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When the speed of head movement exceeds the processing
capability of the system, a reduced depiction 1s displayed.
As one example, the resolution may be reduced using coarse
pixel shading 1 order to create a new depiction at the speed
of head movement. In accordance with another embodi-
ment, only the region the user 1s looking at 1s processed 1n
full resolution and the remaimnder of the depiction 1s pro-
cessed at lower resolution. In still another embodiment, the
background depictions may be blurred or grayed out to
reduce processing time.
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COMPENSATING FOR HIGH HEAD
MOVEMENT IN HEAD-MOUNTED
DISPLAYS

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application 1s a continuation of U.S. Pat.
Application No. 16/925,609, filed Jul. 10, 2020, which 1s a
continuation of U.S. Pat. Application No. 16/662.403, filed
Oct. 24, 2019, now U.S. Pat. No. 11,237,626, 1ssued Feb. 1,
2022, which 1s a continuation of U.S. Pat. Application No.
15/494,584, filed Apr. 24, 2017, now U.S. Pat. No.

10,649,521, 1ssued May 12, 2020, the content of which 1s
hereby incorporated by reference.

FIELD

[0002] Embodiments relate generally to data processing
and more particularly to data processing via a general-pur-
pose graphics processing unit.

BACKGROUND OF THE DESCRIPTION

[0003] Current parallel graphics data processing mcludes
systems and methods developed to perform specific opera-
tions on graphics data such as, for example, linear interpola-
tion, tessellation, rasterization, texture mapping, depth test-
ing, etc. Traditionally, graphics processors used fixed
function computational units to process graphics data; how-
ever, more recently, portions of graphics processors have
been made programmable, enabling such processors to sup-
port a wider variety of operations for processing vertex and
fragment data.

[0004] To further increase performance, graphics proces-
sors typically implement processing techniques such as
pipelining that attempt to process, 1n parallel, as much gra-
phics data as possible throughout the different parts of the
oraphics pipeline. Parallel graphics processors with smgle
instruction, multiple thread (SIMT) architectures are
designed to maximize the amount of parallel processing n
the graphics pipeline. In an SIMT architecture, groups of
parallel threads attempt to execute program instructions syn-
chronously together as often as possible to increase proces-
sing efficiency. A general overview of software and hard-

ware for SIMT architectures can be found 1n Shane Cook,
CUDA Programming Chapter 3, pages 37-51 (2013).

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] So that the manner 1n which the above recited fea-
tures of the present embodiments can be understood n
detail, a more particular description of the embodiments,
briefly summarnized above, may be had by reference to
embodiments, some of which are illustrated 1n the appended
drawings. It 1s to be noted, however, that the appended
drawings 1llustrate only typical embodiments and are there-

fore not to be considered limiting of 1ts scope.
[0006] FIG. 1 1s a block diagram 1llustrating a computer

system configured to implement one or more aspects of the
embodiments described herein;
[0007] FIGS. 2A-2D 1llustrate a parallel processor compo-

nents, according to an embodiment;
[0008] FIGS. 3A-3B are block diagrams of graphics mul-

tiprocessors, according to embodiments;
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[0009] FIGS. 4A-4F illustrate an exemplary architecture
in which a plurality of GPUs are communicatively coupled
to a plurality of multi-core processors;

[0010] FIG. 5 illustrates a graphics processing pipeline,
according to an embodiment;

[0011] FIG. 6 1s a software depiction for one embodiment;
[0012] FIG. 7 1s a flow chart for one embodiment;

[0013] FIG. 8 1s a schematic depiction of one
embodiment;
[0014] FIG.

embodiment;
[0015] FIG. 10 1s a flow chart for one embodiment;

[0016] FIG. 11 1s an illustration of an example of a head
mounted display (HMD) system according to an
embodiment;

[0017] FIG. 12 1s a block diagram of an example of the
functional components included m the HMD system of
FIG. 11 according to an embodiment;

[0018] FIG. 1315 a block diagram of an example of a gen-
eral processing cluster included 1n a parallel processing unit
according to an embodiment;

[0019] FIG. 14 1s a block diagram of a processing system
according to one embodiment;

[0020] FIG. 15 15 a block diagram of a processor accord-
Ing to one embodiment;

[0021] FIG. 16 1s a block diagram of a graphics processor
according to one embodiment;

[0022] FIG. 17 1s a block diagram of a graphics processing
engine according to one embodiment;

[0023] FIG. 18 1s a block diagram of another embodiment
of a graphics processor;

[0024] FIG. 19 1s a depiction of thread execution logic
according to one embodiment;

[0025] FIG. 20 1s a block diagram of a graphics processor
instruction format according to some embodiments;

[0026] FIG. 21 1s a block diagram of another embodiment
of a graphics processor;

[0027] FIGS. 22A-22B 1s a block diagram of a graphics
processor command format according to some
embodiments;

[0028] FIG. 23 illustrates exemplary graphics software
architecture for a data processing system for one
embodiment;

[0029] FIG. 24 1s a block diagram illustrating an IP core
development system for one embodiment;

[0030] FIG. 25 15 a block diagram 1illustrating an exemp-
lary system on a chip for one embodiment;

[0031] FIG. 26 15 a block diagram 1llustrating an exemp-
lary graphics processor; and

[0032] FIG. 27 1s a block diagram illustrating an addi-

tional exemplary graphics processor.

9 1s a schematic depiction of another

DETAILED DESCRIPTION

[0033] In some embodiments, a graphics processing unit
(GPU) 1s communicatively coupled to host/processor cores
to accelerate graphics operations, machine-learning opera-
tions, pattern analysis operations, and various general pur-
pose GPU (GPGPU) functions. The GPU may be commu-
nicatively coupled to the host processor/cores over a bus or
another interconnect (e.g., a high-speed mterconnect such as
PCle or NVLink). In other embodiments, the GPU may be
integrated on the same package or chip as the cores and
communicatively coupled to the cores over an internal pro-
cessor bus/interconnect (1.¢., mternal to the package or
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chip). Regardless of the manner i which the GPU 18 con-
nected, the processor cores may allocate work to the GPU m
the form of sequences of commands/instructions contained
in a work descriptor. The GPU then uses dedicated circuitry/
logic for efficiently processing these commands/
instructions.

[0034] In the following description, numerous specific
details are set forth to provide a more thorough understand-
ing. However, 1t will be apparent to one of skill 1n the art that
the embodiments described herein may be practiced without
one or more of these specific details. In other mstances,
well-known features have not been described to avoid
obscuring the details of the present embodiments. Compen-
sating for High Head Movement 1n Head-Mounted Displays
[0035] In head-mounted displays, head movement 1s mon-
itored continuously for example using mnertial measurement
units (IMUSs). Since the display seen by the user changes
based on head movement to create a virtual reality depic-
tion, the speed of movement of the head must be correlated
to the speed of creating new depictions. In the real world as
you move your head, what you see changes 1nstantly.
[0036] With a head-mounted display, the faster the head
moves, the faster the images must be rendered 1n order to
create a realistic virtual world. However, processing speed 1s
lmmited. When the head moves so fast that the processing
capabilities of the head-mounted display cannot keep up a
compromise 1s advantageously undertaken. The compro-
mise enables the user see something substantially as fast as
the user moves the head. However what the user sees, n
some cases, may be compromised so that processing speed
can keep up with the rate of head movement.

[0037] 'Thus, when the speed of head movement exceeds
the processing capability of the system, a reduced depiction
1s displayed. As one example, the resolution may be reduced
using coarse (low resolution) pixel shading 1n order to create
a new depiction at the speed of head movement. In accor-
dance with another embodiment, only the region the user 1s
looking at 1s processed 1n full resolution and the remainder
of the depiction 1s processed at lower resolution. In still
another embodiment, the background depictions may be
blurred or grayed out to reduce processing time.

[0038] In some embodiments, a virtual reality application
prepares and submits different workloads to a graphics dri-
ver depending on the speed of head movement. When head
movement 18 too high for the processing capabilities of the
system, a coarse pixel shaded virtual reality frame 1s pro-
vided and 1 other cases a more detailed pixel shaded virtual
reality frame 1s provided.

[0039] An algorithm 1n the graphics driver tracks the spa-
tial movement speed data from IMU sensors and intelli-
ogently submits one of the two workloads 1n one embodi-
ment. For example, when the head 1s moving very {fast
from side to side, the graphics driver submits and renders
the coarse pixel shaded frame. When the head movement
1s more stable, the graphics pipeline intelligently renders a
more detailed pixel shaded virtual reality frame.

[0040] 'Thus referring to FIG. 6, a head mounted display
software infrastructure mcludes a virtual reality application
that receives mputs from IMU sensor data indicating the
extent and speed of head movement. That sensor data 1s
used to select either a coarse workload 14 or a regular work-
load 16. The appropriate workload 1s sent to the driver 18 for
renderimg based on the speed of head movement. If that
speed 18 too fast for the processing capabilities of the sys-
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tem, a reduced depiction may be used so that even 1f the
display 1s not immediately pertect, the user sees something
new, given the extent and speed of head movement. The
longer the user looks at the same area, the better the depic-
tion can become. In other words, the resolution may be
improved as additional information 1s processed after suffi-
cient viewing time.

[0041] Referring to FIG. 7, a head speed compensation
algorithm 20 mmtially determines whether the head speed 1s
too high at diamond 22. If not, a normal rendering sequence
1s implemented at block 24.

[0042] Otherwise, a workload 1s rendered more coarsely
as mdicated 1n block 26. In some cases, the virtual reality
application 1s processing at two different resolutions at all
times. Then the most appropriate resolution 1s then selected.
The two workloads may not be available at the same time.
Namely, the regular workload may not be available until
after the coarse workload has already been made available.
[0043] In one embodimment, low latency multi-display
plane foveated rendering may be implemented. In some dis-
plays, such as head-mounted displays, when the head moves
quickly, 1t 1s necessary to quickly render new frames. One
way to render more quickly 1s to only render 1n the foveated
region. Another option 1s to reduce PPI.

[0044] The foveated region 1s the region of mterest to the
user which may be detected for example by eye gaze detec-
tion. Other techniques for finding a region of mterest may be
motion detection within the scene and the location of parti-
cular tracked objects as well as locations where user focus 1s
directed either via cursor location or touch screen touch
location to mention two examples.

[0045] Thus 1n some embodiments only the foveated
region may be processed and displayed m the head-mounted
display. This provides lower latency updates of the virtual

reality frame 1 some embodiments.
[0046] In some embodiments the head-mounted display

may include two frame buffers: one for the foveated or
region of mterest; and one for the rest of the frame. The
rate of updating the region of mterest may be higher than
the rate of updating the rest of the frame.

[0047] Video or graphics, received by a render engine
within a graphics processing unit, may be segmented into a
region of mterest such as foreground and a region of less
interest such as background. In other embodiments, an
object of interest may be segmented from the rest of the
depiction 1n a case of a video game or graphics processing
workload. Each of the segmented portions of a frame may
themselves make up a separate surtace which 1s sent sepa-
rately from the render engine to the display engine of a gra-
phics processing unit. In one embodiment, the display
engine combines the two surfaces and sends them over a
display link to the head-mounted display. The display con-
troller in the display panel displays the combined frame. The
combined frame 1s stored i a buffer and refreshed
periodically.

[0048] In accordance with another embodiment, video or
oraphics may be segmented by a render engine 1nto regions
of interest or objects of mterest and objects of less interest
and again each of the separate regions or objects may be
transterred to the display engine as a separate surface.
Then the display engine may transter the separate surfaces
to a display controller of a head-mounted display over a dis-
play link. At the display panel, a separate frame buffer may
be used for each of the separate surfaces.
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[0049] In some embodiments, the render engine may
refresh the background or object of less interest at a lower
rate such as half the normal frame rate. However, the display
engine 1n some embodiments may still work at the normal
frame rate. The render engine passes the separate display
surfaces to the display engine. One render bus may handle
the region of less mterest and one render bus may handle the
region of more terest.

[0050] The depth buffer for the background regions or
regions of less interest may not be updated at the normal
frame update rate in one embodiment. However, the display
engine may read at the normal frame rate and may create
finished, combined frames 1n some embodiments at the full
frame rate. In other embodiments, the display engine con-
tinues to send the two separate frames on to the display
panel for a combination there.

[0051] A savings arises m some embodiments because
there 1s no need to write the regions of less mterest or the
objects of less mterest at the full frame rate and 1nstead
some embodiments half the frame rate may be used, also
saving memory bandwidth and/or reducing power
consumption.

[0052] For the regions or objects of more mterest, the sam-
pling rate may be increased. In one embodiment the sam-
pling rate 1s not lowered for the background or regions of
less mterest because the panel still expects a single ultimate
frame coming at a normal frame rate.

[0053] Theretore the lower creation rate for background
frames 1 some embodiments does not involve reducing
the sampling rate of the background and therefore the back-
oround 18 not created at the full rate, saving power
consumption.

[0054] In some embodmments, the head-mounted display
may do the blending or combiming. This may involve
changes 1 the way that the display link and display panel
operate. Blending 1n the display panel may save both link
power and reduce display engine power consumption
because the display engine only sends surfaces at different
rates without blending.

[0055] Legacy head-mounted displays may then commu-
nicate during an initial handshake period with the graphics
processing unit to advise the graphics processing unit of the
limited capabilities of the head-mounted display. In such
case the graphics processing unit may undertake to combine
the segmented frames m the display engine. Capabilities
information may be exchanged between the head-mounted
display, a driver and the graphics processing unit. Usually
the display panel driver tells the display engine of the gra-
phics processing umit what the head-mounted display 1s cap-
able of.

[0056] Thus in some cases, the head-mounted display pro-
tocol may be adapted to accept two surfaces that are
refreshed to the panel at different rates where the panel
does the blending of the two segmented frames. In some
cases the graphics processing unit or the host processor
may reprogram the display panel to handle separately but-
fered surfaces or different or unique processing of the seg-
mented surfaces of the frame.

[0057] Generally, 1n such embodiments, a head-mounted
display may have separate buffers for each of the different
surfaces that are processed differently. In that case, the back-
ground buffer does not change much so 1t 1s updated at a
lower rate. The foreground buffer 1s updated at a faster rate.
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[0058] Foreground and background segmentation may be
done 1n some rendering engines 1n current technologies but
this 1s generally done algorithmically. In some embodi-
ments, 1n game and graphics embodiments, what 1s fore-
oround and what 1s background may be determined by the
oame or graphics application. Because the application sets
up all the objects, 1t knows which objects are most important
and which objects are moving or changing location and
therefore may be most important to refresh at a higher rate.
Down the pipe, 1t may be determined algorithmically
whether or not to segment but this 1s wasteful since the
game or graphics application may already know what 1s
changing and what 1s not changing in terms of regions of
interest or objects of mterest.

[0059] An application program mterface (API) may be
used to enable an application to tell the render engine, by
tags or other 1dentifiers, which objects are foreground and
which objects are background. That application program
interface mnformation may go through a three-dimensional
(3D) pipeline. At pixel shading time, the 3D pipe learns
which pixels are foreground and which pixels are back-
ground using the tags or 1identifiers without having to deter-
mine them algorithmically.

[0060] During rendering and writing to a displayable sur-
face 1n the graphics processing unit, there may be segmenta-
tion so that the background goes to a different display sur-
tace at a lower shading rate. When a number of pixels are
tagged as background, they may be shaded as a separate sur-
tace at a lower rate. For example, the background surtaces
may be shaded only at every other frame. At the same time,

the foreground surfaces may be shaded on every pass.
[0061] Thus 1n some embodiments, the segmentation of

foreground and background surfaces may be done algorith-
mically and 1 other embodiments 1t may be done by appli-
cation program mterface (API) tags or identifiers, for exam-
ple m the case of 3D games and graphics processing for
example.

[0062] The principles described herein can apply to any
region of 1nterest, not just foreground and background. For
example, motion detection may be used to determine which
objects or portions of the frame are moving. Specific colors
or objects may be searched for. Eye gaze detection may be
used to determune which portion of the frame 1s of most
interest to the user. Likewise the current location of user
focus, detected for example by touch screen or cursor acti-
vation, can be used to segment the regions that are of more

imnterest from than those that are of less interest.
[0063] Thus referring to FIG. 8, 1n one embodiment a gra-

phics processing unit 30 may receive video, graphics or
game 1nput at a render engine 32. The render engine then
segments each frame nto foreground and background sur-
taces 34 and 36. Each separate surface 1s then sent to the
display engine 38 where, 1 the embodiment of FIG. 8, the
surfaces are recombined and sent over the display link 40 to
the head-mounted display 42. At the head-mounted display,
a display controller 42 accesses a butter 46 that 1s refreshed
on a periodic basis by the graphics processing unit.

[0064] In contrast, the graphics processing unit m the
embodiment of FIG. 9 recerves graphics, games or video.
The render engine 32 again segments the foreground and
background surfaces 34 and 36 which are separately sent
to the display engine 38. But in this embodiment, the display
engine sends the segmented surfaces separately over the dis-
play link 40 to the head-mounted display. As shown at the
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head-mounted display 42, a display controller 42 accesses
toreground and background separate butters 46a and 465
which are separately retreshed at different rates.

[0065] FIG. 10 1s a depiction of a multi-surface frame pro-
cessig sequence 30 1n accordance with some embodiments.
The sequence 50 may be implemented 1n software, irmware
and/or hardware. In software and firmware embodiments 1t
may be implemented by computer executed mstructions
stored 1 one or more non-transitory computer readable
media such as magnetic, optical or semiconductor storage.
The sequence may be implemented within a graphics pro-
cessing unit 1n some embodiments.

[0066] The sequence S0 begins by segmenting regions or
objects of 1nterest 1 the render engine of a graphics proces-
sing unit as mdicated m block 52. Then the region or object
of mterest 1s sent together with the rest of the frame on sepa-
rate surfaces to the display engine as indicated 1n block 54.
[0067] The display engine then sends the surfaces sepa-
rately to the head-mounted display as indicated 1n block 56.
[0068] In the head-mounted display, the surfaces may be
separately stored m separate buffers as mdicated 1 block
58. Then the separate buftfers are updated at different rates
as mndicated m block 60. In some embodiments before doing
this, the system determines whether the display panel 1s cap-
able of buffering display surfaces separately. If not, the
separate surfaces are combined 1n the display engine rather
than sending them separately to the head-mounted display.

[0069] While a limited number of embodiments have been
described, those skilled 1n the art will appreciate numerous
modifications and varniations therefrom. It 18 mtended that
the appended claims cover all such modifications and vana-
tions as fall within the true spint and scope of this
disclosure.

[0070] FIG. 11 1s a block diagram illustrating an IP core
development system 1100 that may be used to manufacture
an mtegrated circuit to perform operations according to an
embodiment. The IP core development system 1100 may be
used to generate modular, re-usable designs that can be
incorporated mto a larger design or used to construct an
entire mtegrated circuit (e.g., an SOC integrated circuit). A
design facility 1130 can generate a software simulation 1110
of an IP core design 1 a high level programming language
(¢.g., C/C++). The sotftware simulation 1110 can be used to
design, test, and verity the behavior of the IP core using a
simulation model 1112. The simulation model 1112 may
include functional, behavioral, and/or timing simulations.
A register transter level (RTL) design 1115 can then be cre-
ated or synthesized from the simulation model 1112. The
RTL design 1115 1s an abstraction of the behavior of the
integrated circuit that models the tlow of digital signals
between hardware registers, including the associated logic
pertormed using the modeled digital signals. In addition to
an RTL design 1115, lower-level designs at the logic level or
transistor level may also be created, designed, or synthe-
sized. Thus, the particular details of the mitial design and
simulation may vary.

[0071] 'The RTL design 11135 or equivalent may be further
synthesized by the design facility mto a hardware model
1120, which may be in a hardware description language
(HDL), or some other representation of physical design
data. The HDL may be further simulated or tested to verity
the IP core design. The IP core design can be stored for
delivery to a 3rd party fabrication facility 1165 using non-
volatile memory 1140 (¢.g., hard disk, flash memory, or any
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non-volatile storage medium). Alternatively, the IP core
design may be transmitted (e.g., via the Internet) over a
wired connection 1150 or wireless connection 1160. The
fabrication facility 1165 may then fabricate an integrated
circuit that 1s based at least 1n part on the IP core design.
The fabricated integrated circuit can be configured to per-
form operations 1n accordance with at least one embodiment
described herein.

Exemplary System on a Chip Integrated Circuit

[0072] FIGS. 12-14 illustrate exemplary integrated cir-
cuits and associated graphics processors that may be fabri-
cated using one or more IP cores, according to various
embodiments described herein. In addition to what 1s 1llu-
strated, other logic and circuits may be included, including
additional graphics processors/cores, peripheral interface
controllers, or general purpose processor cores.

[0073] FIG. 12 15 a block diagram 1llustrating an exemp-
lary system on a chip mtegrated circuit 1200 that may be
fabricated using one or more IP cores, according to an
embodiment. Exemplary integrated circuit 1200 includes
on¢ or more application processor(s) 1205 (e.g., CPUs), at
least one graphics processor 1210, and may additionally
include an mmage processor 1215 and/or a video processor
1220, any of which may be a modular IP core from the same
or multiple different design facilities. Integrated circuit 1200
includes peripheral or bus logic including a USB controller
1225, UART controller 1230, an SPI/SDIO controller 1235,
and an I28/12C controller 1240. Additionally, the integrated
circuit can include a display device 1245 coupled to one or
more of a high-definition multimedia interface (HDMI) con-
troller 1250 and a mobile industry processor interface
(MIPI) display intertace 1255. Storage may be provided by
a flash memory subsystem 1260 including tflash memory and
a flash memory controller. Memory mtertace may be pro-
vided via a memory controller 1265 for access to SDRAM
or SRAM memory devices. Some mtegrated circuits addi-
tionally mclude an embedded security engine 1270.

[0074] FIG. 13 15 a block diagram 1llustrating an exemp-
lary graphics processor 1310 of a system on a chip inte-
grated circuit that may be fabricated using one or more IP
cores, according to an embodiment. Graphics processor
1310 can be a variant of the graphics processor 1210 of
FIG. 12. Graphics processor 1310 includes a vertex proces-
sor 1305 and one or more fragment processor(s) 1315A-
1315N (e.g., 1315A, 1315B, 1315C, 1315D, through
1315N-1, and 1315N). Graphics processor 1310 can execute
different shader programs via separate logic, such that the
vertex processor 1303 1s optimized to execute operations for
vertex shader programs, while the one or more fragment
processor(s) 1315A-1315N execute fragment (e.g., pixel)
shading operations for fragment or pixel shader programs.
The vertex processor 13035 performs the vertex processing
stage of the 3D graphics pipeline and generates primitives
and vertex data. The fragment processor(s) 1315A-1315N
use the primitive and vertex data generated by the vertex
processor 1305 to produce a framebufter that 1s displayed
on a display device. In one embodiment, the fragment pro-
cessor(s) 1315A-1315N are optimized to execute fragment
shader programs as provided for in the OpenGL API, which
may be used to perform similar operations as a pixel shader
program as provided for in the Direct 3D APIL.
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[0075] Graphics processor 1310 additionally mcludes one
or more memory management units (MMUs) 1320A-
1320B, cache(s) 1325A-1325B, and circuit iterconnect(s)
1330A-1330B. The one or more MMU(s) 1320A-13208
provide for virtual to physical address mapping for graphics
processor 1310, including for the vertex processor 13035 and/
or fragment processor(s) 1315A-1315N, which may refer-
ence vertex or image/texture data stored i memory, 1 addi-
tion to vertex or image/texture data stored mn the one or more
cache(s) 1325A-1325B. In one embodiment the one or more
MMU(s) 1320A-1320B may be synchronized with other
MMUSs within the system, including one or more MMUSs
associated with the one or more application processor(s)
1205, image processor 1215, and/or video processor 1220
of FIG. 12, such that each processor 1205-1220 can partici-
pate 1n a shared or unified virtual memory system. The one
or more circuit mterconnect(s) 1330A-1330B enable gra-
phics processor 1310 to interface with other IP cores within
the SoC, either via an internal bus of the SoC or via a direct
connection, according to embodiments.

[0076] FIG. 14 1s a block diagram illustrating an addi-
tional exemplary graphics processor 1410 of a system on a
chip mtegrated circuit that may be fabricated using one or
more IP cores, according to an embodiment. Graphics pro-
cessor 1410 can be a vanant of the graphics processor 1210
of FIG. 12. Graphics processor 1410 includes the one or
more MMU(s) 1320A-1320B, cache(s) 1325A-13235B, and
circuit mterconnect(s) 1330A-1330B of the mtegrated cir-
cuit 1300 of FIG. 13.

[0077] Graphics processor 1410 mncludes one or more sha-
der core(s) 1415A-1415N (e.g., 1415A, 1415B, 1415C,
1415D, 1415E, 1415F, through 1315N-1, and 1315N),
which provides for a unified shader core architecture in
which a smgle core or type or core can execute all types of
programmable shader code, including shader program code
to implement vertex shaders, fragment shaders, and/or com-
pute shaders. The exact number of shader cores present can
vary among embodiments and implementations. Addition-
ally, graphics processor 1410 includes an inter-core task
manager 1405, which acts as a thread dispatcher to dispatch
execution threads to one or more shader core(s) 1415A-
1415N and a tiling unit 1418 to accelerate tiling operations
for tile-based rendering, 1n which rendering operations for a
scene are subdivided 1 1mage space, for example to exploit
local spatial coherence within a scene or to optimize use of
internal caches.

[0078] FIG. § 1illustrates a graphics processing pipeline
500, according to an embodiment. In one embodiment a gra-
phics processor can implement the illustrated graphics pro-
cessimng pipeline 500. The graphics processor can be
included within the parallel processing subsystems as
described heremn, such as the parallel processor 200 of
FIGS. 2, which, 1n one embodiment, 1s a variant of the par-
allel processor(s) 112 of FIG. 1. The various parallel proces-
sing systems can implement the graphics processing pipe-
lme 500 via one or more instances of the parallel
processing unit (e.g., parallel processing unit 202 of FIGS.
2) as described herein. For example, a shader unit (e.g., gra-
phics multiprocessor 234 of FIGS. 3) may be configured to
perform the functions of one or more of a vertex processing
unit 504, a tessellation control processing unit S08, a tessel-
lation evaluation processing unit 512, a geometry proces-
sing unit 516, and a fragment/pixel processing unit 524.
The functions of data assembler 502, primitive assemblers
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506, 514, 518, tessellation unit 510, rasterizer 522, and ras-
ter operations unit 526 may also be performed by other pro-
cessing engines within a processing cluster (e.g., processing
cluster 214 of FIGS. 3) and a corresponding partition unit
(e.g., partition umt 220A-220N of FIGS. 2). The graphics
processing pipeline 500 may also be implemented using
dedicated processing units for one or more functions. In
one embodiment, one or more portions of the graphics pro-
cessing pipeline S00 can be performed by parallel proces-
sing logic within a general purpose processor (e.g., CPU). In
one embodiment, one or more portions of the graphics pro-
cessing pipeline 500 can access on-chip memory (e.g., par-
allel processor memory 222 as 1in FIGS. 2) via a memory
interface 528, which may be an instance of the memory
interface 218 of FIGS. 2.

[0079] In one embodiment the data assembler 502 1s a pro-
cessing unit that collects vertex data for surfaces and primi-
tives. The data assembler 502 then outputs the vertex data,
including the vertex attributes, to the vertex processing unit
S04. The vertex processing unit 504 1s a programmable
execution unit that executes vertex shader programs, light-
ing and transforming vertex data as specified by the vertex
shader programs. The vertex processing unit 504 reads data
that 1s stored 1n cache, local or system memory for use 1n
processing the vertex data and may be programmed to trans-
form the vertex data from an object-based coordinate repre-
sentation to a world space coordinate space or a normalized
device coordinate space.

[0080] A first mstance of a primitive assembler 506
recewves vertex attributes from the vertex processing unit
S50. The primitive assembler 506 readings stored vertex attri-
butes as needed and constructs graphics primitives for pro-
cessing by tessellation control processing unit S08. The gra-
phics primitives mclude triangles, line segments, points,
patches, and so forth, as supported by various graphics pro-
cessing application programming interfaces (APIs).

[0081] The tessellation control processing unit SO8 treats
the mput vertices as control points for a geometric patch.
The control points are transformed from an 1nput represen-
tation from the patch (e.g., the patch’s bases) to a represen-
tation that 1s suitable for use m surface evaluation by the
tessellation evaluation processing unit 512. The tessellation
control processing unit S08 can also compute tessellation
factors for edges of geometric patches. A tessellation factor
applies to a single edge and quantifies a view-dependent
level of detail associated with the edge. A tessellation unit
510 15 configured to recerve the tessellation factors for edges
of a patch and to tessellate the patch into multiple geometric
primitives such as line, triangle, or quadrilateral primitives,
which are transmitted to a tessellation evaluation processing
unit 5S12. The tessellation evaluation processing unit 512
operates on parameterized coordinates of the subdivided
patch to generate a surface representation and vertex attri-
butes for ecach wvertex associated with the geometric
primitives.

[0082] A second mstance of a primitive assembler 514
recerves vertex attributes from the tessellation evaluation
processing unit 512, reading stored vertex attributes as
needed, and constructs graphics primitives for processing
by the geometry processing unit S16. The geometry proces-
sing unit 316 1s a programmable execution unit that executes
oecometry shader programs to transform graphics primitives
recerved from primitive assembler 514 as specified by the
geometry shader programs. In one embodiment the geome-
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try processing unit 316 1s programmed to subdivide the gra-
phics primitives 1into one or more new graphics primitives
and calculate parameters used to rasterize the new graphics
primitives.

[0083] In some embodiments the geometry processing
unit 516 can add or delete elements 1n the geometry stream.
The geometry processing unit 516 outputs the parameters
and vertices specitymg new graphics primitives to primitive
assembler 518. The primitive assembler 518 receives the
parameters and vertices from the geometry processing unit
516 and constructs graphics primitives for processing by a
viewport scale, cull, and clip unit 5S20. The geometry proces-
sing unit 516 reads data that 1s stored 1n parallel processor
memory or system memory for use m processing the geo-
metry data. The viewport scale, cull, and clip unit 520 per-
torms clhipping, culling, and viewport scaling and outputs
processed graphics primitives to a rasterizer S522.

[0084] 'The rasterizer 522 can perform depth culling and
other depth-based optimizations. The rasterizer 522 also
performs scan conversion on the new graphics primitives
to generate fragments and output those fragments and asso-
ciated coverage data to the fragment/pixel processing unit
524. The fragment/pixel processing unit 524 1s a program-
mable execution unit that 18 configured to execute fragment
shader programs or pixel shader programs. The tragment/
pixel processing unit 524 transforming fragments or pixels
recerved from rasterizer 522, as specified by the fragment or
pixel shader programs. For example, the fragment/pixel pro-
cessing unit 524 may be programmed to perform operations
included but not limited to texture mapping, shading, blend-
ing, texture correction and perspective correction to produce
shaded fragments or pixels that are output to a raster opera-
tions unit 526. The fragment/pixel processing unit 524 can
read data that 1s stored 1n either the parallel processor mem-
ory or the system memory for use when processing the frag-
ment data. Fragment or pixel shader programs may be con-
figured to shade at sample, pixel, tile, or other granularities
depending on the sampling rate configured for the proces-
SIng units.

[0085] The raster operations unmit 526 1s a processing unit
that performs raster operations including, but not limited to
stencil, z test, blending, and the like, and outputs pixel data
as processed graphics data to be stored 1n graphics memory
(¢.g., parallel processor memory 222 as m FIGS. 2, and/or
system memory 104 as i FIG. 1, to be displayed on the one
or more display device(s) 110 or for turther processing by
one of the one or more processor(s) 102 or parallel proces-
sor(s) 112. In some embodiments the raster operations unit
526 15 configured to compress z or color data that 1s written
to memory and decompress z or color data that 1s read from
mMemory.

Graphics Processing Pipeline

System Overview

[0086] FIG. 1 1s a block diagram 1illustrating a computing
system 100 configured to implement one or more aspects of
the embodiments described herein. The computing system
100 includes a processing subsystem 101 having one or
more processor(s) 102 and a system memory 104 commu-
nicating via an interconnection path that may mclude a
memory hub 105. The memory hub 105 may be a separate
component within a chipset component or may be integrated
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within the one or more processor(s) 102. The memory hub
105 couples with an I/O subsystem 111 via a communication
link 106. The I/O subsystem 111 includes an I/O hub 107
that can enable the computing system 100 to receive input
from one or more mput device(s) 108. Additionally, the I/O
hub 107 can enable a display controller, which may be
included 1n the one or more processor(s) 102, to provide
outputs to one or more display device(s) 110A. In one embo-
diment the one or more display device(s) 110A coupled with
the I/O hub 107 can include a local, internal, or embedded
display device.

[0087] In one embodiment the processing subsystem 101
includes one or more parallel processor(s) 112 coupled to
memory hub 105 via a bus or other communication link
113. The communication link 113 may be one of any num-
ber of standards based communication link technologies or
protocols, such as, but not inmited to PCI Express, or may be
a vendor specific communications mterface or communica-
tions fabric. In one embodimment the one or more parallel
processor(s) 112 form a computationally focused parallel
or vector processing system that an include a large number
of processing cores and/or processing clusters, such as a
many 1ntegrated core (MIC) processor. In one embodiment
the one or more parallel processor(s) 112 form a graphics
processing subsystem that can output pixels to one of the
one¢ or more display device(s) 110A coupled via the 1/O
Hub 107. The one or more parallel processor(s) 112 can
also include a display controller and display interface (not
shown) to enable a direct connection to one or more display
device(s) 110B.

[0088] Within the I/O subsystem 111, a system storage
unit 114 can connect to the I/0 hub 107 to provide a storage
mechanism for the computing system 100. An I/O switch
116 can be used to provide an interface mechanism to enable
connections between the I/O hub 107 and other components,
such as a network adapter 118 and/or wireless network
adapter 119 that may be mtegrated nto the platform, and
various other devices that can be added via one or more
add-1n device(s) 120. The network adapter 118 can be an
Ethernet adapter or another wired network adapter. The
wireless network adapter 119 can include one or more of a
Wi-Fi1, Bluetooth, near field communication (NFC), or other
network device that includes one or more wireless radios.
[0089] The computing system 100 can include other com-
ponents not explicitly shown, mcluding USB or other port
connections, optical storage drives, video capture devices,
and the like, may also be connected to the I/O hub 107.
Communication paths interconnecting the various compo-
nents 1 FIG. 1 may be implemented using any suitable pro-
tocols, such as PCI (Peripheral Component Interconnect)
based protocols (e.g., PCI-Express), or any other bus or
point-to-point communication interfaces and/or protocol(s),
such as the NV-Link high-speed mterconnect, or itercon-
nect protocols known 1n the art.

[0090] In one embodiment, the one or more parallel pro-
cessor(s) 112 mcorporate circuitry optimized for graphics
and video processing, including, for example, video output
circultry, and constitutes a graphics processing unit (GPU).
In another embodiment, the one or more parallel proces-
sor(s) 112 incorporate circuitry optimized for general pur-
pose processing, while preserving the underlying computa-
tional architecture, described 1n greater detail herein. In yet
another embodiment, components of the computing system
100 may be integrated with one or more other system ele-



US 2023/0315198 Al

ments on a single integrated circuit. For example, the one or
more parallel processor(s), 112 memory hub 105, proces-
sor(s) 102, and I/O hub 107 can be mtegrated into a system
on chip (SoC) mtegrated circuit. Alternatively, the compo-
nents of the computing system 100 can be integrated into a
single package to form a system in package (SIP) configura-
tion. In one embodiment at least a portion of the components
of the computing system 100 can be integrated mnto a multi-
chip module (MCM), which can be interconnected waith
other multi-chip modules into a modular computing system.
[0091] It will be appreciated that the computing system
100 shown herein 1s 1llustrative and that variations and mod-
ifications are possible. The connection topology, mncluding
the number and arrangement of bridges, the number of pro-
cessor(s) 102, and the number of parallel processor(s) 112,
may be modified as desired. For mstance, imn some embodi-
ments, system memory 104 1s connected to the processor(s)
102 directly rather than through a bridge, while other
devices communicate with system memory 104 via the
memory hub 105 and the processor(s) 102. In other alterna-
tive topologies, the parallel processor(s) 112 are connected
to the I/O hub 107 or directly to one of the one or more
processor(s) 102, rather than to the memory hub 103. In
other embodiments, the I/O hub 107 and memory hub 105
may be mtegrated mto a smgle chip. Some embodiments
may 1nclude two or more sets of processor(s) 102 attached
via multiple sockets, which can couple with two or more
instances of the parallel processor(s) 112.

[0092] Some of the particular components shown herein
are optional and may not be included 1n all implementations
of the computing system 100. For example, any number of
add-mn cards or peripherals may be supported, or some com-
ponents may be eliminated. Furthermore, some architectures
may use different terminology for components similar to
those illustrated 1in FIG. 1. For example, the memory hub
105 may be referred to as a Northbridge i some architec-
tures, while the IO hub 107 may be referred to as a
Southbridge.

[0093] FIG. 2A 1illustrates a parallel processor 200,
according to an embodiment. The various components of
the parallel processor 200 may be implemented using one
or more mtegrated circuit devices, such as programmable
processors, application specific mtegrated circuits (ASICs),
or field programmable gate arrays (FPGA). The 1illustrated
parallel processor 200 1s a variant of the one or more parallel
processor(s) 112 shown in FIG. 1, according to an

embodiment.
[0094] In one embodiment the parallel processor 200

includes a parallel processing unit 202. The parallel proces-
sing unit includes an I/O unit 204 that enables communica-
tion with other devices, including other instances of the par-
allel processing unit 202. The I/O unit 204 may be directly
connected to other devices. In one embodimment the I/O unat
204 connects with other devices via the use of a hub or
switch interface, such as memory hub 1035. The connections
between the memory hub 105 and the I/O unit 204 form a
communication link 113. Within the parallel processing unat
202, the I/O unit 204 connects with a host interface 206 and
a memory crossbar 216, where the host mterface 206
recerves commands directed to performing processing
operations and the memory crossbar 216 receives com-

mands directed to performing memory operations.
[0095] When the host mterface 206 receives a command

buffer via the I/O unit 204, the host interface 206 can direct
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work operations to perform those commands to a front end
208. In one embodiment the front end 208 couples with a
scheduler 210, which 1s configured to distribute commands
or other work 1tems to a processing cluster array 212. In one
embodiment the scheduler 210 ensures that the processing
cluster array 212 1s properly configured and 1n a valid state
before tasks are distributed to the processing clusters of the
processing cluster array 212.

[0096] The processing cluster array 212 can include up to
“N” processing clusters (e.g., cluster 214A, cluster 214B,
through cluster 214N). Each cluster 214A-214N of the pro-
cessing cluster array 212 can execute a large number of con-
current threads. The scheduler 210 can allocate work to the
clusters 214A-214N of the processmng cluster array 212
using various scheduling and/or work distribution algo-
rithms, which may vary depending on the workload arising
for each type of program or computation. The scheduling
can be handled dynamically by the scheduler 210, or can
be assisted 1n part by compiler logic during compilation of
program logic configured for execution by the processing
cluster array 212. In one embodiment, different clusters
214A-214N of the processing cluster array 212 can be allo-
cated for processing different types of programs or for per-
forming different types of computations.

[0097] The processing cluster array 212 can be configured
to perform various types of parallel processing operations.
In one embodiment the processing cluster array 212 1s con-
figured to perform general-purpose parallel compute opera-
tions. For example, the processing cluster array 212 can
include logic to execute processing tasks including filtering
of video and/or audio data, performing modeling operations,
including physics operations, and performing data
transtformations.

[0098] In one embodiment the processing cluster array
212 1s configured to perform parallel graphics processing
operations. In embodiments 1 which the parallel processor
200 1s configured to perform graphics processing opera-
tions, the processing cluster array 212 can mclude additional
logic to support the execution of such graphics processing
operations, mcluding, but not limited to texture sampling
logic to perform texture operations, as well as tessellation
logic and other vertex processing logic. Additionally, the
processing cluster array 212 can be configured to execute
oraphics processing related shader programs such as, but
not limited to vertex shaders, tessellation shaders, geometry
shaders, and pixel shaders. The parallel processing unit 202
can transier data from system memory via the IO unit 204
for processing. During processing the transferred data can
be stored to on-chip memory (e.g., parallel processor mem-
ory 222) during processing, then written back to system
memory.

[0099] In one embodiment, when the parallel processing
unit 202 1s used to perform graphics processing, the schedu-
ler 210 can be configured to divide the processing workload
into approximately equal sized tasks, to better enable distri-
bution of the graphics processing operations to multiple
clusters 214A-214N of the processing cluster array 212. In
some embodiments, portions of the processing cluster array
212 can be configured to perform different types of proces-
sing. For example a first portion may be configured to per-
form vertex shading and topology generation, a second por-
tion may be configured to perform tessellation and geometry
shading, and a third portion may be configured to perform
pixel shading or other screen space operations, to produce a
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rendered 1mage for display. Intermediate data produced by
one or more of the clusters 214A-214N may be stored n
buffers to allow the intermediate data to be transmitted
between clusters 214A-214N for turther processing.

[0100] During operation, the processing cluster array 212
can recerve processing tasks to be executed via the scheduler
210, which receives commands defiming processing tasks
from front end 208. For graphics processing operations, pro-
cessing tasks can include mdices of data to be processed,
¢.g., surface (patch) data, primitive data, vertex data, and/
or pixel data, as well as state parameters and commands
defining how the data 1s to be processed (e.g., what program
1s to be executed). The scheduler 210 may be configured to
fetch the mndices corresponding to the tasks or may receive
the indices from the front end 208. The front end 208 can be
configured to ensure the processing cluster array 212 1S con-
figured to a valid state before the workload specified by
incoming command buffers (e.g., batch-bufters, push bui-
fers, etc.) 1s mtiated.

[0101] Each of the one or more instances of the parallel
processing unit 202 can couple with parallel processor
memory 222. The parallel processor memory 222 can be
accessed via the memory crossbar 216, which can receive
memory requests from the processing cluster array 212 as
well as the /O umt 204. The memory crossbar 216 can
access the parallel processor memory 222 via a memory
interface 218. The memory interface 218 can include multi-
ple partition units (e.g., partition unit 220A, partition unit
2208, through partition unit 220N) that can each couple to
a portion (€.g., memory unit) of parallel processor memory
222. In one implementation the number of partition units
220A-220N 1s configured to be equal to the number of mem-
ory units, such that a first partition unit 220A has a corre-
sponding first memory unit 224A, a second partition unait
220B has a corresponding memory unit 224B, and an Nth
partition unit 220N has a corresponding Nth memory unit
224N. In other embodiments, the number of partition units
220A-220N may not be equal to the number of memory
devices.

[0102] In various embodiments, the memory units 224 A-
224N can 1include various types of memory devices, mclud-
ing dynamic random access memory (DRAM) or graphics
random access memory, such as synchronous graphics ran-
dom access memory (SGRAM), including graphics double
data rate (GDDR) memory. In one embodiment, the memory
units 224A-224N may also mclude 3D stacked memory,
including but not lmmited to high bandwidth memory
(HBM). Persons skilled i the art will appreciate that the
specific implementation of the memory units 224A-224N
can vary, and can be selected from one of various conven-
tional designs. Render targets, such as frame buffers or tex-
ture maps may be stored across the memory units 224A-
224N, allowimg partition units 220A-220N to write portions
of each render target in parallel to efficiently use the avail-
able bandwidth of parallel processor memory 222. In some
embodiments, a local instance of the parallel processor
memory 222 may be excluded in favor of a unified memory
design that utilizes system memory m conjunction with

local cache memory.
[0103] In one embodiment, any one of the clusters 214A-

214N of the processing cluster array 212 can process data
that will be written to any of the memory units 224A-224N
within parallel processor memory 222. The memory Cross-
bar 216 can be configured to transfer the output of each
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cluster 214A-214N to any partition umt 220A-220N or to
another cluster 214A-214N, which can perform additional
processmg operations on the output. Each cluster 214A-
214N can communicate with the memory mterface 218
through the memory crossbar 216 to read from or write to
various external memory devices. In one embodiment the
memory crossbar 216 has a connection to the memory nter-
face 218 to communicate with the I/O unit 204, as well as a
connection to a local instance of the parallel processor mem-
ory 222, enabling the processing units within the ditferent
processing clusters 214A-214N to communicate with sys-
tem memory or other memory that 1s not local to the parallel
processing unit 202. In one embodiment the memory cross-
bar 216 can use virtual channels to separate traffic streams
between the clusters 214A-214N and the partition units
220A-220N.

[0104] While a sigle nstance of the parallel processing
unit 202 1s illustrated within the parallel processor 200, any
number of mstances of the parallel processing unit 202 can
be included. For example, multiple instances of the parallel
processing unit 202 can be provided on a smngle add-in card,
or multiple add-n cards can be interconnected. The different
instances of the parallel processing unit 202 can be config-
ured to inter-operate even if the different instances have dif-
ferent numbers of processing cores, different amounts of
local parallel processor memory, and/or other configuration
differences. For example and 1n one embodiment, some
instances of the parallel processing unit 202 can include
higher precision floating poimnt umts relative to other
instances. Systems incorporating one or more instances of
the parallel processing unit 202 or the parallel processor 200
can be implemented 1n a variety of configurations and form
factors, including but not limited to desktop, laptop, or
handheld personal computers, servers, workstations, game

consoles, and/or embedded systems.
[0105] FIG. 2B 1s a block diagram of a partition unit 220,

according to an embodiment. In one embodiment the parti-
tion unit 220 1s an instance of one of the partition units
220A-220N of FIG. 2A. As 1llustrated, the partition umnit
220 mcludes an L2 cache 221, a frame buffer interface
225, and a ROP 226 (raster operations unit). The L2 cache
221 1s a read/write cache that 1s configured to pertorm load
and store operations received from the memory crossbar 216
and ROP 226. Read misses and urgent write-back requests
are output by L2 cache 221 to frame bufier interface 2235 for
processing. Dirty updates can also be sent to the frame bul-
fer via the frame builer mterface 223 for opportunistic pro-
cessing. In one embodiment the frame buffer interface 2235
mnterfaces with one of the memory units 1n parallel processor
memory, such as the memory units 224A-224N of FIGS. 2
(e.g., within parallel processor memory 222).

[0106] In graphics applications, the ROP 226 1s a proces-
sing unit that performs raster operations such as stencil, z
test, blending, and the like. The ROP 226 then outputs pro-
cessed graphics data that 1s stored 1n graphics memory. In
some embodiments the ROP 226 includes compression
logic to compress z or color data that 1s written to memory
and decompress z or color data that 1s read from memory. In
some embodiments, the ROP 226 1s included within each
processing cluster (e.g., cluster 214A-214N of FIGS. 2)
instead of within the partition unit 220. In such embodiment,
read and write requests for pixel data are transmitted over
the memory crossbar 216 instead of pixel fragment data.
The processed graphics data may be displayed on a display




US 2023/0315198 Al

device, such as one of the one or more display device(s) 110
of FIG. 1, routed for further processing by the processor(s)
102, or routed for turther processing by one of the proces-

sing entities within the parallel processor 200 of FIG. 2A.
[0107] FIG. 2C 1s a block diagram of a processing cluster

214 within a parallel processing unit, according to an embo-
diment. In one embodiment the processing cluster 1s an
instance of one of the processing clusters 214A-214N of
FIGS. 2. The processing cluster 214 can be configured to
execute many threads in parallel, where the term “thread”
refers to an nstance of a particular program executing on a
particular set of mput data. In some embodiments, single-
instruction, multiple-data (SIMD) 1nstruction 1ssue techni-
ques are used to support parallel execution of a large number
of threads without providing multiple independent 1nstruc-
tion units. In other embodiments, simgle-mstruction, multi-
ple-thread (SIMT) techmiques are used to support parallel
execution of a large number of generally synchromzed
threads, using a common i1nstruction unit configured to
1ssue mstructions to a set of processing engines within
cach one of the processing clusters. Unlike a SIMD execu-
tion regime, where all processing engines typically execute
identical 1nstructions, SIMT execution allows different
threads to more readily follow divergent execution paths
through a given thread program. Persons skilled n the art
will understand that a SIMD processing regime represents a
functional subset of a SIMT processing regime.

[0108] Operation of the processing cluster 214 can be con-
trolled via a pipeline manager 232 that distributes proces-
sing tasks to SIMT parallel processors. The pipeline man-
ager 232 recerves instructions from the scheduler 210 of
FIGS. 2 and manages execution of those mstructions via a
oraphics multiprocessor 234 and/or a texture unit 236. The
illustrated graphics multiprocessor 234 1s an exemplary
instance of a SIMT parallel processor. However, various
types of SIMT parallel processors of differing architectures
may be mcluded within the processing cluster 214. One or
more 1nstances of the graphics multiprocessor 234 can be
included within a processing cluster 214. The graphics mul-
tiprocessor 234 can process data and a data crossbar 240 can
be used to distribute the processed data to one of multiple
possible destinations, including other shader umits. The
pipeline manager 232 can facilitate the distribution of pro-
cessed data by specitymg destinations for processed data to

be distributed vis the data crossbar 240.
[0109] Each graphics multiprocessor 234 within the pro-

cessing cluster 214 can include an 1dentical set of functional
execution logic (e.g., arithmetic logic units, load-store units,
etc.). The functional execution logic can be configured 1n a
pipelined manner 1 which new mstructions can be 1ssued
betore previous instructions are complete.. The functional
execution logic supports a variety of operations mcluding
integer and floating point arithmetic, comparison opera-
tions, Boolean operations, bit-shifting, and computation of
various algebraic functions. In one embodiment the same
functional-unit hardware can be leveraged to perform ditter-
ent operations and any combination of functional units may

be present.
[0110] The mstructions transmitted to the processing clus-

ter 214 constitutes a thread. A set of threads executing
across the set of parallel processmng engines 1s a thread
oroup. A thread group executes the same program on ditfer-
ent mput data. Each thread within a thread group can be
assigned to a different processing engime within a graphics
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multiprocessor 234. A thread group may include fewer
threads than the number of processing engines within the
oraphics multiprocessor 234. When a thread group includes
tewer threads than the number of processing engines, one or
more of the processing engines may be 1dle during cycles 1n
which that thread group 1s being processed. A thread group
may also include more threads than the number of proces-
sing engines within the graphics multiprocessor 234. When
the thread group includes more threads than the number of
processing engines within the graphics multiprocessor 234,
processing can be performed over consecutive clock cycles.
In one embodiment multiple thread groups can be executed
concurrently on a graphics multiprocessor 234.

[0111] In one embodiment the graphics multiprocessor
234 includes an internal cache memory to perform load
and store operations. In one embodiment, the graphics mul-
tiprocessor 234 can forego an internal cache and use a cache
memory (€.g., L1 cache 308) within the processing cluster
214. Each graphics multiprocessor 234 also has access to L2
caches within the partition units (e.g., partition units 220A-
220N of FIGS. 2) that are shared among all processing clus-
ters 214 and may be used to transfer data between threads.
The graphics multiprocessor 234 may also access off-chip
global memory, which can include one or more of local par-
allel processor memory and/or system memory. Any mem-
ory external to the parallel processing unit 202 may be used
as global memory. Embodiments i which the processing
cluster 214 includes multiple 1mnstances of the graphics mul-
tiprocessor 234 can share common mstructions and data,
which may be stored 1n the L1 cache 308.

[0112] Each processing cluster 214 may include an MMU
245 (memory management unit) that 1s configured to map
virtual addresses mto physical addresses. In other embodi-
ments, one or more 1nstances of the MMU 245 may reside
within the memory mterface 218 of FIGS. 2. The MMU 245
includes a set of page table entries (PTEs) used to map a
virtual address to a physical address of a tile (talk more
about tiling) and optionally a cache line index. The MMU
245 may 1include address translation lookaside buiffers
(TLB) or caches that may reside within the graphics multi-
processor 234 or the L1 cache or processing cluster 214. The
physical address 1s processed to distribute surface data
access locality to allow efficient request interleaving
among partition units. The cache line mdex may be used to
determine whether a request for a cache line 1s a hit or muss.
[0113] In graphics and computing applications, a proces-
sing cluster 214 may be configured such that each graphics
multiprocessor 234 1s coupled to a texture unit 236 for per-
forming texture mapping operations, €.g., determining tex-
ture sample positions, reading texture data, and filtering the
texture data. Texture data 1s read from an mternal texture L1
cache (not shown) or mm some embodiments from the L1
cache within graphics multiprocessor 234 and 1s fetched
from an L2 cache, local parallel processor memory, or sys-
tem memory, as needed. Each graphics multiprocessor 234
outputs processed tasks to the data crossbar 240 to provide
the processed task to another processing cluster 214 for
further processing or to store the processed task mn an L2
cache, local parallel processor memory, or system memory
via the memory crossbar 216. A preROP 242 (pre-raster
operations unit) 1s configured to receive data from graphics
multiprocessor 234, direct data to ROP units, which may be
located with partition units as described herem (e.g., parti-
tion units 220A-220N of FIGS. 2). The preROP 242 unit can
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perform optimizations for color blending, organize pixel
color data, and perform address translations.

[0114] It will be appreciated that the core architecture
described herein 1s illustrative and that variations and mod-
ifications are possible. Any number of processing units, e.g.,
graphics multiprocessor 234, texture units 236, preROPs
242, ¢tc., may be included within a processing cluster 214.
Further, while only one processing cluster 214 1s shown, a
parallel processing unit as described herein may include any
number of mstances of the processing cluster 214. In ong
embodiment, each processing cluster 214 can be configured
to operate mdependently of other processing clusters 214
usig separate and distinct processing units, L.1 caches, etc.
[0115] FIG. 2D shows a graphics multiprocessor 234,
according to one embodiment. In such embodiment the gra-
phics multiprocessor 234 couples with the pipeline manager
232 of the processing cluster 214. The graphics multiproces-
sor 234 has an execution pipeline including but not limaited
to an wmstruction cache 252, an instruction unit 254, an
address mapping unit 256, a register file 258, one or more
oeneral purpose graphics processing unit (GPGPU) cores
262, and one or more load/store units 266. The GPGPU
cores 262 and load/store units 266 are coupled with cache
memory 272 and shared memory 270 via a memory and

cache mterconnect 268.
[0116] In one embodmment, the nstruction cache 252

receives a stream of mnstructions to execute from the pipeline
manager 232. The mstructions are cached 1n the nstruction
cache 252 and dispatched for execution by the 1nstruction
unit 254. The mstruction unit 254 can dispatch nstructions
as thread groups (e.g., warps), with each thread of the thread
oroup assigned to a different execution unit within GPGPU
core 262. An mstruction can access any of a local, shared, or
global address space by specitying an address within a uni-
fied address space. The address mappmg umt 256 can be
used to translate addresses 1n the unified address space nto
a distinct memory address that can be accessed by the load/

store units 266.
[0117] The register file 258 provides a set of registers for

the functional units of the graphics multiprocessor 324. The
register file 258 provides temporary storage for operands
connected to the data paths of the functional units (e.g.,
GPGPU cores 262, load/store units 266) of the graphics
multiprocessor 324. In one embodiment, the register file
238 1s divided between each of the functional unmits such
that each functional unit 1s allocated a dedicated portion of
the register file 258. In one embodiment, the register file 258
1s divided between the ditferent warps being executed by the
oraphics multiprocessor 324.

[0118] The GPGPU cores 262 can each include tloating
pomt units (FPUs) and/or integer arithmetic logic units
(ALUs) that are used to execute mstructions of the graphics
multiprocessor 324. The GPGPU cores 262 can be similar in
architecture or can ditfer in architecture, according to embo-
diments. For example and 1n one embodiment, a first portion
of the GPGPU cores 262 include a single precision FPU and
an mteger ALU while a second portion of the GPGPU cores
include a double precision FPU. In one embodiment the
FPUs can implement the IEEE 754-2008 standard for float-
ing point arithmetic or enable variable precision floating
point arithmetic. The graphics multiprocessor 324 can addi-
tionally include one or more fixed tunction or special func-
tion units to perform specific functions such as copy rectan-
gle or pixel blending operations. In one embodiment one or
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more of the GPGPU cores can also include fixed or special
function logic.

[0119] The memory and cache interconnect 268 1s an
interconnect network that connects each of the functional
units of the graphics multiprocessor 324 to the register file
258 and to the shared memory 270. In one embodiment, the
memory and cache mterconnect 268 1s a crossbar mtercon-
nect that allows the load/store umt 266 to implement load
and store operations between the shared memory 270 and
the register file 258. The register file 258 can operate at the
same frequency as the GPGPU cores 262, thus data transfer
between the GPGPU cores 262 and the register file 258 1s
very low latency. The shared memory 270 can be used to
enable communication between threads that execute on the
functional units within the graphics multiprocessor 234. The
cache memory 272 can be used as a data cache for example,
to cache texture data communicated between the functional
units and the texture unit 236. The shared memory 270 can
also be used as a program managed cached. Threads execut-
ing on the GPGPU cores 262 can programmatically store
data within the shared memory 1 addition to the automati-

cally cached data that 1s stored within the cache memory

272.
[0120] FIGS. 3A-3B 1illustrate additional graphics multi-

processors, according to embodiments. The illustrated gra-
phics multiprocessors 325, 350 are vanants of the graphics
multiprocessor 234 of FIG. 2C. The illustrated graphics
multiprocessors 3235, 350 can be configured as a streaming
multiprocessor (SM) capable of simultaneous execution of a

large number of execution threads.
[0121] FIG. 3A shows a graphics multiprocessor 3235

according to an additional embodiment. The graphics multi-
processor 325 includes multiple additional instances of
execution resource units relative to the graphics multipro-
cessor 234 of FIG. 2D. For example, the graphics multipro-
cessor 325 can include multiple istances of the mstruction
unit 332A-332B, register file 334A-334B, and texture
unit(s) 344A-344B. The graphics multiprocessor 325 also
includes multiple sets of graphics or compute execution
units (e.g., GPGPU core 336A-336B, GPGPU core 337A-
3378, GPGPU core 338A-338B) and multiple sets of load/
store units 340A-340B. In one embodiment the execution
resource units have a common mstruction cache 330, texture
and/or data cache memory 342, and shared memory 346.
The various components can communicate via an mntercon-
nect fabric 327. In one embodiment the interconnect fabric
327 includes one or more crossbar switches to enable com-
munication between the various components of the graphics

multiprocessor 325.
[0122] FIG. 3B shows a graphics multiprocessor 350

according to an additional embodiment. The graphics pro-
cessor includes multiple sets of execution resources 356A-
356D, where each set of execution resource includes multi-
ple 1mstruction units, register files, GPGPU cores, and load
store units, as illustrated mm FIG. 2D and FIG. 3A. The
execution resources 356A-356D can work i concert with
texture umt(s) 360A-360D for texture operations, while
sharing an mstruction cache 354, and shared memory 362.
In one embodiment the execution resources 356A-356D can
share an mstruction cache 354 and shared memory 362, as
well as multiple instances of a texture and/or data cache
memory 358A-358B. The various components can commu-

nicate via an mterconnect fabric 352 similar to the mtercon-
nect fabric 327 of FIG. 3A.
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[0123] Persons skilled 1n the art will understand that the
architecture described in FIGS. 1, 2A-2D, and 3A-3B are
descriptive and not limiting as to the scope of the present
embodiments. Thus, the techniques described herein may
be mmplemented on any properly configured processing
unit, including, without himitation, one or more mobile
application processors, one or more desktop or server cen-
tral processing units (CPUs) including multi-core CPUS,
one or more parallel processing units, such as the parallel
processing unit 202 of FIGS. 2, as well as one or more gra-
phics processors or special purpose processing units, with-
out departure from the scope of the embodiments described
herem.

[0124] In some embodiments a parallel processor or
GPGPU as described herem 1s communicatively coupled
to host/processor cores to accelerate graphics operations,
machine-learning operations, pattern analysis operations,
and various general purpose GPU (GPGPU) functions. The
GPU may be communicatively coupled to the host proces-
sor/cores over a bus or other iterconnect (e.g., a high speed
interconnect such as PCle or NVLink). In other embodi-
ments, the GPU may be mtegrated on the same package or
chip as the cores and communicatively coupled to the cores
over an internal processor bus/iterconnect (1.€., mternal to
the package or chip). Regardless of the manner 1n which the
GPU 1s connected, the processor cores may allocate work to
the GPU 1n the form of sequences of commands/instructions
contained 1 a work descriptor. The GPU then uses dedi-
cated circuitry/logic for etficiently processing these com-
mands/mstructions. Techniques for GPU to Host Processor
Interconnection

[0125] FIG. 4A illustrates an exemplary architecture n
which a plurality of GPUs 410-413 are communicatively
coupled to a plurality of multi-core processors 405-406
over high-speed links 440-443 (¢.g., buses, pomt-to-point
interconnects, etc.). In one embodiment, the high-speed
links 440-443 support a communication throughput of
4 GB/s,30 GB/s, 80 GB/s or higher, depending on the imple-
mentation. Various mterconnect protocols may be used
including, but not limited to, PCle 4.0 or 5.0 and NVLink
2.0. However, the underlying principles of the mvention are
not limited to any particular communication protocol or
throughput.

[0126] In addition, 1n one embodiment, two or more of the
GPUs 410-413 are mterconnected over high-speed links
444-4435, which may be implemented using the same or dii-
ferent protocols/links than those used for high-speed links
440-443. Similarly, two or more of the multi-core proces-
sors 4035-406 may be connected over high speed link 433
which may be symmetric multi-processor (SMP) buses
operating at 20 GB/s, 30 GB/s, 120 GB/s or higher. Alter-
natively, all communication between the various system
components shown 1n FIG. 4A may be accomplished using
the same protocols/links (e.g., over a common 1nterconnec-
tion fabric). As mentioned, however, the underlying princi-
ples of the mvention are not limited to any particular type of
interconnect technology.

[0127] In one embodiment, each multi-core processor
405-406 15 communicatively coupled to a processor memory
401-402, via memory interconnects 430-431, respectively,
and each GPU 410-413 1s communicatively coupled to
GPU memory 420-423 over GPU memory interconnects
450-433, respectively. The memory mterconnects 430-431
and 450-453 may utilize the same or different memory
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access technologies. By way of example, and not limitation,
the processor memories 401-402 and GPU memories 42(-
423 may be volatile memories such as dynamic random
access memories (DRAMSs) (including stacked DRAMS),
Graphics DDR SDRAM (GDDR) (e.g., GDDRS,
GDDR6), or High Bandwidth Memory (HBM) and/or may
be non-volatile memories such as 3D XPoint or Nano-Ram.
In one embodiment, some portion of the memories may be
volatile memory and another portion may be non-volatile
memory (€.g., using a two-level memory (2LM) hierarchy).
[0128] As described below, although the various proces-
sors 405-406 and GPUs 410-413 may be physically coupled
to a particular memory 401-402, 420-423, respectively, a
unified memory architecture may be implemented i which
the same virtual system address space (also referred to as the
“effective address” space) 1s distributed among all of the
various physical memories. For example, processor mem-
ories 401-402 may each comprise 64GB of the system mem-
ory address space and GPU memories 420-423 may each
comprise 32GB of the system memory address space
(resulting 1n a total of 256GB addressable memory 1 this
example).

[0129] FIG. 4B illustrates additional details for an inter-
connection between a multi-core processor 407 and a gra-
phics acceleration module 446 1n accordance with one
embodiment. The graphics acceleration module 446 may
include one or more GPU chips mtegrated on a line card
which 1s coupled to the processor 407 via the high-speed
link 440. Alternatively, the graphics acceleration module
446 may be integrated on the same package or chip as the
processor 407.

[0130] The illustrated processor 407 includes a plurality of
cores 460A-460D, each with a translation lookaside buffer
461A-461D and one or more caches 462A-462D. The cores
may 1nclude wvarious other components for executing
mnstructions and processmng data which are not illustrated
to avoid obscuring the underlying principles of the invention
(e.g., mstruction fetch units, branch prediction units, deco-
ders, execution umts, reorder buffers, etc.). The caches
462A-462D may comprise level 1 (L1) and level 2 (L.2)
caches. In addition, one or more shared caches 426 may be
included 1 the caching hierarchy and shared by sets of the
cores 460A-460D. For example, one embodiment of the
processor 407 includes 24 cores, each with 1ts own LI
cache, twelve shared 1.2 caches, and twelve shared L.3
caches. In this embodiment, one of the 1.2 and L[.3 caches
are shared by two adjacent cores. The processor 407 and
the graphics accelerator integration module 446 connect
with system memory 441, which may include processor

memories 401-402
[0131] Coherency 1s maintained for data and instructions

stored 1n the various caches 462A-462D, 456 and system
memory 441 via mter-core communication over a coherence
bus 464. For example, each cache may have cache coher-
ency logic/circuitry associated therewith to communicate
to over the coherence bus 464 1n response to detected
reads or writes to particular cache lines. In one implementa-
tion, a cache snooping protocol 1s mplemented over the
coherence bus 464 to snoop cache accesses. Cache snoop-
ing/coherency techniques are well understood by those of
skill 1n the art and will not be described 1n detail here to
avold obscuring the underlymg principles of the mvention.
[0132] In one embodiment, a proxy circuit 425 communi-
catively couples the graphics acceleration module 446 to the




US 2023/0315198 Al

coherence bus 464, allowing the graphics acceleration mod-
ule 446 to participate 1 the cache coherence protocol as a
peer of the cores. In particular, an mterface 435 provides
connectivity to the proxy circuit 425 over high-speed link
440 (¢.g., a PCle bus, NVLink, etc.) and an mterface 437
connects the graphics acceleration module 446 to the link
440.

[0133] In one mmplementation, an accelerator integration
circuit 436 provides cache management, memory access,
context management, and nterrupt management services
on behalf of a plurality of graphics processing engines
431, 432, N of the graphics acceleration module 446. The
oraphics processing engines 431, 432, N may each comprise
a separate graphics processing umt (GPU). Alternatively,
the graphics processing engines 431, 432, N may comprise
different types of graphics processing engines within a GPU
such as graphics execution units, media processing engines
(¢.g., video encoders/decoders), samplers, and blit engines.
In other words, the graphics acceleration module may be a
GPU with a plurality of graphics processing engines 431-
432, N or the graphics processing engines 431-432, N may
be mdividual GPUs mtegrated on a common package, line
card, or chip.

[0134] In one embodiment, the accelerator integration cir-
cuit 436 includes a memory management unit (MMU) 439
for performing various memory management functions such
as virtual-to-physical memory translations (also referred to
as effective-to-real memory translations) and memory
access protocols for accessing system memory 441. The
MMU 439 may also include a translation lookaside butfer
(TLB) (not shown) for caching the virtual/effective to phy-
sical/real address translations. In one implementation, a
cache 438 stores commands and data for efficient access
by the graphics processing engines 431-432, N. In ong
embodiment, the data stored in cache 438 and graphics
memories 433-434, N 1s kept coherent with the core caches
462A-462D, 456 and system memory 411. As mentioned,
this may be accomplished via proxy circuit 425 which
takes part i the cache coherency mechanism on behalf of
cache 438 and memories 433-434, N (¢.g., sending updates
to the cache 438 related to modifications/accesses of cache

limes on processor caches 462A-462D, 456 and receiving

updates from the cache 438).
[0135] A set of registers 443 store context data for threads

executed by the graphics processing engines 431-432, N and
a context management circuit 448 manages the thread con-
texts. For example, the context management circuit 448 may
perform save and restore operations to save and restore con-
texts of the various threads during contexts switches (e.g.,
where a first thread 1s saved and a second thread 1s stored so
that the second thread can be execute by a graphics proces-
sing engine). For example, on a context switch, the context
management circuit 448 may store current register values to
a designated region mm memory (e.g., 1dentified by a context
pointer). It may then restore the register values when return-
ing to the context. In one embodiment, an mterrupt manage-
ment circuit 447 recerves and processes interrupts received

from system devices.
[0136] In one mmplementation, virtual/effective addresses

from a graphics processing engine 431 are translated to real/
physical addresses 1n system memory 411 by the MMU 439.
One embodiment of the accelerator integration circuit 436
supports multiple (e.g., 4, 8, 16) graphics accelerator mod-
ules 446 and/or other accelerator devices. The graphics
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accelerator module 446 may be dedicated to a single appli-
cation executed on the processor 407 or may be shared
between multiple applications. In one embodiment, a virtua-
lized graphics execution environment 1s presented i which
the resources of the graphics processing engines 431-432, N
ar¢ shared with multiple applications or virtual machines
(VMs). The resources may be subdivided mnto “slices”
which are allocated to different VMs and/or applications
based on the processing requirements and priorities asso-
ciated with the VMs and/or applications.

[0137] Thus, the accelerator mtegration circuit acts as a
bridge to the system for the graphics acceleration module
446 and provides address translation and system memory
cache services. In addition, the accelerator integration cir-
cuit 436 may provide virtualization facilities for the host
processor to manage virtualization of the graphics proces-
sing engines, mterrupts, and memory management.

[0138] Because hardware resources of the graphics pro-
cessing engines 431-432, N are mapped explicitly to the
real address space seen by the host processor 407, any host
processor can address these resources directly using an
etfective address value. One function of the accelerator inte-
oration circuit 436, i one embodiment, 1s the physical
separation of the graphics processing engines 431-432, N
so that they appear to the system as independent units.
[0139] As mentioned, 1n the illustrated embodiment, one
or more graphics memories 433-434, M are coupled to each
of the graphics processing engines 431-432. N, respectively.
The graphics memories 433-434, M store instructions and
data being processed by each of the graphics processing
engimnes 431-432, N. The graphics memories 433-434, M
may be volatile memories such as DRAMs (including
stacked DRAMSs), GDDR memory (e.g., GDDRS,
GDDR6), or HBM, and/or may be non-volatile memories
such as 3D XPoint or Nano-Ram.

[0140] In one¢ embodiment, to reduce data traffic over link
440, biasing techniques are used to ensure that the data
stored 1 graphics memories 433-434, M 1s data which will
be used most frequently by the graphics processing engines
431-432, N and preferably not used by the cores 460A-460D
(at least not frequently). Similarly, the biasing mechanism
attempts to keep data needed by the cores (and preferably
not the graphics processing engines 431-432, N) within the
caches 462A-462D, 456 of the cores and system memory

411.
[0141] FIG. 4C 1illustrates another embodiment 1 which

the accelerator integration circuit 436 1s mtegrated within
the processor 407. In this embodiment, the graphics proces-
sing engines 431-432, N communicate directly over the
high-speed link 440 to the accelerator integration circuit
436 via interface 437 and mterface 435 (which, again, may
be utilize any form of bus or mtertace protocol). The accel-
erator mtegration circuit 436 may pertform the same opera-
tions as those described with respect to FIG. 4B, but poten-
tially at a higher throughput given 1its close proximity to the
coherency bus 462 and caches 462A-462D, 426.

[0142] One embodiment supports ditferent programming
models mmcluding a dedicated-process programming model
(no graphics acceleration module virtualization) and shared
programming models (with virtualization). The latter may
include programming models which are controlled by the
accelerator mtegration circuit 436 and programming models

which are controlled by the graphics acceleration module
446.
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[0143] In one embodiment of the dedicated process
model, graphics processing engines 431-432, N are dedi-
cated to a single application or process under a smgle oper-
ating system. The single application can funnel other appli-
cation requests to the graphics engines 431-432, N,
providing virtualization within a VM/partition.

[0144] In the dedicated-process programming models, the
oraphics processing engines 431-432, N, may be shared by
multiple VM/application partitions. The shared models
require a system hypervisor to virtualize the graphics pro-
cessing engies 431-432, N to allow access by each operat-
Ing system. For single-partition systems without a hypervi-
sor, the graphics processing engines 431-432, N are owned
by the operating system. In both cases, the operating system
can virtualize the graphics processing engines 431-432, N to
provide access to each process or application.

[0145] For the shared programming model, the graphics
acceleration module 446 or an mdividual graphics proces-
sing engine 431-432, N selects a process element using a
process handle. In one embodiment, process elements are
stored 1n system memory 411 and are addressable using
the effective address to real address translation techniques
described herein. The process handle may be an implemen-
tation-specific value provided to the host process when
registering 1ts context with the graphics processing engine
431-432, N (that 1s, calling system software to add the pro-
cess element to the process element linked list). The lower
16-bits of the process handle may be the offset of the pro-
cess element within the process element linked list.

[0146] FIG. 4D 1illustrates an exemplary accelerator mte-
oration slice 490. As used herein, a “slice” comprises a spe-
cifted portion of the processing resources of the accelerator
integration circuit 436. Application effective address space
482 within system memory 411 stores process elements 483.
In one embodiment, the process elements 483 are stored 1n
response to GPU invocations 481 from applications 480
executed on the processor 407. A process element 483 con-
tains the process state for the corresponding application 480.
A work descriptor (WD) 484 contained 1n the process ¢le-
ment 483 can be a single job requested by an application or
may contain a pointer to a queue of jobs. In the latter case,
the WD 484 1s a pomter to the job request queue 1n the
application’s address space 482.

[0147] The graphics acceleration module 446 and/or the
individual graphics processing engines 431-432, N can be
shared by all or a subset of the processes mn the system.
Embodiments of the mmvention include an infrastructure for
setting up the process state and sending a WD 484 to a gra-
phics acceleration module 446 to start a job 1n a virtualized
environment.

[0148] In one implementation, the dedicated-process pro-
oramming model 1s implementation-specific. In this model,
a sigle process owns the graphics acceleration module 446
or an individual graphics processing engine 431. Because
the graphics acceleration module 446 1s owned by a smgle
process, the hypervisor mitializes the accelerator integration
circuit 436 for the owning partition and the operating system
iitializes the accelerator integration circuit 436 for the
owning process at the time when the graphics acceleration
module 446 1s assigned.

[0149] In operation, a WD fetch unit 491 1n the accelerator
integration slice 490 fetches the next WD 484 which
includes an mdication of the work to be done by one of the
oraphics processing engines of the graphics acceleration
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module 446. Data from the WD 484 may be stored 1n regis-
ters 445 and used by the MMU 439, interrupt management
circuit 447 and/or context management circuit 446 as 1llu-
strated. For example, one embodiment of the MMU 439
includes segment/page walk circuitry for accessing seg-
ment/page tables 486 within the OS virtual address space
485. The mterrupt management circuit 447 may process
interrupt events 492 received trom the graphics acceleration
module 446. When performing graphics operations, an
effective address 493 generated by a graphics processing
engimne 431-432, N 1s translated to a real address by the

MMU 439.

[0150] In one embodiment, the same set of registers 443
are duplicated for each graphics processing engine 431-432,
N and/or graphics acceleration module 446 and may be 1niti-
alized by the hypervisor or operating system. Each of these
duplicated registers may be mncluded 1n an accelerator inte-
gration slice 490. Exemplary registers that may be mitia-
lized by the hypervisor are shown 1n Table 1.

TABLE 1

Hypervisor Initialized Registers

Slice Control Register

Real Address (RA) Scheduled Processes Area Pointer
Authornity Mask Override Register

Interrupt Vector Table Entry Offset

Interrupt Vector Table Entry Limat

State Register
Logical Partition 1D

Real address (RA) Hypervisor Accelerator Utilization Record
Pointer

GO~ O Lh B ) B

O

Storage Description Register

[0151] Exemplary registers that may be mitialized by the
operating system are shown 1n Table 2.

TABLE 2

Operating System Initialized Registers

Process and Thread Identification

Effective Address (EA) Context Save/Restore Pointer
Virtual Address (VA) Accelerator Utilization Record Pointer
Virtual Address (VA) Storage Segment Table Pointer
Authornty Mask

Work descriptor

o LA s i B =

[0152] In one embodiment, each WD 484 1s specific to a
particular graphics acceleration module 446 and/or graphics
processing engine 431-432. N. It contamns all the informa-
tion a graphics processing engine 431-432, N requires to do
1its work or 1t can be a pointer to a memory location where
the application has set up a command queue of work to be
completed.

[0153] FIG. 4E illustrates additional details for one embo-
diment of a shared model. This embodmment mcludes a
hypervisor real address space 498 1 which a process ele-
ment list 499 1s stored. The hypervisor real address space
498 1s accessible via a hypervisor 496 which virtualizes
the graphics acceleration module engies for the operating
system 493.

[0154] The shared programming models allow for all or a
subset of processes from all or a subset of partitions 1n the
system to use a graphics acceleration module 446. There are
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two programming models where the graphics acceleration
module 446 1s shared by multiple processes and partitions:
time-sliced shared and graphics directed shared.

[0155] In this model, the system hypervisor 496 owns the
oraphics acceleration module 446 and makes 1ts function
available to all operating systems 493. For a graphics accel-
eration module 446 to support virtualization by the system
hypervisor 496, the graphics acceleration module 446 may
adhere to the following requirements: 1) An application’s
j0b request must be autonomous (that 1s, the state does not
need to be maintained between jobs), or the graphics accel-
eration module 446 must provide a context save and restore
mechanism. 2) An application’s job request 1s guaranteed by
the graphics acceleration module 446 to complete 1n a spe-
cified amount of time, including any translation faults, or the
oraphics acceleration module 446 provides the ability to
preempt the processing of the job. 3) The graphics accelera-
tion module 446 must be guaranteed fairness between pro-
cesses when operating 1n the directed shared programming

model.

[0156] In one embodiment, for the shared model, the
application 480 1s required to make an operating system
495 system call with a graphics acceleration module 446
type, a work descriptor (WD), an authority mask register
(AMR) value, and a context save/restore area pointer
(CSRP). The graphics acceleration module 446 type
describes the targeted acceleration function for the system
call. The graphics acceleration module 446 type may be a
system-specific value. The WD 1s formatted specifically for
the graphics acceleration module 446 and can be 1 the form
of a graphics acceleration module 446 command, an etfec-
tive address pointer to a user-defined structure, an effective
address pomter to a queue of commands, or any other data
structure to describe the work to be done by the graphics
acceleration module 446. In one embodiment, the AMR
value 1s the AMR state to use for the current process. The
value passed to the operating system 1s similar to an appli-
cation setting the AMR. If the accelerator integration circuit
436 and graphics acceleration module 446 i1mplementations
do not support a User Authority Mask Override Register
(UAMOR), the operating system may apply the current
UAMOR value to the AMR value before passing the AMR
in the hypervisor call. The hypervisor 496 may optionally
apply the current Authority Mask Override Register
(AMOR) value betfore placing the AMR 1nto the process
celement 483. In one embodiment, the CSRP 1s one of the
registers 4435 contaming the effective address of an area
the application’s address space 482 for the graphics accel-
eration module 446 to save and restore the context state.
This pomter 1s optional 1f no state 1s required to be saved
between jobs or when a job 1s preempted. The context
save/restore area may be pinned system memory.

[0157] Upon recerving the system call, the operating sys-
tem 495 may verity that the application 480 has registered
and been given the authority to use the graphics acceleration
module 446. The operating system 493 then calls the hyper-
visor 496 with the information shown 1 Table 3.

TABLE 3

OS to Hypervisor Call Parameters

l A work descriptor (WD)
2 An Authonity Mask Register (AMR) value (potentially masked).
3  An effective address (EA) Context Save/Restore Area Pointer
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TABLE 3-continued

OS to Hypervisor Call Parameters

(CSRP)
4 A process ID (PID} and optional thread ID (TID)

5 A virtual address (VA) accelerator utilization record pointer
(AURP)

6  The virtual address of the storage segment table pointer (SSTP)
7 A logical interrupt service number (LISN)

[0158] Upon recerving the hypervisor call, the hypervisor
496 verifies that the operating system 4935 has registered and
been given the authority to use the graphics acceleration
module 446. The hypervisor 496 then puts the process ele-
ment 483 1nto the process element linked list for the corre-
sponding graphics acceleration module 446 type. The pro-
cess element may 1include the information shown 1 Table 4.

TABLE 4

Process Element Information

1 A work descriptor (WD)
2 An Authornity Mask Register (AMR) value (potentially masked).

3  An effective address (EA) Context Save/Restore Area Pointer
(CSRP)

A process ID (PID) and optional thread ID (TID)

A virtual address (VA) accelerator utilization record pointer
(AURP)

The virtual address of the storage segment table pointer (SSTP)
A logical mterrupt service number (LISN)

N

LA

Interrupt vector table, denived from the hypervisor call parameters.

OO0 ~0 O

A state register (SR) value
10 A logical partition ID (LPID)
11

A real address (RA) hypervisor accelerator utilization record
pointer

12 The Storage Descriptor Register (SDR)

[0159] In one embodiment, the hypervisor immtializes a
plurality of accelerator mtegration slice 490 registers 445.

[0160] As illustrated 1n FIG. 4F, one embodiment of the
invention employs a unified memory addressable via a com-
mon virtual memory address space used to access the phy-
sical processor memories 401-402 and GPU memories 420-
423. In this implementation, operations executed on the
GPUs 410-413 utilize the same virtual/effective memory
address space to access the processors memories 401-402
and vice versa, thereby simplifying programmability. In
one embodmment, a first portion of the virtual/effective
address space 1s allocated to the processor memory 401, a
second portion to the second processor memory 402, a third
portion to the GPU memory 420, and so on. The entire vir-
tual/ettective memory space (sometimes referred to as the
effective address space) 1s thereby distributed across each
of the processor memories 401-402 and GPU memories
420-423, allowimg any processor or GPU to access any phy-
sical memory with a virtual address mapped to that memory.
[0161] In one embodiment, bias/coherence management
circuitry 494A-494E within one or more of the MMUSs
439A-439E ensures cache coherence between the caches
of the host processors (e.g., 405) and the GPUs 410-413
and implements biasing techniques indicating the physical
memories 1n which certain types of data should be stored.
While multiple mstances of bias/coherence management cir-
cuitry 494A-494E are illustrated in FIG. 4F, the bias/coher-
ence circultry may be implemented within the MMU of one
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or more host processors 405 and/or within the accelerator
integration circuit 436.

[0162] One embodiment allows GPU-attached memory
420-423 to be mapped as part of system memory, and
accessed using shared virtual memory (SVM) technology,
but without suffering the typical performance drawbacks
associated with full system cache coherence. The ability to
GPU-attached memory 420-423 to be accessed as system
memory without onerous cache coherence overhead pro-
vides a beneficial operating environment for GPU otfload.
This arrangement allows the host processor 4035 software to
setup operands and access computation results, without the
overhead of tradition I/O DMA data copies. Such traditional
copies 1mvolve driver calls, mterrupts and memory mapped
[/O (MMIOQO) accesses that are all mefficient relative to sim-
ple memory accesses. At the same time, the ability to access
GPU attached memory 420-423 without cache coherence
overheads can be critical to the execution time of an off-
loaded computation. In cases with substantial streaming
write memory tratfic, for example, cache coherence over-
head can significantly reduce the etfective write bandwidth
seen by a GPU 410-413. The efficiency of operand setup,
the efficiency of results access, and the efficiency of GPU
computation all play a role 1n determinming the effectiveness
of GPU offload.

[0163] In one implementation, the selection of between
GPU bias and host processor bias 1s driven by a bias tracker
data structure. A bias table may be used, for example, which
may be a page-granular structure (1.¢., controlled at the gran-
ularity of a memory page) that includes 1 or 2 bats per GPU-
attached memory page. The bias table may be implemented
in a stolen memory range of one or more GPU-attached
memories 420-423, with or without a bias cache 1n the
GPU 410-413 (e.g., to cache frequently/recently used
entries of the bias table). Alternatively, the entire bias table

may be maintained within the GPU.
[0164] In onc implementation, the bias table entry asso-

ciated with each access to the GPU-attached memory 420-
423 15 accessed prior the actual access to the GPU memory,
causing the following operations. First, local requests from
the GPU 410-413 that find their page in GPU bias are for-
warded directly to a corresponding GPU memory 420-423.
Local requests from the GPU that find their page 1n host bias
are forwarded to the processor 405 (e.g., over a high-speed
link as discussed above). In one embodiment, requests from
the processor 403 that find the requested page 1 host pro-
cessor bias complete the request like a normal memory read.
Alternatively, requests directed to a GPU-biased page may
be forwarded to the GPU 410-413. The GPU may then tran-
sition the page to a host processor bias 1f 1t 1s not currently
using the page.

[0165] The bias state of a page can be changed either by a
software-based mechanism, a hardware-assisted software-
based mechanism, or, for a limited set of cases, a purely

hardware-based mechanism.
[0166] One mechanism for changmng the bias state

employs an API call (¢.g. OpenCL), which, 1n turn, calls
the GPU’s device driver which, m turn, sends a message
(or enqueues a command descriptor) to the GPU directing
1t to change the bias state and, for some transitions, perform
a cache flushing operation 1n the host. The cache flushing
operation 1s required for a transition from host processor
405 bias to GPU has, but 1s not required for the opposite
transition.
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[0167] In one embodiment, cache coherency 1s mamtamed
by temporarily rendering GPU-biased pages uncacheable by
the host processor 403. To access these pages, the processor
405 may request access trom the GPU 410 which may or
may not grant access right away, depending on the imple-
mentation. Thus, to reduce communication between the pro-
cessor 405 and GPU 410 1t 1s beneficial to ensure that GPU-
biased pages are those which are required by the GPU but
not the host processor 405 and vice versa.

Graphics Processmg Pipeline

[0168] FIG. 5 illustrates a graphics processing pipeline
500, according to an embodiment. In one embodiment a gra-
phics processor can implement the illustrated graphics pro-
cessing pipeline 500. The graphics processor can be
included within the parallel processing subsystems as
described herein, such as the parallel processor 200 of
FIGS. 2, which, mm one embodiment, 1s a variant of the par-
allel processor(s) 112 of FIG. 1. The various parallel proces-
sing systems can implement the graphics processing pipe-
lime 500 wvia one or more instances of the parallel
processing unit (e.g., parallel processing unit 202 of FIGS.
2) as described herein. For example, a shader unit (e.g., gra-
phics multiprocessor 234 of FIGS. 3) may be configured to
perform the functions of one or more of a vertex processing
unit 504, a tessellation control processing unit 508, a tessel-
lation evaluation processing umt 512, a geometry proces-
sing unit 516, and a fragment/pixel processing unit 524.
The tunctions of data assembler 502, primitive assemblers
506, 514, 518, tessellation unit 510, rasterizer 522, and ras-
ter operations unit 526 may also be performed by other pro-
cessing engines within a processing cluster (e.g., processing
cluster 214 of FIGS. 3) and a corresponding partition unit
(e.g., partition umt 220A-220N of FIGS. 2). The graphics
processing pipeline 500 may also be implemented using
dedicated processing units for one or more functions. In
one embodiment, one or more portions of the graphics pro-
cessing pipeline 500 can be performed by parallel proces-
sing logic within a general purpose processor (e.g., CPU). In
one embodiment, one or more portions of the graphics pro-
cessing pipeline 500 can access on-chip memory (e.g., par-
allel processor memory 222 as 1in FIGS. 2) via a memory

interface 528, which may be an instance of the memory

interface 218 of FIGS. 2.
[0169] In one embodiment the data assembler S02 1s a pro-

cessing unit that collects vertex data for surfaces and primi-
tives. The data assembler S02 then outputs the vertex data,
including the vertex attributes, to the vertex processing unit
S04. The vertex processing unit 504 1s a programmable
execution unit that executes vertex shader programs, light-
ing and transforming vertex data as specified by the vertex
shader programs. The vertex processing unit 504 reads data
that 1s stored i cache, local or system memory for use 1n
processing the vertex data and may be programmed to trans-
form the vertex data from an object-based coordinate repre-
sentation to a world space coordinate space or a normalized
device coordinate space.

[0170] A first mstance of a primitive assembler 506
recerves vertex attributes from the vertex processing unit
S50. The primitive assembler 506 readings stored vertex attri-
butes as needed and constructs graphics primitives for pro-
cessing by tessellation control processing unit 508. The gra-
phics primitives mclude triangles, line segments, points,
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patches, and so torth, as supported by various graphics pro-
cessig application programming interfaces (APIs).

[0171] The tessellation control processing unit 508 treats
the mput vertices as control points for a geometric patch.
The control points are transformed from an 1mput represen-
tation from the patch (e.g., the patch’s bases) to a represen-
tation that 1s suitable for use 1n surface evaluation by the
tessellation evaluation processing unit S12. The tessellation
control processimg unit S08 can also compute tessellation
factors for edges of geometric patches. A tessellation factor
applies to a single edge and quantifies a view-dependent
level of detail associated with the edge. A tessellation unat
510 1s configured to recerve the tessellation factors for edges
of a patch and to tessellate the patch mnto multiple geometric
primitives such as line, tnangle, or quadrilateral primitives,
which are transmitted to a tessellation evaluation processing
unit 512. The tessellation evaluation processing unit 512
operates on parameterized coordinates of the subdivided
patch to generate a surface representation and vertex attri-
butes for each wvertex associated with the geometric
primitives.

[0172] A second instance of a primitive assembler 514
receives vertex attributes from the tessellation evaluation
processing unit 512, reading stored vertex attributes as
needed, and constructs graphics primitives for processing
by the geometry processing unit 516. The geometry proces-
simg unit 316 1s a programmable execution unit that executes
ogeometry shader programs to transform graphics primitives
recerved from primitive assembler 514 as specified by the
oecometry shader programs. In one embodiment the geome-
try processing unit 516 1s programmed to subdivide the gra-
phics primitives into one or more new graphics primitives
and calculate parameters used to rasterize the new graphics
primitives.

[0173] In some embodiments the geometry processing
unit 516 can add or delete elements 1n the geometry stream.
The geometry processing unit 516 outputs the parameters
and vertices specifymg new graphics primitives to primitive
assembler S518. The primitive assembler 518 receives the
parameters and vertices from the geometry processing unit
516 and constructs graphics primitives for processing by a
viewport scale, cull, and clip unit 520. The geometry proces-
smg unit 516 reads data that 1s stored 1n parallel processor
memory or system memory for use 1 processing the geo-
metry data. The viewport scale, cull, and clip unit 520 per-
forms clhipping, culling, and viewport scaling and outputs
processed graphics primitives to a rasterizer 522.

[0174] The rasterizer 522 can perform depth culling and
other depth-based optimizations. The rasterizer 522 also
performs scan conversion on the new graphics primitives
to generate fragments and output those fragments and asso-
ciated coverage data to the fragment/pixel processing unit
524. The fragment/pixel processing unit 524 1s a program-
mable execution unit that 18 configured to execute fragment
shader programs or pixel shader programs. The fragment/
pixel processing unit 524 transforming fragments or pixels
recerved from rasterizer S22, as specified by the fragment or
pixel shader programs. For example, the fragment/pixel pro-
cessing unit 524 may be programmed to perform operations
included but not limited to texture mapping, shading, blend-
ing, texture correction and perspective correction to produce
shaded tragments or pixels that are output to a raster opera-
tions unit 526. The fragment/pixel processing unit 524 can
read data that 1s stored 1n either the parallel processor mem-
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ory or the system memory for use when processing the frag-
ment data. Fragment or pixel shader programs may be con-
figured to shade at sample, pixel, tile, or other granularities
depending on the sampling rate configured for the proces-
sing units.

[0175] The raster operations unit 526 1s a processing umnit
that performs raster operations mcluding, but not limited to
stencil, z test, blending, and the like, and outputs pixel data
as processed graphics data to be stored 1in graphics memory
(e.g., parallel processor memory 222 as i FIGS. 2, and/or
system memory 104 as 1n FIG. 1, to be displayed on the one
or more display device(s) 110 or for further processing by
on¢ of the one or more processor(s) 102 or parallel proces-
sor(s) 112. In some embodiments the raster operations unit
526 1s configured to compress z or color data that 1s written
to memory and decompress z or color data that 1s read from
memory.

[0176] In head-mounted displays, head movement 1s mon-
itored continuously for example using 1nertial measurement
units (IMUSs). Since the display seen by the user changes
based on head movement to create a virtual reality depic-
tion, the speed of movement of the head must be correlated
to the speed of creating new depictions. In the real world as
you move your head, what you see changes mstantly:.
[0177] With a head-mounted display, the faster the head
moves, the faster the images must be rendered 1n order to
create a realistic virtual world. However, processing speed 18
limited. When the head moves so fast that the processing
capabilities of the head-mounted display cannot keep up a
compromise 1s advantageously undertaken. The compro-
mise enables the user see something substantially as fast as
the user moves the head. However what the user sees, 1n
some cases, may be compromised so that processing speed

can keep up with the rate of head movement.
[0178] Thus, when the speed of head movement exceeds

the processing capability of the system, a reduced depiction
1s displayed. As one example, the resolution may be reduced
using coarse (low resolution) pixel shading m order to create
a new depiction at the speed of head movement. In accor-
dance with another embodiment, only the region the user 1s
looking at 1s processed 1 full resolution and the remainder
of the depiction 1s processed at lower resolution. In still
another embodiment, the background depictions may be
blurred or grayed out to reduce processing time.

[0179] In some embodiments, a virtual reality application
prepares and submuts different workloads to a graphics dri-
ver depending on the speed of head movement. When head
movement 18 too high for the processing capabilities of the
system, a coarse pixel shaded virtual reality frame 1s pro-
vided and m other cases a more detailed pixel shaded virtual
reality frame 1s provided.

[0180] An algorithm 1n the graphics driver tracks the spa-
tial movement speed data from IMU sensors and intelli-
ogently submits one of the two workloads 1n one embodi-
ment. For example, when the head 1s moving very fast
from side to side, the graphics driver submits and renders
the coarse pixel shaded trame. When the head movement
1s more stable, the graphics pipeline mtelligently renders a
more detailed pixel shaded virtual reality frame.

[0181] Thus referring to FIG. 6, a head mounted display
software infrastructure includes a virtual reality application
that recerves mputs from IMU sensor data indicating the
extent and speed of head movement. That sensor data 1s
used to select either a coarse workload 14 or a regular work-
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load 16. The appropriate workload 1s sent to the driver 18 for
rendermmg based on the speed of head movement. It that
speed 18 too fast for the processing capabilities of the sys-
tem, a reduced depiction may be used so that even if the
display 1s not immediately perfect, the user sees something
new, given the extent and speed of head movement. The
longer the user looks at the same area, the better the depic-
tion can become. In other words, the resolution may be
improved as additional information 1s processed after sutfi-
cient viewing time.

[0182] Referring to FIG. 7, a head speed compensation
algorithm 20 mitially determines whether the head speed 1s
too high at diamond 22. If not, a normal rendering sequence
1s implemented at block 24.

[0183] Otherwise, a workload 1s rendered more coarsely
as mdicated m block 26. In some cases, the virtual reality
application 1s processing at two different resolutions at all
times. Then the most appropriate resolution 1s then selected.
The two workloads may not be available at the same time.
Namely, the regular workload may not be available until
after the coarse workload has already been made available.
[0184] In one embodiment, low latency multi-display
plane foveated rendering may be implemented. In some dis-
plays, such as head-mounted displays, when the head moves
quickly, 1t 1s necessary to quickly render new frames. One
way to render more quickly 1s to only render 1n the foveated
region. Another option 1s to reduce PPI.

[0185] The foveated region 1s the region of interest to the
user which may be detected for example by eye gaze detec-
tion. Other techniques for finding a region of mterest may be
motion detection within the scene and the location of parti-
cular tracked objects as well as locations where user focus 1s
directed either via cursor location or touch screen touch
location to mention two examples.

[0186] Thus 1n some embodiments only the foveated
region may be processed and displayed mn the head-mounted
display. This provides lower latency updates of the virtual

reality frame 1 some embodiments.
[0187] In some embodiments the head-mounted display

may 1nclude two frame buffers: one for the foveated or
region of interest; and one for the rest of the frame. The
rate of updating the region of interest may be higher than
the rate of updating the rest of the frame.

[0188] Video or graphics, received by a render engine
within a graphics processing unit, may be segmented into a
region of interest such as foreground and a region of less
interest such as background. In other embodiments, an
object of interest may be segmented from the rest of the
depiction 1n a case of a video game or graphics processing
workload. Each of the segmented portions of a frame may
themselves make up a separate surface which 1s sent sepa-
rately from the render engine to the display engine of a gra-
phics processing unit. In one embodimment, the display
engine combines the two surfaces and sends them over a
display link to the head-mounted display. The display con-
troller 1n the display panel displays the combined tframe. The
combined frame 1s stored m a buffer and retfreshed
periodically.

[0189] In accordance with another embodiment, video or
oraphics may be segmented by a render engine mnto regions
of interest or objects of mterest and objects of less interest
and agam each of the separate regions or objects may be
transferred to the display engine as a separate surface.
Then the display engine may transfer the separate surfaces
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to a display controller of a head-mounted display over a dis-
play link. At the display panel, a separate frame buffer may
be used for each of the separate surfaces.

[0190] In some¢ embodiments, the render engine may
refresh the background or object of less mterest at a lower
rate such as half the normal frame rate. However, the display
engine mm some embodiments may still work at the normal
frame rate. The render engine passes the separate display
surfaces to the display engine. One render bus may handle
the region of less mterest and one render bus may handle the

region of more interest.
[0191] The depth buffer for the background regions or

regions of less interest may not be updated at the normal
frame update rate 1n one embodiment. However, the display
engine may read at the normal frame rate and may create
finished, combined frames 1n some embodiments at the full
frame rate. In other embodiments, the display engine con-
tinues to send the two separate frames on to the display
panel for a combmation there.

[0192] A savings arises 1 some embodiments because
there 1s no need to write the regions of less interest or the
objects of less interest at the full frame rate and mstead 1n
some embodiments half the frame rate may be used, also
saving memory bandwidth and/or reducing power
consumption.

[0193] For the regions or objects of more interest, the sam-
pling rate may be mcreased. In one embodiment the sam-
pling rate 18 not lowered for the background or regions of
less interest because the panel still expects a single ultimate
frame coming at a normal frame rate.

[0194] Theretore the lower creation rate for background
frames 1 some embodiments does not mvolve reducing
the sampling rate of the background and therefore the back-
oground 1s not created at the full rate, saving power
consumption.

[0195] In some embodiments, the head-mounted display
may do the blending or combining. This may involve
changes 1 the way that the display link and display panel
operate. Blending 1n the display panel may save both link
power and reduce display engine power consumption
because the display engine only sends surfaces at different
rates without blending.

[0196] Legacy head-mounted displays may then commu-
nicate during an initial handshake period with the graphics
processing unit to advise the graphics processing unit of the
limited capabilities of the head-mounted display. In such
case the graphics processing unit may undertake to combine
the segmented frames 1n the display engine. Capabilities
information may be exchanged between the head-mounted
display, a driver and the graphics processing unit. Usually
the display panel driver tells the display engine of the gra-
phics processing unit what the head-mounted display 1s cap-
able of.

[0197] Thus 1n some cases, the head-mounted display pro-
tocol may be adapted to accept two surfaces that are
refreshed to the panel at ditferent rates where the panel
does the blending of the two segmented frames. In some
cases the graphics processing unit or the host processor
may reprogram the display panel to handle separately but-
fered surfaces or ditferent or unique processing of the seg-
mented surfaces of the frame.

[0198] Generally, 1n such embodiments, a head-mounted
display may have separate buffers for each of the different
surfaces that are processed differently. In that case, the back-
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ground buftter does not change much so 1t 1s updated at a
lower rate. The foreground buffer 1s updated at a faster rate.
[0199] Foreground and background segmentation may be
done 1 some rendering engines 1n current technologies but
this 1s generally done algorithmically. In some embodi-
ments, mn game and graphics embodiments, what 15 fore-
oround and what 1s background may be determined by the
game or graphics application. Because the application sets
up all the objects, 1t knows which objects are most important
and which objects are¢ moving or changing location and
therefore may be most important to refresh at a higher rate.
Down the pipe, 1t may be determined algorithmically
whether or not to segment but this 1s wasteful since the
game or graphics application may already know what 1s
changing and what 1s not changing 1n terms of regions of
interest or objects of interest.

[0200] An application program interface (API) may be
used to enable an application to tell the render engine, by
tags or other i1dentifiers, which objects are foreground and
which objects are background. That application program
interface information may go through a three-dimensional
(3D) pipeline. At pixel shading time, the 3D pipe learns
which pixels are foreground and which pixels are back-
ground using the tags or 1dentifiers without having to deter-
mine them algorithmically.

[0201] During rendering and writing to a displayable sur-
face m the graphics processing unit, there may be segmenta-
tion so that the background goes to a ditferent display sur-
face at a lower shading rate. When a number of pixels are
tagged as background, they may be shaded as a separate sur-
face at a lower rate. For example, the background surfaces
may be shaded only at every other frame. At the same time,
the foreground surfaces may be shaded on every pass.
[0202] Thus 1 some embodiments, the segmentation of
foreground and background surfaces may be done algorith-
mically and 1in other embodiments 1t may be done by appli-
cation program interface (API) tags or 1dentifiers, for exam-
ple 1n the case of 3D games and graphics processing for
example.

[0203] The principles described heremn can apply to any
region of mterest, not just foreground and background. For
example, motion detection may be used to determine which
objects or portions of the frame are moving. Specific colors
or objects may be searched for. Eye gaze detection may be
used to determine which portion of the frame 1s of most
interest to the user. Likewise the current location of user
focus, detected for example by touch screen or cursor acti-
vation, can be used to segment the regions that are of more
interest from than those that are of less mterest.

[0204] Thus referring to FIG. 8, in one embodiment a gra-
phics processing unit 30 may recewve video, graphics or
game mput at a render engine 32. The render engine then
segments each frame into foreground and background sur-
taces 34 and 36. Each separate surface 1s then sent to the
display engine 38 where, 1n the embodiment of FIG. 8, the
surfaces are recombined and sent over the display link 40 to
the head-mounted display 42. At the head-mounted display,
a display controller 42 accesses a butter 46 that 1s refreshed
on a periodic basis by the graphics processing unit.

[0205] In contrast, the graphics processing unit 1n the
embodiment of FIG. 9 receives graphics, games or video.
The render engine 32 again segments the foreground and
background surfaces 34 and 36 which are separately sent
to the display engine 38. But in this embodiment, the display
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engine sends the segmented surfaces separately over the dis-
play link 40 to the head-mounted display. As shown at the
head-mounted display 42, a display controller 42 accesses
foreground and background separate butfers 46a and 465
which are separately retreshed at ditferent rates.

[0206] FIG. 1015 a depiction of a multi-surtace frame pro-
cessing sequence 50 1n accordance with some embodiments.
The sequence S0 may be implemented 1n software, firmware
and/or hardware. In software and firmware embodiments 1t
may be mmplemented by computer executed instructions
stored 1n one or more non-transitory computer readable
media such as magnetic, optical or semiconductor storage.
The sequence may be implemented within a graphics pro-
cessing unit 1n some embodiments.

[0207] The sequence 50 begins by segmenting regions or
objects of interest 1n the render engine of a graphics proces-
sing unit as mdicated in block 52. Then the region or object
of interest 1s sent together with the rest of the frame on sepa-
rate surfaces to the display engine as mdicated in block 54.
[0208] The display engine then sends the surfaces sepa-
rately to the head-mounted display as indicated mn block 56.
[0209] In the head-mounted display, the surfaces may be
separately stored 1 separate buffers as indicated in block
58. Then the separate butfers are updated at different rates
as indicated 1n block 60. In some embodiments before doing
this, the system determines whether the display panel 15 cap-
able of buffering display surfaces separately. If not, the
separate surfaces are combined 1n the display engine rather
than sending them separately to the head-mounted display.

[0210] The graphics processing techmques described
herein may be implemented 1n various hardware architec-
tures. For example, graphics functionality may be integrated
within a chipset. Alternatively, a discrete graphics processor
may be used. As still another embodiment, the graphics
functions may be implemented by a general purpose proces-
sor, mcluding a multicore processor.

Head-Mounted Integrated Interface System Overview

[0211] FIG. 11 shows a head mounted display (HMD) sys-
tem 1100 that 1s being worn by a user while experiencing an
immersive environment such as, for example, a virtual rea-
lity (VR) environment, an augmented reality (AR) environ-
ment, a multi-player three-dimensional (3D) game, and so
forth. In the illustrated example, one or more straps 1120
hold a frame 1102 of the HMD system 1100 1n front of the
eyes of the user. Accordingly, a left-eye display 1104 may be
positioned to be viewed by the left eye of the user and a
right-eye display 1106 may be positioned to be viewed by
the right eye of the user. The left-eye display 1104 and the
right-eye display 1106 may alternatively be integrated mnto a
single display 1n certain examples such as, for example, a
smart phone being worn by the user. In the case of AR, the
displays 1104, 1106 may be view-through displays that per-
mit the user to view the physical surroundings, with other
rendered content (e¢.g., virtual characters, informational
annotations, heads up display/HUD) being presented on
top a live feed of the physical surroundings.

[0212] In one example, the frame 1102 mcludes a left
look-down camera 1108 to capture 1images from an arca gen-
crally 1in front of the user and beneath the left eye (e.g., left
hand gestures). Additionally, a right look-down camera 1110
may capture mmages from an area generally mn front of the
user and beneath the rnight eye (e.g., right hand gestures).
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The illustrated frame 1102 also includes a lett look-front
camera 1112 and a right look-front camera 1114 to capture
1mages 1n front of the left and right eyes, respectively, of the
user. The frame 1102 may also include a lett look-side cam-
era 1116 to capture images from an area to the left of the user
and a right look-si1de camera 1118 to capture images from an
arca to the right of the user.

[0213] The mmages captured by the cameras 1108, 1110,
1112, 1114, 1116, 1118, which may have overlapping fields
of view, may be used to detect gestures made by the user as
well as to analyze and/or reproduce the external environ-
ment on the displays 1104, 1106. In one example, the
detected gestures are used by a graphics processing archi-
tecture (e.g., internal and/or external) to render and/or con-
trol a virtual representation of the user in a 3D game. Indeed,
the overlapping fields of view may enable the capture of
gestures made by other individuals (e.g., 1n a multi-player
game), where the gestures of other individuals may be
further used to render/control the mmmersive experience.
The overlapping fields of view may also enable the HMD
system 1100 to automatically detect obstructions or other
hazards near the user. Such an approach may be particularly
advantageous 1n advanced driver assistance system (ADAS)
applications.

[0214] In one example, providing the left look-down cam-
cra 1108 and the nght look-down camera 1110 with over-
lapping fields of view provides a stereoscopic view having
an 1ncreased resolution. The increased resolution may 1n
turn enable very stmilar user movements to be distinguished
from one another (e.g., at sub-millimeter accuracy). The
result may be an enhanced performance of the HMD system
1100 with respect to reliability. Indeed, the illustrated solu-
tion may be useful 1n a wide variety of applications such as,
for example, coloring mformation m AR settings, exchan-
ging virtual tools/devices between users 1 a multi-user
environment, rendering virtual 1tems (e.g., weapons,
swords, staffs), and so forth. Gestures of other objects,
limbs and/or body parts may also be detected and used to
render/control the virtual environment. For example, myelo-
oraphic signals, electroencephalographic signals, eye track-
ing, breathing or pufling, hand motions, etc., may be tracked
1n real-time, whether {from the wearer or another individual
in a shared environment. The 1mages captured by the cam-
cras 1108, 1110, 1112, 1114, 1116, 1118, may also serve as
contextual mput. For example, 1t might be determined that
the user 1s indicating a particular word to edit or key to press
in a word processing application, a particular weapon to
deployed or a travel direction m a game, and so forth.
[0215] Additionally, the images captured by the cameras
1108, 1110, 1112, 1114, 1116, 1118, may be used to conduct
shared communication or networked interactivity mn equip-
ment operation, medical training, and/or remote/tele-opera-
tion gmidance applications. Task specific gesture libraries or
neural network machine learning could enable tool 1dentifi-
cation and feedback for a task. For example, a virtual tool
that translates into remote, real actions may be enabled. In
yet another example, the HMD system 1100 translates the
manipulation of a virtual dnill within a virtual scene to the
remote operation of a drill on a robotic device deployed to
search a collapsed building. Moreover, the HMD system
1100 may be programmable to the extent that 1t includes,
for example, a protocol that enables the user to add a new
oesture to a list of 1dentifiable gestures associated with user
actions.
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[0216] In addition, the various cameras in the HMD 1100
may be configurable to detect spectrum frequencies mn addi-
tion to the visible wavelengths of the spectrum. Multi-spec-
tral 1maging capabilities 1 the mput cameras allows posi-
tion tracking of the user and/or objects by eliminating
nonessential image features (e.g., background noise). For
example, 1n augmented reality (AR) applications such as
surgery, instruments and equipment may be tracked by
their infrared reflectivity without the need for additional
tracking aids. Moreover, HMD 1100 could be employed 1n
situations of low visibility where a “live feed” from the var-
1ous cameras could be enhanced or augmented through com-
puter analysis and displayed to the user as visual or audio
cues.

[0217] The HMD system 1100 may also forego perform-
ing any type of data communication with a remote comput-
ing system or need power cables (e.g., independent mode of
operation). In this regard, the HMD system 1100 may be a
“cordless” device having a power unit that enables the HMD
system 1100 to operate independently of external power sys-
tems. Accordingly, the user might play a tull teatured game
without being tethered to another device (e.g., game con-
sole) or power supply. In a word processing example, the
HMD system 1100 might present a virtual keyboard and/or
virtual mouse on the displays 1104 and 1106 to provide a
virtual desktop or word processing scene. Thus, gesture
recognition data captured by one or more of the cameras
may represent user typing activities on the virtual keyboard
or movements of the virtual mouse. Advantages include, but
are not limited to, ease of portability and privacy of the vir-
tual desktop from nearby individuals. The underlying gra-
phics processing architecture may support compression and/
or decompression of video and audio signals. Moreover,
providing separate images to the left eye and right eye of
the user may facilitate the rendering, generation and/or per-
ception of 3D scenes. The relative positions of the left-eye
display 1104 and the night-eye display 1106 may also be
adjustable to match variations 1n eye separation between dif-
ferent users.

[0218] The number of cameras illustrated 1n FIG. 11 1s to
facilitate discussion only. Indeed, the HMD system 1100
may include less than six or more than s1x cameras, depend-
ing on the circumstances.

Functional Components of the HMD System

[0219] FIG. 12 shows the HMD system 1 greater detail.
In the 1llustrated example, the frame 1102 includes a power
unit 1200 (e.g., battery power, adapter) to provide power to
the HMD system. The illustrated frame 1102 also includes a
motion tracking module 1220 (¢.g., accelerometers, gyro-
scopes), wherein the motion tracking module 1220 provides
motion tracking data, orientation data and/or position data to
a processor system 1204. The processor system 1204 may
include a network adapter 1224 that 1s coupled to an 1/O
bridge 1206. The 1/0 bridge 1206 may enable communica-
tions between the network adapter 1224 and various compo-
nents such as, for example, audio mput modules 1210, audio
output modules 1208, a display device 1207, input cameras
1202, and so forth.

[0220] In the illustrated example, the audio mput modules
1210 include a right-audio mput 1218 and a left-audio mput
1216, which detect sound that may be processed 1n order to
recognize voice commands of the user as well as nearby
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individuals. The voice commands recognized in the cap-
tured audio signals may augment gesture recognmtion during
modality switching and other applications. Moreover, the
captured audio signals may provide 3D mformation that 1s
used to enhance the immersive experience.

[0221] The audio output modules 1208 may imclude a
right-audio output 1214 and a left-audio output 1212. The
audio output modules 1208 may deliver sound to the ears of
the user and/or other nearby individuals. The audio output
modules 1208, which may be 1n the form of earbuds, on-car
speakers, over the ear speakers, loudspeakers, etc., or any
combination thercof, may deliver stereo and/or 3D audio
content to the user (e.g., spatial localization). The illustrated
frame 1102 also includes a wireless module 1222, which
may facilitate communications between the HMD system
and various other systems (e.g., computers, wearable
devices, game consoles). In one example, the wireless mod-
ule 1222 communicates with the processor system 1204 via
the network adapter 1224.

[0222] The illustrated display device 1207 includes the
left-eye display 1104 and the nght-eye display 1106,
wherein the visual content presented on the displays 1104,
1106 may be obtamed from the processor system 1204 via
the I/O bridge 1206. The mput cameras 1202 may include
the left look-side camera 1116 the right look-side camera
1118, the left look-down camera 1108, the left look-front
camera 1112, the night look-front camera 1114 and the
right look-down camera 1110, already discussed.

[0223] Turning now FIG. 13, a general processing cluster
(GPC) 1300 1s shown. The illustrated GPC 1300 may be
incorporated nto a processing system such as, for example,
the processor system 1204 (FIG. 12), already discussed. The
GPC 1300 may include a pipeline manager 1302 that com-
municates with a scheduler. In one example, the pipeline
manager 1302 recerves tasks from the scheduler and distri-
butes the tasks to one or more streaming multi-processors
(SM’s) 1304. Each SM 1304 may be configured to process
thread groups, wherein a thread group may be considered a
plurality of related threads that execute the same or similar
operations on different input data. Thus, each thread in the
thread group may be assigned to a particular SM 1304. In
another example, the number of threads may be greater than
the number of execution units i the SM 1304. In this
regard, the threads of a thread group may operate 1 parallel.
The pipeline manager 1302 may also specity processed data
destinations to a work distribution crossbar 1308, which
communicates with a memory crossbar.

[0224] Thus, as each SM 1304 transmits a processed task
to the work distribution crossbar 1308, the processed task
may be provided to another GPC 1300 for further proces-
sing. The output of the SM 1304 may also be sent to a pre-
raster operations (preROP) unit 1314, which 1n turn directs
data to on¢ or more raster operations units, or performs other
operations (e.g., performing address translations, organizing
picture color data, blending color, and so forth). The SM
1304 may include an internal level one (L1) cache (not
shown) to which the SM 1304 may store data. The SM
1304 may also have access to a level two (L2) cache (not
shown) via a memory management unit (MMU) 1310 and a
level one point five (IL1.5) cache 1306. The MMU 1310 may
map virtual addresses to physical addresses. In this regard,
the MMU 1310 may mnclude page table entries (PTE’s) that
are used to map virtual addresses to physical addresses of a
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tile, memory page and/or cache line mndex. The illustrated
GPC 1300 also includes a texture unit 1312.

Graphics System

[0225] FIG. 14 1s a block diagram of a processing system
1400, according to an embodiment. In various embodiments
the system 1400 includes one or more processors 1602 and
one or more graphics processors 1408, and may be a single
processor desktop system, a multiprocessor workstation sys-
tem, or a server system having a large number of processors
1402 or processor cores 1407. In one embodiment, the sys-
tem 1400 15 a processing platform mcorporated within a sys-
tem-on-a-chip (SoC) integrated circuit for use 1n mobile,
handheld, or embedded devices.

[0226] The processing system including a graphics pro-
cessing unit may be an integrated circuit. An integrated cir-
cuit means a single mtegrated silicon die. The die contains
the graphics processing unit and parallel interconnected
geometry processing fixed-function unaits.

[0227] An embodiment of system 1400 can include, or be
incorporated within a server-based gaming platform, a game
console, mcluding a game and media console, a mobile
gaming console, a handheld game console, or an online
game console. In some embodiments system 1400 1s a
mobile phone, smart phone, tablet computing device or
mobile Internet device. Data processing system 1400 can
also mclude, couple with, or be mtegrated within a wearable
device, such as a smart watch wearable device, smart eye-
wear device, augmented reality device, or virtual reality
device. In some embodiments, data processing system
1400 1s a television or set top box device having one or
more processors 1402 and a graphical mterface generated
by one or more graphics processors 1408.

[0228] In some embodiments, the one or more processors
1402 cach include one or more processor cores 1407 to pro-
cess 1nstructions which, when executed, perform operations
for system and user software. In some embodiments, each of
the one or more processor cores 1407 1s configured to pro-
cess a specilic mstruction set 1409. In some embodiments,
mstruction set 1409 may facilitate Complex Instruction Set
Computing (CISC), Reduced Instruction Set Computing
(RISC), or computing via a Very Long Instruction Word
(VLIW). Multiple processor cores 1407 may each process
a different instruction set 1409, which may mclude mstruc-
tions to facilitate the emulation of other mstruction sets. Pro-
cessor core 1407 may also include other processing devices,
such a Digital Signal Processor (DSP).

[0229] In some embodiments, the processor 1402 includes
cache memory 1404. Depending on the architecture, the
processor 1402 can have a single mternal cache or multiple
levels of internal cache. In some embodiments, the cache
memory 1s shared among various components of the proces-
sor 1402. In some embodiments, the processor 1402 also
uses an external cache (e.g., a Level-3 (L.3) cache or Last
Level Cache (LLC)) (not shown), which may be shared
among processor cores 1407 using known cache coherency
techniques. A register file 1406 1s additionally mcluded n
processor 1402 which may include different types of regis-
ters for storing different types of data (e.g., mnteger registers,
floating point registers, status registers, and an mstruction
pomter register). Some registers may be general-purpose
registers, while other registers may be specific to the design
of the processor 1402.
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[0230] In some embodiments, processor 1402 1s coupled
with a processor bus 1410 to transmit communication sig-
nals such as address, data, or control signals between pro-
cessor 1402 and other components 1n system 1400. In one
embodiment the system 1400 uses an exemplary ‘hub’ sys-
tem architecture, including a memory controller hub 1416
and an Input Output (I/O) controller hub 1430. A memory
controller hub 1416 facilitates communication between a
memory device and other components of system 1400,
while an I/O Controller Hub (ICH) 1430 provides connec-
tfions to I/O devices via a local /O bus. In one embodiment,
the logic of the memory controller hub 1416 1s integrated

within the processor.
[0231] Memory device 1420 can be a dynamic random

access memory (DRAM) device, a static random access
memory (SRAM) device, flash memory device, phase-
change memory device, or some other memory device hav-
1ng suitable performance to serve as process memory. In one
embodiment the memory device 1420 can operate as system
memory for the system 1400, to store data 1422 and 1nstruc-
tions 1421 for use when the one or more processors 1402
executes an application or process. Memory controller hub
1416 also couples with an optional external graphics proces-
sor 1412, which may communicate with the one or more
oraphics processors 1408 in processors 1402 to perform gra-

phics and media operations.
[0232] In some embodiments, ICH 1430 enables periph-

erals to connect to memory device 1420 and processor 1402
via a high-speed I/O bus. The I/O peripherals include, but
are not limited to, an audio controller 1446, a firmware inter-
face 1428, a wireless transceiver 1426 (¢.g., Wi-F1, Blue-
tooth), a data storage device 1624 (¢.g., hard disk drive,
flash memory, etc.), and a legacy I/O controller 1440 for
coupling legacy (e.g., Personal System 2 (PS/2)) devices to
the system. One or more Universal Serial Bus (USB) con-
trollers 1442 connect 1mnput devices, such as keyboard and
mouse 1444 combinations. A network controller 1434 may
also couple with ICH 1430. In some¢ embodiments, a high-
performance network controller (not shown) couples with
processor bus 1410. It will be appreciated that the system
1400 shown 1s exemplary and not limiting, as other types
of data processing systems that are differently configured
may also be used. For example, the I/O controller hub
1430 may be mtegrated within the one or more processor
1402, or the memory controller hub 1416 and I/O controller
hub 1430 may be integrated 1nto a discreet external graphics
processor, such as the external graphics processor 1412.
[0233] FIG. 1515 a block diagram of an embodiment of a
processor 1500 having one or more processor cores 1502 A-
1502N, an mtegrated memory controller 1514, and an inte-
orated graphics processor 1508. Those elements of FIG. 15
having the same reference numbers (or names) as the ele-
ments of any other figure herein can operate or function
any manner similar to that described elsewhere herein, but
are not limited to such. Processor 1500 can mclude addi-
tional cores up to and including additional core 1502N
represented by the dashed lined boxes. Each of processor
cores 1502A-1502N includes one or more mternal cache
units 1504A-1504N. In some embodiments each processor
core also has access to one or more shared cached units
1506.

[0234] 'The internal cache umts 1504A-1504N and shared
cache units 1506 represent a cache memory hierarchy within
the processor 1500. The cache memory hierarchy may
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include at least one level of mstruction and data cache
within each processor core and one or more levels of shared
mid-level cache, such as a Level 2 (L2), Level 3 (LL3), Level
4 (L4), or other levels of cache, where the highest level of
cache before external memory 1s classified as the LLC. In
some embodiments, cache coherency logic maintains coher-

ency between the various cache units 1506 and 1504A-

1504N.
[0235] In some embodiments, processor 1500 may also

include a set of one or more bus controller units 1516 and
a system agent core 1510. The one or more bus controller
units 1516 manage a set of peripheral buses, such as one or
more Peripheral Component Interconnect buses (e.g., PCI,
PCI Express). System agent core 1510 provides manage-
ment functionality for the various processor components.
In some embodiments, system agent core 1510 includes
on¢ or more mtegrated memory controllers 1514 to manage
access to various external memory devices (not shown).
[0236] In some embodiments, one or more of the proces-
sor cores 1502A-1502N imclude support for simultaneous
multi-threadmmg. In such embodiment, the system agent
core 1510 mcludes components for coordinating and oper-
ating cores 1502A-1502N during multi-threaded processing.
System agent core 1510 may additionally include a power
control unit (PCU), which mncludes logic and components to
regulate the power state of processor cores 1502A-1502N
and graphics processor 1508.

[0237] In some embodiments, processor 1500 additionally
includes graphics processor 1508 to execute graphics pro-
cessing operations. In some embodiments, the graphics pro-
cessor 1508 couples with the set of shared cache units 1506,
and the system agent core 1510, including the one or more
integrated memory controllers 1514. In some embodiments,
a display controller 1511 1s coupled with the graphics pro-
cessor 1508 to drive graphics processor output to one or
more coupled displays. In some embodiments, display con-
troller 1511 may be a separate module coupled with the gra-
phics processor via at least one mterconnect, or may be 1nte-
orated within the graphics processor 1508 or system agent
core 1310,

[0238] In some embodiments, a ring based interconnect
unit 1512 1s used to couple the mternal components of the
processor 1500. However, an alternative mterconnect unit
may be used, such as a point-to-point mterconnect, a
switched 1nterconnect, or other techmques, including tech-
nmques well known 1n the art. In some embodiments, gra-

phics processor 1508 couples with the ring mterconnect

1512 via an IO link 1513.
[0239] The exemplary I/O link 1513 represents at least

one of multiple varieties of I/O mterconnects, including an
on package I/O mterconnect which facilitates communica-
tion between various processor components and a high-per-
formance embedded memory module 1518, such as an
¢DRAM module. In some embodiments, each ot the proces-
sor cores 1502A-1502N and graphics processor 1508 use
embedded memory modules 1518 as a shared Last Level
Cache.

[0240] In some embodiments, processor cores 1502A-
1502N are homogenous cores executing the same mstruc-
tion set architecture. In another embodiment, processor
cores 1502A-5102N are heterogeneous 1 terms of mstruc-
tion set architecture (ISA), where one or more of processor
cores 1502A-1502N execute a first instruction set, while at
least one of the other cores executes a subset of the first
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instruction set or a different mstruction set. In one embodi-
ment processor cores 1502A-1502N are heterogeneous 1
terms of microarchitecture, where one or more cores having
a relatively higher power consumption couple with one or
more power cores having a lower power consumption.
Additionally, processor 1500 can be implemented on ong
or more chips or as an SoC integrated circuit having the
illustrated components, 1 addition to other components.

[0241] FIG. 16 1s a block diagram of a graphics processor
1600, which may be a discrete graphics processing unit, or
may be a graphics processor integrated with a plurality of
processing cores. In some embodiments, the graphics pro-
cessor communicates via a memory mapped /O mterface to
registers on the graphics processor and with commands
placed 1nto the processor memory. In some embodiments,
oraphics processor 1600 includes a memory interface 1614
to access memory. Memory interface 1614 can be an inter-
face to local memory, one or more mternal caches, one or

more shared external caches, and/or to system memory.
[0242] In some embodiments, graphics processor 1600

also includes a display controller 1602 to drive display out-
put data to a display device 1620. Display controller 1602
includes hardware for one or more overlay planes for the
display and composition of multiple layers of video or user
interface elements. In some embodiments, graphics proces-
sor 1600 includes a video codec engine 1606 to encode,
decode, or transcode media to, from, or between one or
mor¢ media encoding formats, including, but not limited to
Moving Picture Experts Group (MPEG) formats such as
MPEG-2, Advanced Video Coding (AVC) formats such as
H.264/MPEG-4 AVC, as well as the Society of Motion Pic-
ture & Television Engineers (SMPTE) 421 M/VC-1, and
Joint Photographic Experts Group (JPEG) formats such as

JPEG, and Motion JPEG (MJPEG) formats.
[0243] In some embodiments, graphics processor 1800

includes a block image transter (BLIT) engine 1604 to per-
form two-dimensional (2D) rasterizer operations mcluding,
for example, bit-boundary block transfers. However, 1 one
embodiment, 2D graphics operations are performed using
one or more components of graphics processing engine
(GPE) 1610. In some embodiments, GPE 1610 1s a compute
engine for performing graphics operations, mcluding three-
dimensional (3D) graphics operations and media operations.
[0244] In some embodiments, GPE 1610 mcludes a 3D
pipeline 1612 for performing 3D operations, such as render-
ing three-dimensional images and scenes using processing
functions that act upon 3D primitive shapes (¢.g., rectangle,
triangle, etc.). The 3D pipeline 1612 includes programmable
and fixed function elements that perform wvarious tasks
within the element and/or spawn execution threads to a
3D/Media sub-system 1615. While 3D pipeline 1612 can
be used to perform media operations, an embodiment of
GPE 1610 also includes a media pipeline 1616 that 15 spe-
cifically used to perform media operations, such as video
post-processmg and 1mage enhancement.

[0245] In some embodiments, media pipeline 1616
includes fixed function or programmable logic units to per-
form one or more specialized media operations, such as
video decode acceleration, video de-interlacing, and video
encode acceleration mn place of, or on behalt of video codec
engine 1606. In some embodiments, media pipeline 1616
additionally includes a thread spawning umt to spawn
threads for execution on 3D/Media sub-system 1615. The
spawned threads perform computations for the media opera-
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tions on one or more graphics execution units included 1n
3D/Media sub-system 1615.

[0246] In some embodiments, 3D/Media subsystem 16135
includes logic for executing threads spawned by 3D pipeline
1612 and media pipeline 1616. In one embodiment, the
pipelines send thread execution requests to 3D/Media sub-
system 16135, which includes thread dispatch logic for arbi-
trating and dispatching the various requests to available
thread execution resources. The execution resources mclude
an array ol graphics execution units to process the 3D and
media threads. In some embodiments, 3D/Media subsystem
1615 includes one or more internal caches for thread mstruc-
tions and data. In some¢ embodiments, the subsystem also
includes shared memory, mcluding registers and addressa-
ble memory, to share data between threads and to store out-

put data.
[0247] FIG. 17 1s a block diagram of a graphics processing

engimme 1710 of a graphics processor in accordance with
some embodiments. In one embodiment, the graphics pro-
cessing engine (GPE) 1710 1s a version of the GPE 1710
shown 1n FIG. 17. Elements of FIG. 17 having the same
reference numbers (or names) as the elements of any other
figure herein can operate or function m any manner similar
to that described elsewhere herein, but are not limited to
such. For example, the 3D pipeline 1612 and media pipeline
1616 of FIG. 16 are illustrated. The media pipeline 1616 1s
optional 1n some embodiments of the GPE 1710 and may
not be explicitly included within the GPE 1710. For exam-
ple and 1n at least one embodiment, a separate media and/or
image processor 1s coupled to the GPE 1710.

[0248] In some embodmments, GPE 1710 couples with or
includes a command streamer 1703, which provides a com-
mand stream to the 3D pipeline 1612 and/or media pipelines
1616. In some embodiments, command streamer 1703 1S
coupled with memory, which can be system memory, or
one or more of internal cache memory and shared cache
memory. In some embodiments, command streamer 1703
recerves commands from the memory and sends the com-
mands to 3D pipeline 1612 and/or media pipeline 1616.
The commands are directives fetched from a ring buffer,
which stores commands for the 3D pipeline 1612 and
media pipeline 1616. In one embodiment, the ring buffer
can additionally include batch command buffers storing
batches of multiple commands. The commands for the 3D
pipeline 1612 can also mclude references to data stored 1n
memory, such as but not limited to vertex and geometry data
for the 3D pipeline 1612 and/or 1image data and memory
objects for the media pipeline 1616. The 3D pipeline 1612
and media pipeline 1616 process the commands and data by
performing operations via logic within the respective pipe-
lines or by dispatching one or more execution threads to a
graphics core array 1714.

[0249] In various embodiments the 3D pipeline 1612 can
execute one or more shader programs, such as vertex sha-
ders, geometry shaders, pixel shaders, fragment shaders,
compute shaders, or other shader programs, by processing
the mstructions and dispatching execution threads to the
graphics core array 1714. The graphics core array 1714 pro-
vides a unified block of execution resources. Multipurpose
execution logic (e.g., execution units) within the graphic
core array 1714 mcludes support for various 3D API shader
languages and can execute multiple sitmultancous execution
threads associated with multiple shaders.
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[0250] In some embodiments the graphics core array 1714
also mcludes execution logic to pertorm media functions,
such as video and/or image processing. In one embodiment,
the execution units additionally include general-purpose
logic that 1s programmable to perform parallel general pur-
pose computational operations, in addition to graphics pro-
cessing operations. The general purpose logic can perform
processing operations 1n parallel or 1n conjunction with gen-
eral purpose logic within the processor core(s) 1407 of FIG.
14 or core 1502A-1502N as in FIG. 15.

[0251] Output data generated by threads executing on the
oraphics core array 1714 can output data to memory 1 a
unified return butfer (URB) 1718. The URB 1718 can
store data for multiple threads. In some embodiments the
URB 1718 may be used to send data between different
threads executing on the graphics core array 1714. In some
embodiments the URB 1718 may additionally be used for
synchronization between threads on the graphics core array
and fixed function logic within the shared function logic
1720.

[0252] In some embodiments, graphics core array 1714 1s
scalable, such that the array includes a vaniable number of
oraphics cores, each having a variable number of execution
units based on the target power and performance level of
GPE 1710. In one embodiment the execution resources are
dynamically scalable, such that execution resources may be
enabled or disabled as needed.

[0253] The graphics core array 1714 couples with shared
function logic 1720 that includes multiple resources that are
shared between the graphics cores 1n the graphics core array.
The shared tunctions within the shared function logic 1720
ar¢ hardware logic units that provide specialized supple-
mental functionality to the graphics core array 1714. In var-
1ous embodiments, shared function logic 1720 mcludes but
1s not limited to sampler 1721, math 1722, and inter-thread
communication (ITC) 1723 logic. Additionally, some embo-
diments 1mplement one or more cache(s) 1725 within the
shared function logic 1720. A shared function 1s implemen-
ted where the demand for a given specialized function 1s
insufficient for imclusion within the graphics core array
1714. Instead a single 1nstantiation of that specialized func-
tion 1s implemented as a stand-alone entity mn the shared
function logic 1720 and shared among the execution
resources within the graphics core array 1714. The precise
set of functions that are shared between the graphics core
array 1714 and included within the graphics core array
1714 varies between embodiments.

[0254] FIG. 18 1s a block diagram of another embodiment
ol a graphics processor 1800. Elements of FIG. 18 having
the same reference numbers (or names) as the elements of
any other figure herein can operate or function 1n any man-
ner similar to that described elsewhere herein, but are not
lmmated to such.

[0255] In some embodiments, graphics processor 1800
includes a ring mterconnect 1802, a pipeline tfront-end
1804, a media engimne 1837, and graphics cores 1880A-
1880N. In some embodiments, ring mterconnect 1802 cou-
ples the graphics processor to other processing units, mclud-
ing other graphics processors or one or more general-pur-
pose processor cores. In some embodiments, the graphics
processor 18 one of many processors integrated within a
multi-core processing system.

[0256] In some embodiments, graphics processor 1800
recerves batches of commands via ring interconnect 1802.
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The mmcoming commands are mterpreted by a command
streamer 1803 i the pipeline front-end 1804. In some
embodiments, graphics processor 1800 includes scalable
execution logic to pertorm 3D geometry processing and
media processing via the graphics core(s) 1880A-1880N.
For 3D geometry processing commands, command streamer
1803 supplies commands to geometry pipeline 1836. For at
least some media processing commands, command streamer
1803 supplies the commands to a video front end 1834,
which couples with a media engine 1837. In some embodi-
ments, media engine 1837 includes a Video Quality Engine
(VQE) 2030 for video and 1mage post-processing and a
multi-format encode/decode (MEFX) 1833 engine to provide
hardware-accelerated media data encode and decode. In
some embodiments, geometry pipeline 1836 and media
engine 1837 cach generate execution threads for the thread

execution resources provided by at least one graphics core
1880A.

[0257] In some embodiments, graphics processor 1800
includes scalable thread execution resources featuring mod-
ular cores 1880A-1880N (sometimes referred to as core
slices), each having multiple sub-cores 1850A-1850N,
1860A-1860N (sometimes referred to as core sub-slices).
In some embodiments, graphics processor 1800 can have
any number of graphics cores 1880A through 1880N. In
some embodiments, graphics processor 1800 includes a gra-
phics core 1880A having at least a first sub-core 1850A and
a second sub-core 1860A. In other embodiments, the gra-
phics processor 1s a low power processor with a single
sub-core (¢.g., 1850A). In some embodiments, graphics pro-
cessor 1800 includes multiple graphics cores 1880A-1880N,
cach including a set of first sub-cores 1850A-1850N and a
set of second sub-cores 1860A-1860N. Each sub-core 1n the
set of first sub-cores 1850A-1850N includes at least a first
set of execution units 1852A-1852N and media/texture sam-
plers 1854 A-1854N. Each sub-core 1n the set of second sub-
cores 1860A-1860N includes at least a second set of execu-
tion units 1862A-1862N and samplers 1864A-1864N. In
some embodiments, each sub-core 1850A-1850N. 1860A-
1860N shares a set of shared resources 1870A-1870N. In
some embodiments, the shared resources mclude shared
cache memory and pixel operation logic. Other shared
resources may also be included m the various embodiments
of the graphics processor.

[0258] FIG. 19 illustrates thread execution logic 1900
including an array of processing elements employed n
some embodiments of a GPE. Elements of FIG. 19 having
the same reference numbers (or names) as the elements of
any other figure herein can operate or function 1 any man-
ner similar to that described elsewhere herein, but are not
limated to such.

[0259] In some embodiments, thread execution logic 1900
includes a shader processor 1902, a thread dispatcher 1904,
instruction cache 1906, a scalable execution unit array
including a plurality of execution units 1908A-1908N, a
sampler 1910, a data cache 1912, and a data port 1914. In
on¢ embodiment the scalable execution unit array can dyna-
mically scale by enabling or disabling one or more e¢xecu-
tion units (€.g., any of execution unit 1908A, 19088, 1908C,
1908D, through 1908N-1 and 1908N) based on the compu-
tational requirements of a workload. In one embodiment the
included components are mterconnected via an mterconnect
fabric that links to each of the components. In some embo-
diments, thread execution logic 1900 includes one or more
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connections to memory, such as system memory or cache
memory, through one or more of instruction cache 1906,
data port 1914, sampler 1910, and execution units 1908A -
1908N. In some embodiments, each execution unit (e.g.
1908A) 1s a stand-alone programmable general purpose
computational umt that 1s capable of executing multiple
simultaneous hardware threads while processing multiple
data elements 1n parallel for each thread. In various embodi-
ments, the array of execution units 1908 A-1908N 1s scalable
to include any number individual execution units.

[0260] In some embodiments, the execution units 1908A -
1908N are¢ primarily used to execute shader programs. A
shader processor 1902 can process the various shader pro-
orams and dispatch execution threads associated with the
shader programs via a thread dispatcher 1904. In one embo-
diment the thread dispatcher includes logic to arbitrate
thread 1nitiation requests from the graphics and media pipe-
limes and instantiate the requested threads on one or more
execution unit 1 the execution units 1908A-1908N. For
example, the geometry pipeline (e.g., 1836 of FIG. 18) can
dispatch vertex, tessellation, or geometry shaders to the
thread execution logic 1900 (FIG. 19) for processmg. In
some embodiments, thread dispatcher 1904 can also process
runtime thread spawning requests from the executing shader
programs.

[0261] In some embodiments, the execution units 1908A -
1908N support an mstruction set that mcludes native sup-
port for many standard 3D graphics shader instructions,
such that shader programs from graphics lhibraries (e.g.,
Direct 3D and OpenGL) are executed with a minimal trans-
lation. The execution units support vertex and geometry pro-
cessing (e.g., vertex programs, geometry programs, vertex
shaders), pixel processing (e.g., pixel shaders, fragment sha-
ders) and general-purpose processing (e.g., compute and
media shaders). Each of the execution units 1908A-1908N
1s capable of multi-issue single nstruction multiple data
(SIMD) execution and multi-threaded operation enables an
ciiicient execution environment 1n the face of higher latency
memory accesses. Each hardware thread within each execu-
tion unit has a dedicated high-bandwidth register file and
associated independent thread-state. Execution 18 multi-
1ssue per clock to pipelines capable of integer, single and
double precision floating point operations, SIMD branch
capability, logical operations, transcendental operations,
and other miscellaneous operations. While waiting for data
from memory or one of the shared functions, dependency
logic within the execution units 1908A-1908N causes a
waiting thread to sleep until the requested data has been
returned. While the waiting thread 1s sleeping, hardware
resources may be devoted to processing other threads. For
example, during a delay associated with a vertex shader
operation, an execution unit can perform operations for a
pixel shader, fragment shader, or another type of shader pro-
oram, mcluding a different vertex shader.

[0262] Each execution unit i execution units 1908A-
1908N operates on arrays of data elements. The number of
data elements 1s the “execution size.” or the number of chan-
nels for the instruction. An execution channel 1s a logical
unit of execution for data element access, masking, and
flow control within mstructions. The number of channels
may be mdependent of the number of physical Arithmetic
Logic Units (ALUs) or Floating Point Units (FPUs) for a
particular graphics processor. In some embodiments, execu-
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tion units 608A-608N support integer and floating-point

data types.
[0263] The execution unit mstruction set includes SIMD

instructions. The various data elements can be stored as a
packed data type mn a register and the execution unit waill
process the various elements based on the data size of the
clements. For example, when operating on a 256-bit wide
vector, the 256 bits of the vector are stored m a register
and the execution unit operates on the vector as four sepa-
rate 64-bit packed data elements (Quad-Word (QW) size
data elements), eight separate 32-bit packed data elements
(Double Word (DW) size data clements), sixteen separate
16-bit packed data elements (Word (W) size data elements),
or thirty-two separate 8-bit data elements (byte (B) size data
clements). However, different vector widths and register
s1z€s are possible.

[0264] One or more 1nternal mstruction caches (e.g.,
1906) are included 1n the thread execution logic 1900 to
cache thread instructions for the execution units. In some
embodiments, one or more data caches (¢.g., 1912) are
included to cache thread data during thread execution. In
some embodiments, a sampler 1910 1s included to provide
texture sampling for 3D operations and media sampling for
media operations. In some embodiments, sampler 1910
includes specialized texture or media sampling functionality
to process texture or media data during the sampling process
before providing the sampled data to an execution unat.
[0265] During execution, the graphics and media pipelines
send thread immtiation requests to thread execution logic
1900 wvia thread spawning and dispatch logic. Once a
oroup of geometric objects has been processed and raster-
1zed mto pixel data, pixel processor logic (e.g., pixel shader
logic, tragment shader logic, etc.) within the shader proces-
sor 1902 1s mnvoked to further compute output mformation
and cause results to be written to output surfaces (e.g., color
buffers, depth buffers, stencil butfers, etc.). In some embo-
diments, a pixel shader or fragment shader calculates the
values of the various vertex attributes that are to be interpo-
lated across the rasterized object. In some embodiments,
pixel processor logic within the shader processor 1902
then executes an application programming mterface (API)-
supplied pixel or fragment shader program. To execute the
shader program, the shader processor 1902 dispatches
threads to an execution umt (e.g., 1908A) via thread dis-
patcher 1904. In some embodiments, pixel shader 1902
uses texture sampling logic 1 the sampler 1910 to access
texture data 1n texture maps stored mn memory. Arithmetic
operations on the texture data and the mput geometry data
compute pixel color data for each geometric fragment, or

discards one or more pixels from further processing.
[0266] In some embodiments, the data port 1914 provides

a memory access mechanism for the thread execution logic
1900 output processed data to memory for processing on a
graphics processor output pipeline. In some embodiments,
the data port 1914 includes or couples to one or more cache
memories (e.g., data cache 1912) to cache data for memory
access via the data port.

[0267] FIG. 20 1s a block diagram 1illustrating a graphics
processor mstruction formats 2000 according to some
embodiments. In one or more embodiment, the graphics
pProcessor execution units support an instruction set having
instructions i multiple formats. The solid lined boxes 1llus-
trate the components that are generally included 1n an execu-
tion unit mstruction, while the dashed lines mclude compo-
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nents that are optional or that are only mncluded 1n a sub-set
of the mstructions. In some embodiments, instruction format
2000 described and illustrated are macro-instructions, n
that they are instructions supplied to the execution unit, as
opposed to micro-operations resulting from instruction
decode once the 1nstruction 1s processed.

[0268] In some embodiments, the graphics processor
execution units natively support mstructions 1 a 128-bat
instruction format 2010. A 64-bit compacted mstruction for-
mat 2030 1s available for some nstructions based on the
selected 1nstruction, mstruction options, and number of
operands. The native 128-bit 1nstruction format 2010 pro-
vides access to all instruction options, while some options
and operations are restricted 1n the 64-bit instruction format
2030. The native instructions available m the 64-bit instruc-
tion format 2030 vary by embodiment. In some embodi-
ments, the mstruction 1s compacted 1n part using a set of
index values 1n an index field 2013. The execution unit hard-
ware references a set of compaction tables based on the
index values and uses the compaction table outputs to recon-
struct a native mstruction 1n the 128-bit mstruction format
2010.

[0269] For each format, mstruction opcode 2012 defines
the operation that the execution unit 1s to perform. The
execution units execute each instruction i parallel across
the multiple data elements of each operand. For example,
in response to an add mstruction the execution unit performs
a simultaneous add operation across each color channel
representing a texture element or picture clement. By
default, the execution unit performs each mstruction across
all data channels of the operands. In some embodiments,
instruction control field 2014 enables control over certain
execution options, such as channels selection (e.g., predica-
tion) and data channel order (e.g., swizzle). For instructions
in the 128-bit mstruction format 2010 an exec-size field
2016 limits the number of data channels that will be exe-
cuted mn parallel. In some embodiments, exec-size field
2016 1s not available for use 1n the 64-bit compact 1nstruc-
tion format 2030.

[0270] Some execution unit mstructions have up to three
operands mcluding two source operands, srcO 2020, srcl
2022. and one destination 2018. In some embodiments, the
execution units support dual destination mstructions, where
one of the destinations 1s mmplied. Data mampulation
instructions can have a third source operand (e.g., SRC2
2024), where the instruction opcode 2012 determines the
number of source operands. An instruction’s last source
operand can be an mmmediate (e.g., hard-coded) value
passed with the nstruction.

[0271] In some embodiments, the 128-bit mstruction for-
mat 2010 includes an access/address mode field 2026 speci-
tying, tor example, whether direct register addressing mode
or indirect register addressing mode 1s used. When direct
register addressing mode 1s used, the register address of
one or more operands 1s directly provided by bits in the
instruction.

[0272] In some embodiments, the 128-bit mstruction for-
mat 2010 includes an access/address mode field 2026, which
specifies an address mode and/or an access mode for the
istruction. In one embodiment the access mode 1s used to
define a data access alignment for the instruction. Some
embodiments support access modes mcluding a 16-byte
aligned access mode and a 1-byte aligned access mode,
where the byte alignment of the access mode determines
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the access alignment of the mstruction operands. For exam-
ple, when 1n a first mode, the instruction may use byte-
aligned addressing for source and destination operands and
when 1 a second mode, the mnstruction may use 16-byte-
aligned addressing for all source and destination operands.

[0273] In one embodiment, the address mode portion of
the access/address mode field 2026 determines whether the
instruction 18 to use direct or mdirect addressing. When
direct register addressing mode 1s used bits 1n the mstruction
directly provide the register address of one or more oper-
ands. When mdirect register addressing mode 1s used, the
register address of one or more operands may be computed
based on an address register value and an address immediate
field 1n the mstruction.

[0274] In some embodiments istructions are grouped
based on opcode 2012 bit-fields to simplify Opcode decode
2040. For an 8-bit opcode, bits 4, 5, and 6 allow the execu-
tion unit to determine the type of opcode. The precise
opcode grouping shown 1s merely an example. In some
embodiments, a move and logic opcode group 2042 1includes
data movement and logic mstructions (e.g., move (mov),
compare (cmp)). In some embodiments, move and logic
oroup 2042 shares the five most significant bits (MSB),
where move (mov) mstructions are in the form of
0000xxxxb and logic nstructions are n the form of 0001
xxxxb. A flow control mstruction group 2044 (e.g., call,
jump (mp)) 1ncludes mstructions 1n the form of
0010xxxxb (e.g., 0x20). A miscellaneous 1nstruction group
2046 includes a mix of mstructions, including synchroniza-
tion 1nstructions (¢.g., wait, send) 1n the form of 001 1xxxxb
(e.g., 0x30). A parallel math instruction group 2048
includes component-wise arithmetic instructions (e.g., add,
multiply (mul)) in the form of 0100xxxxb (e.g., 0x40). The
parallel math group 2048 performs the arithmetic operations
in parallel across data channels. The vector math group 2050
includes arithmetic mstructions (e.g., dp4) in the form of
0101xxxxb (¢.g., 0x50). The vector math group performs
arithmetic such as dot product calculations on vector
operands.

[0275] FIG. 21 1s a block diagram of another embodiment
of a graphics processor 2100. Elements of FIG. 21 having
the same reference numbers (or names) as the elements of
any other figure herein can operate or function 1 any man-
ner similar to that described elsewhere herein, but are not
limated to such.

[0276] In some embodiments, graphics processor 2100
includes a graphics pipeline 2120, a media pipeline 2130,
a display engine 2140, thread execution logic 2150, and a
render output pipeline 2170. In some embodiments, gra-
phics processor 2100 1s a graphics processor within a
multi-core processing system that includes one or more gen-
cral purpose processing cores. The graphics processor 1s
controlled by register writes to one or more control registers
(not shown) or via commands 1ssued to graphics processor
2100 via a ning mmterconnect 2102. In some embodiments,
ring interconnect 2102 couples graphics processor 2100 to
other processing components, such as other graphics proces-
sors or general-purpose processors. Commands from ring
interconnect 2102 are interpreted by a command streamer
2103, which supplies instructions to individual components
of graphics pipeline 2120 or media pipeline 2130.

[0277] In some embodiments, command streamer 2103
directs the operation of a vertex fetcher 2103 that reads ver-
tex data from memory and executes vertex-processing com-
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mands provided by command streamer 2103. In some embo-
diments, vertex fetcher 2103 provides vertex data to a vertex
shader 2107, which performs coordinate space transforma-
tion and lighting operations to each vertex. In some embodi-
ments, vertex fetcher 2105 and vertex shader 2107 execute
vertex-processing instructions by dispatching execution
threads to execution units 2152A-2152B via a thread dis-
patcher 2131.

[0278] In some embodiments, execution units 2152A-
2152B are¢ an array of vector processors having an instruc-
tion set for performing graphics and media operations. In
some embodiments, execution units 2152A-2152B have an
attached L1 cache 2151 that 1s specific for each array or
shared between the arrays. The cache can be configured as
a data cache, an instruction cache, or a single cache that 1s
partitioned to contamn data and instructions i different
partitions.

[0279] In some embodiments, graphics pipeline 2120
includes tessellation components to perform hardware-
accelerated tessellation of 3D objects. In some embodi-
ments, a programmable hull shader 2111 configures the tes-
sellation operations. A programmable domain shader 2117
provides back-end evaluation of tessellation output. A tes-
sellator 2113 operates at the direction of hull shader 2111
and contains special purpose logic to generate a set of
detailled geometric objects based on a coarse geometric
model that 1s provided as mput to graphics pipeline 2120.
In some embodiments, 11 tessellation 1s not used, tessellation
components (e.g., hull shader 2311, tessellator 2113, and
domain shader 2117) can be bypassed.

[0280] In some embodiments, complete geometric objects
can be processed by a geometry shader 2119 via one or more
threads dispatched to execution units 2152A-2152B, or can
proceed directly to the clipper 2129. In some embodiments,
the geometry shader operates on enfire geometric objects,
rather than vertices or patches of vertices as i previous
stages of the graphics pipeline. If the tessellation 1s disabled
the geometry shader 2119 receives mput from the vertex
shader 2107. In some embodiments, geometry shader 2119
1s programmable by a geometry shader program to perform
oecometry tessellation 1f the tessellation units are disabled.
[0281] DBetore rasterization, a clipper 2129 processes ver-
tex data. The clipper 2129 may be a fixed function clipper or
a programmable clipper having clipping and geometry sha-
der functions. In some embodiments, a rasterizer and depth
test component 2173 1n the render output pipeline 2170 dis-
patches pixel shaders to convert the geometric objects 1mnto
their per pixel representations. In some embodiments, pixel
shader logic 1s included 1n thread execution logic 2150. In
some embodiments, an application can bypass the rasterizer
and depth test component 2173 and access un-rasterized
vertex data via a stream out unit 2123.

[0282] The graphics processor 2100 has an interconnect
bus, mterconnect fabric, or some other interconnect
mechanism that allows data and message passing amongst
the major components of the processor. In some embodi-
ments, execution units 2152A-2152B and associated
cache(s) 2131, texture and media sampler 2154, and tex-
ture/sampler cache 2158 interconnect via a data port 2156
to perform memory access and communicate with render
output pipeline components of the processor. In some embo-
diments, sampler 2154, caches 2151, 2158 and execution
units 2152A-2152B each have separate memory access
paths.
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[0283] In some embodiments, render output pipeline 2170
contamns a rasterizer and depth test component 2173 that
converts vertex-based objects into an associated pixel-
based representation. In some embodiments, the rasterizer
logic mcludes a windower/masker unit to perform fixed
function triangle and line rasterization. An associated render
cache 2178 and depth cache 2179 are also available 1n some
embodiments. A pixel operations component 2177 performs
pixel-based operations on the data, though 1n some
instances, pixel operations associated with 2D operations
(e.g. bt block image transters with blending) are pertormed
by the 2D engine 2141, or substituted at display time by the
display controller 2143 using overlay display planes. In
some embodiments, a shared .3 cache 2175 1s available to
all graphics components, allowing the sharing of data with-
out the use of main system memory.

[0284] In some embodiments, graphics processor media
pipeline 2130 1ncludes a media engine 2137 and a video
front end 2134. In some embodiments, video front end
2134 recerves pipeline commands from the command strea-
mer 2103, In some embodiments, media pipeline 2130
includes a separate command streamer. In some embodi-
ments, video front-end 2134 processes media commands
before sending the command to the media engine 2137. In
some embodiments, media engine 2137 includes thread
spawning functionality to spawn threads for dispatch to
thread execution logic 2150 via thread dispatcher 2131.
[0285] In some embodiments, graphics processor 2100
includes a display engine 2140. In some embodiments, dis-
play engine 2140 1s external to processor 2100 and couples
with the graphics processor via the ring mterconnect 2102,
or some other mterconnect bus or fabric. In some embodi-
ments, display engine 2140 includes a 2D engine 2141 and a
display controller 2143. In some embodiments, display
engine 2140 contains special purpose logic capable of oper-
ating mdependently of the 3D pipeline. In some embodi-
ments, display controller 2143 couples with a display device
(not shown), which may be a system imtegrated display
device, as m a laptop computer, or an external display
device attached via a display device connector.

[0286] In some embodiments, graphics pipeline 2120 and
media pipeline 2130 are configurable to perform operations
based on multiple graphics and media programming nter-
faces and are not specific to any one application program-
ming mterface (API). In some embodiments, driver software
for the graphics processor translates API calls that are spe-
cific to a particular graphics or media library into commands
that can be processed by the graphics processor. In some
embodiments, support 1s provided for the Open Graphics
Library (OpenGL), Open Computing Language (OpenCL),
and/or Vulkan graphics and compute APIL, all from the
Khronos Group. In some embodiments, support may also
be provided for the Direct3D library from the Microsotit
Corporation. In some embodiments, a combination of
these libraries may be supported. Support may also be pro-
vided for the Open Source Computer Vision Library
(OpenCV). A tuture API with a compatible 3D pipeline
would also be supported 1f a mapping can be made from
the pipeline of the future API to the pipeline of the graphics
Processor.

[0287] FIG. 22A 1s a block diagram illustrating a graphics
processor command format 2200 according to some embo-
diments. FIG. 22B 1s a block diagram illustrating a graphics
processor command sequence 2210 according to an embodi-
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ment. The solid lined boxes 1n FIG. 22A 1illustrate the com-
ponents that are generally included 1n a graphics command
while the dashed lines mmclude components that are optional
or that are only included 1n a sub-set of the graphics com-
mands. The exemplary graphics processor command format
2200 of FIG. 22A 1includes data fields to identify a target
client 2202 of the command, a command operation code
(opcode) 2204, and the relevant data 2206 for the command.
A sub-opcode 2205 and a command size 2208 are also

included 1n some commands.
[0288] In some embodiments, client 2202 specifies the cli-

ent unit of the graphics device that processes the command
data. In some embodiments, a graphics processor command
parser examines the client field of each command to condi-
tion the further processing of the command and route the
command data to the appropriate client unit. In some embo-
diments, the graphics processor client units mclude a mem-
ory mterface unit, a render unit, a 2D unit, a 3D unit, and a
media unit. Each client unit has a corresponding processing
pipeline that processes the commands. Once the command 1s
recerved by the client umit, the client unit reads the opcode
2204 and, 1f present, sub-opcode 2205 to determine the
operation to perform. The client unit performs the command
using mnformation 1n data field 2206. For some commands
an explicit command size 2208 1s expected to specily the
size of the command. In some embodiments, the command
parser automatically determines the size of at least some of
the commands based on the command opcode. In some
embodiments commands are aligned via multiples of a dou-

ble word.
[0289] 'The flow diagram i FIG. 22B shows an exemplary

oraphics processor command sequence 2210. In some
embodiments, software or firmware of a data processing
system that features an embodiment of a graphics processor
uses a version of the command sequence shown to set up,
execute, and terminate a set of graphics operations. A sam-
ple command sequence 1s shown and described for purposes
of example only as embodiments are not limited to these
speciiic commands or to this command sequence. Moreover,
the commands may be 1ssued as batch of commands 1n a
command sequence, such that the graphics processor will
process the sequence of commands m at least partially
concurrence.

[0290] In some embodiments, the graphics processor com-
mand sequence 2210 may begin with a pipeline flush com-
mand 2212 to cause any active graphics pipeline to complete
the currently pending commands for the pipeline. In some
embodiments, the 3D pipeline 2222 and the media pipeline
2224 do not operate concurrently. The pipeline flush 1s per-
formed to cause the active graphics pipeline to complete any
pending commands. In response to a pipeline flush, the com-
mand parser for the graphics processor will pause command
processing until the active drawing engines complete pend-
ing operations and the relevant read caches are mvalidated.
Optionally, any data in the render cache that 1s marked
‘dirty’ can be flushed to memory. In some embodiments,
pipeline flush command 2212 can be used for pipeline syn-
chronization or betfore placing the graphics processor into a

low power state.
[0291] In some embodiments, a pipeline select command

2213 1s used when a command sequence requires the gra-
phics processor to explicitly switch between pipelines. In
some embodiments, a pipeline select command 2213 18
required only once within an execution context before 1ssu-
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ing pipeline commands unless the context 1s to 1ssue com-
mands for both pipelines. In some embodiments, a pipeline
flush command 2212 1s required immediately betore a pipe-
line switch via the pipeline select command 2213.

[0292] In some embodiments, a pipeline control command
2214 configures a graphics pipeline for operation and 1s used
to program the 3D pipeline 2222 and the media pipeline
2224. In some embodiments, pipeline control command
2214 configures the pipeline state for the active pipeline.
In one embodiment, the pipeline control command 2214 1s
used for pipeline synchronization and to clear data from one
or more cache memories within the active pipeline before

processing a batch of commands.
[0293] In some embodiments, commands for the return

buifer state 2216 are used to configure a set of return butfers
for the respective pipelines to write data. Some pipeline
operations require the allocation, selection, or configuration
of one or more return butfers into which the operations write
intermediate data during processing. In some embodiments,
the graphics processor also uses one or more return buffers
to store output data and to perform cross thread communica-
tion. In some embodiments, configuring the return builer
state 2216 mcludes selecting the size and number of return
butters to use for a set of pipeline operations.

[0294] The remamimng commands m the command
sequence differ based on the active pipeline for operations.
Based on a pipeline determination 2220, the command
sequence 1s tailored to the 3D pipeline 2222 beginning
with the 3D pipeline state 2230 or the media pipeline 2224
beginning at the media pipeline state 2240.

[0295] The commands to configure the 3D pipeline state
2230 include 3D state setting commands for vertex buffer
state, vertex element state, constant color state, depth buftfer
state, and other state variables that are to be configured
before 3D primitive commands are processed. The values
of these commands are determined at least 1n part based on
the particular 3D API mn use. In some embodiments, 3D
pipeline state 2230 commands are also able to selectively
disable or bypass certain pipeline elements 11 those elements
will not be used.

[0296] In some embodiments, 3D primitive 2232 com-
mand 1s used to submit 3D primitives to be processed by
the 3D pipeline. Commands and associated parameters that
are passed to the graphics processor via the 3D primitive
2232 command are forwarded to the vertex fetch tunction
in the graphics pipeline. The vertex fetch function uses the
3D primitive 2232 command data to generate vertex data
structures. The vertex data structures are stored m one or
more return buffers. In some embodiments, 3D primitive
2232 command 1s used to perform vertex operations on 3D
primitives via vertex shaders. To process vertex shaders, 3D
pipeline 2222 dispatches shader execution threads to gra-
phics processor execution units.

[0297] In some embodiments, 3D pipeline 2222 1s trig-
gered via an execute 2234 command or event. In some
embodiments, a register write triggers command execution.
In some embodiments execution 1s triggered via a ‘go’ or
‘kick’ command 1n the command sequence. In one embodi-
ment, command execution 1s triggered using a pipeline syn-
chronization command to flush the command sequence
through the graphics pipeline. The 3D pipeline will perform
oecometry processing for the 3D primitives. Ongce operations
are complete, the resulting geometric objects are rasterized
and the pixel engine colors the resulting pixels. Additional
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commands to control pixel shading and pixel back end
operations may also be included for those operations.
[0298] In some embodiments, the graphics processor com-
mand sequence 910 follows the media pipeline 2240 path
when performing media operations. In general, the specific
use and manner of programming for the media pipeline 2240
depends on the media or compute operations to be per-
tormed. Specific media decode operations may be offloaded
to the media pipeline during media decode. In some embo-
diments, the media pipeline can also be bypassed and media
decode can be performed 1n whole or 1 part using resources
provided by one or more general purpose processing cores.
In one embodiment, the media pipeline also includes ele-
ments for general-purpose graphics processor unit
(GPGPU) operations, where the graphics processor 1s used
to perform SIMD vector operations using computational
shader programs that are not explicitly related to the render-
ing of graphics primitives.

[0299] In some embodiments, media pipeline 2240 1s con-
figured 1n a stmilar manner as the 3D pipeline 2222. A set of
commands to configure the media pipeline state 2240 are
dispatched or placed into a command queue before the
media object commands 2242. In some embodiments, com-
mands for the media pipeline state 2240 include data to con-
figure the media pipeline elements that will be used to pro-
cess the media objects. This includes data to configure the
video decode and video encode logic within the media pipe-
line, such as encode or decode format. In some embodi-
ments, commands for the media pipeline state 940 also sup-
port the use of one or more pointers to “mdirect” state
clements that contain a batch of state settings.

[0300] In some embodiments, media object commands
2242 supply poimnters to media objects for processing by
the media pipeline. The media objects mclude memory bul-
fers contamming video data to be processed. In some embodi-
ments, all media pipeline states must be valid before 1ssuing
a media object command 2242. Once the pipeline state 1s
configured and media object commands 2242 are queued,
the media pipeline 2224 1s triggered via an execute com-
mand 2244 or an equivalent execute event (e.g., register
write). Output from media pipeline 2224 may then be post
processed by operations provided by the 3D pipeline 2222
or the media pipeline 2224. In some embodiments, GPGPU
operations are configured and executed 1n a similar manner
as media operations.

Graphics Software Architecture

[0301] FIG. 23 illustrates exemplary graphics software
architecture for a data processing system 2300 according
to some embodiments. In some embodiments, software
architecture includes a 3D graphics application 2310, an
operating system 2320, and at least one processor 2330. In
some embodiments, processor 2330 includes a graphics pro-
cessor 2332 and one or more general-purpose processor
core(s) 2334. The graphics application 2310 and operating
system 2320 cach execute 1n the system memory 2350 of the
data processing system.

[0302] In some embodiments, 3D graphics application
2310 contains one or more shader programs including sha-
der mstructions 2312. The shader language mstructions may
be 1n a high-level shader language, such as the High Level

Shader Language (HLSL) or the OpenGL Shader Language
(GLSL). The application also mcludes executable 1nstruc-
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tions 2314 1n a machine language suitable for execution by
the general-purpose processor core 2334. The application
also 1includes graphics objects 2316 defined by vertex data.

[0303] In some embodiments, operating system 2320 1s a
Microsoft® Windows® operating system from the Micro-
soft Corporation, a proprictary UNIX-like operating system,
or an open source UNIX-like operating system using a var-
1ant of the Linux kernel. The operating system 2320 can
support a graphics API 2322 such as the Direct3D API, the
OpenGL API, or the Vulkan API. When the Direct3D API 1s
in use, the operating system 2320 uses a front-end shader
compiler 2324 to compile any shader mstructions 2312 1n
HLSL 1nto a lower-level shader language. The compilation
may be a just-in-time (JI'T) compilation or the application
can perform shader pre-compilation. In some embodiments,
high-level shaders are compiled 1nto low-level shaders dur-
ing the compilation of the 3D graphics application 2310. In
some embodiments, the shader mstructions 2312 are pro-
vided 1n an mtermediate form, such as a version of the Stan-
dard Portable Intermediate Representation (SPIR) used by
the Vulkan API.

[0304] In some embodiments, user mode graphics driver
2326 contains a back-end shader compiler 2327 to convert
the shader mstructions 2312 mto a hardware specific repre-
sentation. When the OpenGL API 1s 1 use, shader instruc-
tions 2312 1n the GLSL high-level language are passed to a
user mode graphics driver 2326 for compilation. In some
embodiments, user mode graphics driver 2326 uses operat-
ing system kernel mode functions 2328 to communicate
with a kernel mode graphics driver 2329. In some embodi-
ments, kernel mode graphics driver 2329 communicates
with graphics processor 2332 to dispatch commands and
instructions. IP Core Implementations

[0305] One or more aspects of at least one embodiment
may be mmplemented by representative code stored on a
machine-readable medium which represents and/or defines
logic within an imtegrated circuit such as a processor. For
example, the machine-readable medium may include
instructions which represent various logic within the proces-
sor. When read by a machine, the instructions may cause the
machine to fabricate the logic to perform the techniques
described heremn. Such representations, known as “IP
cores,” are reusable units of logic for an integrated circuat
that may be stored on a tangible, machine-readable medium
as a hardware model that describes the structure of the inte-
orated circuit. The hardware model may be supplied to var-
1ous customers or manufacturing facilities, which load the
hardware model on fabrication machines that manufacture
the integrated circuit. The integrated circuit may be fabri-
cated such that the circuit performs operations described 1n
association with any of the embodimments described herem.

[0306] FIG. 24 1s a block diagram illustrating an IP core
development system 2400 that may be used to manutacture
an integrated circuit to perform operations according to an
embodiment. The IP core development system 2400 may be
used to generate modular, re-usable designs that can be
incorporated mto a larger design or used to construct an
entire mtegrated circuit (e.g., an SOC mtegrated circuit). A
design facility 2430 can generate a software simulation
2410 of an IP core design 1n a high level programming lan-
ouage (e.g., C/C++). The software simulation 2410 can be
used to design, test, and verity the behavior of the IP core
using a simulation model 2412. The simulation model 2412
may include functional, behavioral, and/or timing simula-
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tions. A register transter level (RTL) design 2415 can then
be created or synthesized trom the simulation model 2412.
The RTL design 2413 1s an abstraction of the behavior of the
integrated circuit that models the flow of digital signals
between hardware registers, including the associated logic
performed using the modeled digital signals. In addition to
an RTL design 2415, lower-level designs at the logic level
or transistor level may also be created, designed, or synthe-
sized. Thus, the particular details of the mitial design and
simulation may vary.

[0307] The RTL design 2415 or equivalent may be turther
synthesized by the design facility mto a hardware model
2420, which may be 1n a hardware description language
(HDL), or some other representation of physical design
data. The HDL may be further simulated or tested to verity
the [P core design. The IP core design can be stored for
delivery to a 3rd party tabrication tacility 2465 using non-
volatile memory 2440 (¢.g., hard disk, flash memory, or any
non-volatile storage medium). Alternatively, the IP core
design may be transmitted (e.g., via the Internet) over a
wired connection 2450 or wireless connection 2460. The
fabrication facility 2465 may then fabricate an integrated
circuit that 1s based at least in part on the IP core design.
The fabricated mtegrated circuit can be configured to per-
form operations 1 accordance with at least one embodiment
described herein.

Exemplary System on a Chip Integrated Circuit

[0308] FIGS. 25-27 illustrate exemplary integrated cir-
cuits and associated graphics processors that may be fabri-
cated using one or more IP cores, according to various
embodiments described herein. In addition to what 1s 1llu-
strated, other logic and circuits may be included, including
additional graphics processors/cores, peripheral interface
controllers, or general purpose processor cores.

[0309] FIG. 25 1s a block diagram 1illustrating an exemp-
lary system on a chip integrated circuit 2500 that may be
fabricated using one or more IP cores, according to an
embodiment. Exemplary integrated circuit 2500 mcludes
one or more application processor(s) 25035 (e.g., CPUs), at
least one graphics processor 2510, and may additionally
include an 1mage processor 2515 and/or a video processor
2520, any of which may be a modular IP core tfrom the same
or multiple different design facilities. Integrated circuit 2500
includes peripheral or bus logic including a USB controller
2525, UART controller 2530, an SPI/SDIO controller 2535,
and an 125/12C controller 2540. Additionally, the imntegrated
circuit can mclude a display device 25435 coupled to ong or
more of a high-defimtion multimedia mntertace (HDMI) con-
troller 2550 and a mobile mdustry processor imterface
(MIPI) display interface 2555. Storage may be provided by
a flash memory subsystem 2560 including tlash memory and
a flash memory controller. Memory nterface may be pro-
vided via a memory controller 2565 for access to SDRAM
or SRAM memory devices. Some integrated circuits addi-
tionally include an embedded security engine 2570.

[0310] FIG. 26 1s a block diagram 1llustrating an exemp-
lary graphics processor 2610 of a system on a chip mte-
grated circuit that may be fabricated using one or more IP
cores, according to an embodiment. Graphics processor
2610 can be a vanant of the graphics processor 2510 of
FIG. 25. Graphics processor 2610 mcludes a vertex proces-
sor 2605 and one or more fragment processor(s) 2615A-
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2615N (e.g., 2615A, 2615B, 2615C, 2615D, through
2615N-1, and 2615N). Graphics processor 2610 can execute
different shader programs via separate logic, such that the
vertex processor 2603 1s optimized to execute operations for
vertex shader programs, while the one or more fragment
processor(s) 2615A-2615N execute fragment (e.g., pixel)
shading operations for fragment or pixel shader programs.
The vertex processor 2605 performs the vertex processing
stage of the 3D graphics pipeline and generates primitives
and vertex data. The fragment processor(s) 2615A-2615N
use the primitive and vertex data generated by the vertex
processor 2605 to produce a framebufter that 1s displayed
on a display device. In one embodiment, the fragment pro-
cessor(s) 2615A-2615N are optimized to execute fragment
shader programs as provided for in the OpenGL API, which
may be used to perform similar operations as a pixel shader
program as provided for in the Direct 3D APIL.

[0311] Graphics processor 2610 additionally includes one
or more memory management unmits (MMUs) 2620A-
2620B, cache(s) 2625A-2625B, and circuit interconnect(s)
2630A-2630B. The one or more MMU(s) 2620A-2620B
provide for virtual to physical address mapping for graphics
processor 2610, including for the vertex processor 2603 and/
or fragment processor(s) 2615A-2615N, which may refer-
ence vertex or image/texture data stored 1n memory, 1n addi-
tion to vertex or image/texture data stored 1n the one or more
cache(s) 2625A-2625B. In one embodiment the one or more
MMU(s) 2620A-26208B may be synchronized with other
MMUs within the system, mncluding one or more MMUSs
associated with the one or more application processor(s)
25035, 1mmage processor 235135, and/or video processor 2520
of FIG. 25, such that each processor 2505-2520 can partici-
pate 1 a shared or unified virtual memory system. The one
or more circuit mterconnect(s) 2630A-2630B cnable gra-
phics processor 2610 to interface with other IP cores within
the SoC, either via an internal bus of the SoC or via a direct
connection, according to embodiments.

[0312] FIG. 27 1s a block diagram 1illustrating an addi-
tional exemplary graphics processor 2710 of a system on a
chip integrated circuit that may be fabricated using one or
more [P cores, according to an embodiment. Graphics pro-
cessor 2710 can be a vanant of the graphics processor 1710
of FIG. 17. Graphics processor 2710 mcludes the one or
more MMU(s) 2620A-2620B, cache(s) 2625A-26235B, and
circuit interconnect(s) 2630A-2630B of the integrated cir-
cuit 2610 of FIG. 26.

[0313] Graphics processor 2710 includes one or more sha-
der core(s) 2715A-2715N (e.g., 2715A, 2715B, 2715C,
2715D, 2715E, 271S5F, through 2715N-1, and 2715N),
which provides for a unified shader core architecture n
which a single core or type or core can execute all types of
programmable shader code, including shader program code
to implement vertex shaders, fragment shaders, and/or com-
pute shaders. The exact number of shader cores present can
vary among embodiments and implementations. Addition-
ally, graphics processor 2710 mcludes an inter-core task
manager 2705, which acts as a thread dispatcher to dispatch
execution threads to one or more shader core(s) 2715A-
2715N and a tiling unit 2718 to accelerate tiling operations
for tile-based rendering, in which rendering operations for a
scene are subdivided m 1mage space, for example to exploit
local spatial coherence within a scene or to optimize use of
internal caches.
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[0314] The foregoing description and drawings are to be
regarded m an 1llustrative rather than a restrictive sense. Per-
sons skilled 1n the art will understand that various modifica-
tions and changes may be made to the embodiments
described herein without departing from the broader spirit
and scope of the mvention as set forth in the appended
claims.

What 1s claimed 1s:

1. (canceled)

2. A graphics processing unit, comprising:

a plurality of texture units,

a shared memory coupled to the plurality of texture units,

a plurality of register files coupled to the shared memory,

aplurality ofload/store units coupled to the shared memory,
and

aplurality of graphics processing cores coupled to the plur-
ality of register files,

wherein at least one of the plurality of graphics processing
cores 1s to:
recerve mtormation to identify a first portion of a frame

based on eye gaze detection,

apply a first non-normalized shading rate within the first

portion of the frame, and
apply a second non-normalized shading rate within at

least a second portion of the frame, wherein the first
non-normalized shading rate 1s twice the second non-
normalized shading rate.

3. The graphics processig unit of claim 2, further compris-
ing scheduler logic to schedule groups of mstructions.

4. The graphics processig unit of claim 2, turther compris-
ing a plurality of arithmetic logic units coupled to the plurality
of register files, wherein the plurality of arithmetic logic units
are to perform operations on integer data types.

S. The graphics processing unit of claim 2, further compris-
ing at least one memory unit.

6. The graphics processing unit of claim 5, wherein the at
least one memory unit comprises a load and store unit.

7. The graphics processing unit of claim 2, further compris-
ing at least one special function unit.

8. The graphics processing unit of claim 2, wherein the gra-
phics processing unit comprises a single instruction multiple
thread processor.

9. The graphics processing unit of claim 2, further compris-
ing an mterface to communicate with a headset.

10. The graphics processing unit of claim 9, wherem the
interface 1s to receive motion tracking information from the
headset.

11. A graphics processing unit, comprising:

a plurality of texture units,

a shared memory coupled to the plurality of texture units,

a plurality of register files coupled to the shared memory,

aplurality ofload/store units coupled to the shared memory,

and

aplurality of graphics processing cores coupled to the plur-

ality of register files,
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wherein at least one of the plurality ot graphics processing
cores 18 to:

rece1ve mformation to identify a portion of a frame as a

foveated region, based on eye gaze detection,
shade the foveated region at a first shading rate, and
shade another region other of the frame at a second shad-

Ing rate,

wherein the second shading rate1s halfof the first shading
rate and the first shading rate and the second shading
rate are non-normalized rates.

12. The graphics processing unit of claim 11, further com-
prisig a plurality of arithmetic logic units coupled to the plur-
ality of register files, wherein the plurality of arithmetic logic
units are to perform operations on mnteger data types.

13. The graphics processing unit of claim 11, further com-
prising at least one memory unit.

14. The graphics processing unit of claim 13, wherein the at
least one memory unmit comprises a load and store unat.

15. The graphics processing unit of claim 11, further com-
prising at least one special function umnit.

16. The graphics processing unit of claim 11, wherein the
graphics processing unit comprises a single mstruction multi-
ple thread processor.

17. The graphics processing unit of claim 11, further com-
prising an mterface to communicate with a headset.

18. The graphics processing unit of claim 17, wherein the
interface 1s to receive motion tracking information from the
headset.

19. A graphics processor comprising:

a plurality of texture units,

a shared memory coupled to the plurality of texture unts,

a plurality of register files coupled to the shared memory,

a plurality of load/store units coupled to the shared memory,

and

a plurality of graphics processing cores coupled to the plur-

ality of register files,

wherein at least one of the plurality of graphics processing

cores 1s to:

recerve information to identify a first portion of a frame
based on eye gaze detection,

apply a first non-normalized shading rate within the first
portion of the frame,

apply a second non-normalized shading rate within at
least a second portion of the frame, wherein the first
non-normalized shading rate 1s twice the second non-
normalized shading rate,

transfer the first portion of the frame to a head-mounted
display as a first surtace, and

transter the second portion of the portion of the frame to
the head-mounted display as a second surface.

20. The graphics processor of claim 19, further comprising
an 1nterface to communicate with the head-mounted display.

21. The graphics processor of claim 20, wherein the at least
one of the plurality of graphics processing cores 1s to receive
motion tracking information from the head-mounted display.
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