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(57) ABSTRACT

Methods and systems are provided for improving model
robustness and generalizability. The method may comprise:
acquiring, using a medical 1maging apparatus, a medical
image ol a subject; reformatting the medical 1image of the
subject 1n multiple scanning orientations; applying a deep
network model to the medical image to improve the quality
of the medical image; and outputting an improved quality
image of the subject for analysis by a physician.
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SYSTEMS AND METHODS FOR
IMPROVING LOW DOSE VOLUMETRIC
CONTRAST-ENHANCED MRI

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application 1s a continuation of U.S. patent
application Ser. No. 17/702,468, filed Mar. 23, 2022, which
1s a continuation of International Application No. PCT/
US2020/052123, filed on Sep. 23, 2020, which claims
priority to U.S. Provisional Application No. 62/905,689 filed
on Sep. 235, 2019, the content of which 1s incorporated herein
in its entirety.

STATEMENT AS TO FEDERALLY SPONSORED
RESEARCH

[0002] This invention was made with government support
under Grant No. R44 EB027560 awarded by the National
Institutes of Health. The government has certain rights 1n the
invention.

BACKGROUND

[0003] Contrast agents such as Gadolinium-based contrast
agents (GBCAs) have been used 1n approximately one third
of Magnetic Resonance imaging (MRI) exams worldwide to
create indispensable 1mage contrast for a wide range of
clinical applications, but pose health risks for patients with
renal failure and are known to deposit within the brain and
body for patients with normal kidney function. Recently,
deep learning technique has been used to reduce GBCA dose
in volumetric contrast-enhanced MRI, but challenges 1n
generalizability remain due to variability 1in scanner hard-
ware and clinical protocols within and across sites.

SUMMARY

[0004] The present disclosure provides improved imaging
systems and methods that can address various drawbacks of
conventional systems, including those recognized above.
Methods and systems as described herein can improve
image quality with reduced dose level of contrast agent such
as Gadolinium-Based Contrast Agents (GBCASs). In particu-
lar, a generalized deep learning (DL) model 1s utilized to
predict contrast-enhanced 1mages with contrast dose reduc-
tion across different sites and scanners.

[0005] Traditionally, contrast agent such as Gadolinium-
Based Contrast Agents (GBCAs) and others has been used
in a wide range of contrast-enhanced medical imaging such
as Magnetic Resonance Imaging (MRI), or nuclear magnetic
resonance i1maging, for examimng pathology, predicting
prognosis and evaluating treatment response for gliomas,
multiple sclerosis (MS), Alzheimer’s disease (AD), and the
like. GBCAs are also pervasive 1n other clinical applications
such as evaluation of coronary artery disease (CAD), char-
acterization of lung masses, diagnosis of hepatocellular
carcinoma (HCC), imaging of spinal metastatic disease. In
2006, an association between GBCA administration and the
development ol nephrogenic systemic fibrosis (NSF) 1n
patients with impaired renal function was identified. Other
acute side-eflects of GBCAs in subjects with normal renal
function include hypersensitivity, nausea, and chest pain.
Subsequently, 1n 2017, U.S. FDA 1ssued warnings and safety
measures related to Gadolimum retention, while the regu-
latory bodies of Canada, Australia and other countries 1ssued
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similar warnings. In addition to safety advisories, the Euro-
pean Medicines Agency has suspended the use of linear
GBCAs. Gadolinium retention has not only been reported 1n
the CNS tissue in the form of hyper-intensities on non-
enhanced T1 W MRI, but also 1n other parts of the body.
Environmental sustainability concerns are also being raised
as gadolinium 1s an emerging water pollutant. Other disad-
vantages ol contrast-enhanced scans include patient incon-
venience during intravenous injection, prolonged scan time,
and an overall increase in i1maging costs. Even though
GBCAs have a good pharmacovigilance safety profile, there
1s a clear need for dose reduction due to the abovementioned
safety 1ssues and concerns. In particular, 1t 1s desirable to
provide a sale 1maging technique where the contrast dose
can be reduced regardless the properties or type of the
contrast materials without comprising the imaging quality or
introducing additional safety issues.

[0006] Recent developments in Deep learning (DL) or
machine learning (ML) techniques enable 1t as a potential
alternative to the use of contrast dose. DL/ML has found a
plethora of applications 1n medical 1maging which includes
denoising, super-resolution and modality conversion of, e.g.,
MRI to CT, T, to T,. DL model has the potential to be used
for generating contrast-enhanced 1mages using a small frac-
tion of the standard dose and the pre-contrast images.
Although such method may be able to reduce dose levels
while maintaining non-inferior i1mage quality, the DL
enhanced images often sufler from artifacts such as streaks
on a reformat 1mage (e.g., reformatted volumetric 1mage or
reconstructed 3D 1mage viewed from different planes, ori-
entations or angles).

[0007] There exists a need for providing a robust DL
model that 1s generalized for (sometimes agnostic to) diverse
clinical settings such as different scanner vendors, scan
protocols, patient demographics, and climical indications.
Such a model 1s also desired to produce artifact-free 1mages
and support a variety of clinical use cases such as multipla-
nar reformat (MPR) for oblique visualizations o1 3D 1mages,
thus enabling the model to be deployed and integrated
within a standard clinical workilow.

[0008] Systems and methods described herein can address
the abovementioned drawbacks of the conventional solu-
tions. In particular, the provided systems and methods may
involve a DL model including a unique set of algorithms and
methods that improve the model robustness and generaliz-
ability. The algorithms and methods may include, for
example, multi-planar reconstruction, 2.5D deep learning
model, enhancement-weighted L1, perceptual and adver-
sarial losses algorithms and methods, as well as pre-pro-
cessing algorithms that are used to pre-process the input
pre-contrast and low-dose 1mages prior to the model pre-
dicting the corresponding contrast-enhanced images.

[0009] In an aspect, a method 1s provided for computer-
implemented method for improving image quality with
reduced dose of contrast agent. The method comprises:
acquiring, using a medical 1maging apparatus, a medical
image of a subject with a reduced dose of contrast agent;
reformatting the medical image of the subject 1n multiple
orientations to generate a plurality of reformat medical
images; and applying a deep network model to the plurality
of reformat medical images to generate a predicted medical
image with improved quality.

[0010] In a related yet separated aspect, a non-transitory
computer-readable storage medium including instructions
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that, when executed by one or more processors, cause the
one or more processors to perform operations. The opera-
tions comprise: acquiring, using a medical 1maging appara-
tus, a medical 1mage of a subject with a reduced dose of
contrast agent; reformatting the medical image of the subject
in multiple orientations to generate a plurality of reformat
medical images; and applying a deep network model to the
plurality of reformat medical images to generate a predicted
medical 1mage with improved quality.

[0011] In some embodiments, the medical 1maging appa-
ratus 1s a transforming magnetic resonance (MR) device. In
some embodiments, the medical image 1s a 2.5D volumetric
1mage.

[0012] In some embodiments, the multiple orientations
include at least one orientation that 1s not 1n the direction of
the scanning plane. In some embodiments, the method or the
operations further comprise rotating each of the plurality of
reformat medical 1images 1nto various angles to generate a
plurality of rotated reformat medical 1images. In some cases,
the deep network model 1s applied to the plurality of rotated
reformat medical 1images to output a plurality of predicted
images. The plurality of predicted images as an output of the
deep network model are rotated to be aligned to a scanning
plane. In some instances, the method or the operations
turther comprise averaging the plurality of predicted images
alter rotated to be aligned to the scanning plane to generate
the predicted medical image with improved quality. In some
embodiments, the predicted medical image with improved
quality 1s obtamned by averaging a plurality of predicted
medical images corresponding to the plurality of the refor-
mat medical images.

[0013] Additionally, methods and systems of the present
disclosure may be applied to existing systems without a need
of a change of the underlying infrastructure. In particular,
the provided methods and systems may reduce the dose level
ol contrast agent at no additional cost of hardware compo-
nent and can be deployed regardless of the configuration or
specification of the underlying infrastructure.

[0014] Additional aspects and advantages of the present
disclosure will become readily apparent to those skilled 1n
this art from the following detailed description, wherein
only 1llustrative embodiments of the present disclosure are
shown and described. As will be realized, the present
disclosure 1s capable of other and different embodiments,
and 1ts several details are capable of modifications 1n various
obvious respects, all without departing from the disclosure.
Accordingly, the drawings and descriptions are to be
regarded as 1llustrative 1n nature, and not as restrictive

INCORPORAITION BY REFERENCE

[0015] All publications, patents, and patent applications
mentioned 1n this specification are herein incorporated by
reference to the same extent as 1f each individual publica-
tion, patent, or patent application was specifically and indi-
vidually indicated to be incorporated by retference. To the
extent publications and patents or patent applications incor-
porated by reference contradict the disclosure contained in
the specification, the specification 1s intended to supersede
and/or take precedence over any such contradictory mate-
rial.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016] The novel features of the invention are set forth
with particularity in the appended claims. A better under-
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standing of the {features and advantages of the present
invention will be obtained by reference to the following
detailed description that sets forth i1llustrative embodiments,
in which the principles of the invention are utilized, and the
accompanying drawings (also “Figure” and “FIG.” herein),
of which:

[0017] FIG. 1 shows an example of a workilow for pro-
cessing and reconstructing magnetic resonance i1maging
(MRI) volumetric 1mage data.

[0018] FIG. 2 shows an example of data collected from the
two different sites.

[0019] FIG. 3 shows the analytic results of a study.
[0020] FIG. 4 schematically illustrates a magnetic reso-
nance imaging (MRI) system 1n which an imaging enhancer
of the presenting disclosure may be implemented.

[0021] FIG. 5 shows an example of a scan procedure or
scanning protocol utilized for collecting the experiment data
in the study.

[0022] FIG. 6 illustrates an example of a reformat MPR
reconstructed 1mage that have a quality improved over the
reformat MRI image generated using the conventional
method.

[0023] FIG. 7 shows an example of a pre-processing
method, 1n accordance with some embodiments herein.
[0024] FIG. 8 shows an example of a U-Net style encoder-
decoder network architecture, in accordance with some
embodiments herein.

[0025] FIG. 9 shows an example of the discriminator, 1n
accordance with some embodiments herein.

[0026] FIG. 10 shows an experiment including data dis-
tribution and heterogeneity of a study dataset from three
institutions, three different manufacturers, and eight difler-
ent scanner models.

[0027] FIG. 11 schematically 1llustrates systems and meth-
ods that are utilized to monotonically improve the image
quality.

[0028] FIG. 12 shows examples of pre-contrast, low-dose,

tull-dose ground truth image data and synthesized 1mages
along with the quantitative metrics for cases from different
sites and scanners.

[0029] FIG. 13 shows examples illustrating eflfect of the
number of rotation angles in MPR on the quality of the
output 1mage and processing time.

DETAILED DESCRIPTION

[0030] While various embodiments of the imnvention have
been shown and described herein, 1t will be obvious to those
skilled 1n the art that such embodiments are provided by way
of example only. Numerous variations, changes, and substi-
tutions may occur to those skilled in the art without depart-
ing from the invention. It should be understood that various
alternatives to the embodiments of the mvention described
herein may be employed.

[0031] Gadolinium-based contrast agents (GBCAs) are
widely used 1n magnetic resonance 1imaging (MRI) exams
and have been indispensable for monitoring treatment and
investigating pathology 1in myrad applications including
angiography, multiple sclerosis and tumor detection.
Recently, the 1dentification of prolonged gadolintum depo-
sition within the brain and body has raised safety concerns
about the usage of GBCAs. Reducing the GBCA dose
reduces the degree of deposition, but also degrades contrast
enhancement and tumor conspicuity. A reduced dose exam
that retains contrast enhancement 1s therefore greatly rel-
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evant for patients who need repeated contrast administration
(e.g., multiple sclerosis patients) and are at high risk of
gadolinium deposition (e.g., children).

[0032] Though MRI, Gadolintum-based contrast agents,
MRI data examples are primarily provided herein, 1t should
be understood that the present approach can be used in other
imaging modality contexts and/or other contrast-enhanced
imaging. For instance, the presently described approach may
be employed on data acquired by other types of tomographic
scanners including, but not limited to, computed tomogra-
phy (CT), single photon emission computed tomography
(SPECT) scanners, Positron Emission Tomography (PET),
functional magnetic resonance 1maging (IMRI), or various
other types of imaging scanners or techniques wherein a
contrast agent may be utilized for enhancing the contrast.
[0033] Deep learning (DL) framework has been used to
reduce GBCA dose levels while maimtaiming image quality
and contrast enhancement for volumetric MRI. As an
example, a DL model may use a U-net encoder-decoder
architecture to enhance the image contrast from a low-dose
contrast image. However, the conventional DL models may
only work well with scans from a single clinical site without
considering generalizability to different sites with different
clinical workflows. Moreover, the conventional DL models
may evaluate image quality for mndividual 2D slices 1n the
3D volume, even though clinicians frequently require volu-
metric images to visualize complex 3D enhancing structures
such as blood vessels and tumors from various angles or
orientations.

[0034] The present disclosure provides systems and meth-
ods that can address various drawbacks of conventional
systems, including those recognized above. Methods and
systems of the presenting disclosure capable of improving
model robustness and deployment 1n real clinical settings.
For instance, the provided methods and systems are capable
of adapting to different clinical sites, each with different
MRI scanner hardware and 1maging protocols. In addition,
the provided methods and systems may provide improved
performance while retaining multi-planar reformat (MPR)
capability to maintain the clinician workflow and enable
oblique visualizations of the complex enhancing microstruc-
ture.

[0035] Methods and systems herein may provide enhance-
ments to the DL model to tackle real-world variability in
climical settings. The DL model 1s trained and tested on
patient scans from different hospitals across different MRI
platiorms with diflerent scanning planes, scan times, and
resolutions, and with different mechanisms for administer-
ing GBCA. The robustness of the DL models may be
improved in these settings with improved generalizability
across a heterogeneity of data.

Multi-Planar Reformat (MPR)

[0036] In a conventional DL pipeline, 2D slices from the
3D volume may be separately processed and trained with
standard 2D data augmentation (e.g. rotations and tlips). The
choice of a 2D model i1s often motivated by memory
limitations during training, and performance requirements
during inference. In some cases, DL framework may process
the data 1n a “2.5D” manner, in which multiple adjacent
slices are input to a network and the central slice 1s pre-
dicted. However, both 2D and 2.5D processing may neglect
the true volumetric nature of the acquisition. As the 3D
volume 1s typically reformatted into arbitrary planes during
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the clinical workflow (e.g., oblique view, views from ori-
entations/angles that are oblique to the scanning plane/
orientation), and sites may use a diflerent scanning orienta-
tion as part of their MRI protocol, 2D processing can lead to
images with streaking artifacts in the reformat volumetric
images (e.g., reformat 1nto planes that are orthogonal to the
scanning plane).

[0037] Methods and systems described herein may ben-
eficially eliminate the artifacts (e.g., streaking artifacts) in
reformat 1mages thereby enhancing the image quality with
reduced contrast dose. As described above, reformatting a
3D volume 1mage to view the image in multiple planes (e.g.,
orthogonal or oblique planes) 1s common 1n a standard
clinical worktlow. In some cases, though training a model to
enhance the 2.5D 1mage may reduce the streaking artifacts
in the plane of acquisition, reformatting to other orientations
may still cause streaking artifacts. Methods and systems as
described herein may enable artifact-free visualizations 1n
any selected plane or viewing direction (e.g., oblique view).
Additionally, the model may be trained to learn intricate or
complex 3D enhancing structures such as blood vessels or
tumors.

[0038] FIG. 1 shows an example of a workilow for pro-
cessing and reconstructing MRI volumetric image data. As
illustrated 1n the example, the input image 110 may be image
slices that are acquired without contrast agent (e.g., pre-
contrast image slice 101) and/or with reduced contrast dose
(e.g., low-dose 1mage slice 103). In some cases, the raw
input 1mage may be 2D image slices. A deep learning (DL)
model such as a U-net encoder-Decoder 111 model may be
used to predict an mierence result 112. While the DL model
111 may be a 2D model that 1s tramned to generate an
enhanced 1image within each slice, 1t may produce imnconsis-
tent 1mage enhancement across slices such as streaking
artifacts 1n 1mage reformats. For instance, when the infer-
ence result 1s reformatted 113 to generate a reformat 1mage
in the orthogonal direction 114, because the mput 2D 1mage
110 matches the scanning plane, the reformat image 114 may
contain reformat artifacts such as streaking artifacts in the
orthogonal directions.

[0039] Such reformat artifacts may be alleviated by adopt-
ing a multi-planar reformat (MPR) method 120 and using a
2.5D trained model 131. The MPR method may beneficially
augment the mput volumetric data in multiple onentations.
As shown 1n FIG. 1, a selected number of mnput slices of the
pre-contrast or low-dose 1images 110 may be stacked chan-
nel-wise to create a 2.5D volumetric mput image. The
number of iput slices for forming the 2.5D volumetric input
image can be any number such as at least two, three, four,
five, si1x, seven, eight, nine, ten slices may be stacked. In
some cases, the number of 1input slices may be determined
based on the physiologically or biochemically important
structures in regions of interest such as microstructures
where a volumetric image without artifacts are highly
desired. For instance, the number of mput slices may be
selected such that microstructure (e.g., blood vessels or
tumors) may be mostly contained in the mmput 2.5D volu-
metric image. Alternatively or additionally, the number of
slices may be determined based on empirical data or selected
by a user. In some cases, the number of slices may be
optimized according the computational power and/or
memory storage of the computing system.

[0040] Next, the mput 2.5D volumetric 1image may be
reformatted into multiple axes such as principal axes (e.g.,
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sagittal, coronal, and axial) to generate multiple reformatted
volumetric images 121. The multiple orientations for refor-
matting the 2.5D volumetric 1mages may be in any suitable
directions that need not be aligned to the principal axes.
Additionally, the number of orientations for reformatting the
volumetric 1mages can be any number greater than one, two,
three, four, five and the like so long as at least one of the
multiple reformatted volumetric 1mages 1s along an orien-
tation that 1s oblique to or orthogonal to the scanning plane.
[0041] At inference stage, each of the multiple reformatted
volumetric 1mages may be rotated by a series of angles to
produce a plurality of rotated reformat volumetric 1mages
122 thereby further augmenting the mput data. For example,
cach of the three reformatted volumetric 1mages 121 (e.g.,
sagittal, coronal, and axial) may be rotated by five equis-
paced angles between 0-90° resulting 1n 15 volumetric
images 122. It should be noted that the angle step and the
angle range can be 1n any suitable range. For example, the
angle step may not be a constant and the number of
rotational angles can vary based on different applications,
cases, or deployment scenarios. In another example, the
volumetric 1images can be rotated across any angle range that
1s greater than, smaller than or partially overlapping with
0-90°. The efiect of the number of the rotational angles on
the predicted MPR 1mages are described later herein.
[0042] The plurality of rotated volumetric 2.5D 1mages
122 may then be fed to the 2.5D trained model 131 for
inference. The output of the 2.5D trained model includes a
plurality of contrast-enhanced 2.5 D volumetric images. In
some cases, the final inference result 132, which 1s referred
to as the “MPR reconstruction”, may be an average of the
plurality of contrast-enhanced 2.5 D volumetric images after
rotating back to the original acquisition/scanning plane. For
instance, the 15 enhanced 2.5 D volumetric images may be
rotated back to be aligned to the scanning plane and the
mean of such volumetric images 1s the MPR reconstruction
or the final inference result 132. The plurality of predicted
2.5 D volumetric images may be rotated to be aligned to the
original scanning plane or the same orientation such that an
average ol the plurality of 2.5D volumetric 1mages may be
computed. The plurality of enhanced 2.5D volumetric
images may be rotated to be aligned to the same direction
that may or may not be 1n the original scanning plane. The
MPR reconstruction method beneficially allows to add a 3D
context to the network while benefitting from the perfor-
mance gains of 2D processing.

[0043] As illustrated 1n FIG. 1, when the MPR reconstruc-
tion 1mage 132 1s reformatted 133 into a plane orthogonal to
the original acquisition plane, the reformat 1image 135 does
not present streaking artifacts. The quality of the predicted
MPR reconstruction 1mage may be quantified by quantita-
tive image quality metrics such as peak signal to noise ratio
(PSNR), and structural similarity (SSIM). The image quality
metrics are calculated for the conventional model 111 and
the presented model 131, and an example of the result
showing the quality of the reformat images 114, 135 and
ground truth 140 are illustrated 1n FIG. 3.

Data Collection

[0044] In an example, under IRB approval and patient
consent, the scannming protocol was implemented 1 two
sites. FIG. 2 shows the example of data collected from the
two sites. 24 patients (16 training, 8 testing) were recruited
from Site 1 and 28 (23 training, 5 testing) from Site 2.
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Differences between scanner hardware and protocol are
highlighted 1n Table 1. In particular, the two sites used
different scanner hardware, and had great variability 1n
scanning protocol. Notably, Site 1 used power 1njection to
administer GBCA, while Site 2 used manual injection,
leading to differences in enhancement time and strength.
[0045] As an example of collecting data for training the
model, multiple scans with reduced dose level as well as a
full-dose scan may be performed. The multiple scans with
reduced dose level may include, for example, a low-dose
(e.g., 10%) contrast-enhanced MRI and a pre-contrast (e.g.,
zero contrast) may be performed. For instance, for each
participant, two 3D T,-weighted 1mages were obtained:
pre-contrast and post-10% dose contrast (0.01 mmol/kg).
For training and clinical validation, the remaining 90% of
the standard contrast dose (full-dose equivalent, 100%-dose)
was administrated and a third 3D T,-weighted image
(100%-dose) was obtaimned. Signal normalization 1s per-
formed to remove systematic differences (e.g., transmit and
receive gains) that may have caused signal intensity changes
between different acquisitions across diflerent scanner plat-
forms and hospital sites. Then, nonlinear afline co-registra-
tion between pre-dose, 10%-dose, and 100%-dose 1mages
are performed. The DL model used a U-Net encoder-decoder
architecture, with the underlying assumption that the con-
trast-related signal between pre-contrast and low-dose con-
trast-enhanced 1mages was nonlinearly scaled to the full-
dose contrast images. Additionally, images from other
contrasts such as T, and T,-FLAIR can be included as part
of the mput to improve the model prediction.

[0046] FIG. 5 shows an example of a scan procedure or
scanning protocol 300 utilized for collecting data for the
studies or experiments shown in FIGS. 2, 3, and 10-12. In
the illustrated scan protocol, each patient underwent three
scans 1n a single 1maging session. Scan 1 was pre-contrast
3D T,-weighted MRI, followed by Scan 2 with 10% of the
standard dose of 0.1 mmol/kg. Images from Scan 1 and 2
were used as 1nput to the DL network. Ground truth images
were obtained from Scan 3, after administering the remain-
ing 90% of the contrast dose (1.e., full dose).

[0047] During inference, aiter deployment of the provided
systems, only one scan without contrast agent (e.g., similar
to scan 1), or a scan with reduced contrast dose (e.g., similar
to scan 2) may be performed. Such mnput image data may
then be processed by the trained model to output a predicted
MPR reconstructed image with enhanced contrast. In some
cases, after deploying the model to a clinical site, a user
(e.g., physician) may be permitted to choose a reduced dose
level that can be any level 1n the range from O to 30% {for
acquiring the medical image data. It should be noted that
depending on the practical implementation and user desired
dose reduction level, the reduced dose level can be any
number 1n a range greater than 30%.

Inter-Site Generalizability

[0048] The conventional model may be limited by evalu-
ating patients from a single site with identical scanning
protocol. In real climical settings, each site may tailor its
protocol based on the capabilities of the scanner hardware
and standard procedures. For example, a model trained on
Site 2 may pertorm poorly on cases from Site 1 (FIG. 2,
middle).

[0049] The provided DL model may have improved gen-
eralizability. The DL model may be trained with a propri-
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ctary training pipeline. For example, the training pipeline
may comprise lirst scaling each 1mage to a nominal resolu-
tion of 1 mm” and in-plane matrix size of 256x256, followed
by applying the MPR processing. As the DL model 1s fully
convolutional, inference can be run at the native resolution
of the acquisition without resampling.

[0050] Based on the qualitative and quantitative results,
the addition of MPR processing, resolution re-sampling, and
inter-site tramning led to great improvement 1in model robust-
ness and generalizability. In optional embodiments, the
model may be a full 3D model. For instance, the model may
be a 3D patch-based model that may alleviate both MPR
processing, and memory usage. The provided training meth-
ods and model framework may be applied to different sites
with different scanner platforms, and/or across different

MRI vendors.

Network Architecture and Processes

[0051] FIG. 6 schematically illustrates another example of
an MPR reconstructed image 624 that have improved quality
compared to the MRI image predicted using the conven-
tional method 611. The workflow 600 for processing and
reconstructing MRI volumetric image data 623 and the
reformat MPR reconstructed image 624 can be the same as
those as described in FIG. 1. For example, the input image
610 may include a plurality of 2D image slices that are
acquired without contrast agent (e.g., pre-contrast image
slice) and/or with reduced contrast dose (e.g., low-dose
image slice). The mput images may be acquired 1 a
scanning plane (e.g., axial) or along a scanning orientation.
A selected number of the image slices are stacked to form a
2.5D volumetric mput image which 1s further processed
using the multiplanar reconstruction (MPR) method 620 as
described above.

[0052] For example, the input 2.5D volumetric image may
be reformatted into multiple axes such as principal axes
(e.g., sagittal, coronal, and axial) to generate multiple refor-
matted volumetric images (e.g., SAG, AX, COR). It should
be noted that the 2.5D volumetric image can be reformatted
into any orientations that may or may not be aligned with the
principal axes.

[0053] Each of the multiple reformatted volumetric
images may be rotated by a series of angles to produce a
plurality of rotated reformat images. For example, each of
the three reformatted volumetric 1images (e.g., sagittal, coro-
nal, and axial) may be rotated by five angles between 0-90°
resulting 1 15 rotated reformat volumetric 1mages. The
multiple reformatted volumetric images (e.g., sagittal, coro-
nal, and axial) may or may not be rotated at the same angle
or rotated into the same number of orientations.

[0054] The plurality of rotated volumetric images 122 may
then be processed by the tramned model 621 to produce a
plurality of enhanced volumetric images. In some cases, the
MPR reconstruction image 623 or the inference result image
1s the average of the plurality of inference volumes after
rotating back to the original plane of acquisition. The MPR
reconstruction 1image when 1s reformatted to be viewed at a
selected orientation (e.g., orthogonal/oblique to the scanning
plane), the reformat 1image 624 may not contain streaking,
artifacts compared to the reformat 1mage obtained using the
single inference method 611 and/or the single inference
model.
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Network Architecture and Data Processing

[0055] Using the multiplanar reconstruction (MPR) tech-
nique, the deep learning model may be trained with volu-
metric 1mages (e.g., augmented 2.5D 1images) such as from
the multiple orientations (e.g., three principal axes). The
model may be a trained deep learning model for enhancing
the quality of volumetric MRI images acquired using
reduced contrast dose. In some embodiments, the model
may include an artificial neural network that can employ any
type of neural network model, such as a feedforward neural
network, radial basis function network, recurrent neural
network, convolutional neural network, deep residual learn-
ing network and the like. In some embodiments, the machine
learning algorithm may comprise a deep learning algorithm
such as convolutional neural network (CNN). Examples of
machine learning algorithms may include a support vector
machine (SVM), a naive Bayes classification, a random
forest, a deep learming model such as neural network, or
other supervised learning algorithm or unsupervised leamn-
ing algorithm. The model network may be a deep learning
network such as CNN that may comprise multiple layers.
For example, the CNN model may comprise at least an input
layer, a number of hidden layers and an output layer. A CNN
model may comprise any total number of layers, and any
number of hidden layers. The simplest architecture of a
neural network starts with an mput layer followed by a
sequence ol intermediate or hidden layers, and ends with
output layer. The hidden or intermediate layers may act as
learnable feature extractors, while the output layer in this
example provides 2.5D volumetric 1images with enhanced
quality (e.g., enhanced contrast). Each layer of the neural
network may comprise a number of neurons (or nodes). A
neuron receives mput that comes either directly from the
input data (e.g., low quality image data, image data acquired
with reduced contrast dose, etc.) or the output of other
neurons, and performs a specific operation, €.g., summation.
In some cases, a connection ifrom an put to a neuron 1s
associated with a weight (or weighting factor). In some
cases, the neuron may sum up the products of all pairs of
inputs and their associated weights. In some cases, the
weighted sum 1s offset with a bias. In some cases, the output
of a neuron may be gated using a threshold or activation
function. The activation function may be linear or non-
linear. The activation function may be, for example, a
rectified linear unit (ReLU) activation function or other
functions such as saturating hyperbolic tangent, identity,
binary step, logistic, arcTan, softsign, parameteric rectified
linear unit, exponential linear unit, soitPlus, bent identity,
soltExponential, Sinusoid, Sinc, Gaussian, sigmoid func-
tions, or any combination thereof.

[0056] In some embodiments, the network may be an
encoder-decoder network or a U-net encoder-decoder net-
work. A U-net 1s an auto-encoder in which the outputs from
the encoder-half of the network are concatenated with the
mirrored counterparts in the decoder-half of the network.
The U-net may replace pooling operations by upsampling
operators thereby increasing the resolution of the output.
[0057] Insome embodiments, the model for enhancing the
volumetric 1mage quality may be trained using supervised
learning. For example, 1n order to train the deep learning
network, pairs of pre-contrast and low-dose 1mages as input
and the full-dose 1mage as the ground truth from multiple
subjects, scanners, clinical sites or databases may be pro-
vided as training dataset.
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[0058] In some cases, the input datasets may be pre-
processed prior to training or inference. FIG. 7 shows an
example of a pre-processing method 700, 1n accordance with
some embodiments herein. As shown in the example, the
input data including the raw pre-contrast, low-dose, and
tull-dose 1mage (1.e., ground truth) may be sequentially
preprocessed to generate preprocessed 1mage data 710. The
raw 1mage data may be received from a standard clinical
worktlow, as a DICOM-based software application or other
imaging soitware applications. As an example, the input data
701 may be acquired using a scan protocol as described 1n
FIG. 5. For instance, three scans including a first scan with
zero contrast dose, a second scan with a reduced dose level
and a third scan with full dose may be operated. The reduced
dose 1image data used for traiming the model, however, can
include 1mages acquired at various reduced dose level such
as no more than 1%, 3%, 10%, 15%, 20%, any number
higher than 20% or lower than 1%, or any number in-
between. For example, the mput data may include image
data acquired from two scans including a full dose scan as
ground truth data and a paired scan at a reduced level (e.g.,
zero dose or any level as described above). Alternatively, the
input data may be acquired using more than three scans with
multiple scans at diflerent levels of contrast dose. Addition-
ally, the input data may comprise augmented datasets
obtained from simulation. For instance, image data from
clinical database may be used to generate low quality image
data mimicking the image data acquired with reduced con-
trast dose. In an example, artifacts may be added to raw
image data to mimic 1mage data reconstructed from images
acquired with reduced contrast dose.

[0059] In the illustrated example, pro-processing algo-
rithm such as skull-stripping 703 may be performed to
isolate the brain 1mage from cramal or non-brain tissues by
climinating signals from extra-cramal and non-brain tissues
using the DIL-based library. Based on the tissues, organs and
use application, other suitable preprocessing algorithms may
be adopted to improve the processing speed and accuracy of
diagnosis. In some cases, to account for patient movement
between the three scans, the low-dose and full-dose 1images
may be co-registered to the pre-contrast image 705. In some
cases, given that the transmit and receive gains may vary for
different acquisitions, signal normalization may be per-
formed through histogram equalization 707. Relative inten-
sity scaling may be performed between the pre-contrast,
low-dose, and full-dose for intra-scan image normalization.
As the multi-institutional dataset include 1mages with dif-
ferent voxel and matrix sizes, the 3D volume may be
interpolated to an isotropic resolution of 0.5 mm” and
wherever applicable, zero-padded images at each slice to a
dimension of 512x512. The image data may have suili-
ciently high resolution to enable the DL network to learn
small enhancing structures, such as lesions and metastases.
In some cases, scaling and registration parameters may be
estimated on the skull-stripped 1mages and then applied to
the original images 709. The preprocessing parameters esti-
mated from the skull-stripped brain may be applied to the

original 1mages to obtain the preprocessed 1mage volumes
710.

[0060] Next, the preprocessed image data 710 1s used to
train an encoder-decoder network to reconstruct the con-
trast-enhanced image. The network may be trained with an
assumption that the contrast signal in the full-dose 1s a
non-linearly scaled version of the noisy contrast uptake
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between the low-dose and the pre-contrast images. The
model may not explicitly require the difference image
between low-dose and pre-contrast.

[0061] FIG. 8 shows an example of a U-Net style encoder-
decoder network architecture 800, 1n accordance with some
embodiments hereimn. In the illustrated example, each
encoder block has three 2D convolution layers (3x3) with
RelLU followed by a maxpool (2x2) to downsample the
feature space by a factor of two. The decoder blocks have a
similar structure with maxpool replaced with upsample
layers. To restore spatial information lost during downsam-
pling and prevent resolution loss, decoder layers are con-
catenated with features of the corresponding encoder layer
using skip connections. The network may be trained with a
combination of L1 (mean absolute error) and structural
similarity index (SSIM) losses. Such U-Net style encoder-
decoder network architecture may be capable of producing
a linear 10x scaling of the contrast uptake between low-dose
and zero-dose, without picking up noise along with the
enhancement signal.

[0062] As shown in FIG. 8, the input data to the network
may be a plurality of augmented volumetric 1mages gener-
ated using the MPR method as described above. In the
example, seven slices each of pre-contrast and low-dose
images are stacked channel-wise to create a 14-channel
input volumetric data for training the model to predict the
central full-dose slices 803.

Enhancement and Weighted L1 Loss

[0063] In some situations, even after signal normalization
and scaling 1s applied, the diflerence between the low-dose
and pre-contrast images may have enhancement-like noise
perturbations which may mislead training of the network. To
make the network pay more attention to the actual enhance-
ment regions, the L1 loss may be weighted with an enhance-
ment mask. The mask 1s continuous in nature and 1s com-
puted from the skull-stripped difference between low-dose
and pre-contrast 1images, normalized between O and 1. The
enhancement mask can be considered as a normalized
smooth version of the contrast uptake.

Perceptual and Adversarial Losses

[0064] It 1s desirable to train the network to focus on the
structural information in the areas of enhancement as well as
high frequency and texture details which are crucial for
making confident diagnostic decisions. A simple combina-
tion of L1 and structural similarity index (SSIM) losses may
tend to suppress high-frequency signal information and the
obtained results may have a smoother appearance, which 1s
perceived as a loss of image resolution. To address this 1ssue,
a perceptual loss from a convolutional network (e.g., VGG-
19 network consisting of 19 layers including 6 convolution
layers, 3 Fully connected layer, 5 MaxPool layers and 1
SoftMax layer which 1s pre-trained on ImageNet dataset) 1s
employed. The perceptual loss 1s eflective 1n style-transfer
and super-resolution tasks. For example, the perceptual loss
can be computed from the third convolution layer of the
third block (e.g., block3 conv3) of a VGG-19 network, by
taking the mean squared error (IMSE) of the layer activations
on the ground truth and prediction.

[0065] In some cases, to further improve the overall per-
ceptual quality, an adversarial loss 1s introduced through a
discriminator, trained in parallel to the encoder-decoder
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network, to predict whether the generated 1mage 1s real or
take. FIG. 9 shows an example of the discriminator 900, 1n
accordance with some embodiments herein. The discrimi-
nator 900 has a series of spectral normalized convolution
layers with Leaky RelLU activations and predicts a 32x32
patch. Unlike a conventional discriminator, which predicts a
binary value (e.g., 0 for fake and 1 for real), the “patch
discriminator” 900 predicts a matrix of probabailities which
helps 1n the stability of the training process and faster
convergence. The spectral normalized convolution layer
employs a weight normalization technique to further stabi-
lize discriminator training. The patch discriminator, as
shown 1in FIG. 9, can be trained with MSE loss, and
Gaussian noise may be added to the iputs for smooth
convergence.

[0066] The function for configuring the network model
can be formulated as below:

G$ :Mgmlﬂg[hGANLGAN( G)+}LL lLLl (MEHFI G)+
Mssivssid Ot hpeelrea(G)]

[0067] where M_ , 1s the enhancement mask and the
adversarial loss L, can be written as L =, L, (G,
D), where G 1s the U-Net generator and D 1s the patch-
discriminator. The loss weights A;, Aconys Apse and A
can be determined empirically. With the abovementioned
processes and methods, a single model 1s tramned to make
accurate predictions on 1mages from various institutions and
scanners.

EXAMPLE

[0068] FIG. 3 shows an example of analytic results of a
study to evaluate the generalizability and accuracy of the
provided model. In the illustrated example, the results show
comparison of ground-truth (left), original model (middle),
and proposed model (right) inference result on a test case
from Site 1 (red arrow shows lesion conspicuity). The
conventional model was traimned on data from Site 2 only.
This example 1s consistent with the MRI scanning data
illustrated 1n FIG. 2. The provided model was trained on data
from both sites, and used MPR processing and resolution
resampling. In this study, the result qualitatively shows the
cllect of MPR processing on one example from the test set.
By averaging the result of many MPR reconstructions,
streaking artifacts that manifest as false enhancement are
suppressed. As shown 1n FIG. 3, one slice of a ground-truth
contrast-enhanced 1mage (left) 1s compared to the inference
results from the model trained on Site 2 (middle) and the
model traimned on Sites 1 and 2 simultaneously (right). By
accounting for differences in resolution and other protocol
deviations, the provided model demonstrates qualitative
improvement in generalizability. Quantitative 1mage quality
metrics such as peak signal to noise ratio (PSNR), and
structural similarity (SSIM) were calculated for all the
conventional model and the presented model. The average
PSNR and SSIM on the test set for the conventional and
presented model was 32.81 dB (38.12 dB) and 0.872
(0.951), respectively. Better image quality may be achieved
using the methods and systems in the present disclosure.

[0069] In the study as illustrated in FIG. 3, a deep learning
(DL) framework as described elsewhere herein 1s applied for
low-dose (e.g., 10%) contrast-enhanced MRI. For each
participant, two 3D T,-weighted images were obtained:
pre-contrast and post-10% dose contrast (0.01 mmol/kg).
For traiming and clinical validation, the remaining 90% of
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the standard contrast dose (full-dose equivalent, 100%-dose)
was administrated and a third 3D T,-weighted image
(100%-dose) was obtained. Signal normalization was per-
formed to remove systematic differences (e.g., transmit and
receive gains) that may have caused signal intensity changes
between different acquisitions across diflerent scanner plat-
forms and hospital sites. Then, nonlinear afline co-registra-
tion between pre-dose, 10%-dose, and 100%-dose 1mages
were performed. The DL model used a U-Net encoder-
decoder architecture, with the underlying assumption that
the contrast-related signal between pre-contrast and low-
dose contrast-enhanced 1images was nonlinearly scaled to the
tull-dose contrast images. Images from other contrasts such
as T, and T,-FLAIR can be included as part of the input to
improve the model prediction.

[0070] As another example of an experiment 1n connection
with FIG. 10-FIG. 13, data distribution and heterogeneity of
a study dataset from three nstitutions, three different manu-
facturers, and eight different scanner models are shown 1n
FIG. 10. The study retrospectively identified 640 patients
(323 females; 52+16 years), undergoing clinical brain MRI
exams from three institutions, three scanner manufacturers
and eight scanner models using diflerent institutional scan
protocols, including different 1maging planes, field
strengths, voxel sizes, matrix sizes, use of fat suppression,
contrast agents and injection methods. The clinical 1ndica-
tions included suspected tumor, post-op tumor follow-up,
routine brain, and others requiring MRI exams with GBCAs.
Each subject underwent 3D pre-contrast T, w 1maging, fol-
lowed by a low-dose contrast-enhanced T, w scan with 10%
(0.01 mmol/kg) of the standard dose (0.1 mmol/kg). For
training and evaluation, a third 3D T1w 1mage was obtained
with the remaining 90% (0.09 mmol/kg) of the full dose,
which was considered as the ground truth. All three acqui-
sitions were made 1n a single imaging session, and the
patients did not receive any additional gadolinium dose
compared to the standard protocol.

[0071] Out of 640 cases, the model as shown 1n FIG. 11

was trained with 56 cases, and 13 validation cases were used
to fine-tune the hyper-parameters and empirically find the
optimal combination of loss weights. To ensure that the
model generalizes well across sites and vendors, the train
and validation sets consisted of approximately an equal
number of studies from all the institutions and scanner
manufacturers (refer FIG. 10). The remaining 371 cases
were held-out for testing and model evaluation. The model

was implemented 1n Python 3.5 using Keras with Tensorflow
backend and was trained on Nvidia Tesla V100 (SXM2 32

GB) GPU for 100 epochs with a batch size of 8. Model
optimization was performed using Adam optimizer with a
learning rate of 0.001.

[0072] The model 1s quantitatively evaluated using a plu-
rality of metrics. Peak signal-to-noise ratio (PSNR) 1s the
scaled version of pixel-wise differences, whereas structural
similarity index (SSIM) 1s sensitive to changes in local
structure and hence captures the structural aspect of the
predicted 1image with respect to the ground truth. Using the
571 test cases, the model was quantitatively evaluated using
the PSNR and SSIM metrics, computed between the true
tull-dose and synthesized images. These values were com-
pared with the PSNR and SSIM values between low-dose
and full-dose 1images. Per-site and per-scanner metrics were
also calculated and compared to prove model generalizabil-

ity.
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[0073] From the test set, a subset of 1mages from 26
patients (13 males; 58+15 years), with different types and
grades of enhancing tumor cases (either pre- or post-opera-
tive) were 1dentified and used for an m-depth evaluation of
model performance. These enhancing tumor cases were
similar to the tramning dataset in terms of heterogeneity and
were acquired using the same scanning protocol as shown in
FIG. 5. A binary assessment was performed to find 1f the
enhancement pattern agreed without any false positives or
talse negatives (with true full-dose 1mages as the reference).
When present, image artifacts in the synthesized images
were recorded and the image artifacts are proved to be
reduced with aid of the provided model.

[0074] To further validate that the model predictions were
similar to the full-dose ground truth, automatic tumor seg-
mentation 1s performed on the 26 enhancing tumor cases.
The variant of the model applied, used only post-contrast
images to segment the tumor core. As per the requirements
of the segmentation model, the ground truth and predicted
full-dose images were skull-stripped, interpolated to 1 mm”>
resolution and co-registered to an anatomical template. The
evaluation 1s performed by computing the Dice scores of the
predicted tumor core between the segmented masks of the
ground-truth and those created using the synthesized
1mages.

[0075] FIG. 11 schematically illustrates systems and meth-
ods are utilized to monotomically improve the image quality.
The example 1s shown for a sagittally acquired MR image
with an enhancing frontal tumor. Vertical streaks can be seen
in the axial reformat of the 2.5D model result as shown 1n
panel a, which was fixed by MPR training and inference as
shown 1n panel b. Adding perceptual and adversarial losses
turther 1improves the texture iside the tumor and restored
overall perceptual quality as shown panel ¢. Additionally,
weighting the L1 loss with the smooth enhancement mask
matched the enhancement pattern to that of the ground truth,
as shown 1n panel d. The monotonic increase in the metrics
with respect to the ground truth (as shown 1n panel ¢€) also
illustrates the improvement of model. Below table shows the
model 1mprovement for each of the proposed techmical
solutions for the 26 enhancing tumor cases.
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rotation angles 1n MPR as shown 1n FIG. 13 provides that
greater number of angles may reduce the horizontal streaks
inside the tumor (better quality), while it may also increase
the inference time. When deploy a trained model to a
physical site, the number of rotations and different angles
may be determined based on the desired 1image quality and
deployment environment (e.g., computational power,
memory storage, etc.).

System Overview

[0078] The provided DL framework for low-dose contrast-
enhanced MRI 1s capable of reducing the dosage of GBCA
for contrast-enhanced MRI while preserving image quality
and avoiding degradation in contrast enhancement. The
robustness and generalizability of the DL model 1s improved
thereby allowing for improved adaptation to various appli-
cations across a heterogeneous patient and site population.
FIG. 4 schematically 1llustrates a magnetic resonance 1mag-
ing (MRI) system 400 1n which an imaging enhancer 440 of
the presenting disclosure may be implemented. The MRI
system 400 may comprise a magnet system 403, a patient
transport table 405 connected to the magnet system, and a
controller 401 operably coupled to the magnet system. In
one example, a patient may lie on the patient transport table
405 and the magnet system 403 would pass around the
patient. The controller 401 may control magnetic fields and
radio frequency (RF) signals provided by the magnet system
403 and may receive signals from detectors 1n the magnet
system 403.

[0079] The MRI system 400 may further comprise a
computer system 410 and one or more databases operably
coupled to the controller 401 over the network 430. The
computer system 410 may be used for implementing the
volumetric MR 1maging enhancer 440. The volumetric MR
imaging enhancer 440 may implement the DL framework
and methods described herein. For example, the volumetric
MR 1maging enhancer may employ the MPR reconstruction
method and various other training algorithms, and data
processing methods described herein. The computer system
410 may be used for generating an 1imaging enhancer using

UNet UNet +VGG &  +Enhancement
Metric 2D (35) 2.5D +MPR GAN mask™®
PSNR 31.84 £ 488 3238 £ 4.67 33.56 £5.19 3428 £ 488 35,22 £4.79
(dB)
SSIM 0.88 £ 0.06 0.89 £ 0.06 0.90 £ 0,06 092 £ 0.05 0.93 £ 0.04
[0076] FIG. 12 shows pre-contrast, low-dose, full-dose training datasets. Although the illustrated diagram shows the

ground truth and synthesized images along with the quan-
titative metrics for cases from different sites and scanners.
The metrics show that the model with the proposed technical
improvements performed better than the original model
(with metrics 31.84+4.88 dB, 0.88+£0.06). The best perform-
ing model used MPR with five rotations with a combination
of SSIM, perceptual, adversarial, and enhancement

weighted L1 losses. For a 512x512x300 volume, prepro-

cessing and inference of the best model took about 135
seconds on a GeForce RTX 2080 (16 GB) GPU.

[0077] FIG. 13 shows examples of diflerent number of
rotations and the corresponding effect on the quality of the
image and the performance. The eflect of the number of

controller and computer system as separate components, the
controller and computer system can be integrated into a

single component.

[0080] The computer system 410 may comprise a laptop
computer, a desktop computer, a central server, distributed
computing system, etc. The processor may be a hardware
processor such as a central processing unit (CPU), a graphic
processing unit (GPU), a general-purpose processing unit,
which can be a single core or mult1 core processor, or a
plurality of processors for parallel processing. The processor
can be any suitable integrated circuits, such as computing
platforms or microprocessors, logic devices and the like.
Although the disclosure 1s described with reference to a
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processor, other types of integrated circuits and logic
devices are also applicable. The processors or machines may
not be limited by the data operation capabilities. The pro-
cessors or machines may perform 512 bit, 256 bit, 128 bat,
64 bit, 32 bit, or 16 bit data operations.

[0081] The MRI system 400 may include one or more
databases 420 that may utilize any suitable database tech-
niques. For instance, structured query language (SQL) or
“NoSQL” database may be utilized for storing the recon-
structed/reformat 1mage data, raw collected data, training
datasets, trained model (e.g., hyper parameters), weighting
coellicients, rotation angles, rotation numbers, orientation
for reformat reconstruction, etc. Some of the databases may
be implemented using various standard data-structures, such
as an array, hash, (linked) list, struct, structured text file
(c.g., XML), table, JSON, NOSQL and/or the like. Such
data-structures may be stored in memory and/or 1n (struc-
tured) files. In another alternative, an object-oriented data-
base may be used. Object databases can include a number of
object collections that are grouped and/or linked together by
common attributes; they may be related to other object
collections by some common attributes. Object-oriented
databases perform similarly to relational databases with the
exception that objects are not just pieces of data but may
have other types of functionality encapsulated within a given
object. If the database of the present disclosure 1s 1imple-
mented as a data-structure, the use of the database of the
present disclosure may be itegrated into another component
such as the component of the present mmvention. Also, the
database may be implemented as a mix of data structures,
objects, and relational structures. Databases may be consoli-
dated and/or distributed 1n vanations through standard data
processing techniques. Portions of databases, e.g., tables,

may be exported and/or imported and thus decentralized
and/or integrated.

[0082] The network 430 may establish connections among
the components in the MRI platform and a connection of the
MRI system to external systems. The network 430 may
comprise any combination of local area and/or wide area
networks using both wireless and/or wired communication
systems. For example, the network 430 may include the
Internet, as well as mobile telephone networks. In one
embodiment, the network 430 uses standard communica-
tions technologies and/or protocols. Hence, the network 430
may 1nclude links using technologies such as Ethernet,
802.11, worldwide interoperability for microwave access
(WiIMAX), 2G/3G/4G/5G mobile communications proto-
cols, InfimBand, PCI Express Advanced Switching, etc.
Other networking protocols used on the network 430 can
include multiprotocol label switching (MPLS), the transmis-
sion control protocol/Internet protocol (TCP/IP), the User
Datagram Protocol (UDP), the hypertext transport protocol
(HTTP), the simple mail transier protocol (SMTP), the file
transier protocol (FTP), and the like. The data exchanged
over the network can be represented using technologies
and/or formats including image data in binary form (e.g.,
Portable Networks Graphics (PNG)), the hypertext markup
language (HI' ML), the extensible markup language (XML),
etc. In addition, all or some of links can be encrypted using
conventional encryption technologies such as secure sockets
layers (SSL), transport layer security (TLS), Internet Proto-
col security (IPsec), etc. In another embodiment, the entities

Sep. 21, 2023

on the network can use custom and/or dedicated data com-
munications technologies instead of, or in addition to, the
ones described above.

[0083] Whenever the term “at least,” “greater than,” or
“oreater than or equal to” precedes the first numerical value
in a series of two or more numerical values, the term “at
least,” “greater than™ or “greater than or equal to” applies to
cach of the numerical values in that series of numerical
values. For example, greater than or equal to 1, 2, or 3 1s
equivalent to greater than or equal to 1, greater than or equal
to 2, or greater than or equal to 3.

[0084] Whenever the term “no more than,” “less than,” or
“less than or equal to” precedes the first numerical value 1n
a series of two or more numerical values, the term “no more
than,” “less than,” or “less than or equal to” applies to each
of the numerical values 1n that series of numerical values.
For example, less than or equal to 3, 2, or 1 1s equivalent to
less than or equal to 3, less than or equal to 2, or less than
or equal to 1.

[0085] As used herein A and/or B encompasses one or
more of A or B, and combinations thereotf such as A and B.
It will be understood that although the terms “first,” *“sec-
ond,” “third” etc. are used herein to describe various ele-
ments, components, regions and/or sections, these elements,
components, regions and/or sections should not be limited
by these terms. These terms are merely used to distinguish
one clement, component, region or section from another
clement, component, region or section. Thus, a first element,
component, region or section discussed herein could be
termed a second element, component, region or section
without departing from the teachings of the present inven-
tion.

[0086] The terminology used herein 1s for the purpose of
describing particular embodiments only and 1s not intended
to be limiting of the invention. As used herein, the singular
forms ““a”, “an” and “the” are intended to include the plural
forms as well, unless the context clearly indicates otherwise.
It will be further understood that the terms “comprises”
and/or “comprising,” or “includes” and/or “including,”
when used 1n this specification, specily the presence of
stated features, regions, integers, steps, operations, elements
and/or components, but do not preclude the presence or
addition of one or more other features, regions, integers,
steps, operations, elements, components and/or groups
thereof.

[0087] Reference throughout this specification to “some
embodiments,” or “an embodiment,” means that a particular
feature, structure, or characteristic described 1in connection
with the embodiment 1s included 1n at least one embodiment.
Thus, the appearances of the phrase “in some embodiment,”
or “in an embodiment,” 1 various places throughout this
specification are not necessarily all referring to the same
embodiment. Furthermore, the particular features, struc-
tures, or characteristics may be combined in any suitable
manner i one or more embodiments

[0088] While preferred embodiments of the present inven-
tion have been shown and described herein, 1t will be
obvious to those skilled 1n the art that such embodiments are
provided by way of example only. It 1s not intended that the
invention be limited by the specific examples provided
within the specification. While the invention has been
described with reference to the alorementioned specifica-
tion, the descriptions and 1illustrations of the embodiments
herein are not meant to be construed 1n a limiting sense.
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Numerous variations, changes, and substitutions will now
occur to those skilled in the art without departing from the
invention. Furthermore, 1t shall be understood that all
aspects of the invention are not limited to the specific
depictions, configurations or relative proportions set forth
herein which depend upon a variety of conditions and
variables. It should be understood that various alternatives to
the embodiments of the invention described herein may be
employed 1n practicing the invention. It 1s therefore con-
templated that the invention shall also cover any such
alternatives, modifications, variations or equivalents. It 1s
intended that the following claims define the scope of the
invention and that methods and structures within the scope
of these claims and their equivalents be covered thereby.

1. (canceled)

2. A computer-implemented method for improving image
quality of medical image, the method comprising:

receiving a volumetric medical image of a subject;

generating one or more reformat volumetric medical
images by reformatting the volumetric medical image
of the subject 1n one or more orientations; and

feeding an mput comprising the one or more reformat
volumetric medical 1images to a deep network model to
generate a predicted medical image with improved
quality.

3. The computer-implemented method of claim 2,
wherein the volumetric medical image 1s acquired 1n a first
direction of a scanning plane.

4. The computer-implemented method of claim 3,
wherein the one or more orientations comprise a second
direction that 1s different from the first direction of the
scanning plane.

5. The computer-implemented method of claim 2,
wherein the volumetric medical 1image 1s acquired using a
transforming magnetic resonance (MR) device.

6. The computer-implemented method of claim 2,
wherein the volumetric medical image 1s a 2.5D volumetric
1mage.

7. The computer-implemented method of claim 2,
wherein the volumetric medical image 1s created by stacking
a number of 1mage slices channel-wise.

8. The computer-implemented method of claim 2, further
comprising rotating the one or more reformat volumetric
medical images into various angles to generate one or more
rotated reformat medical images.

9. The computer-implemented method of claim 7, further
comprising applying the deep network model to the one or
more rotated reformat medical images to output one or more
predicted 1mages.

10. The computer-implemented method of claim 2,
wherein the one or more predicted 1images are rotated to be
aligned to a scanning plane.
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11. The computer-implemented method of claim 2,
wherein the deep network model 1s a 2.5 D trained model.

12. A non-transitory computer-readable storage medium
including 1nstructions that, when executed by one or more
processors, cause the one or more processors to perform
operations comprising;:

recetving a volumetric medical image of a subject;

generating one or more reformat volumetric medical
images by reformatting the volumetric medical image
of the subject 1n one or more orientations; and

feeding an mput comprising the one or more reformat
volumetric medical images to a deep network model to

generate a predicted medical 1image with improved

quality.

13. The non-transitory computer-readable storage
medium of claim 12, wherein the volumetric medical image
1s acquired 1n a {irst direction of a scanming plane.

14. The non-transitory computer-readable storage
medium of claim 13, wherein the one or more orientations
comprise a second direction that 1s different from the first
direction of the scanming plane.

15. The non-transitory computer-readable storage
medium of claim 12, wherein the volumetric medical image
1s acquired using a transforming magnetic resonance (MR)
device.

16. The non-transitory computer-readable storage
medium of claim 12, wherein the volumetric medical image
1s a 2.5D volumetric image.

17. The non-transitory computer-readable storage
medium of claim 12, wherein the volumetric medical image
1s created by stacking a number of 1mage slices channel-
wise.

18. The non-transitory computer-readable storage
medium of claim 12, wherein the operations further com-
prise rotating the one or more reformat volumetric medical
images 1nto various angles to generate one or more rotated
reformat medical 1mages.

19. The non-transitory computer-readable storage
medium of claim 12, wherein the operations further com-
prise applying the deep network model to the one or more
rotated reformat medical 1images to output one or more
predicted 1mages.

20. The non-transitory computer-readable storage
medium of claim 12, wherein the one or more predicted
images are rotated to be aligned to a scanning plane.

21. The non-transitory computer-readable storage
medium of claim 12, wherein the deep network model 1s a

2.5 D trained model.



	Front Page
	Drawings
	Specification
	Claims

