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(57) ABSTRACT

A method, apparatus and system including the execution of
an accelerated optimization method. According to an exem-
plary embodiment, the accelerated optimization method
includes: first-order optimality conditions for a generic
nonlinear optimization problem are generated as part of the
terminal transversality conditions of an optimal control
problem. It 1s shown that the Lagrangian of the optimization
problem 1s connected to the Hamiltonian of the optimal
control problem via a zero-Hamiltonian, infinite-order, sin-
gular arc. The necessary conditions for the singular optimal
control problem are used to produce an auxiliary control-
lable dynamical system whose trajectories generate algo-
rithm primitives for the optimization problem. A three-step
iterative map for a generic algorithm 1s designed by a
semi-discretization step. Neither the feedback control law
nor the differential equation governing the algorithm need be
derived explicitly. A search direction 1s produced by a
proximal-aiming-type method that dissipates a control
Lyapunov function. New step size procedures based on
minimizing control Lyapunov functions along a search vec-
tor complete the design of the accelerated optimization

algorithms.
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METHOD AND APPARATUS FOR
ACCELERATED OPTIMIZATION

CROSS REFERENCE TO RELATED PATENT(S)
AND APPLICATION(S)

[0001] This application claims the benefit of U.S. Provi-
sional Application No. 63/306,356, filed Feb. 3, 2022, and
entitled Method and Apparatus for Accelerated Optimiza-
tion, which 1s hereby incorporated 1n 1ts enfirety by refer-
ence.

BACKGROUND

[0002] Many industries and their applications need to
solve optimization problems to find the best solution, con-
figuration, schedule, operating point, classification and/or
regression from a set of all feasible solutions. In many
instances, feasible solutions are constrained by linear and/or
nonlinear equations, meaning that only certain solutions are
admissible.

[0003] A generic, constrained, nonlinear optimization
problem can be expressed mathematically as:

Minimize £(x/)
W yecmts

where E 1s an objective function, and C 1s a linear and/or
nonlinear constraint set. A specific example from the field of
machine learning 1s found in deep networks:

1
Minimize —Z: loss(zi, )
H —

Subject to Zg} = ﬁ(zg_l), é‘f)
-1 -2
zy 7= foal(z 7, 0e)
1
) = fila, 01).

[0004] In the above, the loss function 1s typically the
squared error between the predicted output z, and the
target output y,. Other loss functions are also possible. The
constraints represent the forward flow equations through the
network and are the parameters to be determined by opti-
mization. Normally a gradient descent or gradient descent
with momentum 1s employed. A challenge 1n using a con-
ventional gradient descent-based approach i1s that the num-
ber of iterations of the gradient descent algorithm 1s typi-
cally quite large before an optimal point 1s reached.
Consequently, the optimization process can take an unde-
sirable length of time to perform.

[0005] This disclosure, and the exemplary embodiments
described herein, describe methods and systems for accel-
erated optimization. The implementation described herein 1s
related to systems and methods for implementation 1n vari-
ous constrained, nonlinear optimization problems, however
it 1s to be understood that the scope of this disclosure 1s not
limited to such application.

INCORPORATION BY REFERENCE

[0006] The following publications are incorporated by
reference 1n their entirety.
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BRIEF DESCRIPTION

[0038] In accordance with one exemplary embodiment of
the present disclosure, disclosed 1s a method for processing
digital representations of a group of objects and 1dentifying
within the group of objects a target object, the method
including the execution of an accelerated optimization
method to 1denfify the target object within the digital rep-
resentations of the group of objects , the accelerated optfi-
mization method comprising:

[0039] a) auser choosing a CLF V convergence condition;
b) 1mitializing the accelerated optimization method
according to:

L =3.L (1, L° X9, s%=e (") and setting k=0;
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[0040] c¢) computing V. =V (z (k)); d) while stopping
conditions are not met do; d1) generate {(k); d2) compute
h.”; d3) advance to (z(k+1), x(k+1)) using h,”; d4) com-
pute V,, ,=V(z(k+1)); d5) while V_,_, has not decreased
sufficiently do; d4a) backtrack (z(k+1), x(k+1)) along
C(k); recompute V_ _,; d6) end while; and d7) update
k«k+1; and e) end while.

[0041] In accordance with another exemplary embodiment
of the present disclosure, disclosed 1s a method for modeling
a device or process to generate a model based on a group of
digital representations of the device or process characteris-
fics, the method including the execution of an accelerated
optimization method to classify the digital representations of
the device or process associlated with each digital represen-
tation, the accelerated optimization method comprising: a) a
user choosing a CLF V convergence condition; b) 1nitializ-
ing the accelerated optimization method according to: A _°—
d.L (1, .7, x°), s’=e(x"”) and setting k=0; c) computing

V . =V(z(k)); d) while stopping conditions are not met do; d1)
generate {(k); d2) compute h,%; d3) advance to (z(k+1),
x(k+1)) using h,”; d4) compute V,_,=V(z(k+1)); d5) while
V.., has not decreased sufficiently do; d4a) backtrack (z(k+
1), x(k+1)) along {(k); recompute V,_,; d6) end while; and
d7) update k<—k+1; and e) end while.

[0042] In accordance with another exemplary embodiment
of the present disclosure, disclosed 1s an apparatus for
processing digital representations of a group of objects and
identifying within the group of objects a target object, the
apparatus including the execution of an accelerated optimi-
zation method to 1dentify the target object within the digital
representations of the group of objects , the accelerated
optimization method comprising: a) a user choosing a CLF
V convergence condition; b) mitializing the accelerated
Optlmlzatmn method according to: A °=—3.L(1, A.°, x°),
s=e(x") and setting k=0; ¢) computing V,=V(z(k)); d) while
stopping conditions are not met do; d1) generate (;(k); d2)
compute h,"; d3) advance to (z(k+1), x(k+1)) using h,”; d4)
compute V..=V(z(k+1)); d5) while V_, , has not decreased
sufficiently do; d4a) backtrack (z(k+1), x(k+1)) along C(k):
recompute V, ,; d6) end while; and d7) update k¢—k+1; and
e) end while.

[0043] In accordance with another exemplary embodiment
of the present disclosure, disclosed 1s a method for accel-
erating optimization, the method comprising: selecting a
control Lyapunov function (CLF) and associated parameters
for an optimization problem; generate an algorithm to solve
the optimization problem according to A,.°=3 L (1, A.°, x°),
s"=e(x"), where k is set to O; until stopping conditions are
reached: generating ((k) by solving the optimization prob-

lem; computing h,” using at least one of a group consisting
of

Myk) = 4 WM (x = b
1(K) = 1, BL + hp My (K)x = by,
k

FE _E{QF;C =LV (%)
ffon 2V
and
ferit — V(Zk) .
¢ —LV(zk)
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advancing to z(k+1), x(k+1)) using a three-step iterative map
and h,”; computing V.. =V (z (k+1)); until V,_, has
decreased to a target threshold, backtracking (z(k+1), x(k+
1)) along C(k) and recomputing V__ ,; and incrementing k to
the next step.

BRIEF DESCRIPTION OF THE DRAWINGS

[0044] For a more complete understanding of the present
disclosure, reference 1s now made to the following descrip-
tions taken 1n conjunction with the accompanying drawings.
[0045] FIG. 1 1s a diagram of an example artificial intel-
ligence/machine learning method/system for the classifica-
tion of a body of 1mages, the classification process using an
accelerated optimization method/system according to an
exemplary embodiment of this disclosure.

[0046] FIG. 2 1s a diagram of an example artificial intel-
ligence/machine learning method/system application for the
building of a model of a physical process from historical
data, the model building process using an accelerated opti-
mization method/system according to an exemplary embodi-
ment of this disclosure.

[0047] FIG. 3 shows six 1terations of a gradient algorithm
based on Algorithm 5.1, 1.e., Accelerated Optimization,
according to an exemplary embodiment of this disclosure.

[0048] FIG. 4 shows six iterations of a standard gradient
algorithm, without the use of Accelerated Optimization as
disclosed herein.

[0049] FIG. 5 shows twelve 1terations of a standard gra-
dient algorithm, without the use of Accelerated Optimization
as disclosed herein.

[0050] FIG. 6 shows eighteen iterations of a standard

gradient algorithm, without the use of Accelerated Optimi-
zation as disclosed herein.

DETAILED DESCRIPTION

[0051] This disclosure and exemplary embodiments
described herein provide accelerated optimization for con-
strained, nonlinear optimization problems. The methods,
apparatus, systems disclosed herein can be implemented 1n,
for example, executable machine code and/or integrated
circuit hardware. By acceleration, 1t 1s meant that an optimal
point can be reached 1n a fewer number of 1terations (viz. in
a shorter length of time) than by using an optimization
scheme that exists as part of the prior art.

[0052] The details of this disclosure, and the exemplary
accelerated optimization embodiments provided, are
described below where the main steps include:

Algorithm 5.1 Main

Choose a CLF V and the parameters associated with Problem (P)

Or
(P*)(cf. (3.12) and (3.14))

Initialize the algorithm according to: A._° = =3, L(1, A.°, x9), s° =
e(x").
Set k = 0.
Compute V, = V(z(k))
while stopping conditions are not met do
Generate C(k) by solving Problem (P*)( or (P))
Compute h,” using any one of (5.6), (5.7) or (5.9)
Advance to (z(k + 1), x(k + 1)) using (5.2) and h,°
Compute V,, , = V(z(k + 1))
while V., , has not decreased sufliciently do
Backtrack (z(k + 1), x(k + 1)) along T(k); recompute V,, ,
end while
Update k <= k + 1

end while
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[0053] To further illustrate the advantage of the acceler-
ated optimization method disclosed herein, suppose it 1s
necessary to solve the following problem:

Minimize E=V%x b 1" 248%x 272

where (x1, x2) are the variable to be optimized. FIG. 3
shows 6 intermediate steps of the presently disclosed accel-
erated optimization method, where 6 1terations of a gradient
algorithm are based on Algorithm 5.1. At the end of the sixth
intermediate step the accelerated optimization 1s very close
to the optimal point at (0,0). The first six intermediate steps
ol a prior art gradient method are shown 1 FIG. 4. Twelve
iterations of a standard prior art gradient algorithm are
shown 1n FIG. 5. As shown in FIG. 6, eighteen steps of a
prior art gradient method are needed to reach an optimal
pomnt of (0,0). As shown i FIGS. 3-6, the method and
apparatus for accelerated optimization disclosed herein can
be used to advantageously reduce the number of iterations
needed to solve a generic, constrained, nonlinear optimiza-
tion problem.

[0054] As will be further described 1n further detail herein,

to achieve accelerated optimization: the first-order optimal-
ity conditions for a generic nonlinear optimization problem
are generated as part of the terminal transversality condi-
tions of an optimal control problem. It 1s shown that the
Lagrangian of the optimization problem 1s connected to the
Hamiltonian of the optimal control problem via a zero-
Hamiltonian, infinite-order, singular arc. The necessary con-
ditions for the singular optimal control problem are used to
produce an auxiliary controllable dynamical system whose
trajectories generate algorithm primitives for the optimiza-
tion problem. A three-step iterative map for a generic
algorithm 1s designed by a semi-discretization step. Neither
the feedback control law nor the differential equation gov-
erning the algorithm need be derived explicitly. A search
direction 1s produced by a proximal-aiming-type method
that dissipates a control Lyapunov function. New step size
procedures based on minimizing control Lyapunov func-
tions along a search vector complete the design of the
accelerated algorithms.

[0055] With reference to FIG. 1, i1llustrated 1s an exem-
plary artificial intelligence/machine learning related to clas-
sification of 1mages which provides one application of the
accelerate optimization method disclosed herein. Other
application examples are possible. In the example 1llus-
trated, a machine learning process 1s used for classifying an
input 1image as containing benign or malignant cells. In this
application, a convolutional neural network 1s used to pro-
cess the 1mage pixels via a data transformation process
involving convolution, maxpooling, flattening and softmax
activation 1n order to predict, with a certain level of accu-
racy, whether the input 1image contains benign or malignant
cells. In conventional practice, accuracy of the prediction 1s
generally not 100%.

[0056] The accuracy of the prediction can be determined
by comparing the output of the machine learning process
against ground truth data. This allows an error (also known
as loss) to be computed over a given data set. For example,
the data set may be training data, validation data, test data,
unseen data, etc. The specific equation(s) used to define the
loss function depends on the application. Some typical
examples are the root mean squared error or cross-entropy.
Internal to the architecture of the machine learning agent
(the CNN network in tis example), are various tunable
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weilghts whose values can be adjusted 1n order to reduce the
value of the error. Tuning the weights 1s done be a weight
optimizer which implements an optimization algorithm such
as gradient descent, stochastic gradient descent, adaptive

gradient algorithm, root mean square propagation, the
ADAM algorithm, or other.

[0057] The overall performance of the trained artificial
intelligence/machine learning process depends on the ability
of the weight optimizer to tune the weights 1n a way that
reduces the error. Not all algorithms give equivalent perfor-
mance on reducing the error, viz. improving the accuracy of
the arfificial intelligence/machine learning process. For
example, some weight optimization algorithms may give
good error performance of a trained network, but may take
a very long time (iterations, CPU time, wall-clock time,
other) to perform the tuning process. Other weight optimi-
zation algorithms may perform the weight tuning process
very quickly but yield larger errors (viz. less accurate
predictions).

[0058] The method of the present disclosure 1s a new
algorithm for performing a weight optimization task, for a
method as shown 1n FIG. 1, more quickly (accelerated) and
more accurately than the current state of the art. The process
1s described herein as Algorithm 3.1.

[0059] The flowchart shown 1n FIG. 2 illustrates a generic
application area for an artificial intelligence/machine learn-
ing process. In FIG. 2, an artificial intelligence architecture,
e.g., deep neural network, 1s depicted boxes 201 and 202.
The artificial intelligence architecture takes one or more
pre-processed datasets 1n order to build through a machine
learning process a model of a physical process from histori-
cal data. The performance of a machine learning model 1s
evaluated by comparing the model output against the truth
data to compute an error or loss. The machine mearing
model contains weights that can be tuned to reduce the error
over a given data set. The weight tuning process 1s done by
a welght optimization module which 1s labeled as ‘machine
learning algorithms. The same weight optimization algo-
rithms as before can be used 1n this context: gradient
descent, stochastic gradient descent, adaptive gradient algo-
rithm, root mean square propagation, the ADAM algorithm,
or other.

[0060] According to an exemplary embodiment of this
discloser, the method herein 1s a new algorithm for perform-
ing a weight optimization task, as shown i FIG. 2, of a
generic artificial/machine learning process more quickly

(accelerated) and more accurately than the current state of
the art. The process 1s described as Algorithm 5.1.

[0061] The description that follows includes additional
introductory material to further illustrate the background,
details, and applications of the disclosed Accelerated Opti-
mization Method and Apparatus.

1. Introduction.

[0062] Consider a generic, nonlinear optimization prob-
lem,

Minimize £(xs) (1.1)
W yecimts

where, E: R x2 R is an objective function, C is a
constraint set in R™and N e N™.
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[0063] The first-order optimality condition for Problem
(N) 1s given by,

0 ev? SE(x)+N, (x)) (1.2)

where, VfDEO 1s a Fritz John cost multiplier and N~ (X;) 18 the
(limiting) normal cone to C at x. Now consider the follow-
ing optimal control problem,

Mimmize J[x(e), u(e), t7] := E(x(f5)) (1.3)
Subject to &= f(x, &, 1)

(x(t0), 10) = (x°, 1°)
}L‘(If) =C

(M)

[0064] where, u'e R™*is a control variable, f': R VxR Vex
R — R" is some given dynamics function, t € R is an
independent “time” variable and (x°, t°) is a given initial
point in R R. The terminal transversality condition for

Problem (M') 1s given by,
Nt € vo SE(t))+NAx(1)) (1.4)

where, tfis the final time, 7U(tf e R ™ is the final-time value
of the adjoint covector and v, 1s the cost multiplier associ-
ated with (1.3). Motivated by intellectual curiosity, a ques-
fion posed 1 [1] was: Does an optimal control problem
(M")=(M) exist such that h'(tf)z() 7 Needless to say, this
question was answered 1n the affirmative for the case when
C 1s given by functional constraints,

C={x € R ol<e(x)<e?y (1.5)

where, e: x3 R™, N_e N is a given function, and e and e”
are the specified lower and upper bounds on the values of e.
Furthermore, the existence of Problem (M) was proved 1n
[Ref. 1] by direct construction. No claim 1s staked on the
uniqueness of such a problem. In fact, the absence of
uniqueness 1s utilized in this disclosure to devise another
Problem (M) (1n Section 2) that solves Problem (N).

[0065] It 1s apparent that the trajectory, t3 x(t), generated
by Problem (M) 1s an “algorithm™ for solving Problem (IN),
where x(t,)=x" is the initial point or a guess to a solution for
Problem (N). This observation implies that the traditional
concept of an algorithm as a countable sequence generated

by the point-to-set map,

X9 {x%=x, x,, . . ., X Xpiqs - - -} (1.6)

be upgraded to its more primitive form:
02 {x°=x(t,). (tp, )P 12 x(D)} (1.7)

[0066] DEFINITION 1.1 (Algornithm Primitive). Equation
(1.7) 1s an algorithm primitive for Problem (N). A suitable
discretization of (1.7) generates an algorithm given by,

2 {x%=x(t,), x(t)), . . ., (1), x(t )y ...} (1.8)

Suppose that an algorithm primitive 1s steerable by its
tangent vector; then, we can write,

X=U (1.9)

as a key equation that must constitute the vector field that
defines Problem (M). Although 1t was motivated by trajec-
tory arguments, it 1s evident from a forward Euler discreti-
zation of (1.9) that u 1s, 1n fact, a continuous-time version of
the search vector 1n optimization.

[0067] Note, however, that (1.9) was not “derived” by
considering the limit of a vanishing step size in optimization.
In fact, 1t will be apparent later (1n Section 5) that there 1s a
difference between a Eulerian and an optimization step-size.
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[0068] Equation (1.9) was used in [Ref. 1] to indepen-
dently derive various algorithms such as the gradient and
Newton’s method. Accelerated optimization algorithms
appeared to be beyond the reach of the theory proposed 1n
[Ref.1]; however, 1t was conjectured that such methods may
be derivable by simply replacing (1.9) by the double inte-
grator model,

X—u (1.10)

[0069] The main contribution of this disclosure 1s 1n
proving this conjecture. A major consequence of this proof
1s a new approach to designing accelerated optimization
algorithms.

[0070] REMARK 1.2. From an optimal control perspec-
tive, the difference between (1.9) and (1.10) seems quite
trivial because the former implies x(-) € W' ([t,, td, R )
while the latter indicates x(-) € W='([t,. td, R ™)[Ref.2].
Nonetheless, as will be apparent 1n the sections to follow, the
ramifications of X(-) being an element of a smoother function
space appear to have an outsized effect with regards to the
problem of generating algorithms for solving Problem (IN).
From an optimization perspective, the differences between
(1.9) and (1.10) 1s a little more nuanced: the search vector in
(1.9) steers the tangent vector (1.e., X) whereas u 1n (1.10)
steers the rate of change of the tangent vector. Because the
rate of change of the tangent vector implicitly incorporates
prior information, the source of acceleration from the per-
spective of the algorithm primitive (1.e., t2 x(t)) 1s 1n using
this additional information to propel i1t forward. An inter-
esting consequence of this observation 1s that algorithmic
acceleration 1s indeed achieved by controlling acceleration
(1.e.,X).

[0071] 2. A Transversality Mapping Principle. With C

given by (1.5), the Lagrangian function for the nonlinear
programming (NLP) Problem (N) may be written as,

L(vfﬂ, Vs xf)::vaE(fovfe(xf) (2.1)

where, (Vfo, Vo) E R . xe R"¢is the Fritz John multiplier pair,
with v,satisfying the complementarity condition, denoted by
(v, Te(Xy), and given by,

< 0 if ei(xs)=ef (2.2)
=0 1f ef <ei(xy) < e?

vete(xr) & v _ .
= () it e;(xr) = ¢

unrestricted if ef =eV

where, 1=1, . . . , N_. Together with (2.2), the first-order
optimality condition for Problem (N) 1s given by,

0=3,L(v/, v x;) (2.3)

[0072] To construct Problem (M), [Ref.1] 1s followed by
“sweeping back 1n time” the data functions E and e to define
functions t2 ye Rand t3 se R"* according to,

WE):=E(x(1)) (2.4a)
s{t):=e{x(1)) (2.4b)

Differentiating (2.4) with respect to time gets,
y=[CE(x)]-v (2.5b)

s=[3.e(x)]v (2.5b)
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where, X:=v 1s set as the “velocity” variable. Collecting all
relevant equations, the following time-free optimal control
problem 1s constructed:

Minimize J[x(e), v(e), y(*), s(), u(*), tr] := y(t5) (2.6)
Subject to X =v
vV=Uu
y=[0xE(x)]-v
(M) § = [0xe(x)]v
(x{Zo), o)
((to), s(to)) = (E(x°), e(x”))
V(If) =0
ek < S(tr) = eV

[0073] REMARK 2.1. Problem (N) 1s embedded 1n Prob-
lem (M). This follows from (2.4) and the imposition of the
final-time constraint on s(t) 1n (2.6). Furthermore, a solution
to Problem (M) generates an algorithm primitive for Prob-
lem (N).

[0074] The Pontryagin Hamiltonian [Ref. 2 and 3] for
Problem (M) 1s given by,

H(h., Ay Ay Ay, X, 0, 9, 8, W)i=AviAutA,, [S, E(x)]
A [3 e(x)]v (2.7)

where A, A, A and A, are the adjoint covectors correspond-
ing to the dynamics associated with the variables x, v, y and
s respectively.

[0075] LEMMA 2.2. The Pontryagin Hamuiltonian for

Problem (M) and the instantaneous Lagrangian function
associated with Problem (N) satisfy the condition,

H (A M Ay, Ay, 00y, s, )=[AA3 LA, Ay, X)]vt
- (2.8)

[0076] PROOF. This follows directly from the defining
equations given by (2.1) and (2.7).

[0077] PROPOSITION 2.3. The adjoint arc t3 (A, A, A,,
A.) evolves according to,

A (D=3 LA (D), A (D), x(D))+c, (2.9a)
A (H=c_(t—t)+c, (2.9b)
L, (=, (2.9¢)
A (H=c, (2.9d)

where, (c,, c,. c,, c)e RV R RxR™ is a constant,
[0078] PROOFEF. The adjoint equations are given by,

A =3 H=—[3.2L(A,, A, x)]v (2.10a)
A i==8,H=—A—3,L(A,, A, X) (2.10b)
A :=—3,H=0 (2.10¢)
A =3 _H=0 (2,10(1)

[0079] Eqguations (2.9¢) and (2.9d) follow directly from
(2.10c) and (2.10d), respectively.

[0080] Substituting v=x 1n (2.10a), 1t follows that,

(2.11)

. d . G
Ly = =—[0: LAy, A, ]+ 4,0, E) + ;&Sax e,(x)
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[0081] Equation (2.9a) follows from (2.11), (2.10c) and
(2.10d). Substituting (2.9a) in (2.10b) provides.

A, =c. (2.12)

from which (2.9b) follows.

[0082] THEOREM 2.4. All extremals of Problem (M) are
zero-Hamiltoman singular arcs. All singular arcs of Problem

(M) are of infinite order.

[0083] Proof. From the Hamiltonian minimization condi-
tion, the first-order condition 1s,

3, Hhos My M Ay %, v, 3, 5, 0)=0=3),=0 V1 €10, 1] (2.13)

[0084] Thus, all extremals are singular. From PROPOSI-
TION 2.3 and (2.13), ¢ =0; hence,

A (=8, L{A(D), As (B), X(D)) (2.14)

[0085] The first part of the theorem now follows from
LEMMA 2.2. To prove the second part, differentiate dull

with respect to time:

) | (2.15)
E(?”H — A,v p— —;LI —(9IL(7LJ;; ‘?L.S: .I)

[0086] The second equality 1n (2.15) follows from (2.10b).
Differentiating (2.15) with respect to time provides,

p N, (2.16)
—0uH = &, = =L = —0x L4y, ey %) = = 4,0, E () - ;1561 e:(x)

where, the last equality follows from (2.11). Substituting
(2.10c) and (2.10d) 1n (2.16), provides,

dzﬁ o (2.17)
ar "

Ve lt, ]
Hence,

dﬁc
—d, H =0
di*

for

k=0,1...

and no k yields an expression for u.

The endpoint Lagrangian [Ref. 3] associated with the final-
time conditions of Problem (M) may be written as,

E(vg vy, }’(ff)a V(ff)s V(ff)a }“’(ff)= S(rf))::vﬂy(rf)_l_vv'v(rf)_l_
Vs'S(ff) (2. 1 8)

where, v,>0 is the cost multiplier, v, € R"~and v_ satisfies
the complementarity condition,

1 < () 1f Sr(rf) — E;.E

=0 if ef <s;(t7) <ef

v T 8(tr) & v .
= () 1f si(tr) =e¢;

\ unrestricted if el =eY
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[0087] Thus, the termunal transversality conditions for
Problem (M) are given by,
A, (t)=0 (2.20a)
A, (t)=v, (2.20b)
L, (19=v¢20 (2.20c)
Ay (t)=v, (2.20d)

[0088] It 1s straightforward to show that the 1nitial trans-
versality generates the condition A (ty)=0; hence, v =0.

[0089] THEOREM 2.5 (Transversality Mapping Principle
(TMP)). The first-order necessary condifions for Problem

(N) are imbedded 1n the terminal transversality conditions
for Problem (M).

[0090] PROOF. From Theorem 2.4 (Cf. (2.14)) and
(2.20a) provides,

0=3, L(A, (1, A, (1), x(1)) (2.21)

Substituting (2.20c¢) and (2.20d) 1n (2.21) gets the result (1.e.,
(2.3) and (2.2)) with the following mapping of the multi-
pliers,

veve=A, (1) (2.22a)

vy =h, (f) (2.22b)

[0091] REMARK 2.6. THEOREM 2.5 1s an extension of
the TMP presented in [Ref.l]. Also, PROPOSITION 2.3
provides additional clarification and details that are absent 1n

[Ref.1].

[0092] 3. New Principles for Accelerated Optimization.
Because the extremals of Problem (M) are singular arcs of
infinite order (Cf. Theorem 2.4), neither Pontryagin’s Prin-
ciple nor Krener’s high order maximum principle [Ref.4]
provide a computational mechanism for producing a singu-
lar optimal control. Consequently, new 1deas are developed
for computation.

[0093] Collecting all the relevant primal-dual differential
equations from Section 2 together with their boundary
conditions generates the following unconventional boundary
value problem,

X=v
A =—[32L (A, Ay, )]0 (3.1a)
V=l

A m=A=3 LA, Ay, X) (3.1b)

y=[3, E()]-v

L =0 (3.1¢)

s=[d,e(x)]v

A =0 (3.1d)
x(ty)=x"

A, (1920 (3.11)
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A (tTs(ty) (3.1g)
A, (to=0

v(t)=0 (3.1h)
et <s(t<e” (3.11)

[0094] Any mnfinite-order singular control trajectory u(:)
that solves (3.1) also solves Problem (M). Consequently,
such a solution generates an algorithm primitive that solves
Problem (N). To produce such an algorithm primitive, the
1deas proposed 1n [Ref.l] are followed and extended by
using the sweeping principle to inject dual control variables.
That is, as in [Ref.1], the equation A =0 is replace by
introducing a control variable y that steers A _(t):

j = (3.2)

Similarly, set 1s,

[0095]
h =@ (3.3)

[0096] In the unaccelerated version of this theory [Ref.1],
1t was 1mportant modify the adjoint equation (corresponding
to X) to maintain a zero-Hamiltonian singular trajectory (Cf.
Theorem 2.4). Adopting the same 1dea, the adjoint equation
1s modified according to,

A =[32L(,, Ay, 0]HOLL (107, p, %) (3.4)

[0097] Equation (3.4) 1s simply the time derivative of
(2.14). Consequently, (3.4) also ensures that A =0Vt € [t,, t]
(Cf. (2.10 b)); hence, A, can be safely eliminated in gener-
ating a singular solution to (3.1). Thus, the problem of
generating a candidate infinite-order singular arc to Problem
(M) reduces to a controllability-type problem associated
with the following auxilhiary primal-dual system.,

A= —|01LA,, A, ) |v— 8, Lw, p, x) (3.5)
A, = w
(AN 1. gy
V=1u
LS = [0 e(x)]v

[0098] The final-time conditions for (A) are extracted
from (3.1) and can be specified 1n terms of the target set, T

given by,

T::{)\‘x (ff)a )\‘y (tf)= }\‘5 (ff)a 4 (ff):e S(ff)l)\‘x (ff):[}a )\‘y
(t)20, A, (t) Ts(t), v(1)=0, e <s(t)<e"} (3.6)

[0099] In the discussions to follow, 1t will be convenient to
view the dynamical system (A) 1n terms of the sum of two
vector fields: where,

z:=(Ae, Ay Ay, ¥, S)
C:=(u, u, ) (3.8a)
fo=fo (A, Ag, v, X)

f,=f; (x, ©) (3.8b)

[0100] In control theory, f, 1s known as the drift vector
field, whose presence (or absence) impact the production of
solutions to the (A)-(T) system. In the unaccelerated version
of this theory, there 1s no drift vector field [Ref.1]; hence, an
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extension of the 1deas to accelerated optimization requires
an explicit consideration of 1.

[0101] The main problem of interest with respect to gen-
erating an algorithm primitive for solving Problem (IN) can
now be framed as finding the control function t3 { that
drives a given point, T b z°=z (1), to some point z(t,) &
T, where, T° 1s the complement of T. To formalize the
statement of this problem, Clarke’s notion of gumdability
[Ref. 5 and 6] 1s adopted:

[0102] DEFINITION 3.1 (Guidability). A point z° € T€ is
gudable to T 1f there 1s a trajectory [ty, t]—z(t) satisfying
z(t,)=z" and z(t) € T.

[0103] DEFINITION 3.2 (Global Guidability). A point z°
e T¢ is globally guidable to T if every point z° € T¢ is
guidable to T.

[0104] DEFINITION 3.3 (Asymptotic Gudability). A
point z° is asymptotically guidable to T if it is guidable with
t—>co.

[0105] It 1s apparent that the notion of gumdability 1s
weaker than stability. Furthermore, 1t 1s clear that guidabality
1s quite sufficient in terms of producing an algorithm primi-
tfive to solve Problem (N).

[0106] To design algorithm primitives for Problem (IN),
needed are guidable trajectories for the (A)-(T) pair. A
standard workhorse 1 control theory for solving such a

problem 1s a control Lyapunov function (CLF) [Ref.5 and 7].
Following [Ref.8], a CLF 1s defined for the (A)-(T) system

as a positive definite function, V: T°— R, such that for each
point 1n T, there exists a value of { that points 1n a direction
along which V 1s strictly decreasing. Let £.V be the Lie
derivative of V along the vector field f. Then the strict
decreasing condition can be expressed as,

£V:= (V@) s Ay v %, §) /<0 (3.9

for some choice of {. Because it is possible for £ V to
vanish for all choices of C (see (3.7)) when z € T, a
satisfaction of (3.9) requires the condition,

£, VL= {3V (D), fo (A Ag, v, 2) /<0 if £, V=0 (3.10)

whenever z ¢ T.

[0107] As a means to get the best instantaneous solution,
controls are chosen such that.

{ =arg H?ﬂ LV (3.11)

[0108] One problem with (3.11) 1s that EfV 1s an affine
function of { and the control is unbounded. Hence, to use
(3.11) in a meaningful manner, it is necessary to constrain
to some compact set U. This notion is similar to that of a
trust region 1n optimization; however, as shown 1n [Ref.1],
a proper choice for U also generates new insights on the
selection of a meftric space for an optimization algorithm.
Hence, the 1dea implicit 1n (3.11) 1s framed 1n terms of the
following minimum principle:

{Mim%mize LV = @V(@), f(A,, A, v, x, ) (3.12)
(P)
Subject to { €[[1(z, x, y, 1)

where, U(z,x,y,t) i1s any given compact set that may vary
with respect to the tuple (z, x, y, t); i.e., U: (z, X, v, )= R



US 2023/0274128 Al

R*YxR. Equation (3.12) is a direct extension of the mini-
mum principle posed in [Ref.1]. The caveat in applying
(3.12) 1s an assurance of (3.10).

[0109] In exploring a different method to manage the drift
vector field, exchanged are the cost function and constraint
condition 1n (3.12) to formulate an alternative minimum
principle that holds the potential to provide additional
insights 1n formulating optimal algorithm primitives. To
facilitate this development, p:(z,x,y,t)2 R _ tis selected o be
some function such that —p specifies a rate of descent for
£/V. That 1s, (3.9) 1s replaced by the constraint,

As,t, £V:= (V@) A Ay w3, ) <—plax, 1) (3.13)

[0110] LetD: (C, z, X, v, )2 R be an appropriate objective
function. Then, an alternative mimimum principle may be
posed as:

4

Mimimize D(, z, x, y, §) (3.14)
(P*){
Subject to LgV +p(z, x, p, 1) =0

[0111] An apparently obvious choice for p in (3.14) 1s V
itself because 1t would imply that the resulting Lyapunov
function would decrease at least exponentially. As fast as an
exponential might be, it turns out a better choice for p may
be possible 1f the mimmimum principles (P) and (P*) are
viewed as merely computational techniques to solve the
CLF 1nequality [Ref.5],

minl V + p(z, x, y, 1) < 0 (3.15)
Left

[0112] As 1s well documented [Ref. 5,8, and 11], what 1s

most mteresting about (3.15) 1s that 1t can be rewritten as a
Hamilton-Jacobi-Bellman (HIB) mnequality,

minH OV, z, x, )+ plz, x, p, 1) < 0 (3.16)
sel }

where, H” (\,2,x,0):= (A%, f(A,, Agv.X,0) ' may be viewed
as the Pontryagin Hamiltonian for System (A). Evidently,
even a minimum-time solution can be produced if V 1s
chosen as the time-to-go function [Ref.3]. Because such
“optimal functions” are unknown, a more tractable approach
to selecting p 1s provided by the following theorem due to

Bhat and Bernstein[10]:
[0113] Theorem 3.4 (Bhat-Bernstein). Let p be given by,

p(z):=r(V(z))' ™ (3.17)

where r>0 and m € (0,1). Then, the the time interval for a
guidable trajectory [t,, t3 z 1s bounded by

V)" (18

(ff —f{)) =

[0114] REMARK 3.5. It 1s apparent that the “left” imiting
case of m—0 1 Theorem 3.4 corresponds to the case of
asymptotic gmdability while the “right” limiting case of
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m—1 may be viewed as a solution to a minimum-time
problem provided V 1s chosen as the time-to-go function
[Ref. 3].

[0115] REMARK 3.6. Based on the connections between
the HIB equations and a CLF as a computational method for
selecting C, the minimum principles (P) and (P*) may be
viewed as Pontryagin-type conditions for an optimal control
of System (A).

[0116] The mimimum principles (P) and (P*) are techni-
cally not new. They have been widely used 1n control theory
for generating feedback controls [Refs. 5,7, 8, and 9] . What
makes them new 1n (3.12) and (3.14) 1s their specific use for
the (A, T) pair, and consequently, 1n designing ordinary
differential equations (ODEs) that generate algorithm primi-
tives (cf. (1.7)). Furthermore, recall that the (A, T) system
was derived from the necessary conditions of Problem (M)
with the TMP providing the critical link (Cf. THEOREM
2.5) between Problems (M) and (N). These 1deas are in sharp
contrast to earlier works [Refs. 12-18] that have sought to
solve NLPs using differential equations. Consequently, the
differential equations proposed 1n these prior works are not
only different from (3.3), but also (3.5) 1s used as generators
of ODEs. Furthermore, the CLFs used 1n (3.12) and (3.14)
are generic; hence, different choices of V can lead to
different ODEs, which, 1in turn generate different algorithm
primitives. Finally, note also that the focus of this current
discussion 1s primarily on accelerated optimization.

[0117] In the absence of additional analysis, 1t might
appear that we have come to full circle; 1.e., 1n the quest for
solving NLLPs via optimal control theory, generated Prob-
lems (P) and (P*) appear to be NLPs themselves. As a result,
the proposed theory would only be meaningful if (a) 1t leads
to some new 1nsights on solving Problem (N) and/or (b)
Problems (P) and (P*) were simpler than (N). Because the
unaccelerated version of this theory[1] did indeed generate
new 1nsights, the same can be expected 1n pursuing this 1dea
further. This 1s shown 1n Section 4. In addition, because
System (A) 1s affine 1n the control variable, Problems (P) and
(P*) can indeed be rendered simpler than (N). In this
context, noted 1s that the structure of the vector field f can
be further altered quite easily through the process of adding
more integrators. For example, analogous to (1.10), A =u
and A = are replaced by,

A =00 = (3.19)

A =0, 8 =0, (3.20) to generate a new (A,T) pair:

[ L= =[32L@,, Ay, 0|V =0, L8, O, X) (3.21)
A, =0,
0, = w,
(A" 1= 0.
05 = wy
P =u
L& = [0y e(x)]v

A(tr) =2 0
Pl,y(ff) > ()
Qy(ff) =0

(7' 0:ts) =0
v(is) =0
el < S(ty) = eV

A's(ff) i S(rf)kx(ff) =0
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[0118] As noted earlier (Cf. REMARK 1.2), the addition
of 1ntegrators seems to have a profound effect on the
production of accelerated algorithms.

[0119] 4. Generation of Accelerated Algorithm Primitives
[lustrated. To 1llustrate some specific features of the general
theory presented 1n Section 2 and Section 3, consider the
unconstrained optimization problem,

(S) Minin%ze E(xs) 4.1)
xfER X

[0120] Producing accelerated algorithms for such prob-
lems have generated increased attention in recent years
[Refs. 19,20 and21] due to therr immediate applicability to

machine learning.

[0121] 4.1. Development of the Auxihary System. From
Section 2, 1t follows that the optimal control problem that
solves Problem (S) 1s given by:

(Minimize  J[y(-), x(+), v(-), u(-), tr) ==  yr (4.2)
Subject to X= v
V= U
(R)3 y= [0xEx)]-v

(x(to), 10) = (x°, ')
W) = E(x°)
. V(ff)= 0

[0122] REMARK 4.1. The unaccelerated version of Prob-

lem (R) (1.e., one without the velocity variable, v) was first

formulated by Goh [Ref. 22]; however, because the problem
1s singular (cf. Theorem 2.4), Goh et al. [Ref. 23] advanced

an alternative theory based on bang-bang controls by adding
control constraints to (the unaccelerated version of) Problem

(R).

[0123] PROPOSITION 4.2. PROBLEM (R) has no abnor-
mal extremals.

[0124] PROOF. This proof 1s straightforward; hence, 1t 1s
omitted. It 1s straightforward to show that (3.1) reduces to,

X=v
h = —A—A, 3.E(x) (4.3a)
V=l

A y=—A—A, 3,E(X) (4.3b)

y=[3EC)]"v

A =0 (4.3¢)
x{(t%)=x"

v(t)=0 (4.3d)
y(t°=E(x")

holt)= (4.3¢)
A (D=0

L, (t)>0 (4.3f)
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[0125] It thus follows that the auxiliary primal-dual
dynamical system 1s given by,

' a2 4.4)
(AR){ 'PLI o E(x)v

V=1U

where, the adjoint convector is scaled by the constant, A, >0
(Cf. PROPOSITION 4.2).

[0126] The target final-time condition for (A ) 1s given by,

[ Altp) =0 4.5)
(7o) ={ o
[0127] 4.2. Application of the Minimum Principles. Fol-

lowing (3.7) f for (Ay) 1s written as,

[ -02E@x)yv] [0 (4.6)
Flx, v, u) = [ 0 ]+[_fi]
?'(T n

Furthermore, if V: (A, v)2 R is a CLF, then a requirement
1S,

! .
£V=— {18% V(h,v), 3.2E®) v /+ 3. VA, ), u

Y
/<0 (4.7)

for some choice of u whenever (A,, v)#(0, 0). In addition,
(3.10) simplifies to,

f *
(O Vg ), 32E®) v ) 30 if 3,V(%,, v)=0 and
(A, v)=(0,0) (4.8)

Furthermore, set 1s u=0 if ¢, V=0. This last statement implies
that the dynamical system (A ) will continue to evolve as a
result of v=0.

[0128] Let U(x,A,_, v, t) be a compact set that may vary
with respect to the tuple (x,A,, v, t); then, (3.12) may be
formulated as,

i

Minimize LV = @V (A, v), fx, v, u4)) (4.9)
(Fs)

Subject to u e {i(x, Ay, v, 1)

v

To formulate Problem (P *) that 1s analogous to (3.14),
selected is a function D: (u,x,A_, v)2 R to be an appropriate
objective function. Then, an application of (3.14) reduces to,

i

Mimmize Df(u, x, A, v, ) 4.10)
oo

Subject to ffV + oA, v, x, ) <0

[0129] The generation of accelerated algorithm primitives
1s now reduced to designing V and U in (P¢) or D,V and p
in (P*).

[0130] 4.3. Optimal Control for Some Accelerated Algo-
rithm Primitives. Let W: (x,A,, v, )2 S_,"* be a symmetric
positive definite matrix function that metricizes the space
U. Following [Ref. 1], considered is

U, &, v O:={uud™W (x, Ay v, DusA(, Ay, v, O} @.11)
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where A: (X, A, v, )2 R __ . Note that A is similar to, but is
not, the familiar trust region 1n optimization. Under these
conditions, a solution to (4.10) 1s given explicitly by,

_ { —ole)W e@d, VA, v) if 0,V (A, v)£0 (4.12)
“Zo if 9, V(L. v) =0
where,
Alx, A, v, 1) (4.13)
olet] .=+
V[0, Ve W @nd, Vs, v)]

and W[@t]=W(x, A,, V, t).

[0131] To 1llustrate an application of Minimum Principle
(P*), selected 1s

1, - (4.14)
Dlu, x, Ay, v, 1) = E(H Wix, Ay, v, z‘)u)

Solving the resulting problem, results 1n

, { —o* @)W edd, V(A,, v) if O V(As, v) £ 0 (4.15)
) 0 1t av V(?L:::: V) =0

Ay, v, X, 1) (4.16)

f ;LI: » = O
o|l@t] := { 10, V(A,, V)]TW_I[@f][av Vids, v if gifl z i; < ()
0 X a

and

£y v, %, 1) 1= Phys v, 1, 1) = (B, V(A ), O2E()) (4.17)

[0132] Comparing (4.12) and (4.15) 1t follows that for the
choice of U and D given by (4.11) and (4.14) respectively,
both minimum principles (P and P*) generate the same
functional form for u but with different interpretations for
the control “gains” given by ¢ and G*.

4.4. Generation of ODEs For Some Accelerated
Optimization Algorithms.
[0133] PROPOSITION 4.3. Let,

V (A, v)=(a/2)A A AB2)v v+ v (4.18)

where, a>(0, b>0 and c<0 are real numbers such that
ab—c”>0. Then, if E is a strictly convex function, V(A v) is
a CLF for the (Az)-(Tjz) parr.

[0134] PROOF. The conditions a>0, b>0 and ab—c*>0
ensure that V 1s posiftive defimite. The Lie derivative of V
along f 1s given by,

/ /A \
LV= ah_+cv, —32E(X)V \ Jch by, u /

(4.19)

[0135] If cA +bv#0, then choosing u according to (4.15)
ensures that £.V<0 for any choice of p(A,, v, x)>0.
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[0136] If cA +bv=0, then £,V=0 for all choices of u. In
this case, A,.=—(b/c)v; hence, we have

£V = {aky + cv, =05 E(x)v) (4.20)

C

ab — ¢* _
— [ ]vTﬁiE(x)v <01t (A, v) (0, 0)

where, the mequality i (4.20) follows from c<0 and E
strictly convex. Hence, V satisfies (3.10).

[0137] COROLLARY 4.4. Polyak’s equation [Ref. 24 ] for
the heavy ball method can be generated from the minimum

principles (Po) or (PJ*) using a Euclidean metric for W and
the quadratic CLF given by (4.18).

[0138] PROOF. Let 67 denote ¢ or 6* given by (4.13) and
(4.16) respectively. Let,

V@f]:=—c 67 [@1]20 4.21a)

V[@f]:=b 67 [@1]20 (4.21b)

Using (4.18), the expression for u given by either (4.12) or
(4.15) can be written universally as,

u=—W'[@¢] (Y[ @], E(x)+Y’[@1]v) (4.22)

where, used is the integral of motion A, =—3_E(X) in accor-
dance with (2.14). Substituting (4.22) 1in (1.10) results 1n,

W[@{] Y [@{]3 E(x)+Y’[@1] v=0 (4.23)
[0139] Polyak’s equation is given by [Ref. 24],
X+a (1) i+a, () 3, E(x)=0 (4.24)

where a,(t) 22 0 and a,(t)>0 are time-varying scalar param-
eters. Equation (4.24) thus follows from (4.23) with W set to
the 1dentity matrix.

[0140] REMARK 4.5. Polyak “derived” (4.24) based on
physical considerations of the motion of “a small heavy
sphere” [Ref. 24]. A discrete analog of (4.24) generates his
momentum method. In [Ref. 23], Polyak et al. argue that

(4.24) also generates Nesterov’s accelerated gradient
method [Ref. 26] if a,(t) 1s set to 3/t. This specific choice of
a,(t) 1s based on the results of Su et al. [Ref. 20].

[0141] From REMARK 4.5 it follows that (4.23) can

generate both Polyak’s momentum method and Nesterov’s
accelerated gradient method. Evidently, alternative acceler-
ated optimization algorithms are possible by various selec-
tion of the parameters 1n (4.23).

[0142] A New Approach to Generating Algorithms. The

results of Section 4 demonstrate that the minimum principles
(P) and (P*) can successfully generate ODEs that govern the
flow of accelerated algorithm primitives. It thus seems
reasonable to suggest that algorithms can be produced by
simply discretizing the resulting ODEs. This perspective 1s
departed from for a variety of reasons, some of which are
implied in REMARK 4.5. To clarify the need for a new

approach to generating algorithms, consider a discretization
of (4.23) with W set to the idenfity matrix. From elementary
numerical methods, 1t 1s straightforward to produce the
following algorithm:

Xpe1 = X — (Bpy)0x EGa) + (1 = ey )6 — Xz-1) (5.1)

——— e —

ay By
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[0143] Equation (5.1) indicates the connections between a
discretization step, h,, associated with (4.23), the step
length, a,, in optimization, the momentum parameter, _3,,
associated with the heavy-ball method and the discretized
controller gains v,“ and vv,”. In other words, if (4.23) is to
reproduce a heavy-ball method, the controller gains, the
method of discretization and the discretization step-sizes
must all be chosen jointly 1n some interdependent manner.
Furthermore, even if 1t were somehow possible to choose the
controller gains judiciously, generating a candidate algo-
rithm by simply discretizing the resulting ODE using well-
established numerical methods may not be prudent because
“the accuracy of the computed solution curve 1s not of prime
importance” [Ref. 27]; rather, 1t 1s more 1important to arrive
at the “asymptote of the solution . . . with the fewest function
evaluations” [Ref. 27]. In view of these observations, Boggs

[Ref. 27] proposed A stable methods of integration to solve

the differential equations that were previously generated by

Davidenko and Gavurin [Ref. 28]. Despite his breakthrough,

such methods are not widely used because they remain

computationally expensive, a fact that has been known for
quite sometime (see [Ref. 29]). More recently, Grune and

Karafyllis [Re. 30] developed a new 1dea based on framing

a Runge-Kutta method as a hybrid dynamical system. In

applying this approach to optimization, they concluded that

“1f the emphasis lies on a numerically cheap computation .

. . then high order schemes may not necessarily be advan-

tageous” [Ref. 30]

[0144] In purswit of a new approach to generating algo-

rithms, 1t was chosen to not produce the ODEs explicitly;

and 1nstead, reverted back to the new foundations (cf.

Section 3) that generated the ODEs 1n the first place.

[0145] 35.1. Development of a Three-Step Iterative Map. In

acknowledging that the needs of optimization are substan-

tially different from those of traditional control theory as
well as numerical methods for solving ODEs, a new chart i1s
coursed for producing algorithms using the following ideas:

[0146] 1) Rather than design the ODEs that generate the
algorithm primitives, the minimum principles are directly
used within an algorithmic structure to find the 1nstanta-
neous control C(k) at iteration k.

[0147] 2) Because an ODE that governs the algorithm
primitive 1s never generated, the next 1iterate 1s advanced
to based on the geometric condition that every iterate
remain on the zero-Hamiltonian singular manifold (cf.
Theorem 2.4).

[0148] The first 1dea leans on the concept of proximal

aiming introduced by Clarke et al. [Ref. 31] for an altogether

different purpose of overcoming certain theoretical hurdles
1n nonsmooth control theory. The second 1dea relies on using

the readily available singular integral of motion (cf. (2.14))

to generate A (k+1) instead of discretizing and propagating

its corresponding differential equation (cf. (3.4)). Similarly,

s(k+1) 1s generated from (2.4) instead of discretizing (2.5).

Consequently, only the simple linear equations 1 System

(A) need be discretized. Collecting all these 1deas together

arrives at the following procedure: Let ((k):=(u(k), u(k),

®(k)) and h, >0 be given. Then a three-step 1terative map for

accelerated optimization 1s given by,

Aol + 1) = A (k) + hgulo)

Ay +1) = A, (k) + hpw(k) (5.2a)
A1k + 1): {
vik+ 1) = vik) + Apu(k)
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-continued
Atk + 1) {xtk + 1) = x(k) + vk + 1) (5.2b)

Lk +1)= =3, LA,k + 1), A,k + 1), x(k+ 1)) (5.2¢)

Az(k + 1): {S(k + 1) = e(x(k + 1))

[0149] That is, A,(k+1) is used to generate the (k+1)"
point for A, A, and v by a forward Euler method. Next, the
optimization variable x 1s updated in A,(k+1) using a
backward Euler formula. Despite being a backward Euler
formula, A,(k+1) 1s explicit because v(k+1) 1s available
from A,(k+1). Finally, A, and s are advanced to the (k+1)"”
point 1n A,(k+1) by not only sans discretization, but also that
they are based on the most recent update of 1ts arguments

made available by A,(k+1) and A,(k+1).

[0150] REMARK 5.1. Equation (5.2) 1s essentially a semi-
discretization of System (A) (cf. (3.3)).

[0151] REMARK 5.2. The backward Euler update for X 1n
(5.2b) 1s essential not only for efficiency (1.e., 1n using the
latest updates to generate new ones) but also to ensure
consistency 1n terms of generating a Fritz John or KKT
point. This 1s because 1f a forward Euler method were to be
used to update x instead of (5.2b), then the sequence of
iterates generated by (5.2) will not advance to an improved
pomnt 1f v, were to vanish for some k prior to achieving
optimality. Note also that (5.2b) 1s implicitly contained 1n
(5.1).

[0152] From (5.2) 1t follows that a feedback control law 1s
never explicitly computed; hence, 1t 1s not necessary to
produce an ODE that governs the flow of the algonithm
primitive. Furthermore, because £.V 1s linear in the control
variable, Problems (P) and (P*) are “simpler” than the
original problem (N). In particular, note that Problem (P*) 1s
“small” scale; 1.e., 1t has just one constraint equation, no
matter the scale of the original problem (N).

[0153] 5.2. Some New Step Length Procedures and For-
mulas. As noted earlier, 1t 1s inadvisable to choose h, 1n (3.2)
based on the rules of numerical methods for ODEs. In view
of this backdrop, proposed in [Ref. 1] 1s a minimum prin-
ciple for a maximal step length. This principle 1s essentially
an adaptation of the exact step length procedure used in
standard optimization with the merit function replaced by
the value of the CLF along the direction {(k). The key
difference between the CLF and merit function approaches
1s that the former cannot be based on unconstrained opti-
mization algorithms. In advancing the maximal step-length
principle for the iterative map given by (3.2), posed 1s the
following problem for generating an exact step length h,:

Z 1= (A, 'ly: As, V, 8) (5.3)

Minimize Fiz(k+ 1))

20+ 1), x(k+1), iy,
Ak +1)+0, LA, (k+ 1),
Ak+1), xtk+1)=0
A,k +1)=A,(k) = hrew(k) =0
(&) Atk + 1) = A (k) — hypake) = 0
vik+1)—vik) - hulk)=0
stk+1)—ex(k+1))=0
x(k+ 1) —x(K)=hevik+1)=0
h,af > ()

Subject to

[0154] Assuming h, >0, the dual feasibility conditions for
Problem (P,) are given by,
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W (5.4a)

P, +Ox E(x(k + 1)) -y,
W, + [0 e(x(k + 1))
Wy — Ay
s

[aiL(ﬁLy(k + 1), Ak + 1), x(k + 1))]% —Ocelx(k+ 1) s+, =0 (5.4b)

a.Viztk+ 1)+

U, k) + - ) + - ulk) — vk + 1) = 0 (5.4¢)

where, , , Vo Voo Voo W, and . are Lagrange multipliers
associated with the constraint equations given 1n (5.3).
[0155] REMARK 35.3. Because Problem (Ph) incorporates
(3.2), 1t also generates the 1iterates to solve Problem (N); 1.e.,
if Problem (P,) can be solved “exactly,” then 1its solution,
together with that of any one of the mimmmum principles
represents the complete algorithm.

[0156] It 1s apparent by a cursory mspection of the primal
and dual feasibility conditions of Problem (P,) that produc-
ing an explicit equation for h, i terms of the known
information at k 1s not readily possible; 1n fact, this chal-
lenge 1s not altogether different than the problem of gener-
ating an exact step length formula using standard merit
functions. In view of this, 1t 1s apparent that h, may be
generated more efficiently by using the traditional approach
of inexact line search methods (1.e., Armijo-Goldstein-Wolfe
methods) but adapted to the values of the CLF along the
direction {(k). Nonetheless, as is well-known, the efficiency
of such methods are more strongly dependent on the 1nitial
value of h, rather than the specifics of backtracking. Con-
sequently, motivated by the need to produce a “good” mitial
value for h,, advanced are three formulas.

[0157] The first approach 1s based on approximating the
constraints 1n Problem (P,) and solving the resulting prob-
lem. The constraint approximations are based on the first
order terms 1n h,; this generates the following approxima-
tions:

3, LA, (k+1), Ay (k+1), x (k+1))=3.L (A, (), &, (k), x
)+, 3,7 L(k, (k) A, (K), x(k) v(k+D+h, 3, L

(@(k), p(k), x (k) (5.52)
e(x(k+1))=e(x(k))+hy, 3_e(x(k)v(k+1) (5.5b)
37 LA, (k+1), Ay (k+1), x (k+1))=3 L(A, (k), A,

(k)m x(k)) (5.5¢)
3, e(x(k+1))=3,e(x(k)) (5.5d)
3, E(x(k+1)=3, E(x(k)) (5.5¢)

[0158] PROPOSITION 5.4. Suppose a CLF 1s given by
the quadratic function V(z)=(z"'Qz)/2 where, Q is a positive
definite matrix. Assume (5.5) holds. Let z_(k+1) denote the
approximate value of z based on the approximations given
by (5.5). Then, a solution to h,=h ?" satisfies the system of
bilinear equations given by,

(5.6)
M, (k)[ hﬁ: ] + hBEML (k) = by
s

where, M,(k), M,(k) and b, are matrices (of appropriate
dimensions) that depend on the known values of the 1terates
of (5.2) at the point k, and X 1s a variable that comprises

Za(k_l_l)ﬂ W?uxﬂ wlyﬂ W?u; \‘ljvﬂ WS and WI'
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[0159] PROOF. The result follows from two simple steps:
Replace v(k+1) 1n (5.4¢) by v(k)+h,u(k). Substitute (5.5) n
(5.4) and (5.2).

[0160] REMARK 3.5. The approximations given by (5.5)
are only used to generate h,”" via (5.6). In other words,
z_(k+1) generated from (5.6) is discarded once h,*" is
computed.

[0161] A second formula for an mitial value of h, 1s given
by the following proposition: PROPOSITION 5.6 ([1]). Let
V(z)=(z'Qz)/2 where, Q is a positive definite matrix. Sup-
pose all of the constraint equations 1n (3.3) are replaced by
a forward Euler discretization. Then, the resulting maximal
step length 1s given explicitly by,

(5.7)

where f,=f(z,, (,) and f is given by (3.7). Because the
minimum principles (P) and (P*) generate £:V(z,)<0, 1t
follows that (5.7) guarantees h,““>0. The main problem in

using hr in (3.2) 1s 1ts 1nconsistency as discussed 1n
REMARK 5.2; however, it holds the potential of providing

a lower bound for an acceptable step size 1n a Goldstein-type
condition.

[0162] Finally, a third formula for an 1nitial value of hk 1s

obtained by utilizing the fact that £,V(z,) 1s the continuous-
time derivative of V at the point z,. As a result, the tangent
line emanating from the point z, may be parameterized as,

Vi (s)=st, V (z)+V (z)

[0163] Setting V*“(s)=0 1n (5.8) to solve for s as a
proposed value for an 1nifial step size generates the very
simple formula,

(5.8)

tan _ Vizk) (5.9)

YT —f V@)

[0164] 5.3. Description of the Main Algorithm. The main
algorithm comprises two key steps:

[0165] Step A) At step k, solve Problem (P) or (P*) to
generate ((k). For a quadratic CLF, this only requires a
solution to a linear system; see (3.12) and (3.14).

[0166] Step B) Using the computed value of ((k) from the
prior step, advance to step (k+1) using (3.2) such that V_
1s sufficiently less than V., where V,, 1s the value of the
CLF at the accepted point (k+1).

[0167] The major steps of the proposed/disclosed algo-
rithm, and exemplary embodiments described herein, are
encapsulated 1 Algorithm 3.1.

Algornithm 5.1 Main

Choose a CLF V and the parameters associated with Problem (P)
or

(P*)(ct. (3.12) and (3.14))
[nitialize the algorithm according to: A.° = =3, 1.(1, 1.°, x©), s°
e(xY).
Set k = 0.
Compute V, = V(z(k))
while stopping conditions are not met do
Generate ((k) by solving Problem (P*)( or (P))
Compute h,° using any one of (5.6), (5.7) or (5.9)
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-continued

Algorithm 5.1 Main

Advance to (z(k + 1), x(k + 1)) using (5.2) and h,”
Compute V,, , = V(z(k + 1))
while V., , has not decreased sufliciently do
Backtrack (z(k + 1), x(k + 1)) along C(k); recompute V,_
end while
Update k < k + 1

end while

[0168] 5.4. A Numerical Illustration. Presented here 1s a
simple numerical example to demonstrate the acceleration
generated by an application of Algorithm 5.1. Shown 1n FIG.
3 are six iterates of Algorithm 3.1 applied to minimize the
function (x,, X,)" (x,°+10x,%)/2. The iterates were obtained
by setting W to be identity matrix (ci. Section 4); hence the
resulting algorithm 1s a new gradient method. To demon-
strate the fact that this new gradient method does indeed
achieve acceleration, the iterates of a standard gradient
method for the same number of iterations (i.e., six) are
shown 1n FIG. 4. To provide an additional perspective 1n
terms of an acceleration factor generated by an application
of Algorithm 5.1, iterates of the standard gradient method
for double and triple the number of 1terations are shown 1n
FIG. 5§ and FIG. 6 respectively.

[0169] 6. Conclusions. The transversality mapping prin-
ciple and 1ts consequences facilitate new 1deas for designing
and analyzing optimization algorithms. A general frame-
work for accelerated (and unaccelerated) optimization meth-
ods 1s possible under the rubric singular optimal control
theory. On hindsight, the central role of singular optimal
control theory 1s not surprising because a nonsingular con-
trol would have implied a universal optimal algorithm. By
the same token, the infinite-order of the singular arc 1s also
not surprising because a finite order would also 1mply a
universal optimal algorithm. The interesting aspect of many
well-known algorithms accelerated or otherwise—is that
their primitives are all describable 1n terms of flows over a
zero-Hamiltoman singular manifold. This msight 1s used to
launch a three-step iterative map that generates iterates
which remain on the singular mamifold. It turns out that the
key steps to computational efliciency 1s not necessarily
based on discretizing the resulting ordinary differential
equations, rather, 1t 1s based on combining the more tradi-
tional aspects of optimization with the generation of Euler
polygonal arcs by proximal aiming. There 1s no doubt that a
vast number of open questions remain; however, 1t 1s evident
that new wviable optimization algorithms can indeed be
generated using the results emanating from the transversality
mapping principle.

[0170] Some portions of the detailed description herein are
presented in terms of algorithms and symbolic representa-
tions of operations on data bits performed by conventional
computer components, including a central processing unit
(CPU), memory storage devices for the CPU, and connected
display devices. These algorithmic descriptions and repre-
sentations are the means used by those skilled in the data
processing arts to most eflectively convey the substance of
their work to others skilled 1n the art. An algorithm 1s
generally perceived as a seli-consistent sequence of steps
leading to a desired result. The steps are those requiring
physical manipulations of physical quantities. Usually,
though not necessarily, these quantities take the form of

13

Aug. 31, 2023

clectrical or magnetic signals capable of being stored, trans-
terred, combined, compared, and otherwise manipulated. It
has proven convenient at times, principally for reasons of
common usage, to refer to these signals as bits, values,
clements, symbols, characters, terms, numbers, or the like.

[0171] It should be understood, however, that all of these
and similar terms are to be associated with the approprate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise, as
apparent from the discussion herein, 1t 1s appreciated that
throughout the description, discussions utilizing terms such

s “processing’ or “computing’ or “calculating” or “deter-
mining” or “displaying” or the like, refer to the action and
processes of a computer system, or similar electronic com-
puting device, that manipulates and transforms data repre-
sented as physical (electronic) quantities within the com-
puter system’s registers and memories ito other data
similarly represented as physical quantities within the com-
puter system memories or registers or other such informa-
tion storage, transmission or display devices.

[0172] The exemplary embodiment also relates to an appa-
ratus for performing the operations discussed heremn. This
apparatus may be specially constructed for the required
purposes, or it may comprise a general-purpose computer
selectively activated or reconfigured by a computer program
stored 1n the computer. Such a computer program may be
stored 1n a computer readable storage medium, such as, but
1s not limited to, any type of disk including floppy disks,
optical disks, CD-ROMs, and magnetic-optical disks, read-
only memories (ROMSs), random access memories (RAMs),
EPROMs, EEPROMSs, magnetic or optical cards, or any type
of media suitable for storing electronic instructions, and
cach coupled to a computer system bus.

[0173] The algorithms and displays presented herein are
not mherently related to any particular computer or other
apparatus. Various general-purpose systems may be used
with programs in accordance with the teachings herein, or 1t
may prove convenient to construct more specialized appa-
ratus to perform the methods described herein. The structure
for a variety of these systems 1s apparent from the descrip-
tion above. In addition, the exemplary embodiment 1s not
described with reference to any particular programming
language. It will be appreciated that a variety of program-
ming languages may be used to implement the teachings of
the exemplary embodiment as described herein.

[0174] A machine-readable medium includes any mecha-
nism for storing or transmitting information in a form
readable by a machine (e.g., a computer). For instance, a
machine-readable medium includes read only memory
(“ROM”); random access memory (“RAM”); magnetic disk
storage media; optical storage media; flash memory devices;
and electrical, optical, acoustical or other form of propa-
gated signals (e.g., carrier waves, inirared signals, digital
signals, etc.), just to mention a few examples.

[0175] The methods 1illustrated throughout the specifica-
tion, may be implemented in a computer program product
that may be executed on a computer. The computer program
product may comprise a non-transitory computer-readable
recording medium on which a control program is recorded,
such as a disk, hard drive, or the like. Common forms of
non-transitory computer-readable media include, {for
example, floppy disks, flexible disks, hard disks, magnetic
tape, or any other magnetic storage medium, CD-ROM,

DVD, or any other optical medium, a RAM, a PROM, an
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EPROM, a FLASH-EPROM, or other memory chip or
cartridge, or any other tangible medmum from which a
computer can read and use.

[0176] It will be appreciated that variants of the above-
disclosed and other features and functions, or alternatives
thereof, may be combined into many other different systems
or applications. Various presently unforeseen or unantici-
pated alternatives, modifications, variations or i1mprove-
ments therein may be subsequently made by those skilled 1n
the art which are also intended to be encompassed by the
following claims.

[0177] The exemplary embodiment has been described
with reference to the preferred embodiments. Obviously,
modifications and alterations will occur to others upon
reading and understanding the preceding detailed descrip-
tion. It 1s mtended that the exemplary embodiment be
construed as including all such modifications and alterations
isofar as they come within the scope of the appended
claims or the equivalents thereof.

What 1s claimed 1s:

1. A method for processing digital representations of a
group of objects and 1dentifying within the group of objects
a target object, the method including the execution of an
accelerated optimization method to identify the target object
within the digital representations of the group of objects, the
accelerated optimization method comprising:

a) a user choosing a CLF V convergence condition;

b) 1mitializing the accelerated optimization method

according to:

L =—3.1(1, L0, x9), s"=e (") and setting k=0;

c) computing V =V (z(k));
d) while stopping condifions are not met do;
d1) generate ((k);
d2) compute h,";
d3) advance to (z(k+1), x(k+1)) using h,°;
d4) compute V., =V (z (k+1)):
d5) while V., ; has not decreased sufficiently do;
d4a) backtrack (z(k+1), x(k+1)) along {(k); recom-
pute V,;
d6) end while; and
d7) update k<—k+1; and

e) end while.

2. The method for processing digital representations of a
group of objects according to claim 1, wherein step a) of the
accelerated optimization method includes:

a user choosing a CLF V convergence condition and the

parameters associated with a Problem (P) or (P*); and
wherein step dl) includes generating ((k) by solving
Problem (P*)(or (P)).

3. The method for processing digital representations of a
group of objects according to claim 1, wherein step d2)
includes:

computing h,” using,

X
M, (k)[ J,BL ] + e My (k) x = by,
2

where, M,(k), M,(k) and b, are matrices (of approprate
dimensions) that depend on the known values of iterates of
at point k, and x 1s a variable that comprises z_(k+1), y,_,
‘Ply, Vo W, Y and y,, the known values of iterates given

by:
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(A + 1) = Ay(k) + (k)
Atk +1): € A k+ 1) = A (k) + (k)
 vik+ 1) = vlk) + hpu(k)

Ak + 1) {xtk+ 1) =xtkh)+ vk + 1)

Ak +1)==0, LA,k + 1), A, (k+ 1), x(k+ 1))

At 1) {S(k + 1) = e(x(k + 1))

4. The method for processing digital representations of a
group of objects according to claim 1, wherein step d2)
includes:

computing h,” using,

ZEQ}‘}C B _\E:fV(Eﬁc)
fof 2V

2

FE _
hy” =

where f,=f(z,, ;) and f is given by,

- —[(ﬁ LA, A, ,r)]v " —|0x L{w u, x) ]
0 W
z=fdy, As, v, %, §) = 0 + K ;
0 1
(0xe(x)]v 0
f{;, A

where,
Z::()L‘x: ?L.),,, )\‘5: v, S‘)
C:=(u, pw)

fo=fo(Ays Ay v, X)

1:lEfl (}{5 C)

5. The method for processing digital representations of a
group of objects according to claim 1, wherein step d2)
includes:

computing h,° using,

V(@)
Vi)

[t

k —

6. The method for processing digital representations of a
group of objects according to claim 1, wherein step d3)
includes:

advancing to (z(k+1), x(k+1)) using h,° and

(A, + 1) = A, (0) + hrw(k)
Ayt + 1S Ayl + 1) = A, (k) + Agpk)
vk + D) = vlk) + hu(k)

Ak + 1) {xtk+ 1) =xth)+ vk + 1)

Ak +1)==0, LA, (k+ 1), A, (k+ 1), x(£+ 1))

Ag(k T 1) {S(k i 1) — e(}f(k + 1))

7. The method for processing digital representations of a
group of objects according to claim 1, wherein the digital
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representations of a group of objects includes a plurality of
object pixel images and the target object 1s a pixel 1image of
the target 1mage.

8. The method for processing digital representations of a
group of objects according to claim 1, wherein the digital
representations of a group of objects includes a plurality of
objects associated with characteristics of a device or process
and the target object 1s a target object associated with a target
characteristic of the device or process.

9. A method for modeling a device or process to generate
a model based on a group of digital representations of the
device or process characteristics, the method including the
execution of an accelerated optimization method to classify
the digital representations of the device or process associ-
ated with each digital representation, the accelerated opti-
mization method comprising:

a) a user choosing a CLF V convergence condition;

b) 1mitializing the accelerated optimization method

according to:

A 0=<3. L(1, L0 x9), s=e(x? and setting k=0;

c) computing V,=V(z(k));
d) while stopping conditions are not met do;
d1) generate ((k);
d2) compute h,°;
d3) advance to (z(k+1), x(k+1)) using h,°;
d4) compute V,_ ,=V(z(k+1));
dS5) while V,_, has not decreased sufficiently do;
d4a) backtrack (z(k+1), x(k+1)) along {(k); recom-
pute V.,
d6) end while; and
d7) update k<—k+1; and
e) end while.
10. The method for modeling a device or process accord-

ing to claim 9, wherein step a) of the accelerated optimiza-
tion method 1ncludes:

a user choosing a CLF V convergence condition and the
parameters associated with a Problem (P) or (P*); and
wherein step dl) includes generating ((k) by solving
Problem (P*)(or (P)).
11. The method for modeling a device or process accord-
ing to claim 9, wherein step d2) includes:

computing h,” using,

X
M, (k)[ 61 ] +hg"Ma(k)x = by,
i

where, M,(k), M,(k) and b, are matrices (of appropriate
dimensions) that depend on the known values of iterates of
at point k, and x 1s a variable that comprises z,(k+1), ¥, .

Vo Voo W W and ., the known values of 1terates given
by:

Ay +1) = A,k + hw(k)

A1k + 1): { Ay +1) = A, (k) + A pik)
vik+ 1) = vik) + hpu(k)

Axtk+ Diixtk+ D) =x(l) + vk + 1)

Mk +1)=-0, LA, (k+ 1), A,(k+ 1), x(k+ 1))

Ag(k+ 1) {S(k_l_ 1) = E(.I(k+ 1))
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12. The method for modeling a device or process accord-
ing to claim 9, wherein step d2) includes:
computing h,° using,

E}{Q]& _fff V(Zﬁc)

FE _ _
hy” =

fTof T 2V

?

where f,=f(z,, ;) and f is given by,

' —[(ﬁ LA, A, ,r)]v — [0, Llw pt, x)°
0 W
Z=fy, A, v, x, {) = 0 + H ,
() i
(05 e(x)]v 0
fo i

where,

Zz:(;’k‘xr ?L'y:- }\‘55 v, S‘)
C:=(u, y, ®)
fDEfD ()\‘ya )\455 V, }{)

flEfl (Xr g)

13. The method for modeling a device or process accord-
ing to claim 9, wherein step d2) includes:
computing h,° using,

an _ ¥ k)
C V@)

14. The method for modeling a device or process accord-
ing to claim 9,

(A, (k+ 1) = A(k) + hpewlk)
Ayt +1): € Ayl + 1) = A, (k) + Agpk)
L vik+ 1) = vik) + hru(k)

Ak + 1) {xtk+ 1) =xth)+ vk + 1)

Mk +1)==0, LA,k + 1), A;(k+ 1), x(k+ 1))

As e+ 1): {S(k 1) = e(x(k + 1)

15. An apparatus for processing digital representations of
a group of objects and identifying within the group of
objects a target object, the apparatus including the execution
of an accelerated optimization method to identify the target
object within the digital representations of the group of
objects , the accelerated optimization method comprising:

a) a user choosmg a CLF V convergence condition;

b) 1nitializing the accelerated optimization method

according to:

A0=3L(1, L2, A9, s"=e(x") and setting k=0;

c) computing V,=V(z(k));

d) while stopping conditions are not met do;
dl) generate C(k):
d2) compute h,°;
d3) advance to (z(k+1), x(k+1)) using h,°;
d4) compute V,_ =V (z(k+1));
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d5) while V., ; has not decreased sufficiently do;
dda) backtrack (z(k+1), x(k+1)) along A(k); recom-
pute Vi,
d6) end while; and
d7) update k<—k+1; and
e) end while.

16. The apparatus for processing digital representations of
a group of objects according to claim 15, wherein step a) of
the accelerated optimization method 1ncludes:

a user choosing a CLF V convergence condition and the
parameters associated with a Problem (P) or (P*); and

wherein step dl) includes generating ((k) by solving
Problem (P*)(or (P)).
17. The apparatus for processing digital representations of

a group of objects according to claim 15, wherein step d2)
includes:

computing h,” using,

X
M, (k)[ B ] + B ML Ry = by,
i

where, M,(k), M,(k) and b, are matrices (of appropriate
dimensions) that depend on the known values of iterates of
at point k, and x 1s a variable that comprises z_(k+1), , ,
Vo Vo Vo Vs and y _, the known values of iterates givefl

by:

(A, (k+1)=A,k) + hpew(k)
Aytk+ 1) € Ak +1) = A,(k) + heuk)
v\ vik+ 1) = vik) + Aru(k)

Astk+ 1) Ixtk+ ) =x(th)+ vk + 1)

Mk +1)==0, LA, (k+ 1), Agtk + 1), x(k + 1))

Ax(k+ 1): {S(k+ D) =elx(k+ 1))

18. The apparatus for processing digital representations of
a group of objects according to claim 15, wherein step d2)
includes:

computing h,° using,

Zof, - V@)
fof 2V

FE
WE =

p
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where f =f(z,, C,) and f is given by,

|02 LA, A 0] [0y Liwp, x)
0 W
z=f(dy, Ay v, X, ) 1= 0 + H ,
0 i
(0 e(x)]v U
%o /1

where,
Zz:()k"x: ?\‘y:- )k"s: v, S) §:=(u= “: W)

fo=fo (A, Ay, v, x) £1=f (x, O)

19. The apparatus for processing digital representations of
a group of objects according to claim 15, wherein step d2)

includes:
- D "
computing h,~ using,

ran _ Vizk)
V@)

20. A method for accelerating optimization, the method
comprising: selecting a control Lyapunov function (CLF)
and associated parameters for an optimization problem:;
generate an algorithm to solve the optimization problem
according to A.°=3 L(1, A.°, x°), s"=e(x"), where k is
set to O;

until stopping conditions are reached:
generating C(k) by solving the optimization problem;
computing h,” using at least one of a group consisting

of

X
M, (k)[ 1B ] + oMy (k) y = by,
i

e A0 Ve
Y LU

advancing to (z(k+1), x(k+1) using a three-step iterative
map and h,°;

computing V., ,=V(z(k+1)).

until V., has decreased to a target threshold, backtrack-
ing (z(k+1), x(k+1)) along ((k) and recomputing V., :
and

incrementing k to the next step.

*x kK kK kK kK
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