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Q0

910
Recelving a reference image of an environment and a set of one /
or more source images of the environment

. . . . 920
Recelving image features for the reference image and the set of /
source images

(Generating a four dimensional feature volume that includes the
Image features and metadata associated with the reference image / 930
and set of source Images, the image features and the metadata
arranged In the feature volume based on relative pose distances
between the reference image and the set of source images

| | | 940
Reducing the feature volume to generate a three dimensional cost /
volume

Applying a depth estimation model to the cost volume and data / 960
based on the reference image to generate a two dimensional
depth map
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1000

Access training iImage data comprising a plurality of reference images and
set of source images associated with the reference images
1010

For each reference image

(Generate a cost volume using the reference image and the associated set
of source iImages

1020

" Generate a dépfh map for the reference image using the cost volume
1030

Determine accuracy of pixels in the depth

map using a ground truth depth map
1040

Train the depth estimation model by minimizing the overall losses
1060

FIG. 10
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3D RECONSTRUCTION WITHOUT 3D
CONVOLUTIONS

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims priority to U.S. Provisional
Application No. 63/339,090, titled “3D Reconstruction Wit-
poschout 3D Convolutions™ filed on May 6, 2022, which 1s

incorporated herein by reference.

BACKGROUND

1 Technical Field

[0002] The subject matter described relates generally to
estimating a depth map for input 1images, and, 1n particular,
to a machine-learned model for estimating the depth map.

2. Problem

[0003] Three dimensional (3D) scene reconstruction has
applications 1n both navigation and scene understanding.
Three dimensional (3D) scene reconstruction from posed
images may occur in two phases: per-image depth estima-
tion, followed by depth merging and surface reconstruction.
Recently, a family of methods have emerged that perform
reconstruction directly 1n final 3D volumetric feature space.
While these methods have shown impressive reconstruction
results, they rely on expensive 3D convolutional layers,
limiting their application in resource-constrained environ-
ments, such as smartphones.

SUMMARY

[0004] Aspects of this disclosure relate to using high
quality multi-view depth predictions to generate highly
accurate 3D reconstructions using depth fusion. This dis-
closure describes a state-oi-the-art multi-view depth estima-
tor with at least two contributions over preexisting methods:
1) a carefully designed 2D CNN (convolutional neural
network) which utilizes strong image priors alongside a
plane-sweep feature volume and geometric losses, combined
with 2) the mtegration of keylrame and geometric metadata
into a cost volume which allows informed depth plane
scoring. Embodiments may achieve a significant lead over
the current state-of-the-art techniques for depth estimation
and close or better for 3D reconstruction on ScanNet and
7-Scenes data sets, yet embodiments may still allow for
online real-time low-memory reconstruction. While some
embodiments produce state-of-the-art depth estimations and
3D reconstructions without the use of expensive 3D convo-
lutions, embodiments do not preclude the use of 3D convo-
lutions or additional cost volume and depth refinement
techniques, thus allowing room for further improvements
when computation 1s less restricted.

[0005] In some aspects, the techniques described herein
relate to a method including: receiving a reference 1image of
an environment and a set of one or more source 1mages (also
referred to as keyframes) of the environment; receiving
image features for the reference 1mage and the set of source
images; generating a 4D feature volume that includes the
image features and metadata associated with the reference
and set of source 1images, the 1image features and the meta-
data may be arranged in the 4D feature volume based on
relative pose distances between the reference image and the
set of source 1mages; reducing the 4D feature volume to

Nov. 9, 2023

generate a 3D cost volume; and applying a depth estimation
model to the 3D cost volume and data based on the reference
image to generate a two dimensional (2D) depth map for the
reference image.

[0006] Other aspects include components, devices, sys-
tems, improvements, methods, processes, applications, com-
puter readable mediums, and other technologies related to
any of the above.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] FIG. 1 depicts a representation of a virtual world
having a geography that parallels the real world, according
to one embodiment.

[0008] FIG. 2 depicts an exemplary game interface of a
parallel reality game, according to one embodiment.
[0009] FIG. 3 15 a block diagram of a networked comput-
ing environment suitable for estimating a depth map or 3D
scene reconstructions, according to one embodiment.
[0010] FIG. 4 illustrates depth predictions and 3D recon-
structions generated by various models, according to some
embodiments.

[0011] FIG. 5A1s a diagram of a depth estimation module,
according to some embodiments.

[0012] FIG. 5B 1s a diagram of a feature volume, accord-
ing to some embodiments.

[0013] FIG. 5C 1s a geometric diagram that illustrates
metadata components for a reference image and a source
image, according to some embodiments.

[0014] FIG. 6 illustrates additional depth predictions by
various models, according to some embodiments.

[0015] FIG. 7 illustrates normal generations by various
models, according to some embodiments.

[0016] FIG. 8 illustrates 3D reconstructions that include
unseen environments, according to some embodiments.
[0017] FIG. 9 1s a flowchart describing an example
method of generating a depth map for a reference image of
an environment, according to some embodiments.

[0018] FIG. 10 1s a flowchart describing an example
method of training a depth map module, according to some
embodiments.

[0019] FIG. 11 illustrates an example computer system
suitable for use 1n the networked computing environment of
FIG. 1, according to one embodiment.

DETAILED DESCRIPTION

[0020] The figures and the following description describe
certain embodiments by way of illustration only. One skilled
in the art will recognize from the following description that
alternative embodiments of the structures and methods may
be employed without departing 1rom the principles
described. Wherever practicable, similar or like reference
numbers are used in the figures to indicate similar or like
functionality. Where elements share a common numeral
followed by a different letter, this indicates the elements are
similar or i1dentical. A reference to the numeral alone gen-
erally refers to any one or any combination of such elements,
unless the context indicates otherwise.

[0021] Various embodiments are described 1n the context
of a parallel reality game that includes augmented reality
content 1n a virtual world geography that parallels at least a
portion of the real-world geography such that player move-
ment and actions in the real-world aflect actions i1n the
virtual world. The subject matter described 1s applicable n
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other situations where generating depth information 1s desir-
able. In addition, the inherent flexibility of computer-based
systems allows for a great variety of possible configurations,
combinations, and divisions of tasks and functionality
between and among the components of the system.

1 Example Location-Based Parallel Reality Game

[0022] FIG. 1 1s a conceptual diagram of a virtual world
110 that parallels the real world 100. The virtual world 110
can act as the game board for players of a parallel reality
game. As illustrated, the virtual world 110 includes a geog-
raphy that parallels the geography of the real world 100. In
particular, a range of coordinates defining a geographic area
or space 1n the real world 100 1s mapped to a corresponding
range ol coordinates defining a virtual space in the virtual
world 110. The range of coordinates in the real world 100
can be associated with a town, neighborhood, city, campus,
locale, a country, continent, the entire globe, or other geo-
graphic area. Each geographic coordinate in the range of
geographic coordinates 1s mapped to a corresponding coor-
dinate 1n a virtual space 1n the virtual world 110.

[0023] A player’s position in the virtual world 110 corre-
sponds to the player’s position in the real world 100. For
instance, player A located at position 112 1n the real world
100 has a corresponding position 122 1n the virtual world
110. Similarly, player B located at position 114 in the real
world 100 has a corresponding position 124 1n the virtual
world 110. As the players move about in a range of geo-
graphic coordinates in the real world 100, the players also
move about in the range of coordinates defining the virtual
space 1n the virtual world 110. In particular, a positioning
system (e.g., a GPS system, a localization system, or both)
associated with a mobile computing device carried by the
player can be used to track a player’s position as the player
navigates the range ol geographic coordinates in the real
world 100. Data associated with the player’s position 1n the
real world 100 1s used to update the player’s position in the
corresponding range of coordinates defining the wvirtual
space 1n the virtual world 110. In this manner, players can
navigate along a continuous track in the range of coordinates
defining the virtual space in the virtual world 110 by simply
traveling among the corresponding range of geographic
coordinates in the real world 100 without having to check 1n
or periodically update location information at specific dis-
crete locations 1n the real world 100.

[0024] The location-based game can include game objec-
tives requiring players to travel to or interact with various
virtual elements or virtual objects scattered at various virtual
locations 1n the virtual world 110. A player can travel to
these virtual locations by traveling to the corresponding
location of the virtual elements or objects 1n the real world
100. For istance, a positioning system can track the posi-
tion of the player such that as the player navigates the real
world 100, the player also navigates the parallel virtual
world 110. The player can then interact with various virtual
clements and objects at the specific location to achieve or
perform one or more game objectives.

[0025] A game objective may have players interacting
with virtual elements 130 located at various virtual locations
in the virtual world 110. These virtual elements 130 can be
linked to landmarks, geographic locations, or objects 140 1n
the real world 100. The real-world landmarks or objects 140
can be works of art, monuments, buildings, businesses,
libraries, museums, or other suitable real-world landmarks
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or objects. Interactions include capturing, claiming owner-
ship of, using some virtual item, spending some virtual
currency, etc. To capture these virtual elements 130, a player
travels to the landmark or geographic locations 140 linked to
the virtual elements 130 1n the real world and performs any
necessary interactions (as defined by the game’s rules) with
the virtual elements 130 in the wvirtual world 110. For
example, player A may have to travel to a landmark 140 1n
the real world 100 to interact with or capture a virtual
clement 130 linked with that particular landmark 140. The
interaction with the virtual element 130 can require action 1n
the real world, such as taking a photograph or verifying,
obtaining, or capturing other information about the land-
mark or object 140 associated with the virtual element 130.

[0026] Game objectives may require that players use one
or more virtual 1tems that are collected by the players in the
location-based game. For instance, the players may travel
the virtual world 110 seeking virtual 1tems 132 (e.g., weap-
ons, creatures, power ups, or other 1tems) that can be useful
for completing game objectives. These virtual items 132 can
be found or collected by traveling to different locations in
the real world 100 or by completing various actions 1n either
the virtual world 110 or the real world 100 (such as inter-
acting with virtual elements 130, battling non-player char-
acters or other players, or completing quests, etc.). In the
example shown 1n FIG. 1, a player uses virtual items 132 to
capture one or more virtual elements 130. In particular, a
player can deploy virtual items 132 at locations 1n the virtual
world 110 near to or within the wvirtual elements 130.
Deploying one or more virtual 1tems 132 1n this manner can
result in the capture of the virtual element 130 for the player
or for the team/faction of the player.

[0027] In one particular implementation, a player may
have to gather virtual energy as part of the parallel reality
game. Virtual energy 150 can be scattered at different
locations 1n the virtual world 110. A player can collect the
virtual energy 150 by traveling to (or within a threshold
distance of) the location in the real world 100 that corre-
sponds to the location of the virtual energy in the virtual
world 110. The virtual energy 150 can be used to power
virtual items or perform various game objectives 1n the
game. A player that loses all virtual energy 150 may be
disconnected from the game or prevented from playing for
a certain amount of time or unftil they have collected
additional virtual energy 150.

[0028] According to aspects of the present disclosure, the
parallel reality game can be a massive multi-player location-
based game where every participant in the game shares the
same virtual world. The players can be divided 1nto separate
teams or factions and can work together to achieve one or
more game objectives, such as to capture or claim ownership
of a virtual element. In this manner, the parallel reality game
can intrinsically be a social game that encourages coopera-
tion among players within the game. Players from opposing
teams can work against each other (or sometime collaborate
to achueve mutual objectives) during the parallel reality
game. A player may use virtual items to attack or impede
progress ol players on opposing teams. In some cases,
players are encouraged to congregate at real world locations
for cooperative or interactive events in the parallel reality
game. In these cases, the game server seeks to ensure players
are indeed physically present and not spoofing their loca-
tions.
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[0029] FIG. 2 depicts one embodiment of a game 1nterface
200 that can be presented (e.g., on a player’s smartphone) as
part of the interface between the player and the virtual world
110. The game mtertace 200 1includes a display window 210
that can be used to display the virtual world 110 and various
other aspects of the game, such as player position 122 and
the locations of virtual elements 130, virtual 1items 132, and
virtual energy 150 in the wvirtual world 110. The user
interface 200 can also display other information, such as
game data information, game communications, player infor-
mation, client location verification instructions and other
information associated with the game. For example, the user
interface can display player information 213, such as player
name, experience level, and other information. The user
interface 200 can include a menu 220 for accessing various
game settings and other information associated with the
game. The user interface 200 can also imnclude a communi-
cations interface 230 that enables communications between
the game system and the player and between one or more
players of the parallel reality game.

[0030] According to aspects of the present disclosure, a
player can interact with the parallel reality game by carrying
a client device around in the real world. For instance, a
player can play the game by accessing an application
associated with the parallel reality game on a smartphone
and moving about 1n the real world with the smartphone. In
this regard, it 1s not necessary for the player to continuously
view a visual representation of the virtual world on a display
screen 1n order to play the location-based game. As a result,
the user iterface 200 can include non-visual elements that
allow a user to interact with the game. For instance, the
game 1nterface can provide audible nofifications to the
player when the player 1s approaching a virtual element or
object 1n the game or when an 1mportant event happens 1n
the parallel reality game. In some embodiments, a player can
control these audible notifications with audio control 240.
Different types of audible notifications can be provided to
the user depending on the type of virtual element or event.
The audible notification can increase or decrease in ire-
quency or volume depending on a player’s proximity to a
virtual element or object. Other non-visual notifications and
signals can be provided to the user, such as a vibratory
notification or other suitable notifications or signals.

[0031] The parallel reality game can have various features
to enhance and encourage game play within the parallel
reality game. For instance, players can accumulate a virtual
currency or another virtual reward (e.g., virtual tokens,
virtual points, virtual material resources, etc.) that can be
used throughout the game (e.g., to purchase in-game 1tems,
to redeem other items, to craft items, etc.). Players can
advance through various levels as the players complete one
or more game objectives and gain experience within the
game. Players may also be able to obtain enhanced “powers”
or virtual items that can be used to complete game objectives
within the game.

[0032] Those of ordinary skill 1n the art, using the disclo-
sures provided, will appreciate that numerous game inter-
face configurations and underlying functionalities are pos-
sible. The present disclosure 1s not intended to be limited to
any one particular configuration unless it 1s explicitly stated
to the contrary.
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2. Example Gaming System

[0033] FIG. 3 illustrates one embodiment of a networked
computing environment 300. The networked computing
environment 300 uses a client-server architecture, where a
game server 320 communicates with a client device 310
over a network 370 to provide a parallel reality game to a
player at the client device 310. The networked computing
environment 300 also may include other external systems
such as sponsor/advertiser systems or business systems.
Although only one client device 310 1s shown 1n FIG. 3, any
number of client devices 310 or other external systems may
be connected to the game server 320 over the network 370.
Furthermore, the networked computing environment 300
may contain different or additional elements and function-
ality may be distributed between the client device 310 and
the server 320 1n different manners than described below.
[0034] The networked computing environment 300 pro-
vides for the mteraction of players 1n a virtual world having
a geography that parallels the real world. In particular, a
geographic area in the real world can be linked or mapped
directly to a corresponding area in the virtual world. A player
can move about 1n the virtual world by moving to various
geographic locations in the real world. For instance, a
player’s position 1n the real world can be tracked and used
to update the player’s position 1n the virtual world. Typi-
cally, the player’s position 1n the real world 1s determined by
finding the location of a client device 310 through which the
player 1s interacting with the virtual world and assuming the
player 1s at the same (or approximately the same) location.
For example, in various embodiments, the player may
interact with a virtual element 11 the player’s location 1n the
real world 1s within a threshold distance (e.g., ten meters,
twenty meters, etc.) of the real-world location that corre-
sponds to the virtual location of the virtual element 1n the
virtual world. For convenience, various embodiments are
described with reference to “the player’s location” but one
of skill 1n the art will appreciate that such references may
refer to the location of the player’s client device 310.
[0035] A client device 310 can be any portable computing
device capable for use by a player to interface with the game
server 320. For instance, a client device 310 1s preferably a
portable wireless device that can be carried by a player, such
as a smartphone, portable gaming device, augmented reality
(AR) headset, cellular phone, tablet, personal digital assis-
tant (PDA), navigation system, handheld GPS system, or
other such device. For some use cases, the client device 310
may be a less-mobile device such as a desktop or a laptop
computer. Furthermore, the client device 310 may be a
vehicle with a built-in computing device.

[0036] The client device 310 communicates with the game
server 320 to provide sensory data of a physical environ-
ment. In one embodiment, the client device 310 includes a
camera assembly 312, a depth estimation module 311, a
gaming module 314, positioning module 316, and localiza-
tion module 318. The client device 310 also includes a
network interface (not shown) for providing communica-
tions over the network 370. In various embodiments, the
client device 310 may include different or additional com-
ponents, such as additional sensors, display, and software
modules, etc.

[0037] The camera assembly 312 includes one or more
cameras which can capture 1mage data. The cameras capture
image data describing a scene of the environment surround-
ing the client device 310 with a particular pose (the location
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and orientation of the camera within the environment). The
camera assembly 312 may use a variety of photo sensors
with varying color capture ranges and varying capture rates.
Similarly, the camera assembly 312 may include cameras
with a range of different lenses, such as a wide-angle lens or
a telephoto lens. The camera assembly 312 may be config-
ured to capture single images or multiple 1mages as frames
ol a video.

[0038] The depth estimation module 311 receives an mput
image ol a scene (also referred to as a “reference 1mage”),
for example, captured by the camera assembly 312. The
depth estimation module 311 may also receive a set of one
or more additional 1mages of the scene (also referred to as
“source 1mages’ or “keyirames”), for example captured by
the camera assembly 312. The source images may have a
close temporal relationship to the mput image (e.g., the
frames of a monocular video from which the mput 1mage 1s
taken that immediately precede or follow the mput image).
The depth estimation module 311 includes one or more
models that process the input and output a depth map of the
scene based on the mput image and the additional 1mages.
The depth estimation module 311 may be traimned by the
depth estimation training system 330 and can be updated or
adjusted by the depth estimation training system 330, which
1s discussed 1n greater detail below.

[0039] The depth estimation module 311 may be 1mple-
mented with one or more machine learning algorithms.
Machine learning algorithms that may be used for the depth
estimation module 311 include neural networks, decision
trees, random forest, regressors, clustering, other derivative
algorithms thereof, or some combination thereof. In one or
more embodiments, the depth estimation module 311 1s
structured to include a neural network comprising a plurality
of layers including at least an mnput layer configured to
receive the input image and additional 1mages and an output
layer configured to output the depth prediction. Each layer
comprises a multitude of nodes, each node defined by a
welghted combination of one or more nodes 1n a prior layer.
The weights defiming nodes subsequent to the input layer are
determined during training by the depth estimation training
system 330. Additional details of the depth estimation mod-
ule 311 are provided with respect with FIG. 5.

[0040] The reconstruction module 313 can generate a 3D
representation of an environment based on depth maps from
the depth estimation module 311. For example, the recon-
struction module 313 fuses multiple depth maps of an
environment to generate the 3D representation of the envi-
ronment.

[0041] The client device 310 may also include additional
sensors for collecting data regarding the environment sur-
rounding the client device, such as movement sensors,
accelerometers, gyroscopes, barometers, thermometers,
light sensors, microphones, etc. The image data captured by
the camera assembly 312 can be appended with metadata
describing other information about the image data, such as
additional sensory data (e.g. temperature, brightness of
environment, air pressure, location, pose etc.) or capture
data (e.g. exposure length, shutter speed, focal length, cap-
ture time, etc.).

[0042] The gaming module 314 provides a player with an
interface to participate 1n the parallel reality game. The game
server 320 transmits game data over the network 370 to the
client device 310 for use by the gaming module 314 to
provide a local version of the game to a player at locations
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remote from the game server. In one embodiment, the
gaming module 314 presents a user interface on a display of
the client device 310 that depicts a virtual world (e.g. renders
imagery ol the virtual world) and allows a user to interact
with the virtual world to perform various game objectives.
In some embodiments, the gaming module 314 presents
images of the real world (e.g., captured by the camera
assembly 312) augmented with virtual elements from the
parallel reality game. In these embodiments, the gaming
module 314 may generate or adjust virtual content according
to other information received from other components of the
client device 310. For example, the gaming module 314 may
adjust a virtual object to be displayed on the user interface
according to a depth map of the scene captured 1n the image
data.

[0043] The gaming module 314 can also control various
other outputs to allow a player to interact with the game
without requiring the player to view a display screen. For
instance, the gaming module 314 can control various audio,
vibratory, or other notifications that allow the player to play
the game without looking at the display screen.

[0044] The positioning module 316 can be any device or
circuitry for determining the position of the client device
310. For example, the positioning module 316 can determine
actual or relative position by using a satellite navigation
positioning system (e.g. a GPS system, a Galileo positioning
system, the Global Navigation satellite system (GLO-
NASS), the BeiDou Satellite Navigation and Positioning
system), an inertial navigation system, a dead reckoning
system, IP address analysis, triangulation and/or proximity
to cellular towers or Wi-F1 hotspots, or other suitable tech-
niques.

[0045] As the player moves around with the client device
310 in the real world, the positioning module 316 tracks the
position ol the player and provides the player position
information to the gaming module 314. The gaming module
314 updates the player position 1n the virtual world associ-
ated with the game based on the actual position of the player
in the real world. Thus, a player can interact with the virtual
world simply by carrying or transporting the client device
310 1n the real world. In particular, the location of the player
in the virtual world can correspond to the location of the
player in the real world. The gaming module 314 can
provide player position information to the game server 320
over the network 370. In response, the game server 320 may
enact various techmques to verily the location of the client
device 310 to prevent cheaters from spoofing their locations.
It should be understood that location information associated
with a player 1s utilized only 1f permission 1s granted after
the player has been notified that location information of the
player 1s to be accessed and how the location information 1s
to be utilized n the context of the game (e.g. to update player
position 1n the virtual world). In addition, any location
information associated with players 1s stored and maintained
in a manner to protect player privacy.

[0046] The localization module 318 provides an additional
or alternative way to determine the location of the client
device 310. In one embodiment, the localization module 318
receives the location determined for the client device 310 by
the positioning module 316 and refines 1t by determining a
pose ol one or more cameras ol the camera assembly 312.
The localization module 318 may use the location generated
by the positioning module 316 to select a 3D map of the
environment surrounding the client device 310 and localize
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against the 3D map. The localization module 318 may obtain
the 3D map from local storage or from the game server 320.
The 3D map may be a point cloud, mesh, or any other
suitable 3D representation of the environment surrounding
the client device 310. Alternatively, the localization module
318 may determine a location or pose of the client device
310 without reference to a coarse location (such as one
provided by a GPS system), such as by determining the
relative location of the client device 310 to another device.

[0047] In one embodiment, the localization module 318
applies a trained model to determine the pose of 1mages
captured by the camera assembly 312 relative to the 3D map.
Thus, the localization model can determine an accurate (e.g.,
to within a few centimeters and degrees) determination of
the position and orientation of the client device 310. The
position of the client device 310 can then be tracked over
time using dad reckoning based on sensor readings, periodic
re-localization, or a combination of both. Having an accurate
pose for the client device 310 may enable the gaming
module 314 to present virtual content overlaid on 1mages of
the real world (e.g., by displaying virtual elements 1n con-
junction with a real-time feed from the camera assembly 312
on a display) or the real world 1tself (e.g., by displaying
virtual elements on a transparent display of an AR headset)
in a manner that gives the impression that the virtual objects
are mteracting with the real world. For example, a virtual
character may hide behind a real tree, a virtual hat may be
placed on a real statue, or a virtual creature may run and hide
if a real person approaches it too quickly.

[0048] The game server 320 includes one or more com-
puting devices that provide game functionality to the client
device 310. The game server 320 can include or be 1n
communication with a game database 340. The game data-
base 340 stores game data used 1n the parallel reality game

to be served or provided to the client device 310 over the
network 370.

[0049] The game data stored 1n the game database 340 can
include: (1) data associated with the virtual world 1n the
parallel reality game (e.g. imagery data used to render the
virtual world on a display device, geographic coordinates of
locations 1n the virtual world, etc.); (2) data associated with
players of the parallel reality game (e.g. player profiles
including but not limited to player information, player
experience level, player currency, current player positions 1n

the virtual world/real world, player energy level, player
preferences, team information, faction information, etc.); (3)
data associated with game objectives (e.g. data associated
with current game objectives, status of game objectives, past
game objectives, future game objectives, desired game
objectives, etc.); (4) data associated with virtual elements 1n
the virtual world (e.g. positions of virtual elements, types of
virtual elements, game objectives associated with virtual
clements; corresponding actual world position imnformation
for virtual elements; behavior of virtual elements, relevance
of virtual elements etc.); (5) data associated with real-world
objects, landmarks, positions linked to virtual-world ele-
ments (e.g. location of real-world objects/landmarks,
description of real-world objects/landmarks, relevance of
virtual elements linked to real-world objects, etc.); (6) game
status (e.g. current number of players, current status of game
objectives, player leaderboard, etc.); (7) data associated with
player actions/input (e.g. current player positions, past
player positions, player moves, player input, player queries,
player communications, etc.); or (8) any other data used,
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related to, or obtained during implementation of the parallel
reality game. The game data stored 1n the game database 340
can be populated either offline or 1n real time by system
administrators or by data received from users (e.g., players),
such as from a client device 310 over the network 370.

[0050] In one embodiment, the game server 320 1s con-
figured to receive requests for game data from a client device
310 (for instance via remote procedure calls (RPCs)) and to
respond to those requests via the network 370. The game
server 320 can encode game data in one or more data files
and provide the data files to the client device 310. In
addition, the game server 320 can be configured to receive
game data (e.g., player positions, player actions, player
input, etc.) from a client device 310 via the network 370. The
client device 310 can be configured to periodically send
player input and other updates to the game server 320, which
the game server uses to update game data in the game
database 340 to reflect any and all changed conditions for the
game.

[0051] In the embodiment shown in FIG. 3, the game
server 320 1ncludes a universal game module 322, a com-
mercial game module 323, a data collection module 324, an
event module 326, a mapping system 327, a depth estima-
tion traiming system 330, and a 3D map store 329. As
mentioned above, the game server 320 interacts with a game
database 340 that may be part of the game server or accessed
remotely (e.g., the game database 340 may be a distributed
database accessed via the network 370). In other embodi-
ments, the game server 320 contains different or additional
clements. In addition, the functions may be distributed
among the elements 1n a diflerent manner than described.

[0052] The umiversal game module 322 hosts an instance
of the parallel reality game for a set of players (e.g., all
players of the parallel reality game) and acts as the authori-
tative source for the current status of the parallel reality
game for the set of players. As the host, the universal game
module 322 generates game content for presentation to
players (e.g., via their respective client devices 310). The
umversal game module 322 may access the game database
340 to retrieve or store game data when hosting the parallel
reality game. The universal game module 322 may also
receive game data from client devices 310 (e.g. depth
information, player mput, player position, player actions,
landmark information, etc.) and incorporates the game data
received 1nto the overall parallel reality game for the entire
set of players of the parallel reality game. The umversal
game module 322 can also manage the delivery of game data
to the client device 310 over the network 370. In some
embodiments, the universal game module 322 also governs
security aspects of the interaction of the client device 310
with the parallel reality game, such as securing connections
between the client device and the game server 320, estab-
lishing connections between various client devices, or veri-
tying the location of the various client devices 310 to
prevent players cheating by spoofing their location.

[0053] The commercial game module 323 can be separate
from or a part of the umversal game module 322. The
commercial game module 323 can manage the inclusion of
various game features within the parallel reality game that
are linked with a commercial activity 1n the real world. For
instance, the commercial game module 323 can receive
requests from external systems such as sponsors/advertisers,
businesses, or other entities over the network 370 to include
game lfeatures linked with commercial activity in the real
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world. The commercial game module 323 can then arrange
for the inclusion of these game features in the parallel reality
game on confirming the linked commercial activity has
occurred. For example, iI a business pays the provider of the
parallel reality game an agreed upon amount, a virtual object
identifyving the business may appear in the parallel reality
game at a virtual location corresponding to a real-world
location of the business (e.g., a store or restaurant).

[0054] The data collection module 324 can be separate
from or a part of the universal game module 322. The data
collection module 324 can manage the inclusion of various
game features within the parallel reality game that are linked
with a data collection activity in the real world. For instance,
the data collection module 324 can modily game data stored
in the game database 340 to include game features linked
with data collection activity 1n the parallel reality game. The
data collection module 324 can also analyze data collected
by players pursuant to the data collection activity and
provide the data for access by various platforms.

[0055] The event module 326 manages player access to
events 1n the parallel reality game. Although the term
“event” 1s used for convenience, i1t should be appreciated
that this term need not refer to a specific event at a specific
location or time. Rather, it may refer to any provision of
access-controlled game content where one or more access
criteria are used to determine whether players may access
that content. Such content may be part of a larger parallel
reality game that includes game content with less or no
access control or may be a stand-alone, access controlled
parallel reality game.

[0056] The mapping system 327 generates a 3D map of a
geographical region based on a set of 1mages. The 3D map
may be a point cloud, polygon mesh, or any other suitable
representation of the 3D geometry of the geographical
region. The 3D map may include semantic labels providing
additional contextual information, such as identifying
objects tables, chairs, clocks, lampposts, trees, etc.), mate-
rials (concrete, water, brick, grass, etc.), or game properties
(e.g., traversable by characters, suitable for certain in-game
actions, etc.). In one embodiment, the mapping system 327
stores the 3D map along with any semantic/contextual
information in the 3D map store 329. The 3D map may be
stored 1n the 3D map store 329 in conjunction with location
information (e.g., GPS coordinates of the center of the 3D
map, a ringlence defining the extent of the 3D map, or the
like). Thus, the game server 320 can provide the 3D map to
client devices 310 that provide location data indicating they
are within or near the geographic area covered by the 3D
map.

[0057] The depth estimation training system 330 trains
one or more models used by the depth estimation module
311 or the reconstruction module 313 (e.g., a depth estima-
tion model). For example, the depth estimation training
system 330 receives sets of images for use 1n training a depth
estimation model of the depth estimation module 311. Once
the one or models of the depth estimation module 311 are
trained, the depth estimation module 311 receives image
data and outputs depth information of the environment based
on the image data. The depth estimates may have various
uses, such as aiding 1n the rendering of virtual content to
augment real world 1imagery, assisting navigation of robots,
detecting potential hazards for autonomous vehicles, and the
like. Additional training details are further provided below.
Note that, although the depth estimation traiming system 330
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1s shown as part of the game server 320 for convenience,
some or all of the models may be trained by other computing
devices and provided to client devices 310 1n various ways,
including being part of the operating system, included in a
gaming application, or accessed 1n the cloud on demand.
[0058] The network 370 can be any type of communica-
tions network, such as a local area network (e.g. itranet),
wide area network (e.g. Internet), or some combination
thereof. The network can also include a direct connection
between a client device 310 and the game server 320. In
general, communication between the game server 320 and a
client device 310 can be carried via a network interface
using any type ol wired or wireless connection, using a
variety of communication protocols (e.g. TCP/IP, HTTP,
SMTP, F1P), encodings or formats (e.g. HIML, XML,
JSON), or protection schemes (e.g. VPN, secure HT'TP,
SSL).

[0059] This disclosure makes reference to servers, data-
bases, software applications, and other computer-based sys-
tems, as well as actions taken and information sent to and
from such systems. One of ordinary skill in the art will
recognize that the inherent flexibility of computer-based
systems allows for a great variety of possible configurations,
combinations, and divisions of tasks and functionality
between and among components. For instance, processes
disclosed as being implemented by a server may be imple-
mented using a single server or multiple servers working in
combination. Databases and applications may be imple-
mented on a single system or distributed across multiple
systems. Distributed components may operate sequentially
or 1n parallel.

[0060] In situations in which the systems and methods
disclosed access and analyze personal information about
users, or make use of personal information, such as location
information, the users may be provided with an opportunity
to control whether programs or features collect the infor-
mation and control whether or how to receive content from
the system or other application. No such information or data
1s collected or used until the user has been provided mean-
ingiul notice of what information 1s to be collected and how
the information 1s used. The information 1s not collected or
used unless the user provides consent, which can be revoked
or modified by the user at any time. Thus, the user can have
control over how information 1s collected about the user and
used by the application or system. In addition, certain
information or data can be treated 1n one or more ways
before 1t 1s stored or used, so that personally identifiable
information 1s removed. For example, a user’s identity may
be treated so that no personally 1dentifiable information can
be determined for the user.

3. Introduction to Depth Estimation and 3D
Reconstruction

[0061] Generating 3D reconstructions of an environment
1s a challenging problem in computer vision, which 1s useful
for tasks such as robotic navigation, autonomous driving,
content placement for augmented reality and historical pres-
ervation. In some techniques, such 3D reconstructions are
generated from 2D depth maps obtained using multi-view
stereo (MVS), which are then fused 1nto a 3D representation
from which a surface 1s extracted. Recent advances 1n deep
learning have enabled convolutional methods. These meth-
ods use 3D convolutions to smooth and regularize a cost
volume, which performs well 1n practice but 1s expensive in
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both time and memory. This precludes their use on low
power hardware (e.g., smartphones), where overall compute
energy and memory are limited. The same 1s true of depth
estimators which use LSTMs (Long Short-Term Memory
recurrent neural networks) and Gaussian processes for
improved depth accuracy.

[0062] To address these and other problems, a 2D CNN
(convolutional neural network) augmented with a cost vol-
ume may be used. Using this approach, state-oi-the-art depth
accuracy may be obtained at lower cost than using previous
methods. This approach may also give competitive scores in
3D scene reconstruction without using expensive 3D con-
volutions. One aspect ol these techmiques 1s the novel
incorporation of (e.g., computationally cheap) metadata into
the cost volume, which significantly improves depth and
reconstruction quality. Contributions may include: (1) the
integration of keyirame and geometric metadata into the cost
volume using a multi-level perceptron (MLP), which allows
informed depth plane scoring, and (2) a 2D CNN that
utilizes strong i1mage priors alongside a plane-sweep 3D
feature volume and geometric losses. The disclosed tech-
niques have been evaluated against recent published meth-
ods on the challenging ScanNetv2 dataset on both depth
estimation and 3D scene reconstruction (See Section 5).
Furthermore, these techniques generalize on the 7-Scenes
data (Table 1) and generalize on casually captured footage

(FIG. 8).

[0063] By combining the novel cost volume metadata with
principled architectural decisions that result in better depth
predictions, the computational cost associated with 3D con-
volutions may be avoided, enabling use in embedded and
resource-constrained environments.

[0064] FIG. 4 includes a set of images that demonstrate
improvements of the disclosed techniques relative to prior
techniques. Specifically, the disclosed techmiques signifi-
cantly improve upon previous state-of-the-art monocular
MVS methods (e.g., DVMS Depth®) and more closely
match the GT (ground truth) depth in depth prediction and
match volumetric state-of-the-art methods i1n full scene
reconstruction (e.g., VORTX Mesh*®) and more closely
match the GT Mesh. More specifically the depth predictions
of the “depth map from our model” have sharper edges and
less blurriness. Furthermore, the edges more accurately
match the edges in the mput “reference 1mage”. The color-
mapping also shows that the overall depth accuracy 1s better
than prior work. Additionally, details are present mn “‘our
model” are not present in the other works e.g., the separate
items on top of the microwave 1n the first column and the
ruflles 1n the curtains 1n the fourth column.

4. Example Methods

[0065] A depth estimation module 311 may take as input
a reference image I° of an environment, a set of source
images ["“t% - - - M1 captured from other locations in the
environment, and 1mage intrinsics and relative poses of the
camera(s) that captured the images. To train the depth
estimation module 311, a ground truth depth map D#’ aligned
with each 1mage may be used. At test time, the aim 1s to
predict dense depth maps D for each reference image.

4.1 Method Overview

[0066] FIG. 5A1s a diagram of a depth estimation module
500, according to some embodiments. The depth estimation
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module 500 may be an example of the depth estimation
module 311 and the depth estimation module 500 may be
trained by the depth estimation training system 330. In the
example of FIG. 5A, the depth estimation module 500
includes a matching feature encoder 503, a reduction model
515, an 1mage encoder 525, and a depth estimation model
527. The depth estimation model 527 includes a depth
prediction encoder-decoder architecture augmented with a
cost volume 3520. In other embodiments, the depth estima-
tion module 500 may include additional components, dii-
ferent components, or fewer components than as described
and 1llustrated.

[0067] Reference image I” and source images
~-1} are input ito a matching feature encoder 505, which 1s
a feature extractor model. The matching feature encoder 505
extracts matching features from the reference and source
images F7S1% - - ¥ 1J for input into a 4D feature volume 510
(the notation F denotes a HxWxC, volume of these features
while the notation I denotes a single vector). A matching
feature 1s a pixel-aligned (at some image scale) vector
generated from an 1mage. The matching features may be
used (e.g., by the reduction model 515) to match points from
the reference image and source images together. The feature
volume 510 also includes metadata 517, such as pose
distance, ray information, depths from cameras, and a valid-
ity mask (further described below). The feature volume 510
may be a 4D tensor with dimensions CxDxHxW, where D
1s the number of depth planes, C 1s the number of metadata
channels, H 1s based on the height of the mnput 1image, and
W 1s based on the width of the input image. In some
examples, H (or W) 1s equal to, or a fraction of, the height
(or width) of the mput image. For example, H=(H
imagel 8) OF W=(W /8).

[0068] The feature volume 510 1s reduced by a reduction
model 515 to generate a 3D cost volume 520 with dimen-
sions DxHxW, where D, H, and W represent the same
quantities as the feature volume 510. The reduction model
515 processes the metadata channels to reduce them 1nto a
single scalar value for each location (k, 1, 7). Said differently,
the reduction model 5135 performs a reduction along the first
dimension of the cost volume, reducing each “cell” of C
values 1nto a single value, resulting 1n a DxHxW volume.
The scalar may represent a likelithood that the depth of an
object represented by pixel 1, 1 of the reference 1mage 1s
equal to the kth depth plane (k, 1, 1 are indices of the cost
volume and they represent points in the external environ-
ment. Specifically, there 1s a mapping of each point (k, 1, )
to (X, v, z) coordinates in 3D space ol the external environ-
ment). The reduction model 515 may be a parallel MLP
(multi-level perception) reduction. For example, the reduc-
tion model 515 1s a 1x1x1 convolutional layer. In some
embodiments, each volumetric cell of metadata is reduced 1n
parallel via an MLP.

[0069] The image encoder 525 1s another feature extractor
model. The image encoder 5235 receives the reference image
I° and generates features of the reference image (these may
be different than the features generated by the matching
teature encoder 503). The cost volume 520 and the features
from the mmage encoder 525 are applied to the depth
estimation model 527, which may have an encoder-decoder
architecture (e.g., 1t 1s a 2D convolutional network), and
outputs one or more (e.g., multi-scale) depth maps D 530.
Among other advantages, having two diflerent feature
extractor models (505 and 5235) may result 1n the depth
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estimation module 500 generating more accurate depth maps
(while the exact reasons for this are not clear, 1t 1s possible
that the kind of image features that work best for matching,
points 1n space (those generated by 505) may likely not be
the 1mage features that work best for regularizing the cost
volume (those generated by 525).

[0070] Among other advantages, injecting (e.g., easily
computable) metadata into the feature volume 3510 allows
the depth estimation model 527 to access useful information
such as geometric and relative camera pose information. By
incorporating this previously unexploited information, the
depth estimation module 500 1s able to significantly outper-
form previous methods on depth prediction (e.g., without the
need for costly 4D cost volume reductions, complex tem-
poral fusion, or Gaussian processes).

[0071] The following section describes the novel metadata
component and explains how 1t 1s incorporated into the
network architecture of the depth estimation model 527.

4.2 Improving the Cost Volume with Metadata

[0072] In traditional techniques for determining depth
maps or 3D reconstruction, there exists helpful information
which 1s typically 1gnored. In contrast, in this disclosure,
(e.g., easily computable) metadata 1s incorporated into the
teature volume 510, allowing the depth estimation model
527 to aggregate information across views in an imnformed
manner. This can be done both explicitly via appending extra
teature channels 1nto the feature volume 510 and implicitly
via enforcing specific metadata ordering in the feature
volume 510.

[0073] The metadata may be 1njected into the depth esti-
mation model 527 by augmenting image-level features
inside the feature volume 510 with additional metadata
channels. These channels encode information about the 3D
relationship between the images used to build the feature
volume 510, allowing for improved performance of the
depth estimation module 500. For example, these additional
metadata channels allow the depth estimation model 527 to
better determine the relative importance of each source
image for estimating depth for a particular pixel.

[0074] FIG. 5B 1s a diagram of feature volume 510,
according to some embodiments. FIG. 3B also includes an
example list of metadata components that may be included
in the feature volume 3501. The cost volume 3510 1s a 4D
tensor ol dimension CxDxHxW, where for each spatial
location (k, 1, ) of the feature volume 510 (k 1s the depth
plane index), there 1s a C dimensional feature vector (note
that indices (k, 1, j) are omitted from FIG. SB for clanty).
This C dimensional feature vector may comprise (1) refer-
ence 1mage features t, JD (2) a set of one or more warped

source image features (f) ., ° fornE[1, N], where { ) indi-
cates that the features are perspective-warped into the ret-
erence frame of the reference 1image, (3) one or more of the
metadata components (which may be computed by the depth
estimation module 500), or (4) some combination thereof.

ri,; 1nay be computed

The warped source image features ( f)
by: (1) computing image features (f)” for every source view
[t N-1} using a matching feature encoder (e.g., 505)
and (2) warping the image features mto the reference view’s

frustum at each depth plane via plane sweep stereo to

produce (f),, ” where k is the depth plane in the reference
camera’s view where the features are warped to, and 1,] are
2D spatial coordinates 1n the reference camera’s frame.
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[0075] Example metadata components are described
below. Additional information on metadata components 1s
illustrated 1n FIG. 5C. FIG. 5C illustrates metadata compo-
nents for a reference image (captured by reference image
camera 335 with FOV 541) and a single source image
(captured by source 1image camera 543), according to some
embodiments. Specifically, FIG. 5C illustrates metadata
components for point in space 337, which 1s at a depth plane
539. The pomnt 1 space 537 may be represented using
indices Kk, 1, j.

[0076] Feature dot product—The dot product between (1)
image features of the reference image f” and (2) image

features of a source image (f{” (i.e. {*-)f)"). A feature dot
product may be calculated for each of the source image
features. A feature dot product indicates a correlation
between two of the feature vectors.

[0077] Ray directions 1, JD and 1, "€R —The normal-
1zed direction to the 3D location of a point (K, 1, 1) 1n the
plane sweep from the camera origins. More specifically, for
a given point (K, 1, 1) and an 1mage (e.g., a source 1image), the
ray direction 1s a normalized vector that describes the
direction of the point relative to the view of the image (e.g.,
the view of the source image). Said differently, the ray
direction 1s a normalized vector that describes the direction
of the point relative to the coordinate frame of the camera
when 1t captured the image (the camera’s position 1n space
1s the origin 1n this coordinate frame). A ray direction may
be calculated for the reference 1mage and for each source
image. See FIG. 5C for additional information on ray
directions.

[0078] Reterence plane depth 32, JD—The distance
(“depth™) from the position of the camera that captured the
reference 1mage (“reference camera”) to a depth plane that
includes point k, 1, 1. As indicated in FIG. 5C, the depth
planes 539 are perpendicular to the image plane of the
reference camera 533.

[0079] Source plane depth z ; , “—The distance from the
position of the camera that captured source image n (“source
camera n”’) to a depth plane that includes point k, 1, 1. The
depth planes are perpendicular to the image plane of the
source 1mage n. See FIG. 5C for additional information on
source plane depth.

[0080] Relative ray angles 6 The angle between r,, J.D

and r; ; ;. A relative ray angle may be calculated for each
source 1mage (relative to the ray direction of the reference
image). See FIG. SC for additional information on relative
ray angles.

[0081] Relative pose distance p’”—A measure of the
distance between the pose of the reference camera and the
pose of a source camera n. In some embodiments, the
relative pose distance 1s given by:

0oV 97142t T-RO7) (1)

where 1 is the identity matrix, t°” is the relative position of
source camera n to the reference camera (e.g., [[t°—t"||), R%”
1s the relative rotation transformation between the reference

camera and source camera n, and tr() is the trace function
(the sum of elements on the main diagonal of the input
matrix). A relative pose distance may be calculated for each
source 1mage (relative to the reference 1image). See FI1G. 5C
for additional information on relative pose distances.
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[0082] Depth validity masks m, ; “—A binary mask that
indicates if point (k, 1, 1) 1n the feature volume 510 projects
in front of the source camera n or not.

[0083] Among other advantages, by appending metadata-
derived features into the feature volume 510, the reduction
model 515 may learn to correctly weigh the contribution of
cach source image at each pixel location. Consider for
instance the pose distance p“”. For depths farther from the
camera, the matching features from source images with a
greater baseline may be more informative. More specifically,
at farther depths, visual features may appear more similar 1n
the same 2D spatial location 1n 1mages of two viewpoints
that are close together (small baseline). If the cameras are
tarther apart (larger baseline), then the same point 1 space
would appear at more distinctly different positions in the
images ol the viewpoints. Thus, having access to informa-
tion on the length of the camera baselines allows the network
to learn how to “trust” the visual features of a source 1image
that has a wider baseline compared to one with a smaller
baseline. Similarly, ray immformation (e.g., ray directions or
relative ray angles) may be useful for reasoming about
occlusions. If features from the reference image disagree
with those from a source image but there 1s a large angle
between camera rays, then this may be explained by an
occlusion rather than incorrect depth. Depth validity masks
can help the depth estimation model 527 to know whether to
trust features from source camera n at (k, 1, 7). By allowing
the depth estimation model 527 access to this kind of
information, it 1s given the ability to conduct such geometric
reasoning when aggregating information from multiple
source 1mages.

[0084] In addition to explicitly providing one or more
metadata components 1n the feature volume 510, the meta-
data may be implicitly encoded in the feature volume 510
according to a specific ordering. This 1s motivated by the
inherent order dependence of the reduction model 515,
which 1s exploited by choosing the ordering 1n which the
metadata are stacked or ordered 1n the feature volume 510.
While the metadata can be ordered according to many
different metrics, ordering by relative pose distance may be
advantageous since relative pose distance may be eflective
for improved (e.g., optimal) keyirame selection. For
example, the metadata may be ordered according to ascend-
ing or descending relative pose distance. Ordering according
to relative pose distance may allow the reduction model 515
to learn a prior on pose distance and feature relevance. More
specifically, following on the 1dea that knowledge of pose
distances allows for better matching of visual features and
depth plane scoring, this knowledge can be implicitly
encoded by ordering visual and metadata features according
the pose distance on mput to the reduction model 5135. In
some embodiments, metadata are ordered according to the
time stamps of the associated image (e.g., ordered according,
to time closest to the time stamp of the reference 1image).

[0085] Experiments show that by including metadata 1n
the depth estimation model 527 (via the cost volume 520),
both explicitly via extra feature channels and implicitly via
metadata ordering, the depth estimation model 527 obtains
a significant boost to depth estimation accuracy, bringing
with 1t improved 3D reconstruction quality (see e.g., Table

4).

[0086] The following two sections describe example net-
work architecture of the depth estimation module 500 and
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losses and provide helpful practices for depth estimation,
according to some embodiments.

4.3 Architecture Design of Depth Estimation
Module

[0087] As previously stated, the depth estimation model
527 may have a 2D convolutional encoder-decoder archi-
tecture. When constructing such networks, there are design
choices which may provide improvements to depth predic-
tion accuracy. For example, 1t may be desirable for the depth
estimation model 527 to avoid complex structures such as
LSTMs (Long Short-Term Memory networks) or GPs
(Gaussian Processes) and thus make the baseline model
lightweight and interpretable.

[0088] Baseline feature volume fusion—While RNN-
based temporal fusion methods may be used, they may
significantly increase the complexity of the depth estimation
module 500. Thus, in some embodiments, 1t may be desir-
able to make the baseline feature volume fusion simple since
the inventors found that summing the dot-product matching
costs between the reference image and each source image
leads to results competitive with state-of-the-art depth esti-
mation techniques, as shown 1n Table 1 with the heading “no
metadata™.

[0089] Image encoder and feature matching encoder—
Prior depth estimation works have shown the impact of more
powerful 1mage encoders for the task of depth estimation,
both 1n monocular and multi-view estimation. However, 1n
some embodiments, the depth estimation model 527
includes a small but powerful EfficientNetv2 S encoder.
While this does come with a cost of increased parameter
count and slower execution, it yields a sizeable improve-
ment to depth estimation accuracy, especially for precise
metrics such as Sq Rel and 6<<1.05. See Table 4 for more
results.

[0090] For producing matching feature maps, the first two
blocks from ResNet18' may be used for efficiency. Further-
more, FPN” following ResNetl8 was found to improve
accuracy at the expense of a 50% slower overall run-time.

[0091] Fuse multi-scale image features nto the cost vol-
ume encoder—In 2D CNN based deep stereo and multi-
view stereo, 1mage features may be combined with the
output of the cost volume at a single scale. However, 1t may

also be usetul to concatenate deep 1mage features at
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image
recognition. In: CVPR (2016)

’Lin, T. Y., Doll’ar, P., Girshick, R., He, K., Hariharan, B., Belongie, S.:
Feature pyramid networks for object detection. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 2117-2125 (2017)
multiple scales, add skip connections between the 1mage encmder and cost
volume encoder at one or more resolutions. See Duzceker et al.® for additional

information on this.

[0092] Number of source 1mages—While some tech-
niques show diminishing returns as additional source images
are added, the models described herein are better able to
incorporate this additional information and display
increased performance (e.g., with up to 8 images). The
inventors posit that incorporating additional metadata for
cach images allows the depth estimation model 527 to “‘make
a more mformed decision’ about the relative weightings of
cach 1mage’s features when inferring the final cost. In
contrast, other techniques give each image equal weight
during an update, thus potentially overwhelming useful
information with lower-quality features.
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4.4 1.oss

[0093] The depth estimation model 527 may be trained by
the depth estimation training system 330 using a combina-
tion of geometric losses, inspired by MVS methods as well
as monocular depth estimation techniques. The i1nventors
found that careful choice of the loss function improved
performance and that supervising intermediate predictions at
lower output scales also improved results.

[0094] Depth regression loss—In some embodiments, the
depth estimation training system 330 uses techniques similar
Duzceker et al.” and densely supervises predictions using
log-depth, but may use an absolute error on log depth for

each scale s,

*Duzceker, A., Galliani, S., Vogel, C., Speciale, P., Dusmanu, M., Pollefeys,
M.: Deepvideomvs: Multi-view stereo on video with recurrent spatio-tem-

poral fusion. In: CVPR (2021)

oo | s 2)
Ldeprh:ﬁ = ZZS_Z‘TS" lﬂgDu—lﬂgDﬁ}‘,

s=1 7,j

where each lower scale depth 1s upsampled using nearest
neighbor upsampling to the highest scale predicted at with
the T .. operator. This loss may be averaged per pixel, per
scale, and per batch. Experiments found this loss to perform
better than the scale-invariant formulation of Eigen et al.” °,
while producing sharper depth boundaries, resulting in
higher fused reconstruction quality.

[0095] Multi-scale gradient and normal losses—In some
embodiments, the depth estimation training system 330 uses
techniques similar to papers® 7 ® and uses a multi-scale
gradient loss on the highest resolution network output:

(3)

a2

4
Lyt = > Y |VD; -V DF,

s=1 ij

where V 1s first order spatial gradients and Is represents
downsampling to scale s. Inspired by Yin et al.” the depth

10
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estimation training system 330 may also use a simplified
normal loss, where N 1s the normal map computed using the
depth and intrinsics,

: 1-N,.N )
2HW £ hith]

-Enﬂrmafs —

[0096] Multi-view depth regression loss—In some
embodiments, the depth estimation training system 330 uses
ground-truth depth maps for each source view as additional
supervision by projecting predicted depth D into each source
view and averaging absolute error on log depth over all valid
points,

“Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image
using a multi-scale deep network. In: NeurIPS (2014).

>Bhat, S. F., Alhashim, I, Wonka, P.: AdaBins: Depth estimation using
adaptive bins. In: CVPR (2021)

®Li, Z., Snavely, N.: MegaDepth: Learning single-view depth prediction from
internet photos. In: CVPR (2018)

'Yin, W., Zhang, J., Wang, O., Niklaus, S., Mai, L., Chen, S., Shen, C.:
Learning to recover 3D scene shape from a single image. In: CVPR (2021)

SRanftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards
robust monocular depth estimation: Mixing datasets for zero-shot cross-

dataset transfer. PAMI (2020)

“Yin, W., Liu, Y., Shen, C., Yan, Y.: Enforcing geometric constraints of virtual
normal for depth prediction. In: ICCV (2019)

Lk ZZ‘ID@E? B IDgDﬂJL )

HIV=
NHW T

where D%~ is the depth predicted for the reference image
of index 0, projected into source view n. This 1s similar 1n
concept to the depth regression loss above, but for simplicity
1s applied only on the final output scale.

[0097] Total loss—Overall the total loss may be:
.£ — Ldepth_l_agrad graa’-l_ Qrormals ncrrnmfs_l_amv
L (6

with o, ~1.0=0,,,,,,.~1.0, and a,, =0.2, chosen experi-
mentally using the validation set.

TABLE 1

Depth evaluation. For each metric, the best-performing method 1s “Ours” (bottom row),
the second-best 1s “Ours (no metadata)” (row second from the bottom), and the third-best 1s “VideoMVS.”

ScanNetv? Dataset

7Scenes Dataset

Abs Abs Sq Abs Abs Sq

Difl Reld Rell &§<1.05T §<1.25T Diffl Rell Reld &§<1.05T &§<1.257
DPSNet!'° 0.1552 0.0795 0.0299 49 .36 93.27 0.1966 0.1147 0.0550 38.81 87.07
MVDepthNet ' 0.1648 0.0848 0.0343  46.71 92.77 0.2009 0.1161 0.0623 38.81 87.70
DELTAS'? 0.1497 0.0786 0.0276  48.64 03.78 0.1915 0.1140 0.0490  36.36 88.13
GPMVS!? 0.1494 0.0757 0.0292  51.04 93.96  0.1739 0.1003 0.0462  42.71 90.32
VideoMVS, fusion>* 0.1186 0.0583 0.0190  60.20 06.76  0.1448 0.0828 0.0335  47.96 93.79
Ours (no metadata) 0.0941 0.0467 0.0139 70.48 07.84  0.1105 0.0617 0.0175 57.30 97.02
Ours 0.0885 0.0434 0.0125 73.16 98.09 0.1045 0.0575 0.0153 59.78 97.38

*Note that VideoMVS8’s scores were boosted by using three inference frames instead of two. VideoMVS also uses a custom 90/10 split.
]DIm? S., Jeon, H. G,, Lin, §_, Kweon, [. §.: DPSNet: End-to-end deep plane sweep stereo. ICLR (2019)

”Wang, K., Shen, S.: MVDepthNet: Real-time multiview depth estimation neural network. In: 3DV (2018)

IZSinha.J. A., Murez, Z., Bartolozzi, J., Badrinarayanan, V., Rabinovich, A.: Deltas: Depth estimation by learning triangulation and densification of sparse points.

In: ECCV (2020)

]3Hnu, Y., Kannala, J., Solin, A.: Multi-view stereo by temporal nonparametric fusion. In: ICCV (2019)
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5. Experiments

[0098] The inventors trained and evaluated a method on
the 3D scene reconstruction dataset ScanNetv2, which com-
prises 1,201 traming, 312 validation, and 100 testing scans
of indoor scenes, all captured with a handheld RGBD sensor.
The inventors also evaluated the ScanNetv2 models without
fine-tuning on the 7-Scenes dataset using Duzceker et al.’s”
test split.

5.1 Depth Estimation

[0099] In Table 1, the inventors evaluated the depth pre-
dictions from a depth estimation module 500 using the
metrics established in Eigen et al.'®. The inventors also
introduced a tighter threshold tolerance 6<1.035 to difleren-
tiate between high quality models.

[0100] The mventors used the standard test split for the
ScanNetv2 dataset and the test split defined by Duzceker et
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[0101] FIG. 6 illustrates depth predictions by various
models using the ScanNet data. The top row of 1mages
includes reference 1images and the remaining rows are depth
maps generated by various models based on those reference
images. As 1llustrated, our model (row 4) produces signifi-
cantly sharper and more accurate depths than the baselines

of ESTDepth">, DVMVS>, and GT Depth.

[0102] FIG. 7 illustrates 2D normal map generations by
various models using the ScanNet data. A 2D normal map
includes a 3D normal vector at every spatial location of the
1mage

9Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single
image using a multi-scale deep network. In: NeurIPS (2014)

Long, X., Liu, L., Li, W., Theobalt, C., Wang, W.: Multi-view depth
estimation using epipolar spatio-temporal networks. In: CVPR (2021) rep-

resenting the orientation of a surface as seen from the image. As illustrated,
our model produces significantly sharper normal than the methods of

DVMVS?, GT, and IDNSolyer!®.

167 hao, W., Liu, S., Wei, Y., Guo, H., Liu, Y. I.: A confidence-based iterative
solver of depths and surface normals for deep multi-view stereo. In: ICCV. pp.

6168-6177 (October 2021)

TABLE 2

Mesh Evaluation. The evaluation in Bozic et al.!” was used. The
Volumetric column designates whether a method 1s a volumetric
3D reconstruction method. Other MVS methods that produce only

depth maps were reconstructed using standard TSDF fusion.

Score | Volumetric Comp| Acc| Chamfer| Prec| Recalll F-

RevisitingS No 14.29 16.19 1524 0346 0.293 0.314
MVDepthNet"” No 12.94 834  10.64  0.443 0.487 0.460
GPMVS20 No 12.90 802 1046  0.453 0.510 0477
ESTDepth?! No 12.71 7.54  10.12 0456 0.542 0.491
DPSNet?? No 11.94  7.58 977 0474 0.519 0.492
DELTAS?S No 11.95  7.46 971  0.478 0.533 0.501
DeepVideoMVS? No 10.68  6.90 8.79  0.541 0.592 0.563
COLMAP?4 No 10.22 11.88  11.05  0.509 0.474 0.489
ATLAS?? Yes 7.16  7.61 7.38  0.675 0.605 0.636
NeuralRecon?® Yes 5.09  9.13 7.11  0.630 0.612 0.619
3DV Net?’ Yes 772 6.73 7.22  0.655 0.596 0.621
TransformerFusion!’  Yes 552  R8.27 6.80  0.728 0.600 0.655
VoRTX?® Yes 431  7.23 577  0.767 0.651 0.703
Ours No 5.53  6.09 581 0.686 0.658 0.671

1"Bozic, A., Palafox, P., Thies, J., Dai, A., Niefner, M.: Transformerlusion: Monocular RGB scene recon-
struction usmg tl‘ElI]SfDI‘II]EI‘S Neur[PS (2021)
1y, 7. , Ozay, M., Zhang, Y., Okatam, T.: Revisiting single image depth estimation: Toward higher resolution

maps W]th accurate object baundarles In: WACYV (2018)
IQWang, K., Shen, §.: MVDepthNet: Real-time multiview depth estimation neural network. In: 3DV (2018)

*OHou, Y., Kannala, J., Solin, A.: Multi-view stereo by temporal nonparametric fusion. In: [CCV (2019)

21Lt::-ng,,f?{ L, L., L1, W, Theobalt, C., Wang, W.: Multi-view depth estimation using epipolar spatio-temporal
nehmrl{S In: CVPR (2021)
Im 5., Jeon, H. G., Lm, S., Kweon, I. 5.: DPSNet: End-to-end deep plane sweep stereo. ICLR (2019)

23811]1121 A., Murez, 7. BartDlDEEI l., Badrinarayanan, V., Rabinovich, A.: Deltas: Depth estimation by learning
trlangulatmn and dEHSIﬁCHt]DH Df sparse points. In: ECCV (2020)

Schﬂnberger I. L., Zheng, E., Pollefeys, M., Frahm, J. M.: Pixelwise view selection for unstructured
multl -vIew stereo. In European Cﬂnference on Cc-mputer Vision (ECCV) (2016)

Murez Z., van As, T, Bartolozzi, J., Sinha, A., Badrinarayanan, V., Rabmovich, A.: Atlas: End-to-end 3D
geene recanstru-:tmn fmm posed 1 1mages In: ECCV (2020)

26Qun, T., Xie, Y., Chen, L., Zhou, X., Bao, H.: NeuralRecon: Real-time coherent 3D reconstruction from
munﬂcular vldec:- [n CVPR (2021)
2?ij.:h A., Stier, N., Sen, P., Hollerer, T.: 3dvnet: Multi-view depth prediction and volumetric refinement. In:
Internatmnal Cﬂnference on 3D Vlsmn (3DV) (2021)

StlEI‘ N., Rich, A., Sen, P., Hollerer, T.: Vortx: Volumetric 3d reconstruction with transformers for voxelwise
VIEW Selectmn and fu*amn [n [nternatmnal Conference on 3D Vision (3DV) (2021)

al.” for the 7-Scenes dataset. They computed depth metrics
for every keylrame as 1n Duzceker et al and average across
all keyirames in the test sets. As indicated, our model, which
used no 3D convolutions, outperformed all baselines on
depth prediction metrics. In addition, the baseline model
with no metadata encoding (1.e., using only the dot product
between reference and source 1image features) also performs
well 1n comparison to previous methods, showing that a
carefully designed and trained 2D network 1s suflicient for
high-quality depth estimation. Qualitative results for depth

and normal are illustrated in FIGS. 6-7 respectively.

5.2 3D Reconstruction Evaluation

[0103] The 3D reconstructions were evaluated using a
ground truth mesh based prediction mask to cull away parts
of the prediction such that methods are not unfairly penal-
ized for predicting potentially correct geometry that 1is
missing 1n the ground truth. Scores are shown in Table 2.
The mventors’ depth-based method outperforms state-oi-
the-art depth estimators for fusion by a wide margin.
Although the mventors did not perform global refinement of
the resulting volume after fusion, they were still able to
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outperform more expensive volumetric methods 1n some
metrics, showing overall competitive performance with
lower complexity.

5.3 3D Reconstruction Latency

[0104] For online and interactive 3D reconstruction appli-
cations, reducing the latency from sensor reading to 3D
representation update may be important. Most recent recon-
struction methods use 3D CNN architectures that require
expensive and olten specialized hardware for sparse matrix
computation. This makes them prohibitive for applications
on low power devices (e.g., smartphones, IoE devices)
where both compute and power are limited or may simply
not support the operations. Reconstruction methods often
report amortized frame time, where the total compute time
for select keyirames 1s averaged over all frames 1 a
sequence. While this 1s a useful metric for full offline scene
reconstruction performance, 1t 1s not indicative of online
performance, especially when considering latency.

[0105] In Table 3 the inventors computed the per-frame
integration time given a new RGB frame. Some methods
may not be designed to run on every keyirame. Notably,
NeuralRecon® updates a chunk in world space when 9
keyirames have been received. However, for fairness across
methods, the mnventors did not count the time spent waiting,
to satisly a keylframe requirement and they assumed that the
output of immediately available frames with potentially
subpar pose distances was comparable to how the method
was intended to perform. For methods that require a 3D
CNN, Table 3 reports the time for one 2D keyirame inte-
gration and a complete pass of the 3D CNN network.
Although our method 1s slower than methods such as
NeuralRecon® on a per-keyframe basis, our method can
quickly perform updates to the reconstructed volume using
online TSDF fusion methods, resulting 1n low update laten-
cies.

TABL.

T

3
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ablating different parts of the network and training routine.
Results for depth estimation and mesh reconstruction met-
rics on ScanNet are shown for ablations 1n Table 4.

[0107] Baseline—First, Table 4 shows that using no reduc-
tion model and using 16 feature channels, (reduced using a
dot product) greatly degrades performance (row 2). Inter-
estingly, using 64 feature channels instead of 16 degrades
accuracy while being significantly slower (row 3).

[0108] Image ordering—Table 4 also compares two mod-
¢ls where the ordering of the keyirames 1s shuilled, instead
of relying on the pose distance (rows 4-5). As shown, while
both models suffer from random ordering, the full model
(row 5, which has access to the pose distance as metadata)
does not sufler as much.

[0109] Metadata—In rows 6-9 of Table 4, all the models
make use of the reduction model (e.g., an MLP) cost volume
reduction, but the mput of that reduction model 1s varied. To
start, row 6 includes a baseline model using only the feature
dot products aggregated using a sum. In subsequent rows,
the inventors added the features (“feats™), their depth and
validity mask (“mask™), reduced using the reduction model.
More metadata 1s added down the rows until the full model
1s reached (row 9). Accuracy increases with the amount of
information provided to the model (Accuracy 1s represented
by the metrics m all columns. When an arrow next to the
metric’s name points downwards |, then a lower number 1n
that column indicates that the model 1s more accurate. If the
arrow points up 1T, then a lhigher number 1n that column
indicates that the model 1s more accurate).

[0110] Views—In addition, Table 4 shows that the method
may incorporate information from many source images. As
we 1ncrease from 2 to 8 source images (rows 10-12 and 1),
the performance (accuracy) continues to improve. In con-
trast, DeepVideoMVS’s performance remains relatively
constant when using more than three source images”. In
addition, 1n row 10 the cost volume 1s ablated entirely by

Frame integration latencies for 3D reconstruction. Table 3 lists latency measurements as the time
to incorporate a new 1mage measurement to a 3D representation. Note that NR (NeuralRecon)
reports time amortized over all keyframes. * NeuralRecon requires sparse 3D convolutions.

Volume Update Mode Breakdown

ATLAS?? Volume 3D CNN 2D CNN (29 ms) + 3D CNN
(353 ms)
NeuralRecon®”* 3D Chunk Fusion + 2D CNN (12 ms) + GRU (78 ms)

GRU
3DVNet*" Iterative 3D CNN  Refine Depths and Feature Cloud
(23875 ms)
TransformerFusion'’ Transformer Fusion + 2D CNN (131 ms) + Refinement
3D CNN (195 ms)
VORTX?® Transformer Fusion + 2D CNN (23 ms) + Refinement
3D CNN (4527 ms)
Ours TSDF Fusion 2D Depth CNN (70 ms) + TSDF

fuse (2 ms)

Update Latency

(ms) | F-Score
382 ms 0.636
90 ms 0.619
23875 ms 0.621
326 ms 0.635
4550 ms 0.703
72 ms 0.671

2981]1], ].. Xie, Y., Chen, L., Zhou, X., Bao, H.: NeuralRecon: Real-time coherent 3D reconstruction from monocular video. In: CVPR

(2021)

ijch, A., Stier, N., Sen, P., H'ollerer, T.: 3dvnet: Multi-view depth prediction and volumetric refinement. In: International

Conference on 3D Vision (3DV) (2021)

5.4 Ablations

[0106] In order to show the relevance and influence of the
novel contributions described herein, this section describes

zeroing 1ts output (creating a monocular method), leading to
greatly decreased performance (accuracy), showing that a
strong metric depth estimate from the cost volume 1s used to

resolve scale ambiguity.
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Ablation Evaluation. Ablation evaluation on depth and reconstruction metrics using DVMVS

TABLE 4

13

keytframes for the ScanNet dataset. Scores for full method are bolded (rows 1 and 9)
and are significantly improved over the other methods (e.e., compare rows 1 and 2).

Abs Sq Mesh eval

Diffl Rell RMSEl &< 1.05T &< 1.25T Chamferl F-scoreT
1. Ours w/all metadata, 8 ordered 0.0885 0.0125 0.1468 73.16 08.09 5.81 67.1
frames, dot prod CV 16¢c, ENv2S + R18
2. Ours baseline w/dot product CV 16c  0.0941 0.0139 0.1544 70.48 07.84 6.29 64.2
3. Ours baseline w/dot product CV 64c 0.0944  0.0140 0.1548 70.49 07.84 6.08 65.4
4. Ours w/o metadata, shuffled frames 0.0920 0.0135 0.1521 71.59 07.91 6.04 65.6
5. Ours w/metadata, shuffled frames 0.0906 0.0129 0.1490 72.09 08.03 5.92 66.3
6. Ours baseline w/dot product CV 16c  0.0941 0.0139 0.1544 70.48 07.84 6.29 64.2
7. Ours dot + feats + mask + depth 0.0904 0.0132 0.1509 72.63 08.03 5.92 66.5
8. Ours dot + feats + mask + depth + 0.0896 0.0127 0.1481 72,76 08.09 5.88 66.6
ray + angle
9. Ours dot + feats + mask + depth + 0.0885 0.0125 0.1468 73.16 08.09 5.81 67.1
ray + angle + pose distance
10. Ours w/1 frame - w/o CV 0.1742 0.0374 0.2330 40.96 00.03 0.26 47.0
11. Ours w/2 frames 0.1230 0.0198 0.1803 57.15 06.21 7.51 56.7
12. Ours w/4 frames 0.1036 0.0151 0.1611 65.62 07.60 6.57 62.3
13. Ours w/metadata but w/MnasNet 0.0947 0.0146 0.1587 71.24 07.68 5.92 66.3

Depth evaluation
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at 320 xx 256 (matching [12])

[0111] In some embodiments, the model generalizes on
unseen environments (including outdoors) captured on a
smartphone. For example, FIG. 8 includes samples of 3D
reconstructions of environments using an example embodi-
ment of the depth estimation model 527. These environ-
ments are not in the corpus of data that were used to train and
evaluate the embodiment of the depth estimation model 527.
The FIG. shows that the model 527 can generalize well
beyond the data that was used to create 1t.

6. Example Methods

[0112] FIG. 91s a flowchart describing an example method
900 of generating a depth map for a reference 1mage of an
environment, according to some embodiments. The steps of
FIG. 9 are illustrated from the perspective of a depth
estimation module (e.g., 311) performing the method 900.
However, some or all of the steps may be performed by other
entities or components. In addition, some embodiments may
perform the steps 1n parallel, perform the steps 1n different
orders, or perform different steps.

[0113] At step 910, the depth estimation module receives
a reference 1mage of an environment and a set of one or more
source 1mages of the environment. For example, a client
device (e.g., 310) uses a camera assembly (e.g., 312) to
capture a time series of (e.g., monocular or stereo) 1mages of
an environment. The reference 1mage may be one of the
images 1n the time series and the source images may be
images that were captured before or after the reference
image. In one embodiment, images with a time stamp within
a threshold time of the time stamp of the reference 1mage are
selected to be the source 1images. In another embodiment, a
threshold number of 1mages with the closest time stamps to
the reference time stamp are selected to be the source
images. Each image (reference or source) may be captured
by the same camera assembly (e.g., 312) or a different
camera assembly.

[0114] At step 920, the depth estimation module receives
image features for the reference 1image and the set of source

images (e.g., via the matching feature encoder 505). In some
embodiments, the depth estimation module may generate or
computed these 1mage features (e.g., using the matching
feature encoder 505).

[0115] At step 930, the depth estimation module generates
a 4D feature volume (e.g., 510) that includes the image
features and metadata (e.g., 517) associated with the refer-
ence 1mage and set of source images. The metadata may
include data indicative of geometric information, such as
data about the 3D relationship between the reference image
and one or more of the source 1images. Example metadata
includes a ray direction of the reference image r, ; J-D; a ray
direction of one of the source images r, ; ;“; a reterence plane
depth 2z, ; J.U; a source plane depth z,,."; a relative ray
angle 0°"; a relative pose distance p””; and a depth validity
mask m, ; .” (see Section 4 for more information on these
metadata components).

[0116] The image features and the metadata may be
arranged 1n the 4D feature volume according to one or more
metrics (e.g., a metadata component). For example, the
image features and the metadata may be arranged based on
the relative pose distances between the reference 1mage and
the set of source images. Relative pose distance p° " is a
metric that describes the distance between the pose of the
reference camera (the pose of a camera assembly when 1t
captured the reference 1mage) and the pose of a source
camera n (the pose of a camera assembly when 1t captured
source 1mage n). In some embodiments, the relative pose
distance for the reference image and one of the source

images 1s given by:

2
pon = I+ 3ol - ),

where 1 is the identity matrix, t”-” is the relative position of
source camera n to the reference camera, R%"” is the relative
rotation transformation between the reference camera and
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source camera n, and tr( ) 1s the trace function. In some
embodiments, the image features and metadata are arranged
in the 4D feature volume according to ascending or descend-
ing order of relative pose distance.

[0117] The 4D feature volume may be a 4D tensor of
dimension CxDxHxW, where C, D, H, and W are constants
greater than zero. For each spatial location (k, 1, 1) of the
feature volume, the 4D feature volume may include a C
dimensional vector that includes: (1) image features of the
reference image 1 JD, (2) 1mage features of one or more of
the images (e.g., {f),,,” for n€[1, N], where () indicates
that the image features of the source 1mages are perspective-
warped 1nto a reference frame of the reference image), (3)
the metadata, or (4) a combination thereof.

[0118] At step 940, the depth estimation module reduces
the 4D feature volume to generate a 3D cost volume (e.g.,
520), for example, via the reduction model 515. Reducing
the 4D feature volume may include reducing volumetric
cells of the feature volume 1n parallel 1nto a feature map.
[0119] At step 960, the depth estimation module applies a
depth estimation model (e.g., depth estimation model 527)
to the 3D cost volume and data based on the reference image
to generate a two dimensional (2D) depth map for the
reference image. The depth estimation model may include a
2D convolutional neural network with an encoder-decoder.
In some embodiments, the image features of the reference
image are generated by a first feature extractor model (e.g.,
505) and the data based on the reference image includes
second 1mage features of the reference image generated by
a second feature extractor model (e.g., 525) different from
the first feature extractor model.

[0120] The method 900 may further include the depth
estimation module or another module (e.g., the reconstruc-
tion module 313) generating a 3D representation of the
environment based on the 2D depth map of the reference
image. The 3D representation may be generated without
performing a 3D convolution. In some embodiments, gen-
crating the 3D representation includes fusing the 2D depth
map of the reference image with another 2D depth map (e.g.,
another 2D map generated by the depth estimation module
311 based on another reference 1mage).

[0121] Determining accurate depth maps or 3D represen-
tations of environments may be advantageous for gaming
applications, such as location-based games or augmented
reality (AR) or virtual reality (VR) games. For example, an
accurate depth map or 3D representation of an environments
may result in AR objects appearing more realistic when
displayed to a user.

[0122] FIG. 10 1s a tlowchart describing an example
method 1000 of training a depth map module (e.g., 311),
according to some embodiments. The steps of FIG. 10 are
illustrated from the perspective of a depth estimation train-
ing system (e.g., 330) performing the method 1000. How-
ever, some or all of the steps may be performed by other
entities or components. In addition, some embodiments may
perform the steps in parallel, perform the steps in diflerent
orders, or perform different steps.

[0123] At step 1010, the depth estimation training system
accesses tramning image data that includes a plurality of
reference 1images and sets of source 1mages associated with
the reference 1mages. For each reference image and a set of
source 1mages associated with that reference 1mage 1n the
accessed tramning image data, steps 1020-1050 may be
performed.
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[0124] At step 1020, the depth estimation training system
generates a cost volume (e.g., 520) using the reference
image and the associated set of source images. The cost
volume may be generated according to steps from method

900 (e.g., steps similar to 920-940).

[0125] At step 1030, the depth estimation training system
generates a depth map for the reference 1image using the cost
volume. For example, the depth estimation training system
(1) applies the cost volume to a depth estimation module
(e.g., a step similar 950) and (2) applies the depth estimation
module to the reference 1image (e.g., a step siumilar to 960).
At step 1040, the depth estimation training system deter-
mines an accuracy of pixels in the depth map using a ground
truth depth map for the reference image. For example, the
depth estimation training system calculates a loss for the
depth map of the reference 1image. At step 1060, the depth
estimation training system trains the depth estimation model
by minimizing the overall losses.

7 Example Computing System

[0126] FIG. 11 1s a block diagram of an example computer
1100 suitable for use as a client device 310 or game server
320. The example computer 1100 includes at least one
processor 1102 coupled to a chipset 1104. References to a
processor (or any other component of the computer 1100)
should be understood to refer to any one such component or
combination of such components working individually or
cooperatively to provide the described functionality. The
chipset 1104 includes a memory controller hub 1120 and an
input/output (I/0) controller hub 1122. A memory 1106 and
a graphics adapter 1112 are coupled to the memory control-
ler hub 1120, and a display 1118 1s coupled to the graphics
adapter 1112. A storage device 1108, keyboard 1110, point-
ing device 1114, and network adapter 1116 are coupled to the
I/O controller hub 1122. Other embodiments of the com-
puter 1100 have different architectures.

[0127] In the embodiment shown in FIG. 11, the storage
device 1108 1s a non-transitory computer-readable storage
medium such as a hard drnive, compact disk read-only
memory (CD-ROM), DVD, or a solid-state memory device.
The memory 1106 holds instructions and data used by the
processor 1102. The pointing device 1114 1s a mouse, track
ball, touch-screen, or other type of pointing device, and may
be used 1n combination with the keyboard 1110 (which may
be an on-screen keyboard) to mput data into the computer
system 1100. The graphics adapter 1112 displays images and
other information on the display 1118. The network adapter
1116 couples the computer system 1100 to one or more
computer networks, such as network 370.

[0128] The types of computers used by the entities of
FIGS. 3 and 5 can vary depending upon the embodiment and
the processing power required by the entity. For example,
the game server 320 might include multiple blade servers
working together to provide the functionality described.
Furthermore, the computers can lack some of the compo-

nents described above, such as keyboards 1110, graphics
adapters 1112, and displays 1118.

8. Additional Considerations

[0129] Some portions of above description describe the
embodiments 1n terms ol algorithmic processes or opera-
tions. These algorithmic descriptions and representations are
commonly used by those skilled in the computing arts to
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convey the substance of their work effectively to others
skilled 1n the art. These operations, while described func-
tionally, computationally, or logically, are understood to be
implemented by computer programs comprising instructions
for execution by a processor or equivalent electrical circuits,
microcode, or the like. Furthermore, 1t has also proven
convenient at times, to refer to these arrangements of
functional operations as modules, without loss of generality.

-

[0130] Any reference to “one embodiment” or “an
embodiment” means that a particular element, feature, struc-
ture, or characteristic described 1n connection with the
embodiment 1s included in at least one embodiment. The
appearances of the phrase “in one embodiment™ 1n various
places 1n the specification are not necessarily all referring to
the same embodiment. Similarly, use of “a” or “an” preced-
ing an element or component 1s done merely for conve-
nience. This description should be understood to mean that
one or more of the elements or components are present
unless it 1s obvious that 1t 1s meant otherwise.

[0131] Where values are described as “approximate” or
“substantially” (or their derivatives), such values should be
construed as accurate +/—10% unless another meaning 1s
apparent from the context. From example, “approximately
ten” should be understood to mean “in a range from nine to
eleven.”

-

[0132] The terms “comprises,” “comprising,” “includes,”
“including,” “has,” “having” or any other varation thereof,
are 1ntended to cover a non-exclusive inclusion. For
example, a process, method, article, or apparatus that com-
prises a list of elements 1s not necessarily limited to only
those elements but may include other elements not expressly
listed or inherent to such process, method, article, or appa-
ratus. Further, unless expressly stated to the contrary, “or”
refers to an inclusive or and not to an exclusive or. For
example, a condition A or B i1s satisfied by any one of the
following: A 1s true (or present) and B i1s false (or not
present), A 1s false (or not present) and B 1s true (or present),
and both A and B are true (or present).

[0133] Upon reading this disclosure, those of skill in the
art will appreciate still additional alternative structural and
functional designs for a system and a process for providing
the described functionality. Thus, while particular embodi-
ments and applications have been illustrated and described,
it 1s to be understood that the described subject matter 1s not
limited to the precise construction and components dis-
closed. The scope of protection should be limited only by the
following claims.

What 1s claimed 1s:
1. A method comprising:

receiving a reference image of an environment and a set
of one or more source 1images of the environment;

rece1ving image features of the reference image and the
set of source 1mages;

generating a four dimensional (4D) feature volume that
includes the image features and metadata associated
with the reference 1mage and set of source 1images, the
image features and the metadata arranged in the 4D
feature volume based on relative pose distances
between the reference image and the set of source
1mages;

reducing the 4D feature volume to generate a three
dimensional (3D) cost volume; and
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applying a depth estimation model to the 3D cost volume
and data based on the reference 1image to generate a two
dimensional (2D) depth map for the reference image.
2. The method of claim 1, wherein the 4D feature volume
1s a 4D tensor of dimension CxDXHXW, where C, D, H, and
W are constants greater than zero, wherein for each spatial
location (k, 1, ), the 4D feature volume includes a C
dimensional vector that includes (1) image features of the
reference 1image f, J.U, (2) image features of the set of source
images (f),.." for ne[1, N], where { ) indicates that the
image features of the source 1images are perspective-warped
into a reference frame of the reference image, and (3) the
metadata.
3. The method of claim 1, wherein a relative pose distance
for the reference image and one of the source images p”” is

given by:

2
por = I+ ol - )

where I is an identity matrix, t°-” is a relative position of
source camera n to reference camera, R"”” is a relative
rotation transformation between reference camera and
source camera n, and tr( ) 1s a trace function.

4. The method of claim 1, wherein the 1image features and
metadata are arranged 1n the 4D feature volume according to

ascending or descending order of relative pose distance.

5. The method of claim 1, wherein the metadata in the 4D
feature volume includes at least one of:

a ray direction of the reference 1mage r, ; J.O;

a ray direction of one of the source images r;; ;"

a reference plane depth 2, ; J-D;

a source plane depth z ;"

a relative ray angle 6°";

a relative pose distance p”"; or

a depth validity mask m, , "

6. The method of claim 1, wherein the depth estimation
model includes a 2D convolutional neural network including
an encoder-decoder architecture augmented with the cost
volume.

7. The method of claim 1, wherein reducing the 4D
feature volume includes reducing volumetric cells of the 4D
feature volume 1n parallel into a feature map.

8. The method of claim 1, further comprising generating
a 3D representation of the environment based on the 2D
depth map of the reference image.

9. The method of claim 8, wherein at least one of:

the 3D representation 1s generated without performing a

3D convolution or

generating the 3D representation includes fusing the 2D

depth map of the reference image with another 2D
depth map.

10. The method of claim 1, wherein the 1image features of
the reference 1mage are generated by a first feature extractor
model and the data based on the reference image includes
second 1mage features of the reference 1mage generated by
a second feature extractor model different from the first
feature extractor model.

11. A non-transitory computer-readable medium storing
instructions that, when executed by a computing system,
cause the computing system to perform operations compris-

Ing:
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receiving a reference image of an environment and a set
of one or more source 1images of the environment;
recelving image features of the reference image and the
set of source 1mages;
generating a four dimensional (4D) feature volume that
includes the image features and metadata associated
with the reference image and the set of source 1images,
the image features and the metadata arranged in the 4D
feature volume based on relative pose distances
between the reference image and the set of source
1mages;
reducing the 4D feature volume to generate a three
dimensional (3D) cost volume; and
applying a depth estimation model to the 3D cost volume
and data based on the reference 1image to generate a two
dimensional (2D) depth map for the reference image.
12. The non-transitory computer-readable medium of
claim 11, wherein the 4D feature volume 1s a 4D tensor of
dimension CXDxXHXW, where C, D, H, and W are constants
greater than zero, wherein for each spatial location (k, 1, 1),
the 4D feature volume includes a C dimensional vector that
includes (1) image features of the reference image f, ; JD, (2)
"forne]|l,

image features of the set of source images (f)
N], where { ) indicates that the image features of the source
images are perspective-warped 1nto a reference frame of the
reference 1image, and (3) the metadata.

13. The non-transitory computer-readable medium of
claim 11, wherein a relative pose distance for the reference

image and one of the source images p°-” is given by:

2
pr = I+ ol - 1)

where [ is an identity matrix, t>” is a relative position of
source camera n to reference camera, R"”” is a relative
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rotation transformation between reference camera and

source camera n, and tr{) is a trace function.

14. The non-transitory computer-readable medium of
claim 11, wherein the 1mage features and metadata are
arranged 1n the 4D feature volume according to ascending or
descending order of relative pose distance.

15. The non-transitory computer-readable medium of
claim 11, wherein the metadata in the 4D feature volume
includes at least one of:

a ray direction of the reference 1mage r, ; J.D;

a ray direction of one of the source images 1, ; "

a reference plane depth % JD;

a source plane depth z ;"

a relative ray angle 8"

a relative pose distance p””; or

a depth validity mask m,; .".

16. The non-transitory computer-readable medium of
claim 11, wherein the depth estimation model 1includes a 2D
convolutional neural network 1ncluding an encoder-decoder
architecture augmented with the cost volume.

17. The non-transitory computer-readable medium of
claim 11, wherein reducing the 4D feature volume 1ncludes
reducing volumetric cells of the 4D {feature volume in
parallel into a feature map.

18. The non-transitory computer-readable medium of
claim 11, further comprising generating a 3D representation
of the environment based on the 2D depth map of the
reference 1mage.

19. The non-transitory computer-readable medium of
claim 18, wherein the 3D representation 1s generated with-
out performing a 3D convolution.

20. The non-transitory computer-readable medium of
claim 18, wherein generating the 3D representation includes
fusing the 2D depth map of the reference image with another

2D depth map.
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