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(57) ABSTRACT

Technology related to traiming a neural network accelerator
using mixed precision data formats 1s disclosed. In one
example of the disclosed technology, a neural network
accelerator 1s configured to accelerate a given layer of a
multi-layer neural network. An mput tensor for the given
layer can be converted from a normal-precision floating-
pomt format to a quantized-precision floating-point format.
A tensor operation can be performed using the converted
input tensor. A result of the tensor operation can be con-
verted tfrom the block floating-point format to the normal-
precision Hoating-point format. The converted result can be
used to generate an output tensor of the layer of the neural
network, where the output tensor 1s 1n normal-precision
floating-point format.
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FIG. 6 500

610
Initialize Parameters of the Neural Network
620 Perform forward | ;
propagation for each layer:
yi= Q" (f(Q(yi1), QW)
630 Calculate loss:
Loss = L(y, y)
640 Pertorm back-propagation for each layer:
dyi1 = Q' (g(Q(dy1), QW)
oW, = Q"' (h(Q(y:), Q(dyi)))
650

Update the parameters for each layer:

Wi=Wi+r]><8Wi
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F1G. 8 800

810
Receive an input tensor of a layer of a multi-layer neural
network
820 Convert the input tensor of the layer from a normal-precision
floating-point format to a quantized-precision floating-point
format
830 . . . -
Perform a tensor operation using the quantized-precision
floating-point format of the converted input tensor
840 . .
Convert a result of the tensor operation from the quantized-
precision floating-point format to the normal-precision floating-
point format
850

— Perform an operation using the converted result in the normal-
precision floating-point format |

860 Use the converted result in the normal-precision floating-point
format to update an operational parameter of the layer of the

neural network, where the parameter Is stored in normal-
precision floating-point format
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FIG. 9 900

910
Configure a hardware accelerator to accelerate a layer of a
multi-layer neural network
920 | -
Convert an input tensor of the layer from a normal-precision
floating-point format to a block floating-point format
930 . . . .
Perform a tensor operation using the block floating-point
format of the converted input tensor
940 |
Convert a result of the tensor operation from the block
floating-point format to the normal-precision floating-point
format
950

— Perform an operation using the converted result in the normal-
precision floating-point format |

960 Use the converted result in the normal-precision floating-point
format to generate an output tensor of the layer of the neural

network, where the output tensor is In normal-precision
floating-point format
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TRAINING NEURAL NETWORK
ACCELERATORS USING MIXED
PRECISION DATA FORMATS

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application 1s a continuation of U.S. Pat.
Application No. 16/223,603, filed Dec. 18, 2018, which 1s
hereby incorporated herein by reference.

BACKGROUND

[0002] Machine learning (ML) and artificial intelligence
(Al) techniques can be useful for solving a number of com-
plex computational problems such as recognizing mmages
and speech, analyzing and classitying information, and per-
forming various classification tasks. Machine learming 1s a
field of computer science that uses statistical technmiques to
oive computer systems the ability to extract higher-level
features from a set of tramning data. Specifically, the features
can be extracted by traiming a model such as an artificial
neural network (NN) or a deep neural network (DNN).
After the model 1s trained, new data can be applied to the
model and the new data can be classified (¢.g., higher-level
features can be extracted) using the tramed model. Machine
learning models are typically executed on a general-purpose
processor (also referred to as a central processing unit
(CPU)). However, using the models can be computationally
expensive and so 1t may not be possible to perform feature
extraction 1 real-time using general-purpose processors.
Reducing the computational complexity of using the models
can potentially decrease the time to extract a feature during
inference, decrease the time for adjustment during training,
and/or reduce energy consumption during traming and/or
inference. Accordingly, there 1s ample opportunity for
improvements 1 computer hardware and software to imple-
ment neural networks.

SUMMARY

[0003] Technology related to training a neural network
accelerator using mixed precision data formats 1s disclosed.
In one example of the disclosed technology, a neural net-
work accelerator 1s configured to accelerate a given layer
of a multi-layer neural network. An iput tensor for the
oiven layer can be converted from a normal-precision float-
ing-point format to a quantized-precision floating-point for-
mat. A tensor operation can be performed using the con-
verted mput tensor. A result of the tensor operation can be
converted from the block floating-point format to the nor-
mal-precision floating-pomt format. The converted result
can be used to generate an output tensor of the layer of the
neural network, where the output tensor 1s 1n normal-preci-
sion floating-poimnt format.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] FIG. 1 1s a block diagram of a quantization-enabled
system, as can be implemented 1 certain examples of the
disclosed technology.

[0005] FIG. 2 1s a diagram depicting a deep neural net-
work, as can be modeled using certain example methods
and apparatus disclosed herein.
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[0006] FIG. 3 1s a diagram depicting certain aspects of
converting a normal floating-point format to a quantized
tloating-point format, as can be performed 1n certain exam-
ples of the disclosed technology.

[0007] FIG. 4 depicts a number of alternative block float-
ing-point formats that can be used to represent quantized
neural network models, as can be used 1n certain examples

of the disclosed technology.
[0008] FIG. 5 depicts a number of alternative block float-

ing-point formats that can be used to represent quantized
neural network models, as can be used 1n certain examples

of the disclosed technology.
[0009] FIG. 6 1s a flow diagram depicting a method of

traiming a neural network for use with a quantized model,
as can be implemented m certain examples of the disclosed
technology.

[0010] FIG. 7 1s a block diagram depicting a mixed-preci-
sion tloating point environment and a boundary between
normal-precision floating-pomnt domain and the quantized
tloating-point domain, as can be mmplemented in certain
examples of the disclosed technology.

[0011] FIG. 8 1s a flow diagram depicting a method of
traiming a neural network accelerator using mixed precision
data formats, as can be implemented 1n certain examples of

the disclosed technology.

[0012] FIG. 9 1s a flow diagram depicting a method of
operating a neural network accelerator using mixed preci-
sion data formats, as can be implemented 1n certain exam-
ples of the disclosed technology.

[0013] FIG. 10 1s a block diagram illustrating a suitable
computing environment for mmplementing some embodi-
ments of the disclosed technology.

DETAILED DESCRIPTION

General Considerations

[0014] This disclosure 1s set forth n the context of repre-
sentative embodiments that are not intended to be limiting 1n
any way.

[0015] As used in this application the singular forms “a,”
“an,” and “the” mnclude the plural forms unless the context
clearly dictates otherwise. Additionally, the term “includes™
means “‘comprises.” Further, the term “‘coupled” encom-
passes mechanical, electrical, magnetic, optical, as well as
other practical ways of coupling or linking items together,
and does not exclude the presence of intermediate elements
between the coupled items. Furthermore, as used heren, the
term “and/or” means any one item or combination of items

in the phrase.
[0016] The systems, methods, and apparatus described

herein should not be construed as being limiting 1n any
way. Instead, this disclosure 1s directed toward all novel
and non-obvious features and aspects of the various dis-
closed embodiments, alone and 1n various combinations
and subcombinations with one another. The disclosed sys-
tems, methods, and apparatus are not limited to any specific
aspect or feature or combinations thereof, nor do the dis-
closed things and methods require that any one or more spe-
cific advantages be present or problems be solved. Further-
more, any features or aspects of the disclosed embodiments
can be used m various combinations and subcombinations

with one another.
[0017] Although the operations of some of the disclosed
methods are described m a particular, sequential order for
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convenient presentation, it should be understood that this
manner of description encompasses rearrangement, unless
a particular ordering 1s required by specific language set
torth below. For example, operations described sequentially
may 1n some cases be rearranged or performed concurrently.
Morecover, for the sake of smmplicity, the attached figures
may not show the various ways in which the disclosed
things and methods can be used 1n conjunction with other
things and methods. Additionally, the description sometimes
uses terms like “produce,” “generate,” “display,” “receive,”
“verily,” “execute,” and “mitiate” to describe the disclosed
methods. These terms are high-level descriptions of the
actual operations that are performed. The actual operations
that correspond to these terms will vary depending on the
particular implementation and are readily discernible by
one of ordinary skill 1n the art.

[0018] Theories of operation, scientific principles, or other
theoretical descriptions presented herein 1n reference to the
apparatus or methods of this disclosure have been provided
for the purposes of better understanding and are not mntended
to be limiting 1n scope. The apparatus and methods m the
appended claims are not lmmited to those apparatus and
methods that function 1in the manner described by such the-

ories of operation.
[0019] Any of the disclosed methods can be implemented

as computer-executable mstructions stored on one or more
computer-readable media (¢.g., computer-readable media,
such as one or more optical media discs, volatile memory
components (such as DRAM or SRAM), or nonvolatile
memory components (such as hard drives)) and executed
on a computer (e.g., any commercially available computer,
including smart phones or other mobile devices that include
computing hardware). Any of the computer-executable
instructions for implementing the disclosed techniques, as
well as any data created and used during implementation
ol the disclosed embodiments, can be stored on one or
more computer-readable media (e.g., computer-readable
storage media). The computer-executable nstructions can
be part of, for example, a dedicated software application or
a software application that 1s accessed or downloaded via a
web browser or other software application (such as a remote
computing application). Such software can be executed, for
example, on a single local computer or 1 a network envir-
onment (¢.g., via the Internet, a wide-area network, a local-
area network, a client-server network (such as a cloud com-
puting network), or other such network) using one or more
network computers.

[0020] For clarity, only certain selected aspects of the soft-
ware-based implementations are described. Other details
that are well known 1n the art are omitted. For example, 1t
should be understood that the disclosed technology 1s not
limited to any specific computer language or program. For
instance, the disclosed technology can be implemented by
software written 1n C, C++, Java, or any other suitable pro-
oramming language. Likewise, the disclosed technology 1s
not limited to any particular computer or type of hardware.
Certain details of suitable computers and hardware are well-

known and need not be set forth 1n detail 1in this disclosure.
[0021] Furthermore, any of the software-based embodi-

ments (comprising, for example, computer-executable
istructions for causing a computer to perform any of the
disclosed methods) can be uploaded, downloaded, or remo-
tely accessed through a suitable communication means.
Such suitable communication means include, for example,

27 LC
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the Internet, the World Wide Web, an intranet, software
applications, cable (including fiber optic cable), magnetic
communications, electromagnetic communications (includ-
ing RF, microwave, and infrared communications), electro-
nic communications, or other such communication means.

Overview

[0022] Artificial Neural Networks (ANNs or as used
throughout herein, “NNs”) are applied to a number of appli-
cations 1n Artificial Intelligence and Machine Learning
including 1mmage recognition, speech recognition, search
engines, and other suitable applications. The processing
for these applications may take place on individual devices
such as personal computers or cell phones, but 1t may also be
performed 1n large datacenters. At the same time, hardware
accelerators that can be used with NNs include specialized
NN processing units, such as tensor processing units (ITPUs)
and Field Programmable Gate Arrays (FPGASs) pro-
orammed to accelerate neural network processmg. Such
hardware devices are being deployed in consumer devices
as well as 1n data centers due to their tlexible nature and low
power consumption per unit computation.

[0023] Traditionally NNs have been trained and deployed
using single-precision floating-point (32-bat tloating-point
or tloat32 format). However, 1t has been shown that lower
precision foating-point formats, such as 16-bit floating-
point (floatl6) or fixed-point can be used to perform nfer-
ence operations with mimimal loss 1n accuracy. On specia-
lized hardware, such as FPGAs, reduced precision formats
can greatly improve the latency and throughput of DNN
processing.

[0024] Numbers represented mn normal-precision floating-
point format (¢€.g., a floating-pomt number expresses i a 16-
bit tloating-point format, a 32-bit floating-pomt format, a
64-bit floating-poimnt format, or an 80-bit floating-point for-
mat) can be converted to quantized-precision format num-
bers may allow for performance benefits in performing
operations. In particular, NN weights and activation values
can be represented 1n a lower-precision quantized format
with an acceptable level of error introduced. Examples of
lower-precision quantized formats mnclude formats having
a reduced bit width (including by reducing the number of
bits used to represent a number’s mantissa or exponent)
and block floating-point formats where two or more num-
bers share the same single exponent.

[0025] One of the characteristics of computation on an
FPGA device 1s that 1t typically lacks hardware floating-
point support. Floating-poimt operations may be performed
at a penalty using the flexible logic, but often the amount of
logic needed to support floating-poimnt 1s prohibitive 1n
FPGA immplementations. Some newer FPGAs have been
developed that do support floating-point computation, but
cven on these the same device can produce twice as many
computational outputs per unit time as when 1t 1s used 1n an
integer mode. Typically, NNs are created with floating-point
computation in mind, but when an FPGA 1s targeted for NN
processing 1t would be beneficial 1t the neural network could
be expressed using mteger arithmetic. Examples of the dis-
closed technology include hardware implementations of
block Floating-pomt (BFP), including the use of BFP 1n
NN, FPGA, and other hardware environments.

[0026] A typical floating-point representation 1n a compu-
ter system consists of three parts: sign (s), exponent (¢), and
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mantissa (m). The sign indicates 1f the number 1s positive or
negative. The exponent and mantissa are used as 1n scientific
notation:

Value —s < m x 2°

[0027] Any number may be represented, within the preci-
sion limats of the mantissa. Since the exponent scales the
mantissa by powers of 2, just as the exponent does by
powers of 10 1 scientific notation, the magnitudes of very
large numbers may be represented. The precision of the
representation 1s determined by the precision of the man-
tissa. Typical floating-poimnt representations use a mantissa
of 10 (float 16), 24 (tloat 32), or 53 (float64) bits 1n width.
An mteger with magnitude greater than 253 can be approxi-
mated m a float64 floating-point format, but it will not be
represented exactly because there are not enough biats 1 the
mantissa. A similar effect can occur for arbitrary fractions
where the fraction 1s represented by bits of the mantissa that
take on the value of negative powers of 2. There are many
fractions that cannot be exactly represented because they are
irrational m a binary number system. More exact represen-
tations are possible 1n both situations, but they may require
the mantissa to contain more bits. Ultimately, an mfinmte

number of mantissa bits are required to represent some num-
-

bers exactly | eg., %03;2—723.1428573. The 10-bit (halt preci-
N

sion float), 24-bit (single precision float), and 53-bit (double
precision float) mantissa limits are common compromises of
mantissa storage requirements versus representation preci-
s1on 1n general-purpose computers.

[0028] With block floating-point formats, a group of two
or more numbers use a single shared exponent with each
number still having 1ts own sign and mantissa. In some
examples, the shared exponent 1s chosen to be the largest
exponent of the origmal floating-point values. For purposes
of the present disclosure, the term block floating-point
(BFP) means a number system 1n which a single exponent
1s shared across two or more values, each of which 1s repre-
sented by a s1gn and mantissa pair (whether there 1s an expli-
cit s1gn bit, or the mantissa 1itself 1s signed). In some exam-
ples, all values of one or more rows or columns of a matrix
or vector, or all values of a matrix or vector, can share a
common exponent. In other examples, the BFP representa-
tion may be unsigned. In some examples, some but not all of
the elements m a matrix or vector BFP representation may
include numbers represented as integers, floating-point
numbers, fixed point numbers, symbols, or other data for-
mats mixed with numbers represented with a sign, mantissa,
and exponent. In some examples, some or all of the elements
in a matrix or vector BFP representation can include com-
plex elements having two or more parts, for example: com-
plex numbers with an 1maginary component (o + b1, where
i=~-1 ); fractions mncluding a numerator and denominator, 1n
polar coordinates (r, 0), or other multi-component element.
[0029] BFP formats can be used to tradeolf precision and
storage requirements, 1n a fashion that 1s similar 1n some
respects to normal floating-poimnt. First, rather than storing
an exponent with every floating-point number, a group of
numbers can share the same exponent. To share exponents
while mamntaiming a high level of accuracy, the numbers
should have close to the same magnitude, since differences
in magnitude are expressed in the mantissa. It the differ-
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ences 1 magnitude are too great, the mantissa will overtlow
for the large values, or may be zero (“undertlow”) tor the
smaller values. Depending on a particular application, some

amount of overflow and/or underflow may be acceptable.
[0030] The size of the mantissa can be adjusted to fit a

particular application. This can atfect the precision of the
number being represented, but potential gams are realized
from a reduced representation size. For example, a normal
single-precision tloat has a size of four bytes, but for certain
implementations of the disclosed technology, only two bytes
are used to represent the sign and mantissa of each value. In
some 1mplementations, the sign and mantissa of each value
can be represented 1n a byte or less.

[0031] In certain examples of the disclosed technology,
the representation expressed above 1s used to derive the ori-
oginal number from the representation, but only a single
exponent 18 stored for a group of numbers, each of which
1s represented by a signed mantissa. Each signed mantissa
can be represented by two bytes or less, so 1 comparison to
four-byte floating-pomt, the memory storage savings 1s
about 2X. Further, the memory bandwidth requirements of
loading and storing these values are also approximately one-
halt that of normal floating-point.

[0032] Neural network operations are used 1n many artifi-

cial intelligence operations. Often, the bulk of the proces-
sing operations performed in implementing a neural net-
work 1s 1 performing Matrix x Matrix or Matrix x Vector
multiplications or convolution operations. Such operations
are compute- and memory-bandwidth mtensive, where the
s1z¢ of a matrix may be, for example, 1000 x 1000 elements
(e.g., 1000 x 1000 numbers, each including a sign, mantissa,
and exponent) or larger and there are many matrices used.
As discussed herem, BFP technmiques can be applied to such
operations to reduce the demands for computation as well as
memory bandwidth 1n a given system, whether 1t 1s an
FPGA, CPU or another hardware platform. As used herein,
the use of the term “clement” herein refers to a member of

such a matrix or vector.
[0033] As used herein, the term “tensor” refers to a multi-

dimensional array that can be used to represent properties of
a NN and includes one-dimensional vectors as well as two-,
three-, four-, or larger dimension matrices. As used 1n this
disclosure, tensors do not require any other mathematical
properties unless specifically stated.

[0034] As used herein, the term “normal-precision float-
ing-point” refers to a floating-point number format having
a mantissa, exponent, and optionally a sign and which 1s
natively supported by a native or virtual CPU. Examples
of normal-precision floating-point formats include, but are
not limited to, IEEE 754 standard formats such as 16-bit, 32-
bit, 64-bit, or to other processors supported by a processor,
such as Intel AVX, AVX2, TIA32, and x86 64 80-bit tloat-

ing-point formats.
[0035] A given number can be represented using ditferent

precision (e.g., mixed precision) formats. For example, a
number can be represented 1n a higher precision format
(e.g., float32) and a lower precision format (e.g., floatl6).
Lowering the precision of a number can include reducing
the number of bits used to represent the mantissa or expo-
nent of the number. Additionally, lowering the precision of a
number can mclude reducing the range of values that can be
used to represent an exponent of the number, such as when
multiple numbers share a common exponent. Similarly,
increasing the precision of a number can include increasing
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the number of bits used to represent the mantissa or expo-
nent of the number. Additionally, increasing the precision of
a number can include mcreasing the range of values that can
be used to represent an exponent of the number, such as
when a number 1s separated from a group of numbers that
shared a common exponent. As used herein, converting a
number from a higher precision format to a lower precision
format may be referred to as down-casting or quantizing the
number. Converting a number from a lower precision format
to a higher precision format may be referred to as up-casting
or de-quantizing the number.

[0036] As used herein, the term “quantized-precision
floating-pomnt” refers to a floating-point number format
where two or more values of a tensor have been modified
to have a lower precision than when the values are repre-
sented 1 normal-precision floating-pomt. In particular,
many examples of quantized-precision foating-point repre-
sentations mclude block floating-point formats, where two
or more values of the tensor are represented with reference
to a common exponent. The quantized-precision floating-
point number can be generated by selecting a common expo-
nent for two, more, or all elements of a tensor and shifting
mantissas of individual elements to match the shared, com-
mon e¢xponent. In some examples, groups of elements
within a tensor can share a common exponent on, for exam-
ple, a per-row, per-column, per-tile, or other basis.

[0037] In one example of the disclosed technology, a
neural network accelerator 1s configured to accelerate a
given layer of a multi-layer neural network using mixed pre-
cision data formats. For example, the mixed precision data
formats can mclude a normal-precision floating-point for-
mat and a quantized-precision floating-point format. An
input tensor for the given layer can be converted from a
normal-precision floating-point format to a quantized-preci-
sion floatimg-pomt format. A tensor operation can be per-
formed using the converted mput tensor. A result of the ten-
sor operation can be converted from the block floating-point
format to the normal-precision floating-point format. The
converted result can be used to generate an output tensor
of the layer of the neural network, where the output tensor
1s 1 normal-precision floating-point format. In this manner,
the neural network accelerator can potentially be made
smaller and more etlicient than a comparable accelerator
that uses only a normal-precision floating-point format. A
smaller and more efficient accelerator may have increased
computational performance and/or increased energy effi-
ciency. Additionally, the neural network accelerator can
potentially have mcreased accuracy compared to an accel-
crator that uses only a quantized-precision floating-point
format. By increasmg the accuracy of the accelerator, a con-
vergence time for traimning may be decreased and the accel-
crator may be more accurate when classifying mputs to the
neural network.

Example Architectures for Using Mixed Precision
Floating-Point to Train Neural Networks

[0038] FIG. 1 1sablock diagram 100 outlining an example
quantization-enabled system 110 as can be mmplemented
certamn examples of the disclosed technology. As shown n
FIG. 1, the quantization-enabled system 110 can mnclude a
number of hardware resources including general-purpose
processors 120 and special-purpose processors such as gra-
phics processing units 122 and neural network accelerator
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180. The processors are coupled to memory 125 and storage
127, which can include volatile or non-volatile memory
devices. The processors 120 and 122 execute instructions
stored 1 the memory or storage in order to provide a neural
network module 130. The neural network module 130
includes software mterfaces that allow the system to be pro-
grammed to implement various types of neural networks.
For example, software functions can be provided that
allow applications to define neural networks including
weights, biases, activation functions, node values, and nter-
connections between layers of a neural network. Addition-
ally, software functions can be used to define state elements
for recurrent neural networks. The neural network module
130 can further provide utilities to allow for traiming and
retraiming of a neural network implemented with the mod-
ule. Values representing the neural network module are
stored 1n memory or storage and are operated on by nstruc-
tions executed by one of the processors. The values stored 1n
memory or storage can be represented using normal-preci-
sion floating-point and/or quantized floating-point values.

[0039] In some examples, proprictary or open source
libraries or frameworks are provided to a programmer to
implement neural network creation, training, and evalua-
tion. Examples of such libraries include TensorFlow, Micro-
soft Cognitive Toolkit (CNTK), Catfe, Theano, and Keras.
In some examples, programming tools such as integrated
development environments provide support for program-

mers and users to define, compile, and evaluate NNss.
[0040] The neural network accelerator 180 can be 1mple-

mented as a custom or application-specific mtegrated circuat
(e.g., including a system-on-chip (SoC) mtegrated circuit),
as a hield programmable gate array (FPGA) or other recon-
figurable logic, or as a soft processor virtual machine hosted
by a physical, general-purpose processor. The neural net-
work accelerator 180 can include a tensor processing unit
182, reconfigurable logic devices 184, and/or one or more
neural processing cores (such as the subgraph accelerator
186). The subgraph accelerator 186 can be configured m
hardware, software, or a combination of hardware and soft-
ware. As one example, the subgraph accelerator 186 can be
configured and/or executed using nstructions executable on
the tensor processing unit 182. As another example, the sub-
graph accelerator 186 can be configured by programming
reconfigurable logic blocks 184. As another example, the
subgraph accelerator 186 can be configured using hard-

wired logic gates of the neural network accelerator 180.
[0041] The subgraph accelerator 186 can be programmed

to execute a subgraph or an individual node of a neural net-
work. For example, the subgraph accelerator 186 can be pro-
orammed to execute a subgraph included a layer of a NN.
The subgraph accelerator 186 can access a local memory
used for storing weights, biases, input values, output values,
and so forth. The subgraph accelerator 186 can have many
inputs, where each input can be weighted by a different
weight value. For example, the subgraph accelerator 186
can produce a dot product of an input tensor and the pro-
erammed 1nput weights for the subgraph accelerator 186.
In some examples, the dot product can be adjusted by a
bias value before 1t 15 used as an input to an activation func-
tion. The output of the subgraph accelerator 186 can be
stored 1n the local memory, where the output value can be
accessed and sent to a different NN processor core and/or to
the neural network module 130 or the memory 125, for
example.
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[0042] The neural network accelerator 180 can include a
plurality 110 of subgraph accelerators 186 that are con-
nected to each other via an interconnect (not shown). The
interconnect can carry data and control signals between
individual subgraph accelerators 186, a memory interface
(not shown), and an mput/output (I/O) mterface (not
shown). The mterconnect can transmit and receive signals
using electrical, optical, magnetic, or other suitable commu-
nication technology and can provide communication con-
nections arranged according to a number of different topol-
ogies, depending on a particular desired configuration. For
example, the interconnect can have a crossbar, a bus, a
point-to-pomt bus, or other suitable topology. In some
examples, any one of the plurality of subgraph accelerators
186 can be connected to any of the other cores, while 1n
other examples, some cores are only connected to a subset
of the other cores. For example, each core may only be con-
nected to a nearest 4, 8, or 10 neighboring cores. The nter-
connect can be used to transmit input/output data to and
from the subgraph accelerators 186, as well as transmit con-
trol signals and other information signals to and from the
subgraph accelerators 186. For example, each of the sub-
oraph accelerators 186 can receive and transmit semaphores
that indicate the execution status of operations currently
being performed by each of the respective subgraph accel-
erators 186. Further, matrix and vector values can be shared
between subgraph accelerators 186 via the interconnect. In
some examples, the mterconnect 1s implemented as wires
connecting the subgraph accelerators 186 and memory sys-
tem, while 1n other examples, the core interconnect can
include circuitry for multiplexing data signals on the mter-
connect wire(s), switch and/or routing components, includ-
ing active signal drivers and repeaters, or other suitable cir-
cuttry. In some examples of the disclosed technology,
signals transmitted within and to/from neural network accel-
erator 180 are not limited to full swing electrical digital sig-
nals, but the neural network accelerator 180 can be contig-
ured to include differential signals, pulsed signals, or other
suitable signals for transmitting data and control signals.
[0043] In some examples, the quantization-enabled sys-
tem 110 can include an optional quantization emulator that
emulates functions of the neural network accelerator 180.
The neural network accelerator 180 provides functionality
that can be used to convert data represented 1n full precision
floating-pomnt formats in the neural network module 130
into quantized format values. The neural network accelera-
tor 180 can also perform operations using quantized format
values. Such functionality will be discussed 1n further detail
below.

[0044] The neural network module 130 can be used to spe-
city, train, and evaluate a neural network model using a tool
tlow that mmcludes a hardware-agnostic modelling frame-
work 131 (also referred to as a native framework or a
machine learning execution engine), a neural network com-
piler 132, and a neural network runtime environment 133.
The memory includes computer-executable mstructions for
the tool flow including the modelling tramework 131, the
neural network compiler 132, and the neural network run-
time environment 133. The tool flow can be used to generate
neural network data 200 representing all or a portion of the
neural network model, such as the neural network model
discussed below regarding FIG. 2. It should be noted that
while the tool flow 1s described as having three separate
tools (131, 132, and 133), the tool flow can have fewer or
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more tools 1n various examples. For example, the functions
of the ditferent tools (131, 132, and 133) can be combined
into a smgle modelling and execution environment.

[0045] The neural network data 200 can be stored 1n the
memory 125. The neural network data 200 can be repre-
sented 1n one or more formats. For example, the neural net-
work data 200 corresponding to a given neural network
model can have a different format associated with each
respective tool of the tool flow. Generally, the neural net-
work data 200 can include a description of nodes, edges.
groupings, weights, biases, activation functions, and/or ten-
sor values. As a specific example, the neural network data
200 can include source code, executable code, metadata,
configuration data, data structures and/or files for represent-

ing the neural network model.
[0046] The modelling framework 131 can be used to

define and use a neural network model. As one example,
the modelling framework 131 can iclude pre-defined
APIs and/or programming primitives that can be used to
specity one or more aspects of the neural network model.
The pre-defined APIs can include both lower-level APIs
(e.g., activation functions, cost or error functions, nodes,
edges, and tensors) and higher-level APIs (e.g., layers, con-
volutional neural networks, recurrent neural networks, lin-
car classifiers, and so forth). “Source code” can be used as
an 1nput to the modelling framework 131 to define a topol-
ogy of the graph of a given neural network model. In parti-
cular, APIs of the modelling framework 131 can be 1nstan-
tiated and imterconnected within the source code to specity a
complex neural network model. A data scientist can create
different neural network models by using different APIs,
ditferent numbers of APIs, and interconnecting the APIs 1n
different ways.

[0047] In addition to the source code, the memory 125 can
also store traiming data. The traiming data includes a set of
mput data for applying to the neural network model 200 and
a desired output from the neural network model for each
respective dataset of the mput data. The modelling frame-
work 131 can be used to train the neural network model with
the traimning data. An output of the tramning 1s the weights and
biases that are associated with each node of the neural net-
work model. After the neural network model 1s trained, the
modelling framework 131 can be used to classity new data
that 1s applied to the trained neural network model. Specifi-
cally, the trained neural network model uses the weights and
biases obtained from traiming to perform classification and
recognition tasks on data that has not been used to train the
neural network model. The modelling framework 131 can
use the CPU 120 and the special-purpose processors (e.g.,
the GPU 122 and/or the neural network accelerator 180) to
execute the neural network model with mcreased pertor-
mance as compare with usmg only the CPU 120. In some
examples, the performance can potentially achieve real-time
performance for some classification tasks.

[0048] The compiler 132 analyzes the source code and
data (e.g., the examples used to train the model) provided
for a neural network model and transtforms the model 1nto a
format that can be accelerated on the neural network accel-
erator 180, which will be described 1n further detail below.
Specifically, the compiler 132 transforms the source code
into executable code, metadata, configuration data, and/or
data structures for representing the neural network model
and memory as neural network data 200. In some examples,
the compiler 132 can divide the neural network model mto
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portions (e.g., neural network 200) using the CPU 120 and/
or the GPU 122) and other portions (e.g., a neural network
subgraph) that can be executed on the neural network accel-
crator 180. The compiler 132 can generate executable code
(e.g., runtime modules) for executing subgraphs assigned to
the CPU 120 and for communicating with the subgraphs
assigned to the accelerator 180. The compiler 132 can gen-
erate configuration data for the accelerator 180 that 1s used
to configure accelerator resources to evaluate the subgraphs
assigned to the optional accelerator 180. The compiler 132
can create data structures for storing values generated by the
neural network model during execution and/or training and
for communication between the CPU 120 and the accelera-
tor 180. The compiler 132 can generate metadata that can be
used to 1dentify subgraphs, edge groupings, training data,
and various other mmformation about the neural network
model during runtime. For example, the metadata can
include mformation for mterfacing between the different
subgraphs of the neural network model.

[0049] The runtime environment 133 provides an execu-
table environment or an interpreter that can be used to tramn
the neural network model during a training mode and that
can be used to evaluate the neural network model 1n train-
ing, mference, or classification modes. During the inference
mode, mput data can be applied to the neural network model
inputs and the mput data can be classified in accordance
with the training of the neural network model. The mput

data can be archived data or real-time data.
[0050] The runtime environment 133 can include a

deployment tool that, during a deployment mode, can be
used to deploy or mstall all or a portion of the neural net-
work to neural network accelerator 180. The runtime envair-
onment 133 can further include a scheduler that manages the
execution of the different runtime modules and the commu-
nication between the runtime modules and the neural net-
work accelerator 180. Thus, the runtime environment 133
can be used to control the flow of data between nodes mod-
eled on the neural network module 130 and the neural net-
work accelerator 180.

[0051] In one example, the neural network accelerator 180
recerves and returns normal-precision values 150 from the
neural network module 130. As illustrated in FIG. 1, the
subgraph accelerator 186 can pertorm a bulk of 1ts opera-
tions using quantized fHoating-point and an interface
between the subgraph accelerator 186 and the neural net-
work module 130 can use full-precision values for commu-
nicating information between the modules. The normal-pre-
cision values can be represented 1n 16-, 32-, 64-bat, or other
suitable floating-point format. For example, a portion of
values representing the neural network can be recerved,
including edge weights, activation values, or other suitable
parameters for quantization. The normal-precision values
150 are provided to a normal-precision floating-point to
quantized floating-point converter 152, which converts the
normal-precision value into quantized values. Quantized
tloating-point operations 154 can then be performed on the
quantized values. The quantized values can then be con-
verted back to a normal-floating-point format using a quan-
tized floating-point to normal-floating-pomt converter
which produces normal-precision floating-point values. As
a specific example, the subgraph accelerator 186 can be used
to accelerate a given layer of a neural network, and the vec-
tor-vector, matrix-vector, matrix-matrix, and convolution
operations can be performed using quantized floating-point
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operations and less compute-intensive operations (such as
adding a bias value or calculating an activation function)
can be performed using normal-tloating-point operations.
[0052] The conversions between normal floating-point
and quantized floating-pont performed by the converters
152 and 156 are typically performed on sets of numbers
represented as vectors or multi-dimensional matrices. In
some examples, additional normal-precision operations
158, including operations that may be desirable 1 particular
neural network implementations can be performed based on
normal-precision formats including adding a bias to one or
more nodes of a neural network, applying a hyperbolic tan-
gent function or other such sigmoid function, or rectification
functions (e.g., ReLU operations) to normal-precision
values that are converted back from the quantized floating-
pomt format.

[0053] In some examples, the quantized values are used
and stored only 1n the logic gates and internal memories of
the neural network accelerator 180, and the memory 125 and
storage 127 store only normal floating-point values. For
example, the neural network accelerator 180 can quantize
the nputs, weights, and activations for a neural network
model that are received trom the neural network model
130 and can de-quantize the results of the operations that
are performed on the neural network accelerator 180 betore
passing the values back to the neural network model 130.
Values can be passed between the neural network model
130 and the neural network accelerator 180 using the mem-
ory 125, the storage 127, or an input/output interface (not
shown). In other examples, an emulator provides full emu-
lation of the quantization, imncluding only storing one copy of
the shared exponent and operating with reduced mantissa
widths. Some results may differ over versions where the
underlying operations are performed m normal floating-
pomt. For example, the full emulation version can check
for underflow or overflow conditions for a limited, quan-
tized bat wadth (e.g., 3-, 4-, or 5-bit wide mantissas).

[0054] The bulk of the computational cost of DNNs 1s 1n
vector-vector, matrix-vector, and matrix-matrix multiplica-
tions and/or convolutions. These operations are quadratic 1n
input sizes while operations such as bias add and activation
functions are linear mn mput size. Thus, mn some examples,
quantization 1s only applied to matrix-vector multiplication
operations, which 1s implemented on the neural network
accelerator 180. In such examples, all other operations are
done m a normal-precision format, such as floatl6. Thus,
from the user or programmer’s perspective, the quantiza-
tion-enabled system 110 accepts and outputs normal-preci-
sion floatl6 values from/to the neural network module 130
and output floatl6 format values. All conversions to and
from block floating-pomt format can be hidden from the
programmer or user. In some examples, the programmer or
user may specity certain parameters for quantization opera-
tions. In other examples, quantization operations can take
advantage of block floating-point format to reduce compu-

tation complexity, as discussed below regarding FIG. 3.
[0055] The neural network accelerator 180 1s used to

accelerate evaluation and/or tramming of a neural network
graph or subgraphs, typically with increased speed and
reduced latency that 1s not realized when evaluating the sub-
oraph usmg only the CPU 120 and/or the GPU 122. In the
llustrated example, the accelerator includes a Tensor Pro-

cessing Unit (TPU) 182, reconfigurable logic devices 184
(e.g., contamed 1n one or more FPGAS or a programmable
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circuit fabric), and/or a subgraph accelerator 186, however
any suitable hardware accelerator can be used that models
neural networks. The accelerator 180 can include configura-
tion logic which provides a sott CPU. The soit CPU super-
vises operation of the accelerated graph or subgraph on the
accelerator 180 and can manage communications with the
neural network module 130. The soft CPU can also be
used to configure logic and to control loading and storing

of data from RAM on the accelerator, for example 1 block

RAM within an FPGA.
[0056] In some examples, parameters of the neural net-

work accelerator 180 can be programmable. The neural net-
work accelerator 180 can be used to prototype training,
inference, or classification of all or a portion of the neural
network model 200. For example, quantization parameters
can be selected based on accuracy or performance results
obtained by prototyping the network within neural network
accelerator 180. After a desired set of quantization para-
meters 1s selected, a quantized model can be programmed
into the accelerator 180 for performing further operations.

[0057] The compiler 132 and the runtime 133 provide a
fast mterface between the neural network module 130 and
the neural network accelerator 180. In effect, the user of the
neural network model may be unaware that a portion of the
model 1s bemg accelerated on the provided accelerator. For
example, node values are typically propagated in a model by
writing tensor values to a data structure including an i1denti-
fier. The runtime 133 associates subgraph identifiers with
the accelerator, and provides logic for translating the mes-
sage to the accelerator, transparently writing values for
weights, biases, and/or tensors to the neural network accel-
crator 180 without program intervention. Similarly, values
that are output by the neural network accelerator 180 may be
transparently sent back to the neural network module 130
with a message including an 1dentifier of a receiving node
at the server and a payload that includes values such as
weights, biases, and/or tensors that are sent back to the over-

all neural network model.
[0058] FIG. 2 1illustrates a simplified topology of a deep

neural network (DNN) 200 that can be used to perform
enhanced 1mage processing using disclosed BFP implemen-
tations. One or more processing layers can be implemented
usmg disclosed techniques for quantized and BFP matrix/
vector operations, mncluding the use of one or more of a
plurality of neural network subgraph accelerators 186 m
the quantization-enabled system 110 described above. It
should be noted that applications of the neural network
implementations disclosed heremn are not limited to DNNs
but can also be used with other types of neural networks,
such as convolutional neural networks (CNNs), mcluding
implementations having Long Short Term Memory
(LSTMs) or gated recurrent units (GRUSs), or other suitable
artificial neural networks that can be adapted to use BFP
methods and apparatus disclosed herein.

[0059] 'The DNN 200 can operate m at least two different
modes. Intially, the DNN 200 can be trained 1n a training
mode and then used as a classifier 1n an nference mode.
During the traming mode, a set of tramming data can be
applied to mputs of the DNN 200 and various parameters
of the DNN 200 can be adjusted so that at the completion
of traming, the DNN 200 can be used as a classifier. Tramning
includes performing forward propagation of the tramning
input data, calculating a loss (e.g., determining a difference
between an output of the DNN and the expected outputs of
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the DNN), and pertorming backward propagation through
the DNN to adjust parameters (e.g., weights and biases) of
the DNN 200. When an architecture of the DNN 200 1s
appropriate for classifying the training data, the parameters
of the DNN 200 will converge and the traming can com-
plete. After training, the DNN 200 can be used 1n the mnfer-
ence mode. Specifically, training or non-training data can be
applhied to the mputs of the DNN 200 and forward propa-
gated through the DNN 200 so that the input data can be

classified by the DNN 200.
[0060] Asshown in FIG. 2, a first set 210 of nodes (includ-

ing nodes 215 and 216) form an input layer. Each node of
the set 210 15 connected to each node 1n a first hidden layer
formed from a second set 220 of nodes (including nodes 225
and 226). A second hidden layer 1s formed from a third set
230 of nodes, mcluding node 2335. An output layer 1s formed
from a fourth set 240 of nodes (including node 245). In
example 200, the nodes of a given layer are tully mtercon-
nected to the nodes of its neighboring layer(s). In other
words, a layer can include nodes that have common inputs
with the other nodes of the layer and/or provide outputs to
common destinations of the other nodes of the layer. In other
examples, a layer can mclude nodes that have a subset of
common mputs with the other nodes of the layer and/or pro-
vide outputs to a subset of common destinations of the other
nodes of the layer.

[0061] Duning forward propagation, each of the nodes
produces an output by applymg a weight to each mput gen-
erated from the preceding node and collecting the weights to
produce an output value. In some examples, each individual
node can have an activation function (o) and/or a bias (b)
applhied. Generally, an appropriately programmed processor
or FPGA can be configured to implement the nodes 1n the
depicted neural network 200. In some example neural net-
works, an output function f(n) of a hidden combinational
node n can produce an output expressed mathematically as:

where w; 1s a weight that 1s applied (multiplied) to an mnput
edge X;, b 1s a bias value for the node n, ¢ 1s the activation
function of the node n, and E 1s the number of imnput edges of
the node n. In some examples, the activation function pro-
duces a continuous value (represented as a floating-point
number) between 0 and 1. In some examples, the activation
function produces a bmary 1 or 0 value, depending on
whether the summation 1s above or below a threshold.

[0062] A given neural network can include thousands of
individual nodes and so performing all of the calculations
for the nodes 1 normal-precision floating-point can be com-
putationally expensive. An implementation for a more com-
putationally expensive solution can include hardware that 1s
larger and consumes more energy than an implementation
for a less computationally expensive solution. However,
performing the operations using quantized floating-point or
in mixed precision (using both normal-precision floating-
point and quantized floating-point) can potentially reduce
the computational complexity of the neural network. A sim-
ple mplementation that uses only quantized floating-point
may significantly reduce the computational complexity, but
the implementation may have difficulty converging during
training and/or correctly classifymg mput data because of
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errors 1ntroduced by the quantization. However, a mixed
precision implementation can potentially increase an accu-
racy of some calculations while also providing the benetits
of reduced complexity associated with quantized tloating-
point.

[0063] A mixed precision implementation of the DNN 200
can include nodes that perform operations i both normal
precision floating-point and quantized floating-point. As a
specific example, an output function f(n) of a hidden com-
bmational node n can produce an output expressed mathe-
matically as:

f(n)a{gl[ 3 Q(mmM

i=0¢o £-1

where w; 1s a weight that 1s applied (multiplied) to an mput
edge x;, Q(w;) 1s the quantized floating-point value of the
welght, Q(x;) 1s the quantized tloating-pomnt value of the
input sourced from the mput edge x;, Q-1( ) 1s the de-quan-
tized representation of the quantized ﬂoatmg-pomt value of
the dot product ol the vectors w and x, b 1s a bias value for
the node n, ¢ 18 the activation function of the node n, and E
1s the number of mput edges of the node n. The computa-
tional complexity can potentially be reduced (as compared
with using only normal-precision floating-pomt values) by
performing the dot product using quantized floating-point
values, and the accuracy of the output function can poten-
tially be increased by (as compared with using only quan-
tized floating-point values) by the other operations of the
output function using normal-precision floating-point
values.

[0064] Neural networks can be tramned and retrained by
adjusting constituent values of the output tunction f(n). For
example, by adjusting weights w; or bias values b for a node,
the behavior of the neural network 1s adjusted by corre-
sponding changes 1 the networks output tensor values.
For example, a cost tunction C(w, b) can be used during
back propagation to find suitable weights and biases for
the network, where the cost function can be described math-
ematically as:

C(wb)= 5 Tlp()-f

where w and b represent all weights and biases, n 18 the
number of traming nputs, o 1S a vector of output values
from the network for an 1nput vector of training inputs x.
By adjusting the network weights and biases, the cost func-
tion C can be driven to a goal value (e.g., to zero (0)) using
various search techniques, for examples stochastic gradient
descent. The neural network 1s said to converge when the
cost tunction C 1s driven to the goal value. Similar to the
output function f(n), the cost function can be implemented
using mixed-precision computer arithmetic. For example,
the vector operations can be performed using quantized
floating-point values and operations, and the non-vector
operations can be performed using normal-precision float-
ing-point values.

[0065] Examples of suitable applications for such neural
network BFP implementations include, but are not limited
to: performing 1mage recognition, performing speech recog-
nition, classifying images, translating speech to text and/or
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to other languages, facial or other biometric recognition,
natural language processing, automated language transla-
tion, query processing 1n search engines, automatic content
selection, analyzing email and other electronic documents,
relationship management, biomedical informatics, 1dentify-
ing candidate biomolecules, providing recommendations, or
other classification and artificial mntelligence tasks.

[0066] A network accelerator (such as the network accel-
crator 180 1n FIG. 1) can be used to accelerate the computa-
tions of the DNN 200. As one example, the DNN 200 can be
partitioned into different subgraphs that can be mdividually
accelerated. As a specific example, each of the layers 210,
220, 230, and 240 can be a subgraph that 1s accelerated. The
computationally expensive calculations of the layer can be
performed using quantized floating-point and the less
expensive calculations of the layer can be performed using
normal-precision floating-point. Values can be passed from
one layer to another layer using normal-precision floating-
point By accelerating a group of computations for all nodes
within a layer, some of the computations can be reused and
the computations performed by the layer can be reduced
compared to accelerating individual nodes.

[0067] In some examples, a set of parallel multiply-accu-
mulate (MAC) units 1n each convolutional layer can be used
to speed up the computation. Also, parallel multiplier units
can be used 1n the fully-connected and dense-matrix multi-
plication stages. A parallel set of classifiers can also be used.
Such parallelization methods have the potential to speed up
the computation even fturther at the cost of added control
complexity:.

[0068] As will be readily understood to one of ordinary
skill 1n the art having the benefit of the present disclosure,
the application of neural network implementations can be
used for different aspects of using neural networks, whether
alone or m combination or subcombination with one
another. For example, disclosed implementations can be
used to implement neural network traming via gradient des-
cent and/or back propagation operations for a neural net-
work. Further, disclosed implementations can be used for

evaluation of neural networks.
[0069] FIG. 3 1s a diagram 300 illustrating an example of

converting a normal floating-point format to a quantized,
block floating-point format, as can be used m certain exam-
ples of the disclosed technology. For example, input tensors
for a neural network represented as normal floating-point
numbers (for example, 1 a 32-bit or 16-bit floating-point
format) can be converted to the illustrated block floating-
pomt format.

[0070] As shown, a number of normal floating-point for-
mat numbers 310 are represented such that each number for
example number 315 or number 316 include a sign, an expo-
nent, and a mantissa. For example, for IEEE 734 half preci-
sion Hoating-point format, the sign 1s represented using one
bit, the exponent 1s represented using 5 bits, and the man-
tissa 1s represented using 10 bits. When the floating-point
format numbers 310 1n the neural network model 200 are
converted to a set of quantized precision, block ﬂoating-
pomt format numbers, there 1S one exponent value that 1s
shared by all of the numbers of the illustrated set. Thus, as
shown, the set of block floating-pomt numbers 320 are
represented by a single exponent value 330, while ¢ach of
the set of numbers mcludes a sign and a mantissa. However,
since the illustrated set of numbers have different exponent
values m the floating-point format, each number’s respec-
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tive mantissa may be shifted such that the same or a prox-
imate number 1s represented in the quantized format (e.g.,
shifted mantissas 345 and 346).

[0071] Further, as shown 1n FIG. 3, use of block floating-

pomt format can reduce computational resources required
for certain common operations. In the illustrated example,
a dot product of two floating-point vectors 1s illustrated n
formal floating-poimnt format (350) and 1n block floating-
point format (360). For numbers represented m the nor-
mal-precision floating-point format operation 350, a float-
ing-point addition 1s required to perform the dot product
operation. In a dot product of floating-point vectors, the
summation 1s performed 1n Hloating-point which can require
shifts to align values with different exponents. On the other
hand, for the block floating-point dot product operation 360,
the product can be calculated using integer arithmetic to
combine mantissa elements as shown. In other words,
since the exponent portion can be factored i the block float-
Ing-point representation, multiplication and addition of the
mantissas can be done enfirely with fixed point or mteger
representations. As a result, large dynamic range for the
set of numbers can be maintained with the shared exponent
while reducing computational costs by using more mteger
arithmetic, instead of floating-point arithmetic. In some
examples, operations performed by the quantization emula-
tor 140 can be optimized to take advantage of block floating-

point format.
[0072] In some examples, the shared exponent 330 1s

selected to be the largest exponent from among the original
normal-precision numbers 1n the neural network model 200.
In other examples, the shared exponent may be selected 1 a
different manner, for example, by selecting an exponent that
1s a mean or median of the normal floating-point exponents,
or by selecting an exponent to maximize dynamic range of
values stored 1in the mantissas when their numbers are con-
verted to the quantized number format. It should be noted
that some bits of the quantized mantissas may be lost 1f the
shared exponent and the wvalue’s original floating-point
exponent are not the same. This occurs because the mantissa
1s shifted to correspond to the new, shared exponent.
[0073] There are several possible choices for which values
1in a block floating-point tensor will share an exponent. The
simplest choice 1s for an entire matrix or vector to share an
exponent. However, sharing an exponent over a finer gran-
ularity can reduce errors because 1t increases the likelihood
of BFP numbers using a shared exponent that 1s closer to
their original normal floating-point format exponent. Thus,
loss of precision due to dropping mantissa bits (when shift-
ing the mantissa to correspond to a shared exponent) can be
reduced.

[0074] For example, consider multiplying a row-vector x
by matrix W: y = xXW. I an exponent 1s shared for each
column of W, then each dot-product xW, (where W; 1s the
1-th column of W) only mnvolves one shared exponent for x

and one shared exponent for W,.
[0075] FIGS. 4 and 5 1illustrate alternative block floating-

pomt formats that can be used for computation of neural
networks. In the context of neural nets, a core operation 1s
to perform a dot product. For example, dot products are the
core computation of matrix multiplication and convolutions.
Matrix multiplication involves dot products of the rows/col-
umns of the matrix with an mput vector. Convolutions
involve dot products of filters with windows of the mput.
In the context of quantized floating-point, the group of

Aug. 24, 2023

values selected to share an exponent can have an impact
on the complexity of the computer arithmetic logic used
for calculating the dot product. The values sharing an expo-
nent can be referred to as the values within a bounding box.
The shape of bounding boxes can potentially impact quanti-
zation error and computation cost. While clustering similar
magnitude values to create bounding boxes can reduce
quantization error, tracking scaling factors for arbiatrary
bounding box shapes may be expensive. Instead, matrices
and filters can be partitioned into bounding boxes that are
potentially more efficient for the operations performed by a
neural network. Specifically, an appropriate selection of the
bounding box can reduce the complexity of computer arith-
metic circuits that are used to implement the operations of
the neural network. FIG. 4 illustrates block floating-point
formats that may be well suited for matrices and FIG. §
1llustrates block floating-point formats that may be well sui-
ted for convolution filters.

[0076] FIG. 415 a diagram 400 illustrating four alternative
block floating-point formats, as can be used 1n certain exam-
ples of the disclosed technology. As shown, a first format
410 represents an entire array 420 of values that share a
single exponent 425. In other words, the entire array 420
of values 1s encapsulated within a single bounding box.
[0077] In a second format 430, a common exponent 18
shared on a per-column basis. In other words, the columns
of the matrix are the bounding box for the values. Thus, 1n
this particular example, block floating-point values stored 1n
even columns 431 of a matrix each share a first, single expo-
nent 432. Block floating-point values stored 1n odd columns
435 cach share a second, single exponent 437. In other
examples, each column of an array can be associated with
a ditterent shared exponent. For an eleven-column tile 1 the
alternative format, there can be eleven corresponding shared
exponents, one shared exponent per column. In other exam-
ples, each row of an array can be associated with a different
shared exponent, or odd and even rows can be associated
with a shared common exponent.

[0078] A third format 450 1s shown where groups of ¢le-
ments 1n an array share a common exponent. For example, 1f
a 15x15 matrnix of values shares i exponent according to the
third format 450, a first set of 5x5 element groups 4355 and
456 share a single shared exponent 458. Similarly, a second
S3x5 element group of elements 1n the array 460 and 461 can
cach shared a second single exponent 468. In other exam-
ples, each of the tiles can be associated with 1ts own respec-
tive shared exponent. In the example format 450, there could

be nine shared exponents for the 15%15 matrx.
[0079] A fourth format 470 1s shown where two shared

exponents are shared on a tiling plus per-column basis.
Thus, a first set of numbers mcluding numbers 480, 481,
and 4835 all share a single common exponent 488. Simuilarly,
a second set of numbers mcluding a set 490 and 491 each
share a second, different single exponent 495. In an alterna-
tive example, each of the groups shown can have its own

shared exponent.
[0080] In some examples, the computational cost of

matrix-vector multiplication can be further reduced by redu-
cing mantissa widths. A large range of values having a
shared common exponent can be expressed with only a
few bits of mantissa. for example, 1 a representation with
4 bits of mantissa and a 5-bit exponent, values can be
expressed 1n a range [2-140.001,, 2151.111, |, or approxi-
mately [2-17, 216]. 1n contrast, a 4-bit fixed point number
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can only represent values in the range [0001,, 11115], or
approximately [290, 24].

[0081] FIG. 5 1s a diagram 500 illustrating three alterna-
tive block floating-point formats, as can be used 1n certain
examples of the disclosed technology. These formats may be
useful for two-dimensional convolutions, but the formats
can be generalized to higher-dimensional convolutions as
well. As shown, a first format 510 represents an entire con-
volution filter 512 of values that share a single exponent
S14. A different convolution filter 516 of values can share
a single exponent S18. Thus, the format 510 1illustrates that
an entire convolution filter can be a bounding box of the
values.

[0082] In a second format 520, cach spatial pixel can be a
bounding box so that a common exponent 1s shared on a per-
spatial-pixel basis, along the channel dimension. As shown,
the spatial pixel values 522 share a single exponent 524 and
the spatial pixel values 526 share a single exponent 528. For
example, for an mput with dimensions [X, v, ¢;|, each spatial
dimension X and y can define a bounding box with ¢, values.
Similarly, tor ¢, convolution filters of dimension [t,, 1,, ¢;],
each pixel (1, 1,) for each of the ¢, filters can be a separate
bounding box with ¢; values. The bounding box size for this
approach 1s ¢;.

[0083] In a third format 530, cach spatial pixel can be sub-
divided along the channel dimension so that a bounding box
includes a sub-division of a spatial pixel. As shown, the sub-
divided spatial pixel values 532 share a single exponent 534
and the sub-divided spatial pixel values 536 share a smgle
exponent 538. For small ¢;, the cost of handling the scaling
factor can be significant. For example, input images at the
first layer of deep convolutional neural nets may have ¢; =3
corresponding to 3 color channels. Tracking a scaling factor
for every triplet can be expensive. In this case, the convolu-
tion can be re-shaped into a matrix-matrix multiplication to
increase the bounding box and decrease the expense of
tracking the bounding box. For example, each convolution
filter can be flattened to create a matrix W with ¢, columns
and 1, * 1, * ¢; rows. An mput matrix X can be created
where each row 1s a f,, * f,, * ¢, vector corresponding to a
window of the input that the convolution filter sweeps over.
The result Y = XW 1s a matrix that can be re-shaped to
match the output of the convolution operation. With the con-
volution re-formulated as matrix multiplication, the bound-
1ng box strategies discussed above 1n reference to FIG. 4 for
matrix multiplication can be applied.

[0084] FIG. 61s aflow diagram depicting a method 600 of
training a neural network using a quantized model, as can be
implemented 1n certain examples of the disclosed technol-
ogy. For example, traming the neural network can include
iterating through a set of traming data, where the method
600 1s used for updating the parameters of the neural net-
work during a given iteration of traming data. As one exam-
ple, the method 600 can be performed by a quantization-

enabled system, such as the quantization-enabled system

110 of FIG. 1.
[0085] At process block 610, parameters, such as weights

and biases, of the neural network can be nitialized. As one
example, the weights and biases can be 1mmitialized to random
normal-precision floating-point values. As another example,
the weights and biases can be mitialized to normal-precision
tloating-point values that were calculated from an earlier
traming set. The 1mitial parameters can be stored 1n a mem-
ory or storage of the quantization-enabled system. In one
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example, the parameters can be stored as quantized float-
ing-point values which can reduce an amount storage used
for storing the 1nitial parameters.

[0086] At process block 620, mput values of the neural
network can be forward propagated through the neural net-
work. Input values of a given layer of the neural network can
be an output of another layer of the neural network. The
values can be passed between the layers from an output of
one layer to an mput of the next layer using normal-preci-
sion floating-point. The output function of the layer 1 can
include a term that 1s described mathematically as:

Vi = Q_l(f(Q(y;—l )?Q(W; )))

where y;; 18 the output from a layer providing the input to
layer 1, W, 1s the weight tensor for the layer 1, 1( ) 1s a for-
ward function of the layer, Q( ) 1s a quantization function,
and Q-1( ) 1s a de-quantization function. The output function
of the layer can be the de-quantized representation of 1( ) or
the output function can include additional terms, such as an
activation function or the addition of a has, that are per-
formed usmmg normal-precision floating-pont (after de-
quantization) or using quantized floating-point (before de-
quantization). Generally, the mputs, outputs, and parameters
of the layers are tensors. Typically, the mputs, outputs, and
parameters of the layers will be vectors or matrices. The
quantization function converts normal-precision floating-
point values to quantized tloating-point values. The quanti-
zation function can be selected to account for the type of
input data and the types of operations performed by the
layer 1. For example, when y; and W, are two-dimensional
matrices and the output function includes a term that takes
the cross product of y;.; and W,, the quantization tunction
for y;.; can use a bounding box including a row or a portion
of arow of y;_, and the quantization function for W, can use
a bounding box including a column or a portion of a column
of W;. The computation can be more efficient when select-
ing the bounding boxes to tfollow the flow of the operators,
thus making a hardware implementation smaller, faster, and
more energy efficient. The de-quantization function con-
verts quantized floating-point values to normal-precision

floating-point values.
[0087] At process block 630, a loss of the neural network

can be calculated. For example, the output y of the neural
network can be compared to an expected output ¥ of the
neural network. A difference between the output and the
expected output can be an input to a cost function that 1s

used to update the parameters of the neural network.
[0088] At process block 640, the loss of the neural net-

work can be back-propagated through the neural network.
During back propagation, an output error term oy and a
weight error term OW can be calculated. The output error
term can be described mathematically as:

oy, =Q  (2(Q(ay;).Q(W;)))

where 0y, 18 the output error term from a layer following
layer 1, W; 1s the weight tensor for the layer 1, g( ) 1s a back-
ward function of the layer, Q( ) 1s a quantization function,
and Q-1() 1s a de-quantization function. The backward func-
tion g( ) can be the backward function of f( ) for a gradient
with respect to y,.; or a portion of the gradient function. The
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output error term of the layer can be the de-quantized repre-
sentation of g( ) or the output error term can 1nclude addi-
tional terms that are performed using normal-precision float-
ing-point (after de-quantization) or using quantized floating-
point (before de-quantization).

[0089] The weight error term OW can be described math-
ematically as:

OW; = Q_l(h(Q(}’i)=Q(ayi)))

where OW, 1s the weight error term for the layer 1, 0y; 1s the
output error term for the layer 1, y; 1s the output for the layer
1, h( ) 1s a backward function of the layer, Q( ) 1s a quantiza-
tion function, and Q-1( ) 1s a de-quantization function. The
backward function h( ) can be the backward function of 1( )
for a gradient with respect to W,_; or a portion of the weight
error equation. The weight error term of the layer can be the
de-quantized representation of h( ) or the weight error term
can include additional terms that are performed using nor-
mal-precision floating-point (after de-quantization) or using
quantized floating-point (before de-quantization). The
weilght error term can include additional terms that are per-
formed using normal-precision floating-point.

[0090] At process block 650, the parameters for each layer
can be updated. For example, the weights for each layer can
be updated by calculating new weights based on the iteration
of traming. As one example, a weight update function can be
described mathematically as:

W, = W, + 1 x OW,

where OW; 1s the weight error term for the layer 1, 1 1s the
learning rate for the layer 1 for the neural network, W, 1s the
weight tensor for the layer 1. In one example, the weight
update function can be performed using normal-precision
floating-point.

[0091] FIG. 7 1s a block diagram 700 depicting an exam-
ple of a mixed-precision floating point environment and a
partition between a normal-precision floating-pomnt domain
and a quantized tloating-point domain. As described above,
more¢ computationally expensive operations such as vector-
vector, vector-matrix, matrix-matrix, and convolution
operations can be performed by the quantized layer 710 m
the quantized floating-point domain. Less computationally
expensive operations such as scalar add and scalar multiply
can be performed outside of the quantized layer 710 1n the
normal-precision floating-point domain. With regard to
neural networks, a neural network can be partitioned 1nto
layers (such as layer 710). The bulk of the computational
work within a layer can be performed 1n the quantized float-
ing-point domaim and less computationally expensive opera-
tions of the layer, such as adding a bias value or calculating
an activation function, can be performed 1n the normal-pre-
cision floating-pomt domain. The wvalues that interface
between the layers can be passed from one layer to the
other layer in the normal-precision floating-pomt domain.
By quantizing the mnputs specifically for a given layer, the
quantization can be targeted to the operations of that layer so
that the operations of the layer are more eflicient. Specifi-
cally, bounding boxes of the quantized floating-point format
can be selected to reduce the complexity of the computer
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arithmetic circuits to make the computer logic potentially
faster and/or more energy etficient.
[0092] As one example, the output values y;, the output
error term oy;, the weights W,, and the weight error terms
OW,; for a given layer can be stored in the normal-precision
floating-point domain. During the forward propagation tlow
720, the output values from an earlier layer can be commu-
nmicated from the normal-precision floating-point domain to
the quantized floating-point domain through the quantizer
722 that converts from normal-precision floating-point to
quantized floating-point. The output values from the given
layer can be communicated from the quantized floating-
point domain to the normal-precision floating-point domain
through the de-quantizer 724 that converts from quantized
floating-point to normal-precision foating-point. The
weights for the given layer can be communicated from the
normal-precision floating-pomt domain to the quantized
floating-point domain through the quantizer 742.

[0093] During the back-propagation flow 730, the output
error term from a later layer can be communicated from the
normal-precision floating-pomnt domam to the quantized
floating-point domain through the quantizer 732. The output
error term from the given layer can be communicated from
the quantized floating-point domain to the normal-precision
floating-point domain through the de-quantizer 734. The
weights for the given layer can be communicated from the
normal-precision floating-pomt domam to the quantized
floating-point domain through the quantizer 742. The
weight error term error term from the given layer can be
communicated from the quantized floating-point domain to
the normal-precision floating-pomnt domain through the de-

quantizer 754.

Example Methods for Using Mixed Precision
Floating-point to Train Neural Networks

[0094] FIG. 8 1s a flow diagram depicting an example
method 800 of training a neural network accelerator using
mixed precision data formats. The mixed precision data for-
mats can include a normal-precision floating-point format
and a quantized-precision floating-point format. As one
example, the method 800 can be performed by a neural net-
work accelerator of a quantization-enabled system, such as
the neural network accelerator 180 of the quantization-
enabled system 110 of FIG. 1.

[0095] At process block 810, an mput tensor of a layer of a
multi-layer neural network can be received. The mput tensor
of the layer can be an mput during a forward propagation or
a back-propagation mode of the neural network. For exam-
ple, the mput tensor can be mput values (e.g., X;) from the
mput edges of the layer or operational parameters of the
layer, such as weights (e.g., W;), a convolutional filter, or
bias values. As another example, the mput tensor can be
an output error term beimng back-propagated from an adja-
cent layer during back-propagation. The imnput tensor can
be recerved from an mput/output interface of the neural net-
work accelerator, an on-chip memory, an off-chip memory,
or other storage location. The mnput tensor can mclude multi-
ple normal-precision floating-pomt values, where each
value mcludes a sign, a mantissa value, and an exponent
value. The mput tensor can be a vector or a multidimen-

sional array.
[0096] At process block 820, the mnput tensor of the layer

can be converted from a normal-precision floating-point for-
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mat to a quantized-precision floating-point format. Convert-
ing ifrom the normal-precision floating-point format to the
quantized-precision foating-point format can 1include
selecting a bounding box around a set of normal-precision
floating-point values, determining a shared exponent for the
shared normal-precision floating-point values, and adjusting
bit widths of mantissa values for the normal-precision float-
ing-point values (such as by reducing the number of bits of
the mantissa 1n the quantized-tfloating point value and shift-
ing the mantissa values to account for the shared exponent).
For example, the quantized-precision floating-point format
can be a block floating-point format that groups multiple
values together so that a plurality of mantissa values can
share a common exponent. The values grouped together
within a bounding box and sharing an exponent 1n the
block floating-pomt format can be selected based on the
dimensions of the mput tensor and/or the operations to be
performed within the layer. The bounding box can be a row,
a column, a portion of a row or column, a two-dimensional
shape, or a three-dimensional shape, for example. The
bounding boxes used for quantization can be ditferent dur-
ing forward propagation than during backward propagation.
[0097] As a specific example, the layer can receive a pair
of mput tensors, A and B, that are two-dimensional matrices
to be multiplied within the layer. In other words, the layer
can perform the matrix multiply AB. Performing the matrix
multiply AB includes taking dot products of the rows of A
with the columns of B. Bounding boxes can be selected to
include the rows of A (or at least portions of the rows of A)
and bounding boxes can be selected around the columns of
B (or at least portions of the rows of B). Thus, quantizing the
input tensor A can include grouping mantissa values of a
row with a shared exponent and quantizing the mput tensor
B can include grouping mantissa values of a column with a
shared exponent. For a three-dimensional convolutional fil-
ter, quantizing the mput tensor can include grouping a
shared exponent with mantissa values of a spatial pixel
along the channel dimension.
[0098] At process block 830, a tensor operation can be
performed using the quantized-precision floating-point for-
mat of the converted mput tensor as an mput. For example,
the tensor operation can be a vector-vector, vector-matrix,
matrix-matrix, or convolution operation. For example, the
tensor operation can be an add, multiply, dot-product, con-
volution, or other operation that combines tensor elements
to produce a result. The output result of the tensor operation
can be a scalar value or a tensor value.
[0099] At process block 840, a result of the tensor opera-
tion can be converted from the quantized-precision floating-
point format to the normal-precision floating-point format.
Converting from the quantized-precision tloating-point for-
mat to the normal-precision floating-point format can
include generating an exponent value for a normal-precision
tloating-point value and adjusting a mantissa values for the
normal-precision floating-point values (such as mcreasing
the number of bits of the mantissa values and/or shifting
the mantissa values to account for the generated exponent).
0100] At optional process block 830, an operation can be
performed using the converted result i the normal-preci-
sion floating-pomt format. For example, a scalar add (such
as adding a bias value) or an activation function can be com-
puted using the converted result mn the normal-precision
floating-point format.
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[0101] At process block 860, the converted result in the
normal-precision floating-point format can be used to
update an operational parameter of the layer of the neural
network, where the parameter 1s stored i normal-precision
floating-point format. For example, the operational para-
meter can be a weight or a bias value of the layer. By updat-
ing the operational parameter of the layer, the neural net-
work will behave differently than an untramned neural
network for a given mput stimulus. For example, by training
the neural network and updating the operational parameters,
the neural network can learn to classity input data (such as
image data, audio data, or other sensory data) into
categories.

[0102] FIG. 9 1s a flow diagram depicting an example
method 900 of operating a neural network accelerator
using mixed precision data formats. The mixed precision
data formats can include a normal-precision floating-point
format and a block floating-point format. As one example,
the method 900 can be performed by a quantization-enabled
system, such as the neural network accelerator 180 of the

quantization-enabled system 110 of FIG. 1.
[0103] At process block 910, a hardware accelerator can

be configured to accelerate a layer of a multi-layer neural
network. The hardware accelerator can include a tensor pro-
cessing unit (TPU), a soft processor core, programmable
logic (e.g., programmable look-up tables (LUTSs) and/or
block RAMs), and/or application-specific circuits for accel-
crating neuron and/or neuron layer computations. Configur-
ing the hardware accelerator can include loading mstruc-
tions for a TPU, soft processor core, or other special-
purpose processor; and/or loading configuration data onto
programmable logic resources so that the programmable
logic performs tasks that accelerate neural network opera-
tions. The layer can be a convolutional layer, a fully con-
nected layer, a partially connected layer, a layer of a long-
short-term memory (LSTM) network, or a layer of a recur-

rent neural network (RNN), for example.
[0104] At process block 920, an mput tensor of the layer

can be converted from a normal-precision Hloating-point for-
mat to a block floating-point format. The mput tensor of the
layer can be an input during a forward propagation or a
back-propagation mode of the neural network. For example,
during forward propagation, the mput tensor can be input
values from the mput edges of the layer or operational para-
meters of the layer, such as weights or bias values. During
back-propagation, the input tensor can be an output error
term being back-propagated from an adjacent layer or
operational parameters of the layer. The mput tensor can
be received from an input/output interface ot the neural net-
work accelerator, an on-chip memory, an off-chip memory,
or other storage location. The input tensor can include multi-
ple normal-precision floating-point values, where each
value mcludes a sign, a mantissa value, and an exponent
value. Converting from the normal-precision floating-point
format to the quantized-precision floating-poimnt format can
include selecting a bounding box around a set of normal-
precision Hoating-point values, determining a shared expo-
nent for the shared normal-precision floating-point values,
and adjusting bit widths of mantissa values for the normal-
precision floating-pomt values (such as by reducing the
number of bits of the mantissa 1n the quantized-tloating
point value and shifting the mantissa values to account for
the shared exponent). For example, the quantized-precision
floating-point format can be a block floating-point format
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that groups multiple values together so that a plurality of
mantissa values can share a common exponent. The values
orouped together and sharing an exponent 1n the block float-
ing-point format can be selected based on the dimensions of
the mput tensor and/or the operations to be performed within
the layer.

0105] At process block 930, a tensor operation can be
performed using the block floating-poimnt format of the con-
verted mput tensor. For example, the tensor operation can be
a vector-vector, vector-matrix, matrix-matrix, or convolu-
tion operation. For example, the tensor operation can be an
add, multiply, dot-product, convolution, or other operation
that combines tensor elements to produce a result. The out-
put result of the tensor operation can be a scalar value or a
tensor value.

[0106] At process block 940, a result of the tensor opera-
tion can be converted from the block floating-point format to
the normal-precision floating-point format. For example, the
result can be an mtermediate value of a node of the layer, an
output value of a node of the layer, or an operational para-
meter such as a weight or a bias value of the layer. Convert-
ing from the quantized-precision floating-point format to the
normal-precision floating-point format can include generat-
ing an exponent value for a normal-precision floating-point
value and adjusting a mantissa values for the normal-preci-
sion floating-point values (such as increasing the number of
bits of the mantissa values and/or shifting the mantissa
values to account for the generated exponent).

[0107] At optional process block 950, an operation can be
performed using the converted result in the normal-preci-
sion floating-point format. For example, a scalar add (such
as adding a bias value) or an activation function can be com-
puted using the converted result mn the normal-precision
floating-point format.

[0108] At process block 960, the converted result in the
normal-precision floating-point format can be used to gen-
erate an output tensor of the layer of the neural network,
where the output tensor 1s mm normal-precision floating-
pomt format. The values transierred between the layers of
the neural network can be passed n the normal-precision
floating-point format, which may mcrease an accuracy of
the neural network allowing for faster convergence during
traimning and for more accurate inferences. By updating the
output tensor of the layers of the neural network, the neural
network can potentially classity input data (such as 1mage
data, audio data, or other sensory data) into categories.

Additional Examples of the Disclosed Technology

[0109] Additional examples of the disclosed subject mat-
ter are discussed herein 1n accordance with the examples

discussed above.
[0110] In one example of the disclosed technology, a com-

puting system mcludes a computer-readable memory storing
an operational parameter of a given layer of a neural net-
work. The computing system further includes a hardware
accelerator 1n communication with the computer-readable
memory. The hardware accelerator 1s configured to receive
an mput tensor for a given layer of a multi-layer neural net-
work. The 1mput tensor 18 converted from a normal-precision
floating-point format to a quantized-precision floating-point
format. A tensor operation 1s performed using the mput ten-
sor converted to the quantized-precision floating-pomt for-
mat. A result of the tensor operation 1s converted from the
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quantized-precision floatig-point format to the normal-pre-
cision Hoating-point format. The converted result 1s used 1n
the normal-precision floating-point format to update the
operational parameter stored 1 the computer-readable
memory, where the parameter 1s stored 1n normal-precision
tloating-point format. Using the converted result 1n the nor-
mal-precision floating-point format to update the opera-
tional parameter can mclude performing a scalar operation
that uses the converted result 1n the normal-precision float-
ing-point format to generate the operational parameter.

[0111] The quantized-precision floating-point format can
be a block floating-point format having a plurality of man-
tissa values that share a common exponent. For example, the
mput tensor can be a two-dimensional matrix, and the block
floating-point format can have a plurality of mantissa values
within a given row share a common exponent, and mantissa
values 1n different rows have different respective exponents.
The mput tensor can be a convolution filter, and the block
floating-point format can have a plurality of mantissa values

within a spatial pixel share a common exponent.
[0112] The tensor operation can be a matrix-matrix multi-

ply. The tensor operation can be a dot product computation.
The tensor operation can be a convolution. The tensor
operation can be a vector-vector or vector-matrix operation.
The tensor operation can be performed during a forward-
propagation mode or a back-propagation mode of the neural
network. For example, during a back-propagation mode, the
input tensor can be an output error term from a layer adja-
cent to (e.g., following) the given layer or weights of the
orven layer. As another example, during a forward-propaga-
tion mode, the mput tensor can be an output term from a
layer adjacent to (¢.g., preceding) the given layer or weights
of the given layer.

[0113] In one¢ example, a method for a neural network
accelerator mcludes configuring the neural network accel-
crator to accelerate a given layer of a multi-layer neural net-
work. An mput tensor for the given layer 1s converted from a
normal-precision floating-pomt format to a block floating-
pomt format. a tensor operation 1s performed using the
mput tensor converted to the block floating-point format.
A result of the tensor operation 18 converted from the
block floating-point format to the normal-precision float-
ing-point format. The converted result 1n the normal-preci-
sion floating-point format 1s used to generate an output ten-
sor of the layer of the neural network, where the output
tensor 1s 1 normal-precision floating-point format.

[0114] Configuring the neural network accelerator to
accelerate a given layer of a multi-layer neural network
can mnclude loading configuration data onto programmable
hardware so that the programmable hardware performs the
operations of the given layer of a multi-layer neural net-
work. Configuring the neural network accelerator to accel-
crate a given layer of a multi-layer neural network can
include programming a tensor processing unit. Configuring
the neural network accelerator to accelerate the given layer
of the multi-layer neural network can include mitializing
weights of input edges of the given layer of the multi-layer
neural network.

[0115] Converting the mput tensor for the given layer
from the normal-precision floating-pomt format to the
block floating-point format can include selecting a bounding
box for a plurality of elements of the mput tensor. The
bounding box can be selected based on the tensor operation
performed. The tensor operation performed can be a matrix-
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matrix multiply and the selected bounding box can be a col-
umn of a matrix of the mput tensor. The tensor operation
performed can be a matrix-matrix multiply and the selected
bounding box can be a row of a matrix of the mput tensor.
Converting the mput tensor for the given layer from the nor-
mal-precision floating-pomnt format to the block floating-
pomt format can include: selecting a bounding box for a
plurality of elements of the input tensor; identifying a shared
exponent for the selected plurality of elements within the
bounding box of the mput tensor; scaling mantissa values
of the elements of the mput tensor so that integer portions
of the scaled mantissas have a selected number of bits for
the block floating-point format; removing ifractional baits
from the scaled integer portions of the mantissas; and round-
ing the mantissas to produce block floating-point values.
[0116] In one example, one or more computer-readable
media store computer-executable mstructions, which when
executed by a neural network accelerator, cause the neural
network accelerator to perform operations. The operations
include converting an input tensor for a given layer of a
multi-layer neural network from a normal-precision toat-
ing-point format to a block tloating-point format. The opera-
tions include performing a tensor operation using an opera-
tional parameter of the given layer of the neural network and
the mput tensor converted to the block floating-point format.
For example, the tensor operation can be a convolution or a
matrix-matrix multiply. As another example, the tensor
operation can be performed during a back-propagation
mode¢ or a forward-propagation mode of the neural network
The operations mclude converting a result of the tensor
operation from the block floating-pomt format to the nor-
mal-precision floating-point format. The operations include
using the converted result in the normal-precision floating-
poimnt format to update the operational parameter stored in
the one or more computer-readable media.

[0117] The input tensor can be a two-dimensional matrix.
Converting the mput tensor from the normal-precision float-
ing-point format to the block floating-pomnt format can
include selecting a plurality of elements within a column
of the two-dimensional matrix to share a common exponent
in the block floating-point format. Converting the mnput ten-
sor from the normal-precision floating-point format to the
block floating-point format can include selecting a plurality
of elements within a row of the two-dimensional matrix to
share a common exponent 1n the block floating-point format.

Example Computing Environment

[0118] FIG. 10 illustrates a generalized example of a sui-
table computing environment 1000 in which described
embodiments, techniques, and technologies, including sup-
porting a multi-language playback framework, can be
implemented.

[0119] The computing environment 1000 1s not mtended
to suggest any limitation as to scope of use or functionality
of the technology, as the technology may be implemented 1n
diverse general-purpose or special-purpose computing
environments. For example, the disclosed technology may
be implemented with other computer system configurations,
including hand held devices, multi-processor systems, pro-
orammable consumer electronics, network PCs, minicom-
puters, mamframe computers, and the like. The disclosed
technology may also be practiced 1n distributed computing
environments where tasks are performed by remote proces-
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sing devices that are linked through a communications net-
work. In a distributed computing environment, program
modules may be located in both local and remote memory
storage devices.

[0120] With reference to FIG. 10, the computing environ-
ment 1000 1includes at least one processing unit 1010 and
memory 1020. In FIG. 10, this most basic configuration
1030 1s included within a dashed line. The processmg unit
1010 executes computer-executable mstructions and may be
a real or a virtual processor. In a multi-processing system,
multiple processmg units execute computer-executable
istructions to mcrease processing power and as such, multi-
ple processors can be running simultaneously. The memory
1020 may be volatile memory (e.g., registers, cache, RAM),
non-volatile memory (¢.g., ROM, EEPROM, flash memory,
etc.), or some combination of the two. The memory 1020
stores software 1080, images, and video that can, for exam-
ple, implement the technologies described herein. A com-
puting environment may have additional features. For
example, the computing environment 1000 includes storage
1040, one or more mput devices 1050, one or more output
devices 1060, and one or more communication connections
1070. An mnterconnection mechanism (not shown) such as a
bus, a controller, or a network, mterconnects the compo-
nents of the computing environment 1000. Typically, oper-
ating system software (not shown) provides an operating
environment for other software executing i the computing
environment 1000, and coordinates activities of the compo-

nents of the computing environment 1000.
[0121] The storage 1040 may be removable or non-remo-

vable, and mcludes magnetic disks, magnetic tapes or cas-
settes, CD-ROMs, CD-RWs, DVDs, or any other medium
which can be used to store information and that can be
accessed within the computing environment 1000. The sto-
rage 1040 stores mstructions for the software 1080, plugin
data, and messages, which can be used to implement tech-
nologies described herein.

[0122] The mput device(s) 1050 may be a touch input
device, such as a keyboard, keypad, mouse, touch screen
display, pen, or trackball, a voice mput device, a scanning
device, or another device, that provides input to the comput-
ing environment 1000. For audio, the mput device(s) 1050
may be a sound card or similar device that accepts audio
mput m analog or digital form, or a CD-ROM reader that
provides audio samples to the computing environment
1000. The output device(s) 1060 may be a display, printer,
speaker, CD-writer, or another device that provides output
from the computing environment 1000.

[0123] The communication connection(s) 1070 enable
communication over a communication medium (e.g., a con-
necting network) to another computing entity. The commu-
nication medium conveys information such as computer-
executable mstructions, compressed graphics mformation,
video, or other data 1n a modulated data signal. The commu-
nication connection(s) 1070 are not limited to wired connec-
tions (e.g., megabit or gigabit Ethernet, Infimband, Fibre
Channel over electrical or fiber optic connections) but also
include wireless technologies (e.g., RF connections via
Bluetooth, Wik1 (IEEE 802.11a/b/n), WiMax, cellular, satel-
lite, laser, infrared) and other suitable communication con-
nections for providing a network connection for the dis-
closed agents, bridges, and agent data consumers. In a
virtual host environment, the communication(s) connections
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can be a virtualized network connection provided by the

virtual host.
[0124] Some embodiments of the disclosed methods can

be performed using computer-executable mstructions
implementing all or a portion of the disclosed technology
in a computing cloud 1090. For e¢xample, the disclosed
methods can be executed on processing units 1010 located
1in the computing environment 1030, or the disclosed meth-
ods can be executed on servers located m the computing

cloud 1090.
[0125] Computer-readable media are any available media

that can be accessed within a computing environment 1000.
By way of example, and not limitation, with the computing
environment 1000, computer-readable media include mem-
ory 1020 and/or storage 1040. As should be readily under-
stood, the term computer-readable storage media includes
the media for data storage such as memory 1020 and storage
1040, and not transmission media such as modulated data
signals.

[0126] In view of the many possible embodiments to
which the principles of the disclosed subject matter may
be applied, 1t should be recognized that the 1llustrated embo-
diments are only preterred examples and should not be taken
as limiting the scope of the claims to those preferred exam-
ples. Rather, the scope of the claimed subject matter 1s
defined by the following claims. We therefore claim as our
invention all that comes within the scope of these claims.

We claim:

1. A computing system comprising:

a computer-readable memory; and

a hardware accelerator im communication with the compu-
ter-readable memory, the hardware accelerator config-
ured, during processing using a multi-layer neural net-
work, to:

recerve an mput tensor fora given layer of the multi-layer

neural network;

convert the mput tensor from a normal-precision float-

ing-point format to a quantized-precision tloating-
point format, the quantized-precision tloating-point
format being a block floating-point format, wherein a
first converted 1input tensor portion corresponding to a
first portion of the input tensor comprises a first com-
mon exponent for values 1n the first portion of the mput
tensor and a first plurality of mantissa values and a
second converted tensor portion corresponding to a
second portion of the mput tensor comprises a second
common exponent value for values 1n the second por-
tion of the mput tensor and a second plurality of man-
tissa values, wherein the first common exponent 1s dif-
ferent than the second common exponent; and
perform a tensor operation using the mput tensor con-
verted to the quantized-precision {floating-point
format.

2. The computing system ot claim 1, wherein the hardware
accelerator 1s turther configured to convert a result of the ten-
sor operation from the quantized-precision floating-point for-
mat to the normal-precision tloating-point format to provide a
converted result i the normal-precision floating-point
format.

3. The computing system of claim 2, wherein the hardware
acceleratoris further configured to perform an operation using
the converted result i the normal-precision floating-point
format.
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4. The computing system ot claim 2, wherein the hardware
accelerator 1s further configured to generate an output tensor
using the converted result 1in the normal-precision tloating-
poimt format.

S. The computing system of claim 1, wherein the input ten-
sor 18 a two-dimensional matrix, and the quantized-precision
tloating-point format 1s a block floating-point format where a
plurality of mantissa values within a given row share a com-
mon exponent, and mantissa values mn different rows have
different respective exponents.

6. The computing system of claim 1, wherein the input ten-
sor 18 a convolution filter, and the quantized-precision float-
ing-point format 1s a block floating-point format where a plur-
ality of mantissa values within a spatial pixel share a common
exponent.

7. The computing system of claim 1, wherein the tensor
operation 1s a dot product computation.

8. The computing system of claim 1, wherein the tensor
operation 18 a convolution.

9. The computing system of claim 1, wherein the convert-
ing the mput tensor from a normal-precision floating-point
format to a quantized-precision floating-point format
COMPI1SES:

selecting a first bounding box, the first bounding box defin-

ing the first portion of the mput tensor; and

selecting a second bounding box, the second bounding box

defining the second portion of the mput tensor.

10. The method of claim 9, wherein the first bounding box 1s

a row of a matrix of the mput tensor.
11. The method of claim 9, wherein the first bounding box 1s

a column of a matrix of the mput tensor.
12. A method, implemented m a computing system,
COmprising:

converting an mnput tensor for a given layer of a multi-layer
neural network from a normal-precision tloating-point
format to converted values represented 1n a block float-
ing-point format by (1) for a first portion on the 1nput
tensor, selecting a first bounding box mcluding a first
set of values expressed 1n the normal-precision float-
ing-point format and where the block floating-point for-
mat uses a first common exponent for converted values of
the first set of values; and (2) for a second portion of the
input tensor, selecting a second bounding box compris-
ing a second set of values expressed n the normal-preci-
sion floating point format and where the block-floating
point format uses a second common exponent for con-
verted values of the second set of values, where the sec-
ond set of values 1s different from the first set of values
and the second common exponent 1s different from the
first common exponent;

performing a tensor operation using the converted values 1n
the mput tensor converted to the block floating-point

format;
converting a result of the tensor operation from the block

floating-pomnt format to the normal-precision floating-

point format; and
using the converted result in the normal-precision tloating-

point format to generate an output tensor of the layer of
the neural network, where the output tensor 1s 1 normal-
precision Hloating-point format.

13. The method of claim 12, wherein the first bounding box

1s a row of a matrix of the input tensor.
14. The method of claim 12, wherein the first bounding box

1s a column of a matrix of the mput tensor.
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15. The method of claim 12, wheremn converting the mput
tensor for the given layer from the normal-precision tloating-

point format to the block tloating-point format comprises:
scaling mantissa values of elements of the mput tensor so

that mteger portions of the scaled mantissas have a
selected number of bats for the block floating-point
format;

removing fractional bits from the scaled integer portions of

the mantissas; and
rounding the mantissas to produce block floating-point

values.
16. One or more non-transitory computer-readable media

comprising:
computer-executable instructions that, when executed by a
computing device, cause the computing device to con-
vert an mput tensor for a given layer of a multi-layer
neural network from a normal-precision floating-point
format to a block floating-point format, by (1) for a first
portion of the mput tensor, selecting a first bounding box
around a first set of values expressed with the normal-
precision floating-pomnt format and where the block
floating-point format uses a first common exponent for
converted values of the first set of values; and (2) for a
second portion of the mput tensor, selecting a second
bounding box comprising a second set of values
expressed 1n the normal-precision floating point format
and where the block-floating point format uses a second
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common exponent for converted values of the second set
of values, where the second set of values 1s different from
the first set of values and the second common exponent 18
ditferent from the first common exponent; and

computer-executable mstructions that, when executed by
the computing device, cause the computing device to
perform a tensor operation using the imput tensor con-
verted to the block floating-point format.

17. The one or more non-transitory computer-readable
media of claim 16, wherein the first bounding box 1s arow of
a matrix of the input tensor.

18. The one or more non-transitory computer-readable
media of claim 16, wheren the first bounding box 1s a column
of a matrix of the mput tensor.

19. The one or more non-transitory computer-readable
media of claim 16, wherein the mput tensor 1s a two-dimen-
sional matrix, and 1n the block floating-point format a plural-
ity of mantissa values within a given row share a common
exponent, and mantissa values in differentrows have different
respective exponents.

20. The one or more non-transitory computer-readable
media of claim 16, wherein the mnput tensor 1s a convolution
filter, and the block floating-point format 1s a block floating-
poimnt format where a plurality of mantissa values within a
spatial pixel share a common exponent.
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