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PROCESSING SENSOR DATA WITH
MULTI-MODEL SYSTEM ON
RESOURCE-CONSTRAINED DEVICE

RELATED APPLICATIONS

[0001] This application 1s a continuation of and claims
priority to U.S. patent application Ser. No. 16/950,275, filed
on Nov. 17, 2020, the disclosure of which 1s incorporated by
reference herein 1n its entirety.

BACKGROUND

[0002] Neural networks are machine learning models
organized into two or more layers of smaller models (or
“layers™) each configured to process one or more 1mputs and
to generate one or more outputs. The inputs can come from
a previous layer, somewhere external to the neural network,
¢.g., an 1mnitial iput or a predetermined value, or both. Fach
layer can include one or more activation functions that can
process mcoming input with one or more model parameter
values, e.g., weight values or bias values. A neural network
can be trained according to a learning algorithm to learn
model parameter values that cause the neural network to
generate outputs that are more accurate relative to a desired
result or known true value for a given 1nput.

[0003] A computing device can be configured to receive
input, to process the mput through one or more machine
learning models, and to generate output corresponding to the
input. In some cases, machine learning models can be very
large, e.g., hundreds or thousands of layers with many model
parameter values per layer. Machine learning models of this
magnitude often require a proportional amount of compu-
tational power to process. Some computing devices are
resource-constrained, meaning that the devices are limited in
available power for processing and/or lack suflicient pro-
cessing or storage capacity to process larger models.
[0004] Even 11 a computing device 1s capable of process-
ing a computationally-taxing model, doing so 1s not always
desirable, particularly when conserving battery life of the
device for extended use in performing a wide variety of
functions 1s favored. In some cases, hardware limitations or
the cost to implement specialized hardware prevent design-
ing and/or manufacturing a resource-constrained device
with improved hardware. Even 11 adding improved hardware
to the device 1s possible, doing so can require sacrificing,
other important features of the device, e.g., its form factor,
s1ze, weight, or cost to a user to own and operate. For
computing devices that are wearable devices, e.g., wireless
carbuds, headphones, or glasses, this trade-ofl between
augmentation and other design features can be particularly
important.

BRIEF SUMMARY

[0005] In general, this specification relates to a multi-
model system implemented on a computing device and
techniques for processing iput to the system 1n a resource-
cilicient manner A multi-model system includes a gating
model and a main model that are tramned to perform a
machine learning task with respective average accuracies
relative to a mimmum accuracy threshold. An example
machine learning task 1s a classification task, e.g., classify-
ing input to predict an activity, e.g., a user speaking,
recorded in the input. Activities detected can include
whether or not a user of the computing device is talking, and
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i so, the contents of their speech. The multi-model system
can balance resource consumption with accuracy of the
multi-model system to perform a particular machine learn-
ing task.

[0006] The mimimum accuracy threshold represents a tol-
erance for error for the computing device to perform the
machine learning task without substantively aflecting a
user’s experience 1n operating the computing device.

[0007] The system can process mput initially through the
gating model. If the gating model generates an output of a
positive classification, e.g., the detection of an activity, then
the system can process the same or subsequent input through
the main model. The gating model is trained to generate
output that on average meets the minimum accuracy thresh-
old, but consumes less energy from the battery of a com-
puting device relative to the main model to do so. Power
consumption can be measured, for example, by relative
numbers ol operations to process the gating model and the
main model, or relative runtimes during inference as
between the two models.

[0008] When the gating model generates an output, the
main model can take over processing or process input with
higher accuracy. Because the generally more computation-
ally-taxing main model can run when prompted by output
from the gating model, the overall resource consumption of
the system can be lowered than if the main model always
runs during inference. This 1s at least because the main
model 1s not mvoked for input in which no activity or
classification target of interest was recorded. In this way, the
user can still benefit from (prolonged) use of the computing
device configured to perform a variety of tasks.

[0009] The system can adapt to raise or lower overall
accuracy of the system depending on the remaining battery-
life for the computing device. While the system adaptively
adjusts whether to process through the gating model or the
main model, the system maintains the mimimum accuracy
threshold, which 1s tuned to allow a rate of error in per-
forming a given task by the system that can be imperceptible
to users operating the device.

[0010] In general, one mnovative aspect of the subject
matter described in this specification provides for a com-
puting device including a battery, and one or more proces-
sors configured to obtain first sensor mput from one or more
first sensors, and determine, based on at least a battery-life
of the battery, whether to process the first sensor nput
through a first machine learning model or a second machine
learning model. The first machine learning model can be
trained to generate output with an average accuracy meeting
a minimum accuracy threshold, and the second machine
learning model can be trained to generate output with an
average accuracy exceeding the minimum accuracy thresh-
old. In response to determining to process the first sensor
input through the first machine learning model, the comput-
ing device can be further configured to generate a first output
using the first machine learning model, the first output
predicting whether the first sensor input recorded an activity.

[0011] The one or more processors can be further config-
ured to: when the first machine learning model predicts that
the first sensor input recorded an activity, process second
sensor mmput obtained from one or more second sensors
through the second machine learning model to generate a
second output predicting whether the second sensor input
recorded the activity.
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[0012] The first machine learning model can require fewer
operations to process the first sensor input than the second
machine learning model requires to process the second
sensor 1put.

[0013] The second sensor can be different from each of the
one or more {irst sensors.

[0014] The first sensor input can be obtained from a first
sensor of the one or more {irst sensors operating at a first
power level. The second sensor input can be at least partially
obtained from the first sensor operating at a second power
level higher than the first power level

[0015] The computing device can further include a dis-
play, and the one or more processors can be further config-
ured to determine, from the second output, that the second
machine learning model predicted that the second sensor
input recorded an activity, and in response generate and
transmit a third output to a display of the computing device.

[0016] The one or more processors can be further config-
ured to recerve one or more performance thresholds corre-
sponding to an average measure of performance for the first
machine learning model under respective one or more
conditions and that are equal to or greater than the minimum
average threshold. The one or more processors can be
turther configured to receive a current battery-life of the
battery indicating a change in available energy stored in the
battery; and determine, based at least on the current battery-
life, whether to cause the first machine learning model to
perform at a level of performance meeting a performance
threshold of the one or more performance thresholds. In
response to the determination to cause the first machine
learning model to perform at the level of performance, the
one or more processors can cause the first machine learning
model to operate under respective one or more conditions
tor the performance threshold.

[0017] The one or more processors can be further config-
ured to recerve one or more performance thresholds corre-
sponding to an average measure of performance for the first
machine learning model under respective one or more
conditions and that are equal to or greater than the minimum
average threshold; receive a current battery-life of the bat-
tery indicating a change 1n available energy stored in the
battery; and determine, based at least on the current battery-
life, whether to cause the first machine learning model to
perform at a level of performance meeting a performance
threshold of the one or more performance thresholds. In
response to the determination to cause the first machine
learning model to perform at the level of performance, the
one or more processors can cause the first machine learning
model to operate under respective one or more conditions
for the performance threshold.

[0018] The first machine learming model and the second
machine learning model can be trained to perform a machine
learning task, wherein the machine learning task can include
detecting a plurality of types of activities recorded by at least
one sensor of the one or more first sensors and the one or
more second sensors. The first machine learning model can
be trained to detect at least one type of the plurality of types
with an average accuracy greater than the second machine
learning model.

[0019] The first and the second machine learning models
can be neural networks, the first machine learning model
having a first plurality of layers, and the second machine
learning model having a second plurality of layers that 1s a
subset of the first plurality of layers.
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[0020] The first machine learning model can be of a
different model architecture than the second machine leamn-
ing model.

[0021] Other implementations of the foregoing aspect can
include a computer-implemented method, an apparatus, and
computer programs recorded on one or more computer-
readable storage media.

BRIEF DESCRIPTION OF THE DRAWINGS

[0022] FIG. 1 shows an example computing device imple-
menting a multi-model system according to aspects of this
disclosure.

[0023] FIG. 2 1s a block diagram of an example multi-
model system 1implemented on the computing device.
[0024] FIG. 3 shows a chart 300 1illustrating the relation-
ship between power consumption and model accuracy 1n an
implementation of the multi-model system.

[0025] FIG. 4 1s a flowchart of an example process for
detecting activity on a computing device.

[0026] FIG. 5 1s a flowchart of an example process for
adapting the processing of input data through the gating or
main model of a multi-model system.

[0027] Like reference numbers 1n the drawings indicate
like elements.

DETAILED DESCRIPTION

[0028] FIG. 1 shows an example computing device 110
implementing a multi-model system 115 according to
aspects ol this disclosure. The computing device 110
includes a battery 111 and sensors 113. In FIG. 1, the
computing device 110 1s shown as a pair of wireless earbuds
worn by a user 100, although the computing device 110 can
be one of a number of other devices, e.g., a watch, wireless
headphones, eyeglasses, or a head-mounted display appara-
tus, such as a virtual reality or an augmented reality headset.
In implementations in which the computing device 110 1s
implemented as a pair of wireless earbuds, the multi-model
system 1135 can be implemented on one or both earbuds.

[0029] The battery 111 can be any conventional battery for
powering the computing device 110. In some 1mplementa-
tions, the computing device 110 1s configured to receive
clectrical power over-the-air, meaning the computing device
110 can charge the battery 111 to some extent by the received
clectrical power. In those cases, the power received over the
air may be limited to certain power-transfer limits or loca-
tions 1 which the computing device 110 1s operated. As
described 1n this specification, the multi-model system 115
can be advantageously implemented to potentially limat
power consumption of the computing device 110 even in
situations 1 which wireless electrical energy is freely avail-
able, albeit at a limited rate relative to charging the battery
111 inductively or conductively.

[0030] Devices, such as the device 110, are often resource-
constraimned when operating off of a battery. In this specifi-
cation, a computing device that i1s resource-constrained
generally refers to a condition i which the computing
device 1s operating using limited power, €.g., from a battery
or limited wireless charging. A resource-constrained device
may perform as well or worse processing data relative to
when the device 1s not resource-constrained, 1.e., plugged in
to a stable source of power. For example, the computing
device 110 may operate at a reduced processing level, 1.e.,
measured 1 processing cycles per second, when operating
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only off of battery power from the battery 111, and then
return to a normal processing level when plugged 1n.

[0031] In some mmplementations, the computing device
110 may only be operable when not charging or plugged into
a steady source ol power. For example, some types of
wireless earbuds may only be operable when the earbuds are
not currently being charged. In some implementations, the
computing device 110 may operate at a normal processing
level on or off battery power. In these cases the computing
device 110 1s still said to be operating in resource-con-
strained mode when operating ofl of battery power, because
the device 110 can operate only up to the amount of energy
stored 1n the battery 111.

[0032] The computing device 110 can switch from
resource-constrained to non-resource-constrained modes of
operation. In some implementations, the computing device
110 1s considered resource-constrained even when plugged
into a steady source of energy, e.g., because the source of
energy itself might be limited or rationed.

[0033] The multi-model system 115 i1s configured to
receive input from at least one of the sensors 113 and to
generate an output corresponding to a machine learning task.
As described 1n more detail, below, the multi-model system
115 can implement a gating model, a main model, and an
adaptive threshold engine 210. In general, the multi-model
system 115 processes mput first through the gating model
117, and then through the main model 119 depending on a
positive output from the gating model 117, e.g., a prediction
of an activity recorded in the sensors mput 116.

[0034] The multi-model system 1135 processes sensor
mnput 116 from the sensors 113 to perform a machine
learning task. In performing the task, the multi-model sys-
tem 115 automatically switches processing between a lower-
power gating model 117 and a higher-power, but generally
more accurate, main model 119. The switch by the multi-
model system 115 can balance how much power the system
115 draws from the battery 111, with a minimum accuracy
in performing the machine learning task.

[0035] The computing device 110 can parse and pass the
sensor input 116 to the multi-model system 115 as a stream
of data and according to a sliding window. The sensor input
116 can be a continuous source of data, e.g., an audio stream.
The computing device 110 can process the sensor mput 116
according to the sliding window as a function of time, e.g.,
900 milliseconds of sensor input at a time. Within the sliding
window the computing device 110 can process input data
according to a predetermined hop size, e.g., 200 millisec-
onds. The computing device 110 can similarly process other
forms of sensor mput, e.g., vibrations collected using one or
more IMUSs, or audio-visual data collected from appropri-
ately configured sensors of the sensors 113. The computing
device 110 can buller the sensor input 116 in the memory
206 up to a certain amount, e.g., the size of the sliding
window.

[0036] A machine learning task specifies input and output
for one or more machine learning models to receive and
generate, respectively. In this specification, activity detec-
tion refers to a machine learning task that specifies input that
includes the sensor mput 116 recorded by one or more
sensors, €.g., the sensors 113 of the computing device 110,
and specifies output as a prediction of an activity recorded
in the sensor mput 116. In general, machine learning tasks
include any form of classification task, 1.e., categorizing
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different targets of interest or determining the presence of
absence of a particular target.

[0037] For example, the multi-model system 115 can be
configured to detect whether the user 100 1s speaking, based
on processing received sensor iput 116 that includes speech
from the user 100. In some implementations, the multi-
model system 115 1s configured to detect specific types of
speech. Some examples include detecting whether speech 1s
masculine, feminine, or of a child. The multi-model system
115 can also predict whether detected speech 1s from the user
100 or another source, e.g., a loudspeaker or a person
proximate to the computing device 110 that 1s not the user.

[0038] Activity detection can also include non-speech
activity detection. In some implementations, the multi-
model system 115 detects whether the user 100 1s moving,
¢.g., shaking their head, exercising, or walking. Activity
detection can include detecting activity in absence of
another activity, e.g., detecting that the user 100 of the
computing device 110 i1s not speaking but rather coughing,
sneezing, drinking, eating, or listening to music. Although
the following description refers to activity detection as the
machine learning task in some examples, in general any
machine learning task for performing a classification on
some input data can be applied without loss of generality.

[0039] Both the gating model 117 and the main model 119
are trained to perform a machine learning task with an
accuracy meeting a minimum accuracy threshold, e.g., 98%
accuracy. The model trainer 130, as described below, is
configured to train the models 117, 119 to meet or exceed
this minimum accuracy threshold. In addition, the model
trainer 130 can evaluate the models 117, 119 according to
one or more metrics, e.g., recall or false positive rate, to
determine the average accuracy at which the models 117,
119 perform under different respective conditions. The mini-
mum accuracy threshold can be defined as a function of the
accuracy of the main model 119, for example so that the
minimum accuracy threshold 1s always defined to be lower
than the accuracy of the main model 119.

[0040] The gating model 117 1s trained to meet the mini-
mum accuracy threshold, but generally requires less power
than the main model 119 to do so. As described 1n more
detail, below, the model tramner 130 can evaluate an (ap-
proximate) number of operations performed by each of the
models 117, 119, and tune the gating model 117 so as to
perform at the mimmum accuracy threshold, but perform
overall fewer operations than the main model 119 to do so.

[0041] The main model 119 1s tramned to meet or exceed
the minimum accuracy threshold. The main model 119 can
be, for example, a state-of-the-art machine learning model
trained to perform a particular machine learning task, e.g.,
activity detection. The main model 119 generally 1s more
accurate on average than the gating model 117, but generally
requires more operations—and subsequently, more energy
from the battery 111-—to process input at inference. The
main model 119 can be a machine learning model that, given
no resource constraints, would be an ideal candidate for
performing the given machine learning task. However, due
to the resource constraints of some devices like the com-
puting device 110, 1t 1s not always beneficial or optimal to
run the main model 119 only. In some implementations and
as described below, although the average accuracy of the
main model 119 1s higher than that of the gating model 117,
in some use cases the main model 119 may perform worse,
but the overall accuracy of the system 1135, 1.¢., the models
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117, 119 together, can stay the same or even be higher than
if the models 117, 119 were executed independently.

[0042] The multi-model system 115 can process input by
switching between the gating model 117 and the main model
119. Because both models 117, 119 are trained to meet the
mimmum accuracy threshold, the gating model 117 can be
used first or generally more frequently than the main model
119 for performing a machine learning task. By using the
less resource-taxing gating model 117 first, the multi-model
system 1135 can save on resource consumption on the device
110. For example, 1n the case of activity detection, the gating
model 117 can process and filter out mput that 1s not
indicative of an activity by the user 100. In this way, the
more resource-intensive main model 119 can be selectively

invoked to process the sensor mput 116 after the gating
model 117 has detected an activity.

[0043] Adter mitial processing by the gating model 117,
the main model 119 can process the sensor mput 116
beginning at the sliding window processed by the gating
model 117. In some 1mplementations, the main model 119
receives the output of the gating model 117, and continues
processing the sensor mput 116 from the next sliding win-
dow after the 1imitial sliding window processed by the gating
model 117. The main model 119 can process the same 1nitial
data as the gating model 117, for example, to verily the
prediction of the gating model 117 before continuing pro-
cessing. In some implementations, the main model 119 can
rely on the 1nitial output of the gating model 117 instead, and
can continue processing new data.

[0044] The computing device 110 can generate output and
transmit the output to a second computing device 120 of the
user 100, or the user 100 directly. The second computing,
device 120 can be, for example, a mobile phone communi-
catively coupled to the computing device 110. In some
implementations, the computing device 110 can transmuit
data to the second computing device 120, which the second
computing device 120 can receive and can process further.
The second computing device 120 1n turn can transmit data
back to the computing device 110. For example, the second
computing device 120 can be configured to receive a phone
call, and transmit audio data back and forth between the

second computing device 120 and the computing device
110.

[0045] The output from the computing device 110 can
include output 1n response to the multi-model system 1135
processing the sensor input 116 and detecting an activity
performed by the user 100. The output can be in the form of
one or more actions performed by the computing device 110.
The actions performed by the computing device 110 as
output can vary depending on the type of activity detected by
the multi-model system 115.

[0046] For example, the multi-model system 115 can be
configured to detect whether the user 100 1s speaking a
command phrase nto the computing device 110. The com-
puting device 110 can further process the sensor input 116 to
identify what the command was, e.g., “play music.” In
response, the computing device 110 can perform one or
more actions for playing music through speakers of the

device 110.

[0047] In some mmplementations, the computing device
110 passes data representing an activity detected by the
multi-model system 115 to the second computing device
120. In those implementations, the second computing device
120 recerves data from the computing device 110 indicating
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an activity detected by the multi-model system 1135. The
second computing device 120 can additionally process the
sensor mput 116 or processed data from the multi-model
system 115 and cause the computing device 110 to perform
actions as part of a response to the detected activity.

[0048] Output directly to the user 100 can be 1n the form
of vibrations or sound from speakers implemented in the
computing device 110 (not shown). If the system generates
output for the second computing device 120, the output can
be displayed on a display of the second computing device
120, or 1n some 1mplementations the output can be produced
as sound or vibration through a speaker for the second
computing device 120 (display and speaker not shown).

[0049] The sensors 113 can be one or more of a variety of
different sensors for collecting data from the user 100, a
physical environment proximate to the user 100, or both.
The sensors 113 can collect sensor data of a variety of
different types, including audio signals, optical signals,
clectromagnetic signals, and data related to the location and
orientation ol the user 100 or other objects or people
proximate to the user 100.

[0050] The sensors 113 can include one or more inertial
measurement units (“IMUs™) e.g., including an accelerom-
cter and/or a gyroscope. In some implementations, the
sensors can include a laser Doppler vibrometer that 1s
configured to scan surfaces and detect vibrations on the
surface, air conduction microphones, bone conduction
microphones, voice accelerometers, or other sensors, such as
those that measure vibration through the body of a user. The
sensors can be specially tuned based on the physical shape
and form factor of the device, as well as based on the relative
position of the sensors to the body of the user 100 when the
device 110 1s worn.

[0051] The sensors 113 can mclude one or more IMUSs that
include one or more gyroscopes for measuring angular
motion of the computing device 110, and can also include
one or more accelerometers for measuring linear motion of
the computing device 110. Another type of IMU that can be
implemented 1s a voice accelerometer, €.g., a bone conduct-
ing microphone, for measuring vibrations caused by the user
100 speaking. Other types of sensors that could be 1mple-
mented on the computing device 110 include optical sensors,
¢.g., cameras; electrical sensors, e.g., capacitive sensors;
magnetic sensors, €.g., Hall eflect sensors; positioning sen-
sors, €.g., compasses; and vibration sensors, €.g., micro-
phones.

[0052] The sensors 113 can include sensors of the same
type that are implemented on diflerent parts of the comput-
ing device 110. For example, in implementations in which
the computing device 110 1s a pair of wireless earbuds, the
sensors 113 can include two or more voice accelerometers,
with at least one voice accelerometer 1n each earbud. The
computing device 110 can collect data as part of the sensor
input 116 from one or more of these sensors at the same
time. In some implementations and as described below, the
multi-model system 115 can select which sensors are oper-
ating based on the remaining battery-life of the battery 111
and potentially one or more other conditions. Additionally or
alternatively, the computing device 110 can selectively oper-
ate some or all of the sensors 113 based on whether the
computing device 110 1s operating 1n a resource-constrained
mode or not.

[0053] In implementations in which the computing device
110 15 a pair of wireless earbuds, each earbud can include a
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separate battery, with a separate remaining battery life. In
those i1mplementations, the battery-life can refer to the
battery-life of either one of the earbuds. The battery-life can
also refer to the average remaining battery-life of both
carbuds. As described herein, the multi-model system 1135
can be implemented on one or both earbuds.

[0054] If the multi-model system 115 1s implemented on
only one earbud, then the remaining battery-life can refer to
the remaining battery-life of the earbud implementing the
system 115. In some implementations, when the computing
device 110 1s operating 1n a resource-constrained mode, one
carbud can be configured to collect the sensor mput 116,
while the other earbud processes the sensor input 116. The
carbuds can be configured to communicate data to one
another, for example through a physical wired connection or
a wireless connection.

[0055] In implementations in which the multi-model sys-
tem 115 1s implemented on both earbuds, the computing
device 110 can alternate between the model processing
carbud, based on, for example, which earbud has the highest
remaining battery life. In some implementations, the com-
puting device 110 may alternate model processing between
the earbuds, for example to balance remaining battery life
evenly between the earbuds. If one earbud 1s designated as
the model processing earbud, the same or other earbud can
be configured to collect the sensor mput 116.

[0056] The sensors 113 can also collect data as part of the
sensor iput 116 according to different modes of operation.
In some implementations, some sensors of the sensors 113
can collect sensor data of a particular type, using more or
less energy, e¢.g., measured by the number of operations for
sampling incoming signals, from the battery 111. The quality
and other characteristics of the sensor data collected by
low-power sensors can vary Irom characteristics of the
sensor data collected during normal operation.

[0057] When the computing device 110 1s intended to be
worn by the user 100, in some implementations IMUSs of the
sensors 113 can be configured to track angular and/or linear
motion of the user 100 or specific body parts of the user 100,
¢.g., the head or arms of the user 100. When the computing
device 110 1s implemented as a pair of wireless earbuds,
IMUs i1mplemented as part of the sensors 113 can be
configured to detect position and movement as between a
first wireless earbud and a second wireless earbud. The
sensors 113 can also include sensors that track characteris-
tics of the computing device 110, e.g., a remaining battery-
life for the battery 111. As described below, the models of
the multi-model system 115 can be trained to process
features from sensor data collected from a combination of
low-power and normally-operating sensors.

[0058] One or more of the sensors 113 can be communi-
catively coupled to the device 110. For example, one or more
of the sensors 113 can be implemented directly as part of the
device 110, such as IMU sensors installed in the device 110.
In other examples, one or more of the sensors 113 can be
remote and part of one or more other devices at one or more
locations. For example, the remote sensors can be imple-
mented as part of the second computing device 120, or
implemented on another device 120. The remote sensors can
communicate through a wireless or wired connection to the
device 110 to send sensor data recorded by the remote
sensors. The sensor data recorded by the remote sensors can
form part of the sensor mput 116, which can additionally
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include sensor data collected from one or more other sensors
that are implemented as part of the computing device 110.

[0059] While some components of the computing device
110 are shown, 1n some i1mplementations the computing
device 110 can include additional or alternative components.
Further, the configuration of the computing device 110 1s
exemplary and not the only way the computing device 110
with the multi-model system 115 can be implemented.

[0060] FIG. 2 1s a block diagram of an example multi-
model system 115 implemented on the computing device
110. The computing device 110 1s shown with the battery
111 and the sensors 113. The computing device 110 also
includes a processor 202, and a network interface module

(“NIM”) 204.

[0061] The NIM 204 can be implemented according to any
conventional technique for communicatively coupling the
computing device 110 with another device, e.g., the second
computing device 120. The NIM 204 can support a variety

of short- and long-range connections along a variety of
different bandwidths, e.g., 2.402 GHz to 2.480 GHz (com-

monly associated with the Bluetooth® standard), 2.4 GHz,
5 GHz (commonly associated with the Wi-Fi® communi-
cation protocol); or with a variety of communication stan-
dards, e.g., the LTE® standard for wireless broadband
communication.

[0062] The processor 202 can be any type of processor and
of any type of architecture, e.g., a central processing unit
arranged according to a von Neumann architecture, a graph-
ics processing unit, a field programmable gate array, or an
application-specific 1ntegrated circuit. The computing
device 110 can implement a single processor 202, as shown
in FI1G. 2, or can implement a plurality of processors that can
be configured to inter-connect as necessary to perform
various operations.

[0063] The computing device 110 as shown 1n FIG. 2 also
includes memory 206. The memory 206 stores information
that 1s accessible to the processor 202, and can store mnstruc-
tions 207 and data 208. The instructions 207 can include
instructions that, when executed by the computing device
110, causes the computing device 110 to execute the multi-
model system 115, including the adaptive threshold engine
210, the gating model 117, and the main model 119. Option-
ally, the instructions 207 also include instructions that, when
executed by the computing device 110, cause the computing
device 110 to execute an activity response engine 215.

[0064] The adaptive threshold engine 210 1s configured to
generate and maintain a balance between power consump-
tion by the multi-model system 115 in performing a machine
learning task and the accuracy of the output generated by the
multi-model system 115. To do so, the adaptive threshold
engine 210 can adaptively switch which of the gating model
117 and the main model 119 1s used to process the sensor
input 116.

[0065] If the gating model 117 1s selected, the gating
model 117 processes the mput and generates an output that
includes an indication of whether or not the gating model
117 detected an activity being performed. The adaptive
threshold engine 210 can always select processing input by
the gating model 117 first when the device 110 1s operating
in a resource-constrained mode, but in other implementa-
tions the adaptive threshold engine 210 can switch between
the models 117, 119 according to different switching strat-
egies.
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[0066] If the gating model 117 successtully detects an
activity, then the sensor mput 116 1s sent for processing by
the main model 119. 11 the gating model 117 does not detect
an activity, then processing as to the sensor mput 116 stops.
In this way, the adaptive threshold engine 210 can manage
how often the main model 119 1s invoked to process the
sensor input 116. For example, mstead of the main model
119 processing sensor mnput that 1s not indicative of any
activity performed by the user 100, the computationally
less-demanding gating model 117 can be mvoked by the
adaptive threshold engine 210 to make a prediction respon-
sive to the machine learning task.

[0067] The adaptive threshold engine 210 can adjust how
data 1s processed by the multi-model system 115 based on
time-dependent and time-independent factors. Time-depen-
dent factors include the remaining battery life of the battery
111. For example, as the battery-level of the battery 111 goes
down, the adaptive threshold engine 210 can adaptively
process the sensor mput 116 more frequently through the
gating model 117 first than the main model 119.

[0068] In some implementations, the adaptive threshold
engine 210 can follow one or more performance thresholds
corresponding to the general performance of the gating
model 117 1n performing a machine learning task under
different conditions. In some 1mplementations, the gating
model 117 includes a single performance threshold repre-
senting the minimum accuracy threshold. When a model
operates at a certain performance threshold, then the model
1s operating under certain conditions that cause the pertor-
mance of the model to meet the performance threshold. The
gating model 117 can require different amounts of energy,
¢.g., measured through a number of operations and/or the
amount of sensors 113 mvoked to collect the sensor 1mput
116, to perform the machine learning task at different
performance thresholds. The model trainer 130, described
below, can be configured to identily these performance
thresholds as part of training the models 117, 119.

[0069] In response to the remaining battery-life of the
battery 111, the adaptive threshold engine 210 can cause the
multi-model system 115 go from processing the sensor input
116 within a first performance threshold to a second perfor-
mance threshold. The second performance threshold can be
a lower threshold for accuracy of the gating model 117, but
requires less energy from the battery 111 to process. The
gating model 117 can have a plurality of different perfor-
mance thresholds, but in no case 1s a performance threshold
lower than the minimum accuracy threshold. In other words,
the multi-model system 115 tolerates some reduction in
accuracy to save on energy, for example when the remaining
battery-life 1s low. The adaptive threshold engine 210 can
cause the gating model 117 to operate between performance
thresholds with relative accuracies that are imperceptibly to
the user 100 during operation.

[0070] As part of determining whether to switch between
the models 117, 119, the adaptive threshold engine 210 can
factor 1n a cost associated with switching processing
between different models of the multi-model system 115.
The cost can be measured as a number of operations, e.g.,
necessary read and/or write operations, to switch from
processing the sensor mput 116 between the gating model

117 and the main model 119.

[0071] The adaptive threshold engine 210 can adjust
whether the gating model 117 or the main model 119 nitially
processes mput according to a schedule. For instance, 11 the
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computing device 1s operating 1n a resource-constrained
mode, then the adaptive threshold engine 210 can always
cause the gating model 117 to process imncoming input {irst,
then the main model 119 as necessary. In some 1mplemen-
tations, the adaptive threshold engine 210 causes the gating
model 117 to process input first for a set number of itera-
tions, and then occasionally switch to the main model 119.
The adaptive threshold engine 210 can trigger the switch
after a fixed number of iterations, or alter a number of
iterations relative to the remaining battery-life of the battery
111. For example, as the life of the battery 111 drains, the
adaptive threshold engine 210 can prefer processing through
the gating model 117 more often than the main model 119.

[0072] The adaptive threshold engine 210 can switch
between the models 117, 119 randomly, according to differ-
ent Irequencies that are based on a weight that can be
predetermined to favor triggering the gating model 117 more
often than the main model 119. For example, the adaptive
threshold engine 210 can be configured to switch to the
gating model 117 according to one frequency, and switch to
the main model 119 according to a second Irequency.
Generally, the frequency at which the gating model 117 1s
invoked will be greater than the frequency at which the main
model 119 1s invoked. In implementations that include this
schedule for switching between the models, the weight can
be chosen based on the relative power consumption of the
models 117, 119 and a cost for switching 1mnput for process-
ing between the models 117, 119. In general, the weight can
be chosen so that the mnput processed 1s processed accurately
as between the models 117, 119 and within the minimum
accuracy threshold, but overall consumes less power than 1f
only the main model 119 was used for processing. In some
implementations, the adaptive threshold engine can modity

the weight based on the remaining battery-life of the battery
111.

[0073] The adaptive threshold engine 210 can switch
between the models 117, 119 based on the type of activity
detected by the models 117, 119, 1n implementations 1n
which the machine learning task 1s activity detection. For
example, 1f the gating model 117 classifies current sensor
mput as indicative of a particular activity, e.g., speaking,
then the adaptive threshold engine 210 can cause the main
model 119 to process the current sensor input and/or sub-
sequent sensor mput. The main model 119 can continue to
process sensor input until detecting a different activity, e.g.,
not speaking. Then, the adaptive threshold engine 210 can
cause processing to switch back to the gating model 117.
Operating 1n this manner can result 1n 1mproved resource
usage even 1f the main model runs longer than the gating
model 1n processing the sensor input 116.

[0074] For example, the resource cost for processing the
sensor mput 116 when an activity 1s first detected by the
gating model 117 can be significantly higher than processing
subsequent nput by the main model 119. Subsequent 1nput
may also require less processing because calculations, e.g.,
convolutions 1n 1implementations in which the models 117,
119 are convolutional neural networks, can be largely reused
from 1mtial calculation.

[0075] The adaptive threshold engine 210 can switch
between the models 117, 119 according to user-specified
parameters. For example, the computing device 110 can be
configured to receive mput indicating whether the comput-
ing device 110 should operate 1n a resource-constrained
mode or not.
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[0076] Time-independent factors can include the average
accuracies of the models 117, 119 under diflerent conditions.
The difference 1n accuracy between the models 117, 119 can
be at least based on differences 1n model architecture, which
types of activity are being detected from the sensor input
116, or what types of sensor mput 116 are being processed.
These time-independent factors can be predetermined, for
example when the models 117, 119 are loaded into the
memory 206 of the multi-model system 115. As described
below, a model trainer 130 can be configured to train the
models 117, 119 and in some implementations collect data
representing performance thresholds when the models 117,
119 process data under different conditions.

[0077] In implementations in which the instructions 207
include nstructions for executing the activity response
engine 2135, the activity response engine 215 1s configured to
receive output from the multi-model system 115 indicating,
a detected activity, and to process the output to perform
another task, e.g., part of a compound machine learning task
as described above with reference to FIG. 1. The activity
response engine 215 can also be configured to perform other
processing operations on output from the multi-model sys-
tem 115 that are not related to a machine learning task, e.g.,
indicate to the user 100 that an activity has been detected and
begin tracking a time 1n which the activity i1s performed by
the user 100. The activity response engine 215 can be an
artificial intelligence (Al)-virtual assistant. The virtual assis-
tant can be configured to process commands detected by the
multi-model system 115, and perform one or more actions in
response to the commands, e.g., playing a certain song, or
updating a calendar associated with the user 100.

[0078] The data 208 can include data for processing input
through the multi-model system 115. For example, the data
208 can include model parameter values, e.g., weights or
biases, for executing one or both of the gating model 117 and
the main model 119.

[0079] The multi-model system 115 can include a feature
generation engine 211. In general, the feature generation
engine 211 1s configured to process incoming sensor data
and to generate values for a plurality of features. A feature
1s a characterization of an input. For example, 11 the sensor
data include audio signals, then a feature of the audio signals
can be the frequency of the audio, and a value for that feature
can be 100 Hz. The feature generation engine 211 can
process raw input data to reduce the dimensionality of the
data. For example, the feature generation engine 211 can
process input data using one or more processing techniques,
e.g., principal component analysis, to obtain a feature value
that represents some part of the raw input data. The machine
learning models 117, 119, can be configured to process at
least a portion of the features generated by the feature
generation engine 211, as part of processing the input to
detect user activity or to perform another machine learning
task.

[0080] One type of feature that the feature generation
engine 211 can generate relates to diflerent representations
of incoming audio data in the sensor input 116. For example,
the feature generation engine 211 can generate spectrograms
from the mcoming audio data. A spectrogram 1s a visual
representation of an mput signal over a period of time. The
models 117, 119 can be trained to receive mput audio data
as spectrograms, and use the spectrograms and other
optional data to predict whether the user 1s speaking or
performing some other activity. The feature generation
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engine 211 can generate a variety ol different types of
spectrograms and other visual representations of input audio
data, including Mel spectrograms, linear spectrograms, and
Mel Frequency Cepstral Coetlicients (MFCCs). The feature
generation engine 211 can also process incoming audio data,
e.g., by applying a Fourier transform, to convert a repre-
sentation of the signal in time to a decomposition of fre-
quencies represented 1n the audio data.

[0081] The feature generation engine 211 can generate
features from a same type of sensor data recorded by
different sensors of the sensors 113. For example, the
computing device 110 may include two or more of the same
sensors positioned along different parts of the device 110. In
one case, the computing device 110 1s a pair of wireless
carbuds, and each earbud can separately house a voice
accelerometer sensor or another type of sensor. At least
because of differences 1n the physical positioning as between
the sensors, these sensors can collect different but strongly
correlated data. Using this correlation, the feature generation
engine 211 can generate features that represent not only
characteristics from individual mnput from each voice accel-
crometer, but also other characteristics or patterns as
between the recorded mput from both accelerometers.

[0082] The feature generation engine 211 can also be
configured to generate the same set of features for process-
ing through the models 117, 119. In some implementations,
the models 117, 119 are trained to process the same input
features. By generating the same set of features instead of
different sets for the different models 117, 119 the computing
device 110 can perform fewer operations overall and poten-
tially save on energy consumption of the battery.

[0083] In some implementations, some or all of the func-
tions described herein with reference to the feature genera-
tion engine 211 can be performed on one or more devices
that are coupled to the computing device 110. For example,
the second computing device 120 can be configured to
perform some or all of the processing of the sensor data to
generate features for processing by the models 117, 119. In
those 1implementations, the computational cost, such as the
number of operations, to sending the raw sensor data and
receiving the generated features can be weighed relative to
the number of operations required to process the sensor data
entirely on the computing device 110.

[0084] For example, the computing device 110 may con-
sume less energy through fewer operations by offloading
computation of the features to the second computing device
120 or another device. The diflerence in energy consumption
can also be balanced against the potential increase of latency
that can be itroduced by transmitting data to and from the
computing device 110, as opposed to processing the raw
sensor data enfirely on the computing device 110. For
example, the computing device 110 can be configured to
offload at least some computation if the relative number of
operations performed 1s lower and the increase 1n latency to
generate the output by the models 117, 119 does not exceed
a predetermined latency limut.

[0085] The architectures of the gating model 117 and the
main model 119 can vary from implementation-to-imple-
mentation. Generally, the gating model 117 will consume
less power than the main model 119 1n processing the sensor
input 116 to perform a machine learning task. This require-
ment can be achieved in a number of ways. The gating
model 117 can be implemented so as to require fewer
operations to process the sensor mput 116 as compared with
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the main model 119. Assuming each operation requires
relatively the same amount of power to perform on the
computing device 110, fewer operations can be directly
related to less power consumed. In some 1mplementations,
the number of operations 1s approximated or averaged over
a set of nput.

[0086] For example, 1f one or both of the models 117, 119
1s 1mplemented as a random forest model, then different
input can require different numbers of operations to perform.
For example, diflerent inputs may have different numbers of
operations, because leal nodes are at different depths relative
to each other in a component decision tree. In those cases,
the gating model 117 can be trained as a model that on
average performs fewer operations than the main model 119.
The model traimner 130 can specity different hyperparameter
values that can directly afiect the number of operations to
execute each of the models 117, 119. For example, the model
trainer can specily that the gating model 117 has fewer trees
than the main model 119, and/or specily that the maximum
or average depth of each tree i the gating model 117 1s
smaller on average as compared with the main model 119.

[0087] Insomeimplementations, power usage 1s measured
in other ways. For example, power usage can be measured
or approximated according to average runtime from input to
generated output. Power usage can also factor in power
usage of other components of the device 110 that operate as
part of processing input through the models 117, 119, e.g.,
the sensors 113.

[0088] One way to achieve fewer operations by the gating
model 117 1s to generate the gating model 117 as a subset of
the main model 119. For example, 1n some implementations
the gating model 117 and the main model 119 are neural
networks. The main model 119 can be a deep neural network
that includes one or more hidden layers in addition to an
iput layer and an output layer. The gating model 117, by
contrast, can be a shallow network that includes only the
input and output layer. Alternatively, the gating model 117
can include hidden layers, but fewer layers overall than the
main model 119.

[0089] The gating model 117 and the main model 119 can
be of two different machine learning architectures. For
example, the gating model 117 can be a random {forest
model, while the main model 119 i1s a deep neural network.
The models 117, 119 can also be trained to process diflerent
teatures generated by the feature generation engine 211. In
implementations i which the architectures of the models
117, 119 are different, the models 117, 119 can be trained to
perform a given machine learning task using the same set of
features generated by the feature generation engine 211. In
some i1mplementations the feature generation engine 211
formats the features differently as between the gating model
117 and the main model 119, depending on how the models
117, 119 are implemented. In general, any machine learning
architecture for classification can be used for one or both of
the models 117, 119, e.g., a Gaussian mixture model, or a
logistic regression model.

[0090] As another way to achieve fewer operations, the
multi-model system 115 can cause different sensors of the
sensors 113 to record sensor data when the device 110 1s 1n
operation. In some 1mplementations, the sensor mput 116
includes sensor data from a subset of the sensors 113, e.g.,
if the sensors 113 includes two voice accelerometers, only
one accelerometer may record sensor data. After the gating
model 117 processes the sensor mput 116 and generates an
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output responsive to the machine learning task, e.g., a
detected activity, the adaptive threshold engine 210 can
cause more of the sensors 113 to begin recording sensor
data. The {feature generation engine 211 can generate
enriched features for the main model 119 to process.
Because fewer sensors were 1n operation while the gating
model 117 was processing the sensor input 116, the gating
model 117 generally performs the machine learning task
with less energy consumed, even in implementations in
which the models 117, 119 may have the same architectures.

[0091] If the feature generation engine 211 generates a set
of features F, then 1n some 1implementations the models 117,
119 can be trained to perform the machine learning task
using the same features in F. In some implementations, the
feature generation engine 211 1s trained to process a subset
of the features 1n F. In some implementations, the feature
generation engine 211 generates different features for the
gating model 117 than for the main model 119.

[0092] However the feature generation engine 211 gener-
ates the features, the model trainer 130 1s configured to train
the models 117, 119 such that the gating model 117 requires
less power than the main model 119 at inference and meets
a minimum accuracy threshold. The model trainer 130 can
be implemented on one or more computers 1in one or more
physical locations. In general, the model trainer 130 1den-
tifies an architecture and inputs for the models 117, 119 and
trains the models 117, 119 1n accordance with the general
requirements that the gating model 117 consume less power
to process input but still meets the minmimum accuracy

threshold.

[0093] In some implementations, the model trainer 130
can also track different thresholds of performances for the
gating model 117 and the main model 119. The gating model
117 and the main model 119 can be trained according to a
variety ol machine learning training techniques by the model
trainer 130. The adaptive threshold engine 210 can use these
thresholds and a real-time reading of the remaining battery-
life of the computing device 110 to adjust at what threshold
ol performance the gating model 117 operates.

[0094] When the machine learning task is activity detec-
tion, the model trainer 130 can train the models 117, 119 on
a labeled dataset of voice recordings. Each recording can
include a variety of data-points and can come from the
sensors of the computing device 110 or other devices. The
recordings can be of fixed or variable length relative to one
another, e.g., 10 second clips. The recordings can be of
speech of different types and from different speakers, e.g.,
from men, women, or children. The recordings can also
capture audio from speakers performing different tasks, e.g.,
conversing, eating, exercising, or generally moving around.
The recordings can be labeled according to an activity
performed at the exclusion of another activity, e.g., drinking,
but not speaking. The recordings can also include noise,
such as sounds that are not indicative of any activity to be
detected, or sources of speech that are not from a speaker or
the user of a computing device, e.g., music. The recordings
can also include one or more commands spoken using a
command word.

[0095] A recording from a speaker over a period of time
can be divided into training data as a plurality of clips. The
clips can be hand-labeled with the corresponding activity to
be detected 1n the clip, although other techniques for label-
ing can be applied, such as recording-level annotation. For
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example, every clip from a recording may be given the same
label, or a separately trained model can be used to generate
the appropriate labels.

[0096] The feature generation engine 211 or another simi-
larly configured engine can process the training data to
generate a set of features. The model trainer 130 can train
cach of the gating models 117, 119 with different subsets of
features and evaluate the performance of the models 117,
119 for different inputs.

[0097] The model trainer 130 can parse and pass training
data to the models 117, 119 1n a manner similar to how the
computing device 110 can process data according to a
window size and a hop size, as described above with
reference to FIG. 1. Each portion of the training data within
a hop size of a sliding window can be an 1individual datapoint
for tramning the models 117, 119.

[0098] The models 117, 119 can be trained 1n accordance
with assumptions about the nature of the training data. For
example, 11 the training data includes traiming data repre-
senting speech, the models 117, 119 can be trained with
certain assumptions about the amount of time needed to
transition from a speaking to a non-speaking activity as
recorded by the training data. For a non-speech to speech
transition, there can exist at least one datapoint recording
speech that includes the transition at the end of the sliding
window between no speech and speech. For example, the
datapoint can exist between the beginming of the window
and towards the end of the window. Stmilarly, for speech to
non-speech transition 1n the traiming data, there can exist at
least one datapoint recording speech that includes the tran-
sition at the end of the sliding window between speech and
no speech. For example, the datapoint may be between the
beginning of the window and towards the end of the win-
dow.

[0099] The model tramner 130 can train the models 117,
119 according to any one of a variety of learning techniques,
such as a supervised learning technique. For example, 1n
implementations in which the models 117, 119 are neural
networks, the models 117, 119 can be trained according to a
supervised learning technique, such as by processing a
dataset of training examples representing sensor mput and
comparing output of the model 1n detecting activity against
a respective label for each training example.

[0100] The error between the predicted output and the
expected output can be a function of the difference between
the overall accuracy of the models 117, 119 as compared
with the expected output, e.g., using an appropriate loss
function such as Mean Square Error. The model trainer 130
can perform a technique such as backpropagation to com-
pute gradients of the loss function with respect to the
weights of the models 117, 119. Weights for the models 117,
119 can then be updated following gradient calculation, and
the process can be repeated for a period of time or until
arriving at a target accuracy threshold for the main model
119, and the minimum accuracy threshold for the gating

model 117.

[0101] The model trainer 130 can jointly train the models
117, 119, or train the models 117, 119 separately. The model
tramner 130 can use any of a variety of techniques for
generating the gating model 117 from the main model 119.
For example, the model trainer 130 can apply a knowledge
distillation technique for generating the gating model 117.
Knowledge distillation refers to a class of techniques for
training a smaller model, e.g., fewer operations and/or
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layers, to generate the output from a given input that
matches or closely approximates the output of a larger, more
complex, model.

[0102] The model tramer 130 can train the main model
119 and generate the gating model 117 from the main model
119. For example, the model trainer 130 can iteratively
prune layers or individual neurons of the main model 119
implemented as a deep neural network, to generate the
gating model 117. The model trainer 130 can continue
generating the gating model 117 1n this way until performing
a predetermined number of iterations, or until additional
iterations of pruning causes the gating model 117 to perform
below the mimmum accuracy threshold.

[0103] The model trainer 130 can also train the gating
model 117 by pruning features or sources of sensor data that
the feature generation engine 211 uses to generate features
for the gating model 117.

[0104] For example, the model trainer 130 can {irst train
the main model 119 to perform the machine learning task.
Then, the model tramner 130 can iteratively prune which
features are sent as mput to the main model 119, and
evaluate the model performance after pruming. In this way,
the model trainer 130 can identily candidate gating models.
The model trainer 130 can continue this process of pruning
and evaluation for a predetermined number of iterations, or
until model performance falls below the minimum accuracy
threshold. The candidate model at the end of this process that
still meets the minimum accuracy threshold can be set as the
gating model 117.

[0105] Similarly, the model trainer 130 can first train the
main model 119 to perform the machine learning task, and
prune sources of sensor data that make up the sensor input
116. For example, the model trainer 130 can train the main
model 119 on training data that includes sensor data from
two voice accelerometers of the sensors 113, and then train
the gating model 117 on training data that includes sensor
data from only one voice accelerometer of the sensors 113.
The model trainer 130 can continue this process of pruning
and evaluation for predetermined number of iterations, or
until model performance falls below the minimum accuracy

threshold.

[0106] In some implementations and as part of generating
the gating model 117, the model trainer 130 can evaluate the
performance of the gating model 117 through different
iterations. In doing so, the model trainer 130 can identify one
or more performance thresholds that can be used by the
adaptive threshold engine 210 for determining whether to
switch between the models 117, 119. During inference, the
gating model 117 can be configured to gate or not process
input using certain layers or neurons, depending on the
desired performance threshold. Because not processing
input through some layers or individual neurons means
fewer operations performed overall, the gating model 117
can require less energy to process

[0107] The model tramner 130 can also train the gating
model 117 to process features generated from sensor data
recorded from low-power sensors. As described above, in
some 1mplementations the computing device 110 can oper-
ate one or more of the sensors 113 1n a low-power mode. The
resulting sensor data from the low-power sensors can vary as
compared with sensor data collected during normal opera-
tion, but requires less energy from the battery of the com-
puting device overall to obtain.
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[0108] As described above, the model trainer 130 can
evaluate the models 117, 119, e.g., as part of training and to
determine whether the models 117, 119 meet or exceed the
minimum accuracy threshold, respectively. The training data
set as described above can be splht, e.g., 80-20, between
training data and data for evaluation. The model trainer 130
can evaluate the trained models 117, 119 using the evalua-
tion data. The model trainer 130 can evaluate the output,
e.g., evalnate whether the models accurately detected an
activity for a given 1nput, according to a variety of different
metrics.

[0109] One metric that the model trainer 130 can be

configured to use compares recall to false positives gener-
ated by the models 117, 119 over a period of time, e.g., an
hour. Recall generally refers to how often the model accurate
classifies input. Recall can be represented as:

# of true positives

(# ol true positives+# number ol Ialse negatives)

[0110] In other words, the recall of a model can represent
how often the model accurately detects an activity when an
activity 1s recorded 1n the sensor mnput (1.e., the number of
true positives) over the number of times the model output
indicates a true positive and the number of times the model
output indicates that an activity 1s not detected when 1n fact
an activity was recorded (1.e., the false negative). A recall of
0.5, for example, indicates that the model correctly detects
an activity half the time. In general, a model with higher
recall performs better than a model with lower recall.

[0111] The model tramner 130 can supplement evaluation
of the models 117, 119 using additional metrics, 1n addition

to the rate of recall. For example, the model trainer 130 can
evaluate the performance of the models 117, 119 according
to the false positive rate of output from the model. The false
positive rate can be given by:

# of false positives

(duration of negative data)

[0112] In other words, the false positive rate can represent
how often the models 117, 119 detect an activity when the
sensor mput does not record an activity, over a duration of
data not recording an activity. The duration can be measured
1in hours or minutes. For example, 1f the duration of negative
data 1s measured 1n hours, then the false positive rate of 6
indicates that the model incorrectly detects an activity 1n
negative data 6 times an hour (or once every ten minutes).
In general, a model with a lower false positive rate performs
better than a model with a higher false positive rate.

[0113] Another metric that the model trainer 130 can use,
in addition or as an alternative to recall and false positive
rate, 1s the receiver operating characteristic under curve
(ROC AUC). ROC AUC 1s a metric that can be used 1n
classification models, e.g., models that perform activity
detection, which measures the area (the AUC) under a graph
(the ROC) plotting a probability that an evaluated model
will perform with a given recall and false posifive rate. In
general, models whose output forms a larger AUC when the
corresponding ROC 1s graph performs better than a model

with a smaller AUC.
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[0114] The model trainer 130 can evaluate the models 117,
119 after training and before the models 117, 119 are loaded
into memory of a computing device. The model trainer 130
can evaluate the models 117, 119 according to one or more
metrics, e.g., the metrics described above, alone or in
combination. The model trainer 130 can evaluate the models
117, 119 by combining recall with false positive rate. For
example, the model trainer 130 can evaluate the gating
model 117, represented as recall @ false positive rate, e.g.,
0.5 @6 representing that the gating model 117 has a recall of
0.5 and a false positive rate of 6.

[0115] The minimum accuracy threshold, as described
above, can be represented as a combination of different
metrics, e.g., a mimmum recall and false positive rate. The
gating model 117 1s trained to meet the minimum accuracy
threshold and the main model 119 1s trained to meet or
exceed the minimum accuracy threshold.

[0116] The model trainer 130 can evaluate different imple-
mentations of the models 117, 119 that can perform better or
worse under different metrics. For example, the model
trainer 130 can train the gating model 117 that performs at
a higher recall at the cost of a potentially higher false
positive rate. Depending on the use case, models that have
a lower recall but lower false positive rate may be preferred
over models that have a higher recall but at the cost of a
higher false positive rate. For example, i1f the machine
learning task 1s speech detection for 1dentifying whether the
user 100 1s speaking a command, a higher or lower false
positive rate relative to recall may be preferred to manage
USer experience.

[0117] The model trainer 130 can evaluate the relative
power savings for different evaluated accuracies relative
power savings between the gating model and the main
model. One way the model tramner 130 can represent the
power savings 1s:

with gating model: (%05 (RGar * Pasar) +

{ no gating model: 1.0% Pyqy
(%neg x FPRGyr = Pyryr) + (10 % P )

[0118] where P,,,, 1s the power usage of the main model,
P.-.,1s the power usage of the gating model, e.g., estimated
according to number of operations, R ,, 1s the recall of the
gating model, FPR-,, 1s the false positive rate of the gating
model, %, 1s the proportion of time that is positive, 1.e., the
proportion of time an activity 1s occurring, and % ,,, 1s the
proportion of time that 1s negative, 1.e., the proportion of
time activity 1s not occurring. The model trainer 130 can
approximate % ,,; and % ,,., for different potential use cases,
for example when the computing device 110 1s expected to
be operated 1n a noisy environment.

[0119] FIG. 3 shows a chart 300 1llustrating the relation-
ship between power consumption and model accuracy 1n an
implementation of the multi-model system. The y-axis 301
tracks max drop 1n recall relative to the recall of the main
model 119. The x-axis 302 tracks power savings compared
to not operating the gating model 117 at all during inference.
Applying the formula above with % ,,=10% and %
nee=20%, 1., a predicted average activity rate of 10%
versus no activity rate at 90% during operation of the
computing device 110, curve 320 shows power savings
measured according to power usage measured by runtime,

while curve 330 measures power savings according power
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usage measured by number of operations. Line 310 can
represent the minimum accuracy threshold, here approxi-
mately 1% lower than the recall rate of the main model 119.
As shown 1n the chart 300, the multi-model system 115 can
realize a larger overall savings 1n power consumption rela-
tive to operating the main model 119 during inference. At the
same time, the drop 1n recall can be relatively low and can

be so low as to be imperceptible to a user during operation
of the device 110.

[0120] Note that the chart 300 represents an upper bound
of loss 1n recall as between operating the models 117, 119 as
described above, versus operating only the main model 119.
In some implementations, for example, false negative results
by the gating model 117 may also be false negative results
by the main model 119 given the same sensor mput. In that
case, there would not be a drop 1n recall because the models
117, 119 operate 1n the same way 1n that situation.

[0121] In some cases, the overall accuracy of the models
117, 119 together can be better than the individual accuracies
of the models 117, 119, alone. For example, some 1nput
processed by the gating model may be processed as a true
negative, e.g., correctly predicting no activity, where the
main model 119 might have predicted a false positive for the
same 1nput.

[0122] The model tramner 130 can train the models 117,
119 to meet or exceed at performing complementary
machine learning tasks. In other words, the gating model 117
can be trained to perform at a relatively higher accuracy than
the main model 119 under some use cases, €.g., in detecting,
speech when the user 100 1s making a sound but 1s not
speaking. The gating model 117 can be trained to perform
better for particular use cases that for example are more
common than others. In some implementations, the main
model 119 can continue processing the sensor input 116 after
the model 117 detects a particular use-case suited activity,
and can rely on the imitial output from the model 117 as
opposed to re-processing the sensor mput 116 in the same
sliding window.

[0123] In some implementations, the gating model 117 1s
configured to perform a broader machine learning task, such
as speech detection, while the main model 119 1s configured
to perform a more specific machine learming task, such as
identifying specific words and/or phrases spoken by the user
100. In these implementations, the model tramner 130 can
train the models 117, 119 on different traiming data. As an
example, the model trainer 130 can train the gating model
117 using training data labeled only for the presence or
absence of speech. The model trainer 130 can train the main
model 119 on tramning data that can be labeled with the
actual words or phrases spoken 1n each training example.

[0124] In some implementations, the choice of training
data for either of the models 117, 119 can depend on a
relative tolerance for false positives i the models 117, 119
performing a respective machine learning task. For example,
the model tramner 130 can train the gating model 117 to
perform a machine learning task in which the training data
1s not as strongly labeled as training data for another task. An
example of this can be training data labeled by the presence/
absence of speech versus tramning data labeled with the
presence/absence of specific hotwords or hotphrases for a
model to detect. The former can include more false posi-
tives, for example training examples labeled as speech but
not actually indicative of speech. In this situation, the model
tramner 130 can train the gating model 117 for speech
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detection, as false positives may be more tolerated in the
gating model 117 than 1n the main model 119.

[0125] To adjust the relative performance of the models
117, 119 for different use cases, the model trainer 130 can be
configured to provide additional training examples as part of
training to one model as compared with the other. For
example, the gating model 117 can be tramned on more
training examples of the user 100 coughing versus speaking
or performing an activity that requires additional processing
by the main model 119.

[0126] As another example for adjusting the relative per-
formance of the models 117, 119 for different use cases, the
model trainer 130 can be configured to increase the weights
or modily the loss function used by the model trainer 130 for
either of the models 117, 119 when training the models 117,
119 with training examples representative of a particular use
case.

[0127] In some implementations, the model trainer 130
can estimate the latency between the multi-model system
115 receiving input and generating an output. For example,
in the case of speech to non-speech transition (or vice versa)
in training data, a model with high recall 1s likely to have a
latency between 150-350 milliseconds, for example 1t the
average transitionary datapoint includes 150-350 millisec-
onds of speech, followed by 4350-770 milliseconds of no
speech 1n a 900 millisecond window. In other words, the
learned behavior of the models 117, 119 1n how long to listen
to a datapoint to 1dentify a change 1n activity can be used to
measure the latency for the models 117, 119 to process the
input, at least because a highly accurate model can wait for
the transition between speech to non-speech to occur before
generating an output.

[0128] Model power consumption can be measured 1n a
variety of ways. In one approach, the model training engine
1s configured to obtain an average number of operations per
input processed by the main model. In some implementa-
tions, e.g., when the gating model 1s a neural network, the
number of operations per input will be the same. The model
training engine can determine an average number of opera-
tions according to a median number of operations run on a
test or training dataset.

[0129] FIG. 4 1s a tlowchart of an example process 400 for
detecting activity on a computing device. The process 400 1s
described as being performed by a computing device having
a battery, one or more processors, and one or more storage
devices located in one or more physical locations and
programmed 1n accordance with aspects of this disclosure.
For example, the computing device 110 implementing the
multi-model system 115, appropriately programmed, can
perform the process 400. The process 400 can be performed
in different orders, with additional steps added or some steps
as shown 1n the process 400 removed.

[0130] The computing device obtains 410 {first sensor
input from one or more sensors of a plurality of sensors. The
first sensor input can include sensor data collected from all
or some ol the sensors communicatively coupled to the
computing device. As described above with reference to
FIGS. 1-2, the models 117, 119 can be trained to process data
from different combinations of sensors.

[0131] The computing device determines 420, based on
the remaining-battery life, whether to process the sensor
input through a first machine learning model or a second
machine learning model implemented on the computing
device. The first machine learning model can be the gating
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model, and the second machine learning model can be the
main model. The determination can be made using the
adaptive threshold engine of the multi-model system 115. As
described above with reference to FIG. 2, the adaptive
threshold engine can be configured to automatically select
the gating model for processing the input, when the com-
puting device 1s operating in a resource-constrained mode,
¢.g., when the computing device 1s relying on the battery
instead of an external source of power.

[0132] In some implementations, the adaptive threshold
engine processes the sensor mput through the gating model
whenever the current battery-life 1s below some predeter-
mined threshold or thresholds, e.g., 99%, 50%, 25%. Also 1n
some 1mplementations and as described above with refer-
ence to FIG. 2, the adaptive threshold engine can adaptively
switch which of the gating or main models processes the
sensor input, based on different configurations for the
engine.

[0133] If the computing device determines 420 not to
process input through the first machine learning model, then
the computing device processes 430 input through the
second machine learning model. The computing device may
determine not to process mput through the first machine
learning model and process directly by the second machine
learning model 11 the computing device 1s not operating in a
resource-constrained mode.

[0134] If the computing device determines 430 to process
input through the first machine learning model, the device
processes 430 the input and determines 440 whether activity
was detected. The determination 440 can change from
implementation-to-implementation depending on the spe-
cific machine learning task the first and second machine
learning models are trained to perform.

[0135] If the computing device determines 440 that activ-
ity was not detected, the process 500 ends. The process 500
can repeat for new sensor input, e.g., data from an input
stream of sensor data further along 1n a sliding window.

[0136] If the computing device determines 450 that activ-
ity was detected, the computing device processes 450 1mput
through the second machine learning model. As described
above with reference to FIGS. 1-2, input to the second
machine learning model processes can be the same or
different mput than the first machine learning model. Simi-
larly, the features processed by the second machine learning
model can be different than the features processed by the
first machine learning model, and the sensor data from
which the features were generated can also be different
between the processing 430 and the processing 450.

[0137] FIG. 5 1s a tlowchart of an example process 300 for
adapting the processing of mnput data through the gating or
main model of a multi-model system. The process 500 1s
described as being performed by a computing device having
a battery, one or more processors, and one or more storage
devices located in one or more physical locations and
programmed 1n accordance with aspects of this disclosure.
For example, the computing device 110 implementing the
multi-model system 115, appropriately programmed, can
perform the process 500. The process 500 can be performed
in different orders, with additional steps added or some steps
as shown 1n the process 500 removed.

[0138] The computing device receives 510 one or more
performance thresholds corresponding to an average mea-
sure of performance for the first machine learming model
operating under respective one or more conditions. Each
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performance threshold 1s equal to or greater than the mini-
mum accuracy threshold. If there 1s only one performance
threshold, then the performance threshold can be the mini-
mum accuracy threshold. As described above with reference
to FIGS. 1-2, the model trainer as part of training and
evaluating the gating model, can generate the one or more
performance thresholds. The model tramner can also send
data representing the conditions 1n which the gating model
performs at the different performance thresholds, e.g., using
tewer features, or features generated from sensor data from
a subset of the sensors 113, or sensors operating at different
power levels.

[0139] The device can process the gating model at one of
the performance thresholds, by operating the gating model
under the conditions corresponding to performance at the
performance threshold.

[0140] The device determines 515 whether the device
received only one performance threshold. If ves, then the
process 500 ends. Otherwise, the device receives 520 a
current battery-life indicating a change in available energy.
The device determines 330 whether to change the perfor-
mance threshold at which the gating model processes the
sensor mput. As described above with reference to FIG. 1,
the device may determine that the gating model process
input at a different performance threshold corresponding to
more or less energy consumption by the gating model. For
example, 11 the current battery-life falls below 50%, then the
device can change the performance threshold at which the
gating model operates to allow for more resource eflicient
processing at the cost of accuracy relative to a previous
performance threshold.

[0141] Ifthe device determines to change the performance
threshold, then the device operates 540 the first machine
learning model under conditions of the new performance
threshold. For example, 11 the new performance threshold 1s
achieved by processing fewer features through the gating
model, then the computing device 1s configured to process
fewer features through the gating model to generate an
output, reducing resource consumption, 1.€., by fewer opera-
tions required to generate the features, while maintaining
accuracy at the new performance threshold.

[0142] Particular implementations of the subject matter
described in this specification can be implemented so as to
realize one or more of the following advantages. A system
can automatically switch between a more energy eflicient
gating model and a corresponding main model to yield
improved usage ol remaining power for a resource-con-
strained computing device. The system can sacrifice a rela-
tively imperceptible amount of accuracy in performing a
given machine learming task and use substantially less
energy by adaptively processing mnput through the gating
model. The improved resource usage can be realized through
overall fewer operations performed, including reads or
writes to memory, as well as operations performed as part of
processing input through the main model, which 1s generally
more accurate than the gating model, but at a higher com-
putational cost.

[0143] In addition and innovatively, the system can
achieve improved resource utilization despite implementing
multiple models each with their own set of operations to be
performed in an already resource-constrained environment.
The computing device can benefit from 1mproved resource
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utilization by being able to perform a variety of tasks (and
not just the task the system 1s trained to perform) over the
life-time of the device.

[0144] The system can adaptively adjust to different per-
formance thresholds that continue to meet an accuracy
threshold, 1 response to remaining battery-life on the
resource-constrained device. In some cases, the overall
accuracy of the system can be improved, at least because the
gating model and the main model are trained to prioritize
performing different sub-tasks related to a common machine
learning task. For example, in the context of a machine
learning task for detecting activity, the gating model can be
trained to more accurately detect certain types of activity
over the main model, allowing the main model to be trained
to focus on detecting other types of activity that may be
more computationally expensive to identify but occur less
frequently.

[0145] Because the gating model and the main model can
be trained to hit different accuracy targets, implementation
of the system 1s flexible to different machine learning
techniques and architectures as between the gating and main
model. Or, 1n some cases energy usage can be Iurther
improved by implementing the gating model as a subset of
the main model, allowing the models to share weights which
can potentially result in less overall data to access and
process on the computing device. This flexibility can also
make implementing the techniques described 1n this speci-
fication possible and eflicient for resource-constrained wear-
able devices, such as watches, wireless headsets, or wireless
carbuds.

[0146] The system can selectively receive input from
different sensors implemented on a computing device, which
can further reduce resource utilization. For example, the
gating model can be trained to process input from a subset
of all available sensors on a device, or from one or more of
the devices operating at a reduced power level. When the
gating model generates an output, e.g., detecting activity by
a user, the system can invoke the main model with a richer
suite ol available sensors, or with sensors operating at a
higher (and potentially more sensitive and accurate) power
level.

[0147] The techniques described 1n this specification can
also allow for improved privacy and data integrity, at least
because signals do not have to be sent from the computing,
device to another device, e.g., a mobile device, laptop, or
server. Machine learning tasks that are conventionally per-
formed by remote devices can instead be performed by the
computing device implementing the system described in this
specification, and can allow for mitigation of data traflic
congestion to and from the computing device, which can
additionally improve overall performance by consuming
less power needed for short- and long-range communication.

[0148] In this specification the phrase “configured to™ 1s
used 1n different contexts related to computer systems,
hardware, or part ol a computer program. When a system 1s
said to be configured to perform one or more operations, this
means that the system has appropriate software, firmware,
and/or hardware 1installed on the system that, when 1n
operation, causes the system to perform the one or more
operations. When some hardware 1s said to be configured to
perform one or more operations, this means that the hard-
ware includes one or more circuits that, when in operation,
receive mput and generates output according to the input and
corresponding to the one or more operations. When a
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computer program 1s said to be configured to perform one or
more operations, this means that the computer program
includes one or more program instructions, that when
executed by one or more computers, causes the one or more
computers to perform the one or more operations.

[0149] A computer program can be written 1n any type of
programming language, and according to any programming
paradigm, e.g., declarative, procedural, assembly, object
oriented, data-oriented, functional, or imperative. A com-
puter program can be written to perform one or more
different functions and to operate within a computing envi-
ronment, €.g., on a physical device, virtual machine, or
across multiple devices. A computer program can also
implement functionality described in this specification as
performed by a system, engine, module, or model. In some
implementations, aspects of this disclosure are implemented
on one or more computer-readable storage media encoded
with computer program mstructions that cause a computing
device to perform operations for activity detection with
multi-modal sensing.

[0150] Unless otherwise stated, the foregoing alternative
examples are not mutually exclusive, but may be 1mple-
mented 1 various combinations to achieve unique advan-
tages. As these and other variations and combinations of the
features discussed above can be utilized without departing
from the subject matter defined by the claims, the foregoing
description of the embodiments should be taken by way of
illustration rather than by way of limitation of the subject
matter defined by the claims. In addition, the provision of the
examples described herein, as well as clauses phrased as
“such as,” “including™ and the like, should not be interpreted
as limiting the subject matter of the claims to the specific
examples; rather, the examples are intended to illustrate only
one ol many possible embodiments. Further, the same
reference numbers 1n different drawings can i1dentify the

same or similar elements.

What 1s claimed 1s:

1. A computing device comprising one or more processors
configured to:

receive an nput;
determine whether the device i1s operating 1n a resource-
constrained mode; and

determine, based on at least the determination of whether
the device 1s operating 1n a resource-constrained mode,
whether to process the mput using a first machine
learning model or a second machine learning model,

the first machine learning model trained to generate, from
the mput, a first output with an average accuracy
meeting a minimum accuracy threshold, and

the second machine learning model trained to generate,
from the 1nput, a second output with an average accu-
racy exceeding the minimum accuracy threshold.

2. The computing device of claim 1, wherein the one or
more processors are further configured to, when the first
machine learning model predicts that a primary input
recorded an activity, process a secondary mput through the
second machine learning model to generate the second
output predicting whether the secondary mput recorded the
activity.

3. The computing device of claim 1, wherein the first
machine learning model requires fewer operations to process
the input than the second machine learning model requires
to process the input.
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4. The computing device of claim 1, wherein the deter-
mination of whether to use the first machine learning model
or the second machine learning model 1s based at least 1n
part on how each machine learning model affects a resource
of the device.
5. The computing device of claim 2 further comprising
one or more sensors, wherein:
the primary 1nput 1s obtained from a first sensor of the one
Oor more sensors operating at a first power level; and

the secondary input 1s at least partially obtained from the
first sensor operating at a second power level higher
than the first power level.

6. The computing device of claim 1, wherein the com-
puting device further comprises a display, and wherein the
one or more processors are further configured to determine,
from the second output, that the second machine learning
model predicted that the input recorded an activity, and in
response generate and transmit a third output to the display.

7. The computing device of claim 1 further comprising
one or more sensors, wherein:

the first machine learning model and the second machine

learning model are trained to perform a machine learn-
ing task, wherein the machine learning task comprises
detecting a plurality of types of activities recorded by
at least one sensor of the one or more sensors; and
the second machine learning model 1s trained to detect at
least one type of the plurality of types with an average
accuracy greater than the first machine learning model.

8. The computing device of claim 1, wherein the com-
puting device further comprises a battery, and the one or
more processors are further configured to:

receive a current battery-life of the battery indicating a

change 1n available energy stored in the battery; and

determine to process the mput through the first machine
learning model:
at a first frequency 1n response to the current battery-
life indicating a change 1n more available energy
stored 1n the battery; and
at a second frequency in response to the current battery-
life indicating a change i1n less available energy
stored 1n the battery, wherein the first frequency 1s
greater than the second frequency.
9. The computing device of claim 1, wherein the com-
puting device further comprises a battery, and the one or
more processors are further configured to:
receive one or more performance thresholds correspond-
ing to an average measure of performance for the first
machine learning model under respective one or more
conditions and that are equal to or greater than a
minimum average threshold;
receive a current battery-life of the battery indicating a
change 1n available energy stored in the battery;

determine, based at least on the current battery-life,
whether to cause the first machine learning model to
perform at a level of performance meeting a pertor-
mance threshold of the one or more performance
thresholds; and

in response to the determination to cause the first machine

learning model to perform at the level of performance,
cause the first machine learning model to operate under
respective one or more conditions for the performance
threshold.

10. The computing device of claim 1, wherein the first and
the second machine learning models are neural networks,
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the second machine learning model having a first plurality of
layers, and the first machine learning model having a second
plurality of layers that 1s a subset of the first plurality of
layers.

11. The computing device of claim 1, wherein the first
machine learning model 1s of a different model architecture
than the second machine learning model.

12. A method comprising:

determiming whether a computing device 1s operating 1n a

resource-constrained mode; and
determining, based on at least the determination of
whether the computing device 1s operating in a
resource-constrained mode, whether to process an input
through a first machine learning model or a second
machine learning model, wherein:
the first and second machine learning models are imple-
mented by a computing device;
the first machine learning model 1s traimned to generate,
from the mput, a first output with an average accu-
racy meeting a mimimum accuracy threshold; and
the second machine learning model 1s trained to gen-
erate, from the mput, a second output with an aver-
age accuracy exceeding the minimum accuracy
threshold.
13. The method of claim 12, further comprising:
processing a secondary input through the second machine
learning model when the first machine learning model
predicts that a primary input recorded an activity; and

generating the second output predicting whether the sec-
ondary 1put recorded the activity.

14. The method of claim 12, wherein the first machine
learning model requires fewer operations to process the
input than the second machine learning model requires to
process the nput.

15. The method of claim 12, wherein the determination of
whether to use the first machine learning model or the
second machine learning model 1s based at least in part on
how each machine learning model aflects a resource of a
computing device.

16. The method of claim 13, wherein:

obtaining the primary input comprises obtaining sensor

mput from a first sensor of one or more sensors
operating at a first power level; and

the secondary 1nput 1s at least partially obtained by the

first sensor operating at a second power level higher
than the first power level.

17. The method of claim 12, wherein the method further
comprises determining, from the second output, that the
second machine learning model predicted that the input
recorded an activity, and 1n response generating and trans-
mitting a third output to a display of a computing device.

18. The method of claim 12, wherein determining to
process the mput through the first machine learning model
COmprises:

recerving a current battery-life of a battery of a computing

device, the current battery-life indicating a change 1n

available energy stored in the battery; and

determiming to process the mput through the first machine

learning model:

at a first frequency 1n response to the current battery-
life indicating a change in more available energy
stored 1n the battery; and

at a second frequency 1n response to the current battery-
life indicating a change i1n less available energy
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stored 1n the battery, wherein the first frequency 1s
greater than the second frequency.

19. The method of claim 12, wherein determining to
process the mput through the first machine learning model
COmMprises:

receiving one or more performance thresholds corre-

sponding to an average measure of performance for the
first machine learning model under respective one or
more conditions and that are equal to or greater than a
minimum average threshold;

receiving a current battery-life of a battery of a computing

device, the current battery-life indicating a change 1n
available energy stored in the battery;

determining, based at least on the current battery-life,

whether to cause the first machine learning model to
perform at a level of performance meeting a perfor-
mance threshold of the one or more performance
thresholds; and

in response to determining to cause the first machine

learning model to perform at the level of performance,
causing the first machine learning model to operate
under respective one or more conditions for the per-
formance threshold.
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20. One or more non-transitory computer-readable media
storing instructions that, when executed by one or more

processors of a computing device, causes the one or more
processors to perform operations comprising:

determining whether the computing device 1s operating 1in
a resource-constrained mode; and

determining, based on at least the determination of
whether the computing device 1s operating 1 a
resource-constrained mode, whether to process an input
through a first machine learning model or a second
machine learning model, wherein:

the first and second machine learning models are 1imple-
mented by the computing device;

first machine learning model 1s trained to generate a
first output with an average accuracy meeting a
minimum accuracy threshold; and

the second machine learning model 1s trained to gen-
erate a second output with an average accuracy
exceeding the minimum accuracy threshold.
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