbox,
denoted as feature 5 and feature 10, respectively. At each of
the time sampled points, each of the two features are
observed as denoted 1n the figure. For example, at time t,,
frame of reference 15 observes feature 5 and feature 10
along the line segments 1llustrated. At a later time t,, frame
of reference 15 again observes feature 3 and feature 10, but
with a different perspective. In the figure, the frame of
reference travels a curving path in view of the features.
[0021] Navigation information as to the relative move-
ment between the frame of reference 15 and the environment
20 can be characterized using sensor data.

[0022] Various types of sensors can be identified. A first
type of sensor provides direct measurement ol quantities
related to motion. Data from a sensor of a second type can
provide data by which motion can be inferred. Data can also
be dertved form a statistical model of motion.

[0023] A sensor of the first type provides an output that 1s
derived from direct measurement of the motion. For
example, a wheel encoder provides data based on rotation of
the wheel. Other examples include a speedometer, a Doppler
radar, a gyroscope, an accelerometer, an airspeed sensor
(such as pitot tube), and a global positioning system (GPS).
[0024] A motion miferring sensor provide an output that,
alter processing, allows an inference of motion. For
example, a sequence ol camera 1mages can be analyzed to
infer relative motion. In addition to a camera (single or
multiple), other examples of motion-inferring sensors
include a laser scanner (either 2D or 3D), sonar, and radar.
[0025] In addition to recerving data from a motion sensor
and a motion-inferring sensor, data can also be derived from
a statistical probabilistic model of motion. For example, a
pattern of vehicle motion through a roadway intersection can
provide data for the present subject matter. Additionally,
various types of kinematic or dynamic models can be used
to describe the motion.

[0026] With reference again to FIG. 1, an estimate of the
motion of frame of reference 135 at each of the time samples
can be generated using an 1nertial measurement unit (IMU).
[0027] In addition, feature 5 and feature 10 can be tracked
using a video camera.

[0028] FIG. 2 illustrates system 100 according to one
example of the present subject matter. System 100 includes
first sensor 110 and second sensor 120. In one example,
sensor 100 includes a feature tracker and sensor 120
includes a motion sensor, a motion nferring sensor, or a
motion tracking model. The figure illustrates two sensors,
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however, these can be combined and implemented as a
single sensor, such as for example, a camera or a radar
system, 1n which the function of sensing motion and tracking
features are divided in time, space, or other parameter. In
addition, more than two sensors can be provided.

[0029] System 100 uses data derived from two sensing
modalities which are represented in the figure as first sensor
110 and second sensor 120. The first sensing modality
entails detecting motion of the frame of reference with
respect to the environment. The first sensing modality
expresses a constraint as to consecutive poses and a motion
measurement. This motion can be sensed using a direct
motion sensor, a motion tracking sensor, a motion nferring
sensor or based on feature observations. The second sensing,
modality includes feature observations and 1s a function of
a particular feature and a particular pose.

[0030] System 100 includes processor 130 configured to
recerve data from the one or more sensors. Processor 130, 1in
one example, includes mstructions for implementing an
algorithm to process the data and derive navigation infor-
mation. Processor 130, 1n one example, implements a filter
algorithm, such as a Kalman filter or an extended Kalman

filter (EKF).

[0031] Data acquired using the feature tracking sensor and
a motion sensor (or motion-inferring sensor or a motion
tracking model) 1s processed by an algorithm. The algorithm
has complexity linear with the number of tracked features.
Linear complexity means that complexity of the calculation
doubles with a doubling of the number of features that are
tracked. In order to obtain linear complexity, the algorithm
uses feature measurements for imposing constraints between
the poses. This 1s achieved by projecting the residual equa-
tion of the filter to remove dependency of the residual on the
feature error or higher order terms.

[0032] Processor 130 provides an output to output device
140. Output device 140, in various examples, includes a
memory or other storage device, a visible display, a printer,
an actuator (configured to manipulate a hardware device),
and a controller (configured to control another system).

[0033] A number of output results are contemplated. For
example, the algorithm can be configured to determine a
position ol a particular feature. The feature 1s among those
tracked by one of the sensors and its position 1s described as
a point in three-dimensional space. The results can include
navigation information for the frame of reference. For
example, a position, attitude, orientation, velocity, accelera-
tion or other higher order derivative with respect to time can
be calculated. In one example, the results mclude the pose
for the frame of reference. The pose includes a description
of position and attitude. Orientation refers to a single degree
of freedom and 1s commonly referred to as heading. Atti-
tude, on the other hand, includes the three dimensions of
roll, pitch and yaw.

[0034] The output can include a position, an orientation, a
velocity (linear or rotational), acceleration (linear or rota-
tional) or a higher order derivative of position with respect
to time.

[0035] The output can be of any dimension, including
1 -dimensional, 2-dimensional or 3-dimensional.

[0036] The frame of reference can include, for example,
an automobile, a vehicle, or a pedestrian. The sensors are 1n
communication with a processor, as shown 1n FIG. 2, and
provide data relative to the frame of reference. For example,
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a particular sensor can have multiple components with one
portion athxed to the frame of reference and another portion
aflixed to the environment.

[0037] In other examples, a portion of a sensor 1is
decoupled from the frame of reference and provides data to
a remote processor.

[0038] In one example, a feature 1n space describes a
particular point, and thus, its position within an environment
can be 1dentified using three degrees of freedom. In contrast
to a feature, the frame of reference can be viewed as a rigid
body having six degrees of freedom. In particular, the
degrees of freedom for a frame of reference can be described
as moving up and down, moving left and right, moving
forward and backward, tilting up and down (pitch), turning
left and right (vaw), and tilting side to side (roll).

[0039] Consider next an example of an Extended Kalman
Filter (EKF)-based algorithm for real-time vision-aided iner-
tial navigation. This example includes derivation of a mea-
surement model that 1s able to express the geometric con-
straints that arise when a static feature 1s observed from
multiple camera poses. This measurement model does not
require including the 3D feature position 1n the state vector
of the EKF and 1s optimal, up to linearization errors. The
vision-aided inertial navigation algorithm has computational
complexity that i1s linear 1n the number of features, and 1s
capable of high-precision pose estimation in large-scale
real-world environments. The performance of the algorithm
can be demonstrated with experimental results involving a
camera/IMU system localizing within an urban area.

Introduction

[0040] Vision-aided inertial navigation has benefited from
recent advances in the manufacturing of MEMS-based 1ner-
tial sensors. Such sensors have enabled small, inexpensive,
and very accurate Inertial Measurement Units (IMUSs), suit-
able for pose estimation in small-scale systems such as
mobile robots and unmanned aerial vehicles. These systems
often operate 1n urban environments where GPS signals are
unreliable (the “urban canyon”), as well as indoors, 1n space,
and 1 several other environments where global position
measurements are unavailable.

[0041] Visual sensing provides images with high-dimen-
sional measurements, and having rich information content.
A feature extraction method can be used to detect and track
hundreds of features 1n 1mages. However, the high volume
of data also poses a significant challenge for estimation
algorithm design. When real-time localization performance
1s required, there 1s a fundamental trade-ofl between the
computational complexity of an algorithm and the resulting
estimation accuracy.

[0042] The present algorithm can be configured to opti-
mally utilize the localization information provided by mul-
tiple measurements of visual features. When a static feature
1s viewed from several camera poses, 1t 15 possible to define
geometric constraints involving all these poses. This docu-
ment describes a model for expressing these constraints
without including the 3D feature position in the filter state
vector, resulting 1n computational complexity only linear in
the number of features.

[0043] The Simultaneous Localization and Mapping
(SLAM) paradigm refers to a family of algorithms for fusing
inertial measurements with visual feature observations. In
these methods, the current IMU pose, as well as the 3D
positions of all visual landmarks are jointly estimated. These
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approaches share the same basic principles with SLAM-
based methods for camera-only localization, with the dif-
ference that IMU measurements, instead of a statistical
motion model, are used for state propagation. SLAM-based
algorithms account for the correlations that exist between
the pose of the camera and the 3D positions of the observed
teatures. SLAM-based algorithms, on the other hand, sufler
high computational complexity; properly treating these cor-
relations 1s computationally costly, and thus performing
vision-based SLAM in environments with thousands of
features remains a challenging problem.

[0044] The present subject matter includes an algorithm
that expresses constraints between multiple camera poses,
and thus attains higher estimation accuracy, in cases where
the same feature 1s visible 1in more than two 1mages.

[0045] The multi-state constraint filter of the present sub-
ject matter exploits the benefits of delayed linearization
while having complexity only linear in the number of
teatures. By directly expressing the geometric constraints
between multiple camera poses 1t avoids the computational
burden and loss of information associated with pairwise
displacement estimation. Moreover, 1n contrast to SLAM-
type approaches, 1t does not require the inclusion of the 3D
feature positions in the filter state vector, but still attains
optimal pose estimation.

Estimator Description

[0046] A goal of the proposed EKF-based estimator 1s to
track the 3D pose of the IMU-affixed frame {1} with respect
to a global frame of reference {G}. In order to simplify the
treatment of the eflects of the earth’s rotation on the IMU
measurements (ci. Equations 7 and 8), the global frame 1s
chosen as an Earth-Centered, Earth-Fixed (ECEF) frame. An
overview of the algorithm 1s given 1n Table 1.

TABLE 1

Multi-State Constraint Filter

for each IMU measurement received, propagate the filter

state
and covariance.

Propagation

Image Every time a new 1mage is recorded:

registration  augment the state and covariance matrix with a copy of the
current camera pose estimate; and
image processing module begins operation.

Update when the feature measurements of a given 1image become
available, perform an EKF update.

[0047] The IMU measurements are processed immedi-

ately as they become available, for propagating the EKF
state and covariance. On the other hand, each time an 1mage
1s recorded, the current camera pose estimate 1s appended to
the state vector. State augmentation 1s used for processing
the feature measurements, since during EKF updates the
measurements of each tracked feature are employed for
imposing constraints between all camera poses from which
the feature was seen. Therefore, at any time 1nstant the EKF
state vector comprises (1) the evolving IMU state, X, ,», and
(11) a hustory of up to N_ __ past poses of the camera. The
various components of the algorithm are described 1n detail
below.
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A. Structure of the EKF State Vector
[0048] The evolving IMU state 1s described by the vector:

_ T '
Xongr = [IGQT b; Gv}" bf: Gp}”] (Equation 1)

where ..'q is the unit quaternion describing the rotation from
frame {G} to frame a {I}, “p, and “v, are the IMU position
and velocity with respect to {G}, and b, and b, are 3XI
vectors that describe the biases affecting the gyroscope and
accelerometer measurements, respectively. The IMU biases
are modeled as random walk processes, driven by the white
Gaussian noise vectors n,,, and n,,,, respectively. Following

Eq. (1), the IMU error-state 1s defined as:

T T T
Xno = | 667 b, Gyl p OpT |

(Equation 2)

[0049] For the position, velocity, and biases, the standard
additive error definition 1s used (1.e., the error in the estimate
X of a quantity x 1s defined as x=x—X). However, for the
quaternion a different error definition 1s employed. In par-
ticular, if § is the estimated value of the quaternion ¢, then
the orientation error is described by the error quaternion 0q,
which is defined by the relation g=0q&q In this expression,
the symbol & denotes quaternion multiplication. The error
gquaternion 1s

s - [ Lor ]T (Bquation 3)
2

[0050] Intuitively, the quaternion oq describes the (small)
rotation that causes the true and estimated attitude to coin-
cide. Since attitude corresponds to 3 degrees of freedom,
using 00 to describe the attitude errors is a minimal repre-
sentation.

[0051] Assuming that N camera poses are included in the
EKF state vector at time-step k, this vector has the following
form:

e _ | &7 C12T G.T Cy2T g7 (Equation 4)
Xk — [XIMUR qu Gpcrl A GNQ' GPCN]
Where .“q and “p., i=1 . . . N are the estimates of the

camera attitude and position, respectively. The EKF error-
state vector 1s defined accordingly:

(Equation 5)

A ~ T T
Xi=|Xpw, 606, © pe, - 080G, 60, |

B. Propagation

[0052] The filter propagation equations are derived by
discretization of the continuous-time IMU system model, as
described in the following:

1) Continuous-Time System Modeling

[0053] The time evolution of the IMU state 1s described
by:

. 1 . E t1 6
FI0 = SOOI, bg) =m0 (Equation 6)

o) = Ca@), ba(t) = nya @), © pr(t) = Cvi (1)
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[0054] In these expressions, “a is the body acceleration in
the global frame, w=[w, ©, w.]" the rotational velocity
expressed 1n the IMU frame, and

—|lw X]| w 0 ~ws
((w) = [ . ], lew X]|=| w; 0 —wy
—@ 0 —W, @ 0
)% X

[0055] The gyroscope and accelerometer measurements,
®,, and a, respectively, are given by:

Wy =w+C (f;@){ug + bg + g (Equation 7)

(,, = C({;@)(Ga ~ o1 2[we %1%+ [wg X ]ZGp;) + (Equation &)

b, + n,

where C(¢) denotes a rotational matrix, and n, and n, are
zero-mean, white Gaussian noise processes modeling the
measurement noise. Note that the IMU measurements incor-
porate the effects of the planet’s rotation, ®.. Moreover, the
accelerometer measurements include the gravitational accel-
eration, G, expressed in the local frame.

[0056] Applying the expectation operator in the state
propagation equations (Equation 6) yields the equations for
propagating the estimates of the evolving IMU state:

(Equation 9)

where, for brevity, denote C @,:C(Gﬁ), ﬁzam—ﬁﬂ and 6}=(,0m—
b,—C,ms. The linearized continuous-time model for the
IMU error-state 1s:

- ~ Equation 10
X = FX o + Grpyy (Eq )

. T T T
where ng,,=[n," n,.° n,” n

we Dy 1" is the system noise. The
covarilance matrix of n,,,;, Q,,7» depends on the IMU noise
characteristics and 1s computed off-line during sensor cali-
bration. The matrices F and G that appear in Equation 10 are

given by:

- —lox] -4 03,3 03,3 O3,3
033 O3z U33 03,3 (13
F = —Cg[fi' X] O3z —2[wgX] —Cg [we X]?
033 O3z U33 03,3 (13
033 033 I3 Bz ks

where [, 1s the 3x3 1dentity matrix, and

(=13 03,3 Osyz3 Ozyz”
O3,3 I3 O3z Ozx3
G =033 O33 —Cg 03,3

D33 O3z Osus 13
| O3xz Ozyz 033 0343
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2) Discrete-Time Implementation

[0057] The IMU samples the signals ®,, and a, with a
period T, and these measurements are used for state propa-
gation 1n the EKF. Every time a new IMU measurement 1s
received, the IMU state estimate 1s propagated using Sth
order Runge-Kutta numerical integration of Equation 9. The
EKF covariance matrix 1s also propagated. For this purpose,
consider the following partitioning for the covariance:

(Equation 11)
Py = | o7

where P, the 15X15 covariance matrix of the evolving
IMU state, P, 1s the 6NX6N covariance matrix of the
camera pose estimates, and P, 1s the correlation between
the errors 1n the IMU state and the camera pose estimates.
With this notation, the covariance matrix of the propagated
state 1s given by:

Py e+ T, 1Py,

Pry1je =

_P?cklk O + T, 1) Peocy,

where P, 1s computed by numerical integration of the
Lyapunov equation:

Pﬂ = FPH + PHFT + GQ}MUGT (Equﬂtiﬂﬂ 12)

[0058] Numerical integration 1s carried out for the time
interval (t,, t,+T), with initial condition P, . The state
transition matrix P(t,+T,t,) 1s similarly computed by
numerical integration of the differential equation

Oty + 7, ) = FO(ty, + 1, 1), T€[0, 1] (Equation 13)

with 1mitial condition P(t,, t,)=I,-.

C. State Augmentation

[0059] Upon recording a new 1mage, the camera pose
estimate 1s computed from the IMU pose estimate as:

g% - ‘7@l 7 and © P = (Equation 14)
where ,“q is the quaternion expressing the rotation between
the IMU and camera frames, and ‘p_. is the position of the
origin of the camera frame with respect to {1}, both of which
are known. This camera pose estimate 1s appended to the

state vector, and the covariance matrix of the EKF 1is
augmented accordingly:

(Equation 15)

len+15 Teni1s 18
Pk|k‘~—[ iy ]Pk|k[ ; ]

where the Jacobian J 1s derived from Equation 14 as:

C(77)  Osx9 O3y 03x5ﬁr] (Equation 16)
J =

\_Cg}pcxj B39 £z Usxen
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D. Measurement Model

[0060] Consider next the measurement model employed
for updating the state estimates. Since the EKF 1s used for
state estimation, for constructing a measurement model it

sutfices to define a residual, r, that depends linearly on the
state errors, X, according to the general form:

r = HX + noise (Equation 17)

In this expression H i1s the measurement Jacobian matrix,
and the noise term must be zero-mean, white, and uncorre-

lated to the state error, for the EKF framework to be applied.

[0061] Viewing a stafic feature from multiple camera
poses results 1n constraints involving all these poses. Here,
the camera observations are grouped per tracked feature,
rather than per camera pose where the measurements were
recorded. All the measurements of the same 3D point are
used to define a constraint equation (cf. Equation 24),
relating all the camera poses at which the measurements
occurred. This 1s achieved without including the feature
position 1n the filter state vector.

[0062] Consider the case of a single feature, ., that has

;! ja_
been observed from a set of M; camera poses (-q, Gpcl_),

1€ S ;- Each of the M, observations of the feature 1s described
by the model.:

| 1 [S%x.] (Equation 18)
/9 = —|

. o +a ies.
szj I}’de

i j

where n,” is the 2x1 image noise vector, with covariance
matrix R,"’=6, °I,. The feature position expressed in the
camera frame, Cfpf,,, 1S given by:

i

(Equation 19)
Sipr, =| Gy |=C@a)py, - °pc,)

where C']:)Jﬁ 1s the 3D feature position in the global frame.
Since this 1s unknown, 1n the first step of the algorithm,
employ a least-squares minimization to obtain an estimate,
Gf)ﬁ, of the feature position. This 1s achieved using the
measurements z.Y’, i€ S, and the filter estimates of the
camera poses at the corresponding time instants.

[0063] Following the estimation of the feature position,
compute the measurement residual:

},_Eﬁ _ z{-j) _ EIU) (Equation 20)
where
Ci v, 7
o _ L |94 ~ c
A7 . J CI —_ I”h G A _ i o»
Zy = Cr'hr Cff;' " Yj _C(G Q)( pfj p{:})
JL J iz,
¥
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Linearizing about the estimates for the camera pose and for
the feature position, the residual of Equation 20 can be
approximated as:

(Equation 21)

U (/) (NG (7)
= Hy X+Hf} pj}Jrn

In the preceding expression H,. Y’ and H, ¥ the Jacobians of
the measurement z,“” with respect to the state and the feature
position, respectlvely, and © p 1s the error in the p031t1011
estimate of f. The exact values of the Jacobians 1n this
expression are generally available. Stacking the residuals of
all M; measurements of this feature yields:

rP=H CX+HD Gp"ﬁ+nﬁ} (Equation 22)

where r"’, H, 2 Hf(’), and n"’ are block vectors or matrices
with elements r, 0) H, ", H,"”, and n,”, for i€ S,. Since the
feature ObSBI'VElthI]S in dlf erent 1mages are mdependent the
covariance matrix of n?’ is RY=c, “1,,,

[0064] Note that since the state estlmate X 1s used to
compute the feature position estimate, the error p Equation
22 is correlated with the errors X. Thus, the remdual r'” is not
in the form of Equation 17, and cannot be directly applied
for measurement updates 1n the EKF. To overcome this,
define a residual r %, by projecting r'’ on the left nullspace
of the matrix H/”. Specifically, let A denote the unitary
matrix whose columns form the basis of the left nullspace of
H. to obtain:

P = ATV =20y = ATHY X + AT (Equation 23)

= HO XD 10 (Equation 24)

Since the 2M.X3 matnx H, ¢ has full column rank, its left
nullspace 1s Of dimension 2M —3. Therefore, r,“’ is a (2M—
3)x1 vector. This residual 1s mdependent of the errors in the
feature coordinates, and thus EKF updates can be performed
based on 1t. Equation 24 defines a linearized constraint
between all the camera poses from which the feature f; was
observed. This expresses all the available information that
the measurements z,%” provide for the M: states, and thus the
resulting EKF update 1s optimal, except for the 1inaccuracies
caused by linearization.

[0065] In order to compute the residual r “’ and the mea-
surement matrix H_9’, the unitary matrix A does not need to
be explicitly evaluated. Instead, the projection of the vector
r and the matrix H,"” on the nullspace of HY’ can be
computed very ef:lmently usmg Givens rotatlons in O(M; )
operations. Additionally, since the matrix A 1s unitary, the
covariance matrix of the noise vector n Y’ is given by:

E{n ") = 02,474 = 02, Ly,

[0066] The residual defined 1n Equation 23 1s not the only

possible expression of the geometric constraints that are
induced by observing a static feature in M, images. An
alternative approach i1s, for example, to employ the epipolar
constraints that are defined for each of the M(M.—1)/2 pairs
of images. However, the resulting M.(M.—1)/2 equations
would still correspond to only 2M~—3 independent con-
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straints, since each measurement 1s used multiple times,
rendering the equations statistically correlated. Experimen-
tal data shows that employing linearization of the epipolar
constraints results 1n a significantly more complex 1mple-
mentation, and yields inferior results compared to the
approach described above.

E. EKF Updates

[0067] The preceding section presents a measurement
model that expresses the geometric constraints imposed by
observing a static feature from multiple camera poses. Next,
consider the update phase of the EKF, in which the con-
straints from observing multiple features are used. EKF
updates are triggered by one of the following two events:

[0068] When a feature that has been tracked in a number
of 1images 1s no longer detected, then all the measurements
of this feature are processed using the method presented
above 1n the section concerning Measurement Model. This
case occurs most often, as features move outside the cam-
era’s field of view.

[0069] Every time a new 1mage 1s recorded, a copy of the
current camera pose estimate 1s included in the state vector
(see the section concerning State Augmentation). If the
maximum allowable number of camera poses, N . has
been reached, at least one of the old ones must be removed.
Prior to discarding states, all the feature observations that
occurred at the corresponding time 1nstants are used, 1n order
to utilize their localization information. In one example,
choose N, /3 poses that are evenly spaced 1n time, starting
from the second-oldest pose. These are discarded after
carrying out an EKF update using the constraints of features
that are common to these poses. One example always retains
the oldest pose 1n the state vector, because the geometric
constraints that involve poses further back in time typically
correspond to larger baseline, and hence carry more valuable
positioning information.

[0070] Consider next the update process. At a given time
step the constraints of L features, selected by the above two
criteria, must be processed. Following the procedure
described 1n the preceding section, compute a residual vector
. 3=1 ... L, as well as a corresponding measurement
matrix H V¥, j=1 ... L for each of these features (cf. Equation
23). Stacking all residuals 1n a single vector yields:

r, = H. X +n, (Equation 25)

where r, and n_ are vectors with block elementsr,“’ and n ",

j=1 ... L respectively, and Hx 1s a matrix with block rows
HY, j=1...L.

[0071] Since the feature measurements are statistically
independent, the noise vectors n_” are uncorrelated. There-

fore, the covariance matrix of the noise vector n 1s equal to
R =6, °1, where d=X X (2M —3) 1s the dimension of the

IF?‘I

remdual r_. In practice, d can be a quite large number. For
example, if 10 features are seen 1n 10 camera poses each, the
dimension of the residual 1s 170. In order to reduce the
computational complexity of the EKF update, employ the
QR decomposition of the matrix Hx. Specifically, denote
this decomposition as
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m=10 o1 |

where Q, and Q, are unitary matrices whose columns form
bases for the range and nullspace of Hx, respectively, and T ,,

1s an upper triangular matrix. With this definition, Equation
25 yields:

(Equation 26)

T .
ro =[O Qz][ #xin, =
017, _ [TH I Q{ng] (Equation 27)
_Qg?”a_ 0 Qgﬂg

[0072] From the last equation it becomes clear that by
projecting the residual r_ on the basis vectors of the range of
Hx, all the useful information in the measurements 1is
retained. The residual Q,’r  is only noise, and can be

completely discarded. For this reason, instead of the residual

shown 1n Equation 25, employ the following residual for the
EKF update:

o= Olr, = Ty X +n, (Equation 28)

In this expression n_=Q, ‘n_ a noise vector whose covariance
matrix is equal to R =Q,’R_Q,=c, I, with r being the
number of columns in Q,. The EKF update proceeds by
computing the Kalman gain:

K = PTET(THPTE} +Rn)_1 (Equation 29)

while the correction to the state 1s given by the vector

AX = Kr, (Equation 30)

In addition, the state covariance matrix 1s updated according
to:

Pyt = Uy = KTm)Piap e — KTg)' + KR, K" (Equation 31)

where E=6N+15 is the dimension of the covariance matrix.

[0073] Consider the computational complexity of the
operations needed during the EKF update. The residual r,, as
well as the matrix T,, can be computed using Givens
rotations in O(r“d) operations, without the need to explicitly
form Q,. On the other hand, Equation 31 involves multipli-
cation of square matrices of dimension &, an O(£’) opera-
tion. Therefore, the cost of the EKF update is max(O(r°d),
O(E?)). If, on the other hand, the residual vector r was
employed, without projecting it on the range of H,_, the
computational cost of computing the Kalman gain would
have been O(d’) . Since typically d>>E, r, the use of the
residual r, results 1n substantial savings in computation.
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Discussion

[0074] Consider next some of the properties of the
described algorithm. As shown elsewhere in this document,
the filter’s computational complexity 1s linear in the number
of observed features, and at most cubic in the number of
states that are included in the state vector. Thus, the number
of poses that are included 1n the state 1s the most significant
factor in determining the computational cost of the algo-
rithm. Since this number 1s a selectable parameter, i1t can be
tuned according to the available computing resources, and
the accuracy requirements of a given application. In one
example, the length of the filter state 1s adaptively controlled
during filter operation, to adjust to the varying availability of
resources.

[0075] One source of difficulty 1n recursive state estima-
tion with camera observations 1s the nonlinear nature of the
measurement model. Vision-based motion estimation 1s very
sensitive to noise, and, especially when the observed fea-
tures are at large distances, false local minima can cause
convergence to inconsistent solutions. The problems intro-
duced by nonlinearity can be addressed using techniques
such as Sigma-point Kalman filtering, particle filtering, and
the inverse depth representation for features. The algorithm
1S robust to linearization 1naccuracies for various reasons,
including (1) the inverse feature depth parametrization used
1in the measurement model and (11) the delayed linearization
of measurements. According to the present subject matter,
multiple observations of each feature are collected prior to
using them for EKF updates, resulting in more accurate
evaluation of the measurement Jacobians.

[0076] In typical image sequences, most features can only
be reliably tracked over a small number of frames (“oppor-
tunistic” features), and only a few can be tracked for long
periods of time, or when revisiting places (persistent fea-
tures). This 1s due to the limited field of view of cameras, as
well as occlusions, image noise, and viewpoint changes, that
result 1n failures of the feature tracking algorithms. If all the
poses 1n which a feature has been seen are included 1n the
state vector, then the proposed measurement model 1s opti-
mal, except for linearization inaccuracies. Therefore, for
realistic 1image sequences, the present algorithm 1s able to
use the localization information of the opportunistic fea-
tures. Also note that the state vector X, 1s not required to
contain only the IMU and camera poses. In one example, the
persistent features can be included in the filter state, and
used for SLLAM. This can improve the attainable localization
accuracy within areas with lengthy loops.

EXPERIMENTAL EXAMPLE

[0077] The algorithm described herein has been tested
both 1n simulation and with real data. Simulation experi-
ments have verified that the algorithm produces pose and
velocity estimates that are consistent, and can operate reli-
ably over long trajectories, with varying motion profiles and
density of visual features.

[0078] The following includes the results of the algorithm
in an outdoor experiment.

[0079] The experimental setup included a camera/IMU
system, placed on a car that was moving on the streets of a
typical residential area in Minneapolis, MN. The system
included a Pointgrey FireFly camera, registering images of
resolution 640x480 pixels at 3 Hz, and an Inertial Science
ISIS IMU, providing inertial measurements at a rate of 100
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Hz. During the experiment all data were stored on a com-
puter and processing was done off-line. Some example

images from the recorded sequence are shown in FIGS.
3A-3D.

[0080] The recorded sequence included a video of 1598
images representing about 9 minutes of driving.

[0081] For the results shown here, feature extraction and
matching was performed using the SIFT algorithm. During
this run, a maximum of 30 camera poses was maintained in
the filter state vector. Since features were rarely tracked for
more than 30 1mages, this number was sufficient for utilizing
most of the available constraints between states, while
attaining real-time performance. Even though 1mages were
only recorded at 3 Hz due to limited hard disk space on the
test system, the estimation algorithm 1s able to process the
dataset at 14 Hz, on a single core of an Intel T7200 processor
(2 GHz clock rate). During the experiment, a total of 142903
features were successfully tracked and used for EKF
updates, along a 3.2 km-long trajectory. The quality of the
position estimates can be evaluated using a map of the area.

[0082] In FIG. 4, the estimated trajectory 1s plotted on a
map of the neighborhood where the experiment took place.
The 1n1tial position of the car 1s denoted by a red square on
SE 19" Avenue, and the scale of the map is shown on the top
left corner.

[0083] FIGS. 5A-5C are graphs illustrating the 36 bounds
for the errors 1n the position, attitude, and velocity, respec-
tively. The plotted values are 3-times the square roots of the
corresponding diagonal elements of the state covariance
matrix. Note that the EKF state 1s expressed in ECEF frame,
but for plotting, all quantities have been transformed 1n the
initial IMU frame, whose x axis 1s pointing approximately
south, and 1ts y axis east.

[0084] The trajectory follows the street layout quite accu-
rately and, additionally, the position errors that can be
inferred from this plot agree with the 3¢ bounds shown 1n
FIG. 5A. The final position estimate, expressed with respect
to the starting pose, 1s Xﬁnafz[—7.92 13.14 —0.78]" m. From
the 1mitial and final parking spot of the vehicle it 1s known
that the true final position expressed with respect to the
initial pose is approximately X, =[0 7 0]’ m. Thus, the
final position error 1s approximately 10 m 1n a trajectory of
3.2 km, 1.e., an error of 0.31% of the traveled distance. This
1s remarkable, given that the algorithm does not utilize loop
closing, and uses no prior information (for example, non-
holonomic constraints or a street map) about the car motion.
Note also that the camera motion 1s almost parallel to the
optical axis, a condition which 1s particularly adverse for
image-based motion estimation algorithms. In FIG. 5B and
FIG. 5C, the 36 bounds for the errors 1n the IMU attitude and
velocity along the three axes are shown. From these, observe
that the algorithm obtains accuracy (3G) better than 1° for
attitude, and better than 0.35 msec for velocity in this
particular experiment.

[0085] The results demonstrate that the algorithm 1s
capable of operating in a real-world environment, and pro-
ducing very accurate pose estimates in real-time. Note that
in the dataset presented here, several moving objects appear,
such as cars, pedestrians, and trees whose leaves move in the
wind. The algorithm 1s able to discard the outliers which
arise from visual features detected on these objects, using a
simple Mahalanobis distance test. Robust outlier rejection 1s
facilitated by the fact that multiple observations of each
feature are available, and thus visual features that do not
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correspond to static objects become easier to detect. Note
also that the method can be used either as a stand-alone pose
estimation algorithm, or combined with additional sensing
modalities to provide increased accuracy. For example, a
GPS sensor (or other type of sensor) can be used to com-
pensate for position drift.

[0086] The present subject matter includes an EKF-based
estimation algorithm for real-time vision-aided 1nertial navi-
gation. One aspect of this work 1s the derivation of a
measurement model that 1s able to express the geometric
constraints that arise when a static feature 1s observed from
multiple camera poses. This measurement model does not
require including the 3D feature positions in the state vector
of the EKF, and 1s optimal, up to the errors introduced by
linearization. The resulting EKF-based pose estimation
algorithm has computational complexity linear in the num-
ber of features, and 1s capable of very accurate pose esti-
mation 1n large-scale real environments. One example
includes fusing inertial measurements with visual measure-
ments from a monocular camera. However, the approach 1s
general and can be adapted to different sensing modalities
both for the proprioceptive, as well as for the exteroceptive
measurements (e.g., for fusing wheel odometry and laser

scanner data).

Selected Calculations

[0087] Intersection can be used to compute an estimate of
the position of a tracked feature £.. To avoid local minima,
and for better numerical stability, during this process, use an
inverse-depth parametrization of the feature position. In
particular, 1if {Cn} 1s the camera frame 1n which the feature
was observed for the first time, then the feature coordinates
with respect to the camera at the 1-th time instant are:

(Equation 32)

In this expression C(- “q) and “p. are the rotation and
translation between the camera frames at time instants n and
1, respectively. Equation 32 can be rewritten as:

{ Cn X; (Equation 33)
C, Z; 1
Cfpf:.i' :C'nZj C(g;@) o Y, |+ CanCfpcﬁ
Cnz, /
\ 1

(Equation 34)

=C”ZJ[C(E§E) B +ﬁjcfﬁcn]

-hﬂ({l’j, ﬁj: pj)q (qulﬂtlﬂﬂ 35)
— CHZJ{ hr"l(wj: ﬁj: )Oj)

i hﬂ ({l’j, ﬁj: pj) )

In the last expression h;,, h,, and h,, are scalar functions of
the quantities «;, [3;, p;, which are defined as:

(Equation 36)
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Substituting from Equation 35 into Equation 18, express the
measurement equations as functions of o, [3;, and p; only:

(Equation 37)

E;"f): 1 ’hfl(ﬂf':ﬁj:ﬁj)]+ng)
hﬂ(a‘{': ﬁj: pj) hIZ(arj: }Bja )Oj)

(Given the measurements zi@, 1€ S s and the estimates fgr t}ge
camera poses 1n the state vector, obtain estimates for o, Bj,
and p;, and using Gauss-Newton least squares minimization.
Then, the global feature position 1s computed by:

@ (Bquation 38)

Note that during the least-squares minimization process the
camera pose estimates are treated as known constants, and
their covariance matrix 1s 1gnored. As a result, the minimi-
zation can be carried out very efficiently, at the expense of
the optimality of the feature position estimates. Recall,
however, that up to a first-order approximation, the errors in
these estimates do not affect the measurement residual (cf.
Equation 23). Thus, no significant degradation of perfor-
mance 1s 1nflicted.

Additional Notes

[0088] The above detailed description includes references
to the accompanying drawings, which form a part of the
detailed description. The drawings show, by way of 1llus-
tration, specific embodiments in which the invention can be
practiced. These embodiments are also referred to herein as
“examples.” Such examples can include elements 1n addi-
tion to those shown and described. However, the present
inventors also contemplate examples 1n which only those
elements shown and described are provided.

[0089] All publications, patents, and patent documents
referred to 1n this document are incorporated by reference
herein 1n their entirety, as though individually incorporated
by reference. In the event of inconsistent usages between
this document and those documents so incorporated by
reference, the usage in the incorporated reference(s) should
be considered supplementary to that of this document; for
irreconcilable inconsistencies, the usage in this document
controls.

[0090] In this document, the terms “a” or “an’ are used, as
1s common 1n patent documents, to include one or more than
one, independent of any other instances or usages of “at least
one” or “‘one or more.” In this document, the term ““or” 1s
used to refer to a nonexclusive or, such that “A or B”
includes “A but not B,” “B but not A,” and “A and B,” unless
otherwise indicated. In the appended claims, the terms
“including” and “in which” are used as the plain-English
equivalents of the respective terms “comprising” and
“wherein.” Also, 1n the following claims, the terms “includ-
ing” and “comprising” are open-ended, that 1s, a system,
device, article, or process that includes elements 1n addition
to those listed after such a term in a claim are still deemed
to fall within the scope of that claam. Moreover, in the
following claims, the terms “first,” “second,” and “third,”
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etc. are used merely as labels, and are not intended to impose
numerical requirements on their objects.

[0091] Method examples described herein can be machine
or computer-implemented at least in part. Some examples
can include a computer-readable medium or machine-read-
able medium encoded with instructions operable to config-
ure an electronic device to perform methods as described 1n
the above examples. An implementation of such methods
can 1nclude code, such as microcode, assembly language
code, a higher-level language code, or the like. Such code
can 1nclude computer readable instructions for performing
various methods. The code may form portions of computer
program products. Further, the code may be tangibly stored
on one or more volatile or non-volatile computer-readable
media during execution or at other times. These computer-
readable media may include, but are not limited to, hard
disks, removable magnetic disks, removable optical disks
(for example, compact disks and digital video disks), mag-
netic cassettes, memory cards or sticks, random access
memories (RAMs), read only memories (ROMs), and the
like.

[0092] The above description 1s intended to be illustrative,
and not restrictive. For example, the above-described
examples (or one or more aspects thereof) may be used 1n
combination with each other. Other embodiments can be
used, such as by one of ordinary skill in the art upon
reviewing the above description. The Abstract 1s provided to
allow the reader to quickly ascertain the nature of the
technical disclosure. It 1s submitted with the understanding
that 1t will not be used to interpret or limit the scope or
meaning of the claims. Also, 1n the above Detailed Descrip-
tion, various features may be grouped together to streamline
the disclosure. This should not be interpreted as intending
that an unclaimed disclosed feature 1s essenfial to any claim.
Rather, inventive subject matter may lie in less than all
features of a particular disclosed embodiment. Thus, the
following claims are hereby incorporated into the Detailed
Description, with each claim standing on 1ts own as a
separate embodiment. The scope of the invention should be
determined with reference to the appended claims, along

with the full scope of equivalents to which such claims are
entitled.

What 1s claimed 1s:
1. A vision-aided 1nertial navigation system comprising:
at least one 1image source capable of providing image data
comprising 1mages captured at a plurality of poses
along a trajectory within an environment over a period
of time, wherein the image data includes features that
were each observed within the environment at multiple
poses along the trajectory;
a motion sensor configured to provide motion data in the
environment for the period of time; and
a processor communicatively coupled to the at least one
image source and communicatively coupled to the
motion sensor, the processor configured to compute
estimates for at least a position and orientation for at
least some of the plurality of poses along the trajectory,
wherein the processor 1s configured to:
determine, from the 1image data, feature measurements
corresponding to one or more features observed from
any of the plurality of poses along the trajectory;

for one or more of the features observed from multiple
poses along the trajectory, compute one or more
constraints based upon estimates for positions within
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the environment for the one or more of the features
observed from multiple poses along the trajectory,
where the estimated positions are obtained using the
image data;
determine the position and orientation for at least some
of the plurality of poses along the trajectory by
updating, in accordance with the motion data and the
one or more computed constraints, state information
within a state vector representing estimates for posi-
tion and orientation along the trajectory; and
output, for display, information responsive to the
updated state information;
wherein the estimates for positions within the envi-
ronment for the one or more of the features
observed from multiple poses along the trajectory
are maintained separately from the state vector.

2. The vision-aided inertial navigation system of claim 1,
wherein the processor 1s configured to compute each of the
one or more constraints by manipulating a residual of a
measurement for the respective feature.

3. The vision-aided 1nertial navigation system of claim 1,

wherein the at least one 1image source includes a camera,

and

wherein the vision-aided inertial navigation system com-

prises one of a robot or a vehicle.
4. The vision-aided inertial navigation system of claim 1
wherein the motion sensor includes an inertial measurement
unit (IMU).
5. The vision-aided 1nertial navigation system of claim 1
wherein the processor 1s configured to implement an
extended Kalman filter to compute the one or more con-
straints.
6. The vision-aided inertial navigation system of claim 1
turther including an output device coupled to the processor,
the output device including at least one of a memory, a
transmitter, a display, a printer, an actuator, and a controller.
7. A method comprising:
receiving, with a processor and from at least one 1image
source communicatively coupled to the processor,
image data comprising images captured at a plurality of
poses along a trajectory within an environment over a
period of time, wherein the 1mage data includes fea-
tures observed within the environment at multiple
poses along the trajectory;
receiving, with the processor and from a motion sensor
communicatively coupled to the processor, motion data
in the environment for the period of time; and

computing, with the processor, state estimates for at least
a position and orientation for at least some of the
plurality of poses along the trajectory,

wherein computing the state estimates comprises:

determining, from the image data, feature measure-
ments corresponding to one or more Ieatures
observed from any of the plurality of poses along the
trajectory;

for one or more of the features observed from the
plurality of poses along the trajectory, computing
one or more constraints based upon estimates for
positions within the environment for the one or more
of the features observed from multiple poses along
the trajectory, where the estimated positions are
obtained using the 1mage data;

determining the position and orientation for at least
some of the plurality of poses along the trajectory by
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updating, in accordance with the motion data and the
one or more computed constraints, state information
within a state vector representing estimates for posi-
tion and orientation along the trajectory;

outputting, for display, information responsive to the
updated state information;

wherein the estimates for positions within the environ-
ment for the one or more of the features observed
from multiple poses along the trajectory are main-
tained separately from the state vector; and

controlling, responsive to the computed state estimates,
navigation along the trajectory.

8. The method of claim 7, wherein computing the one or
more constraints comprises manipulating a residual of a
measurement of the respective feature to reduce an effect of
a feature estimate error.

9. The method of claim 7, wherein computing the state
estimates further includes computing states estimates for at
least one of a velocity and an acceleration along the trajec-
tory.

10. The method of claim 7, wherein receiving the 1mage
data includes receiving data from at least one of a camera-
based sensor, a laser-based sensor, a sonar-based sensor, and
a radar-based sensor.

11. The method of claim 7, wherein receiving the motion
data from the motion sensor includes receiving data from at
least one of a wheel encoder, a velocity sensor, a Doppler
radar based sensor, a gyroscope, an accelerometer, an air-
speed sensor, and a global positioning system (GPS) sensor.

12. The method of claim 7 wherein computing the one or
more constraints comprises executing an Extended Kalman
Filter (EKF).

13. A non-transitory computer-readable storage medium
comprising instructions that configure a processor to:

receive, with the processor and from at least one 1image
source communicatively coupled to the processor,
image data comprising images captured at a plurality of
poses along a trajectory within an environment over a
period of time, wherein the 1mage data includes fea-
tures observed within the environment at multiple
poses along the trajectory;

recerve, with the processor and from a motion sensor
communicatively coupled to the processor, motion data
in the environment for the period of time;

determine, from the image data, feature measurements
corresponding to one or more features observed from
any of the plurality of poses along the trajectory;

for one or more of the features observed from the plurality
of poses along the trajectory, compute one or more
constraints based upon estimates for positions within
the environment for the one or more features observed
from the plurality of poses along the trajectory, where
the estimated positions are obtained using the image
data;

determine state estimates for at least a position and an
orientation for at least some of the plurality of poses
along the trajectory by updating, in accordance with the
motion data and the one or more computed constraints,
state information within a state vector representing
estimates for the position and orientation along the
trajectory; and

output, for display, information responsive to the updated
state information,
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wherein the estimates for positions within the environ-
ment for the one or more of the features observed
from multiple poses along the trajectory are main-
tained separately from the state vector.

14. The non-transitory computer-readable storage
medium of claim 13, wherein the mstructions configure the
processor to compute the one or more constraints by
manipulating a residual of a measurement of the respective
feature to reduce an eflect of a feature estimate error.

15. The non-transitory computer-readable storage
medium of claim 13, wherein the instructions configure the
processor to compute states estimates for at least a velocity,
or acceleration along the trajectory.

16. The non-transitory computer-readable storage
medium of claim 13, wherein the image data includes data
from at least one of a camera-based sensor, a laser-based
sensor, a sonar-based sensor, and a radar-based sensor.

17. The non-transitory computer-readable storage
medium of claim 13, wherein the motion data includes data
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from at least one of a wheel encoder, a velocity sensor, a
Doppler radar based sensor, a gyroscope, an accelerometer,
an airspeed sensor, and a global positioning system (GPS)
SEeNsor.

18. The non-transitory computer-readable storage
medium of claim 13, wherein the mstructions configure the
processor to execute an Extended Kalman Filter (EKF).

19. The non-transitory computer-readable storage
medium of claim 13, wherein at least one constraint 1s
computed based on the feature measurements for features
observed at three or more of the poses along the trajectory.

20. The vision-aided inertial navigation system of claim 1,
wherein the processor computes at least one constraint based
on the feature measurements for features observed at three
or more of the plurality of poses along the trajectory.

21. The method of claim 7, wherein at least one constraint
1s computed based on the feature measurements for features
observed at three or more of the poses along the trajectory.

¥ ¥ * o o



	Front Page
	Drawings
	Specification
	Claims

