a9y United States
12y Patent Application Publication o) Pub. No.: US 2023/0244530 Al

Chen et al.

US 20230244530A1

43) Pub. Date: Aug. 3, 2023

(54)

(71)

(72)

(21)
(22)

(63)

FLEXIBLE OPTIMIZED DATA HANDLING
IN SYSTEMS WITH MULTIPLE MEMORIES

Applicant: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Tong Chen, Yorktown Heights, NY
(US); John Kevin O’Brien, South
Salem, NY (US); Daniel A. Prener,
Croton-On-Hudson, NY (US); Zehra N.
Sura, Yorktown Heights, NY (US)

Inventors:

Appl. No.: 18/296,012

Filed: Apr. 5, 2023

Related U.S. Application Data

Continuation of application No. 17/189,856, filed on
Mar. 2, 2021, Continuation of application No. 15/180,
756, filed on Jun. 13, 2016, now Pat. No. 10,996,989.

Processing

Memory
resources

106

resources
104

System node
102

Processing Memory

resources
106

resources
104

System node
102

Publication Classification

(51) Int. CL.
GOGF 9/50 (2006.01)
(52) U.S. CL
CPC .o, GOGF 9/5016 (2013.01); YO2D 10/00
(2018.01)
(57) ABSTRACT

Methods and systems for optimizing an application for a
computing system having multiple distinct memory loca-
tions that are interconnected by one or more communication
channels include determining one or more data handling
properties for a data region in an application. One or more
data handling policies for the data region are determined
based on the one or more data handling properties. Data
setup costs are determined for a scope 1n the application that
uses the data region in different memory locations based on
the one or more data handling properties. The application 1s
optimized 1n accordance with the one or more data handling
policies and the data setup costs for the different memory
locations.

Memory

controller
110

108

Memory
controller

110

Patent Application Publication Aug. 3, 2023 Sheet 1 of 7 US 2023/0244530 Al

Processing Memory Memory

controller
110

resources resources
104 106

System node
102

108

Processing Memory Memory

controller
110

resources resources
104 106

System node
102

FIG. 1

Patent Application Publication Aug. 3, 2023 Sheet 2 of 7 US 2023/0244530 Al

Modify source code to specity
data properties
202

Automatically detect data
properties
204

Set defaults for all unassigned

properties
206

Analyze properties across all
scopes for each data region

208

Pick data handling policies for
each data region

210

FIG. 2

Patent Application Publication

Select a scope In the
application
302

Gather properties for
each data region

304

Perform compiler
analysis
300

Calculate data setup
costs for locations
308

Select computing
location for the scope
310

Apply data handling
policies
312

Are there
additional scopes?
314

Aug. 3, 2023 Sheet 3 of 7

Generate optimized
code using the

locations and policies
316

FIG. 3

US 2023/0244530 Al

Run optimized code
on target sysiem
318

Patent Application Publication Aug. 3, 2023 Sheet 4 of 7 US 2023/0244530 Al

Developer

Processor Memory

402 404 environment

406

Data System
properties description
410 412

Source code
408

Compiler
module

414

Optimization system
400

FIG. 4

Patent Application Publication Aug. 3, 2023 Sheet 5 of 7 US 2023/0244530 Al

First storage Second Speaker
200 520 storage 530
m—— ﬂ LA
CPU ROM RAM adzoter af:!oaur‘:: r
504 508 510 y y

220 230

User Interface
adapter

Input
device 1

Network

Display

Cache
206

adapter

240

adapter

260

292 220

Transceiver

540 Input Input Display

device 2 device 3 device
204 206 202

FIG. 5

US 2023/0244530 Al

.................... oy B3
v .._.t.lt.t..._...._..h "y,

Aug. 3, 2023 Sheet 6 of 7

R rYrrrrrYrrr e

Patent Application Publication

S48

'i'ﬁiiﬁiiﬂiﬁiﬁiﬁiﬁﬂ'{;' i e

sttt bt bl bl

~

NS
LR

A v v v A A R AR X

Y

FUF A FIN O CRVE R SR TNE RV RVEVESE, (PR
WO RN AR 0% K e PP e RS BN

AR AY
At

B 525 R SRR 2 5. x 3R~ * & X

\ ‘ﬁ.\}

FIG. 6

Patent Application Publication Aug. 3, 2023 Sheet 7 of 7 US 2023/0244530 Al

j V4 (,,«;;’i f,,.;;’f
ff {j . f s 4 4
WM Wa W'Wﬁ S
, sf YOTK] Q&{iﬁ M -

1\
.) . e . o "
P& & : & N K. .
) > - . > é‘/\‘
. . Lo . . Ay
. 2
; . "] i) .
‘ . . ' . - .) . [A K . i B iy ¥,
& L . 5 ' - X - : . N -
o . Ly

..F":‘-\..W
”
L Ly

< T
&*aﬁua&z LN

o
Iﬂt § j;.'*
{_ﬁl‘
/ &

ol

&1 1.

ﬁﬁﬁm’mw arsd Sodheare
£

&8

US 2023/0244530 Al

FLEXIBLE OPTIMIZED DATA HANDLING
IN SYSTEMS WITH MULTIPLE MEMORIES

[0001] This mnvention was made with Government support
under Contract No. B604142 awarded by Department of
Energy. The Government has certain rights 1n this invention.

BACKGROUND

Technical Field

[0002] The present invention generally relates to data
management and, more particularly, to the optimization of
memory location and memory access channels.

Description of the Related Art

[0003] Modermn computing systems may have multiple
different memories and storage locations available. This 1s
possible on many scales, including for example multiple
memories within a single device, multiple distributed com-
puting systems that each have local memories, cloud com-
puting systems, etc. When executing software that has
access to multiple memories, decisions as to where to store
particular data and how to commumnicate said data to the
appropriate location are determined eirther automatically or
by hand.

[0004] In one conventional approach, low-level program-
ming technologies such as message passing interface (MPI)
have the programmer manually determine memory storage
locations and communication methods. However, this pro-
cess 1s error-prone and diflicult to optimize as systems
become complex.

[0005] Automatic systems are also available, where little
programmer input 1s needed. However, such systems pro-
vide generic solutions that may be poorly tuned to the
specific application and may have unnecessarily high over-
heads. Semi-automatic systems control data movement
through high-level programmer directives, but this only
exploits information on what data regions are read or written
at specific points 1n the application and does not work well
for data regions that have fine-grained, irregular accesses. In
the worst case, the semi-automatic systems devolve to the
low-level approach when using recursive, pointer-based data
structures.

SUMMARY

[0006] A method for optimizing an application for a
computing system having multiple distinct memory loca-
tions that are interconnected by one or more communication
channels 1ncludes determining one or more data handling
properties for a data region in an application. One or more
data handling policies for the data region are determined
based on the one or more data handling properties. Data
setup costs are determined for a scope 1n the application that
uses the data region in different memory locations based on
the one or more data handling properties. The application 1s
optimized 1n accordance with the one or more data handling
policies and the data setup costs for the different memory
locations.

[0007] A method for optimizing an application for a
computing system having multiple distinct memory loca-
tions that are interconnected by one or more communication
channels 1ncludes determining one or more data handling
properties for a data region in an application. One or more
data handling policies are determined for the data region

Aug. 3, 2023

based on the one or more data handling properties. Data
setup costs are determined for a scope 1n the application that
uses the data region 1n different memory locations based on
the one or more data handling properties. The application 1s
optimized in accordance with the one or more data handling
policies and the data setup costs for the different memory
locations. Optimizing includes selecting one or more
memory locations 1 which to store the data region and
selecting one or more communication channels by which the
data region 1s transierred between memory locations.
[0008] A system for optimizing an application for com-
puting a system having multiple distinct memory locations
that are interconnected by one or more communication
channels 1ncludes a compiler module that has a processor
configured to determine one or more data handling proper-
ties for a data region 1n an application, to determine one or
more data handling policies for the data region based on the
one or more data handling properties, to determine data
setup costs for a scope 1n the application that uses the data
region in different memory locations based on the one or
more data handling properties, and to optimizing the appli-
cation 1 accordance with the one or more data handling
policies and the data setup costs for the different memory
locations.

[0009] These and other features and advantages will
become apparent from the following detailed description of
illustrative embodiments thereof, which 1s to be read 1n
connection with the accompanying drawings.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

[0010] The disclosure will provide details 1n the following
description of preferred embodiments with reference to the
following figures wherein:

[0011] FIG. 1 1s a block diagram of a computing system
having multiple memories 1n accordance with the present
principles;

[0012] FIG. 2 1s a block/flow diagram of a method for
selecting data handling policies based on data properties 1n
accordance with the present principles;

[0013] FIG. 3 1s a block/flow diagram of a method for
optimizing application code based on data properties and
data handling policies 1n accordance with the present prin-
ciples;

[0014] FIG. 4 1s a block diagram of an optimization
system 1n accordance with the present principles;

[0015] FIG. 5 1s a block diagram of a processing system 1n
accordance with the present principles;

[0016] FIG. 6 1s a diagram of a cloud computing environ-
ment according to the present principles; and

[0017] FIG. 7 1s a diagram of abstraction model layers
according to the present principles.

DETAILED DESCRIPTION

[0018] Embodiments of the present invention automate
control of data movement using hints from the programmer
that are centered on program data. These hints specily
properties about the data that substantially aid 1n subsequent
automated optimization and lead to specific policies for data
handling.

[0019] It 1s to be understood 1n advance that, although this
disclosure includes a detailed description on cloud comput-
ing, implementation of the teachings recited herein are not

US 2023/0244530 Al

limited to a cloud computing environment. Rather, embodi-
ments of the present mvention are capable of being imple-
mented 1n conjunction with any other type of computing,
environment now known or later developed.

[0020] Referring now to FIG. 1, a generalized computing
system 100 1s shown with multiple memories. The comput-
ing system 100 includes multiple system nodes 102, each
with respective processing resources 104 and memory
resources 106. It should be understood that the processing
resources 104 may include one or more hardware processors
and that the memory resources 106 may include one or more
banks of storage of any suitable type, as discussed 1n greater
detail below.

[0021] The system nodes 102 communicate with one
another over one of several communications channels 108.
The communications channels 108 may be any appropriate
form of data communication system including, e.g., an
in-system bus, a wired connection, a wireless connection, a
connection through the internet, etc. Each system node 102
includes one or more memory controllers 110 that receive
requests for data, retrieve the requested data from memory
resources 106, and communicate the requested data to the
requesting node via one or more communications channels
108. The memory controllers 110 also handle replication of
data to other nodes 102 to, e.g., increase system performance
by creating local copies at nodes 102 that will need them.

[0022] It should be noted that the communication channels
108 include both hardware and software aspects. Hardware
mechanisms refer to the physically available communication
paths which may be directly exposed using, for example, an
application programming interface (API) call by the sofit-
ware. Two memories may have multiple physical connec-
tions between them 1n the form of direct physical intercon-
nects, but there may also be indirect physical connections
through, e.g., the data tlow from a first memory resource
106, through processing resource 104, to a second memory
resource. Soltware communication mechanisms may be
built on top of the hardware mechanisms and may provide
additional services or enforce some policy. The hardware
mechanisms and the software mechanisms together make up
the communication channels 108.

[0023] How the memory controllers 110 determine where
data 1s stored and how to commumnicate data to requesting
nodes 1s determined by a software program running on the
processing resources 102. Each software program will have
different needs for data management and therefore will have
different optimal data handling policies that correspond to
the specific types of data that are being used.

[0024] To accommodate these different possibilities, the
soltware program 1s optimized at compile-time and at run-
time in accordance with known properties of the data at
issue. Data handling policies are determined at compile-
time, but the code may further be compiled with runtime
calls that help facilitate the implementation of the policies.
Runtime calls may include application programing interface
(API) calls for the software communication mechanisms or
they may be calls to query the state of runtime system
resources or program data to facilitate the choosing of an
execution path.

[0025] The data properties may be set explicitly by the
programmer or they may be discovered automatically. Data
properties that may be used include the size of a data region
for data 1n a given scope, read/write/read-write access status,
coverage information, access Irequency information, and

Aug. 3, 2023

data layout information. In particular, coverage information
refers to how many elements of a data region are accessed
(e.g., Tew, all, most, or some fixed or vanable percentage of
the data region size), access frequency mformation refers to
how often the data region 1s accessed (e.g., once, rarely, at
regular intervals, 1n bursts, etc.), and data layout information
refers to whether accesses are, e.g., streaming, random, or
strided. Other criteria that may be considered during opti-
mization are the time 1t takes to transfer data, the amount and
frequency of data to be transferred, the overhead of copying
data, the cost of maimtaiming coherence and consistency,
power and bandwidth constraints for the system 100, and
computation-to-communication ratio and overlap.

[0026] In one specific embodiment, the system 100 1is
implemented as a cloud computing system, with many
different nodes 102 that may be geographically quite far
from one another. In such systems, the cost of transferring
data from one node 102 to another across communication
channels 108 may be quite high relative to the cost of
performing the associated computations on that data. In such
a case, the utility of optimizing data storage and communi-
cation channels 1s clear.

[0027] Referring now to FIG. 2, a method of selecting
policies based on data properties 1s shown. Block 202
modifies the source code of an application that 1s mntended to
run on the system 100 to specily data properties for data
regions. It 1s specifically contemplated that block 202 may
be performed manually by the programmer and includes the
entry of explicit instructions that specily, for example, one
ol the properties described above. Block 204 then automati-
cally detects properties for the data regions of the applica-
tion using, for example, static analysis and dynamic profil-
ing, to {ill n as many gaps 1n the property definitions as
possible. For any data regions that have properties that
remain unassigned, block 206 sets default values.

[0028] Block 208 analyzes the properties for each data
region across all scopes of the application. As used herein,
the term “scope” refers to a section of the application code,
which may be demarcated based on syntactic structures in
the code or based on the sequence of instructions to be
executed. The analysis will depend on the specific configu-
ration of the system 100 and the needs of the application, but
some examples are set forth below. In general, block 208
attempts to optimize one or more system metrics (for
example, the speed of the application, power/energy etli-
ciency, or bandwidth utilization) by determining where to
store data regions and what communications channels (both
hardware and software mechanisms) to use to transfer those
data regions. This analysis may consider both hardware and
software limitations 1 view of the application’s needs.
Based on the analysis, block 210 selects data handling
properties, including setting initial data placement, for each
data region.

[0029] Any of several different data handling policies may
apply to a given data region 1n a given scope 1n the software
program. In general, the policies may be simple (e.g., a
selection between two diflerent communication channels) or
may be more complex (e.g., select X if the data 1s located at
A, or select Y otherwise).

[0030] A first exemplary policy 1s a choice between dii-
terent coherence/consistency options. By way of example, a
system configuration may include three distinct memory
locations, A, B, and C, with coherence supported efliciently
in hardware across A and B, but not 1n C. Coherence for C

US 2023/0244530 Al

1s handled 1n software with a high overhead. The application
code for an exemplary piece of software relies on systems-
level coherence and has three scopes, X, Y, and Z, that may
be executed 1n parallel, all of which access the same data
region. This data region 1s copied 1nto the local memories A,
B, and C before computation. Then, 11 X, Y, and Z all write
to all elements of the data region, then (X.Y,Z) may be
mapped to execute on (A,B,C) in any order, with no software
coherence enabled on C. However, if X may not write to all
of the elements of the data region, then mapping X to C
would necessitate software coherence handling at high cost.
In this example, selection of a policy would consider these
properties to calculate costs and pick computing locations to
prevent X from being mapped to C. This policy thereby
selects between a communication channel 108 that supports
coherence and one that does not.

[0031] A second exemplary policy 1s a choice between
different software-enabled communication mechanisms
(e.g., a selection of software commumnication channels 108).
An exemplary system may have a host processor and
memory as well as a separate accelerator processor and
memory, where the interconnect between the two memories
1s bandwidth constrained, taking a fixed time to transfer a
small amount of data but a longer amount of time to transfer
amounts larger than some threshold. Two exemplary sofit-
ware libraries implement data transiers—one that eagerly
pushes data (bulk transfers) and another that lazily pulls data
(multiple fine-grained transiers). In one exemplary applica-
tion, the software makes accesses to random elements of a
large data region. If there are few elements accessed, then
the time latency of multiple small transfers may be less than
the time needed to transfer the entire data region. In this
example, selection of a policy would consider the access
frequency properties to weigh the costs and the benefits of
the different policies. The eager and lazy versions of the
solftware library represent different software mechanisms
that characterize distinct communication channels 108.

[0032] A third exemplary policy 1s a choice between
different hardware-enabled mechanisms (e.g., a selection of
hardware mechanisms). As above, the exemplary system has
a host processor and memory and an accelerator processor
and memory, where the hardware interconnect allows the
accelerator to directly access both host memory and accel-
erator memory (in other words, the accelerator supports
load/store instructions using addresses that map to the host
memory as well as addresses that map to the accelerator
memory). In this case, data that 1s rarely accessed on the
accelerator need not be copied over to its local memory,
whereas data that 1s frequently accessed should still be
copied over to improve performance. Selection of a policy
would therefore consider properties defining how frequently
the data 1s to be accessed. In this example, directly accessing
the host memory and copying the data to local memory
represent diflerent communication channels 108.

[0033] A fourth exemplary policy 1s to push data to a next
location if data 1s written exactly once 1 a scope. An
exemplary system may include a host processor and memory
as well as a separate accelerator processor and memory,
where the interconnect between the two memories has a high
transier latency. There may 1n addition be two exemplary
soltware libraries available to this exemplary system that
may be used to implement data transiers—a first library
cagerly pushes data to other locations after a write access by
copying the data and a second library lazily pulls data from

Aug. 3, 2023

the location where the data was last updated on a read
access. If the software writes exactly once to elements 1n a
data region on the host and then reads multiple times on the
accelerator, then it 1s more eflicient to use the eager push
library for transferring elements of the data region across the
interconnect, because the relatively high write cost will be
outweighed by read savings. The eager and lazy versions of
the software library represent diflerent software mechanisms
that characterize distinct communication channels 108.

[0034] A fifth exemplary policy guides placement of data
and computations to avoid remote accesses over communi-
cations channels 108. The data properties determined per
data region can be used to automatically apply data aflinity
optimizations (e.g., placing data close to the compute loca-
tion where it will be accessed). An exemplary application
may have a large data region that 1s accessed 1n a parallel
code section. If the data will be accessed 1n a regular pattern
(e.g., streaming or strided data), the data region can be
partitioned and placed 1n multiple memories. Then the
compute locations for the parallel code sections can be
selected such that they are physically close to the memory
that holds the data region partition corresponding to the data
accessed by the code. This can help reduce or eliminate data
transfers across the communication channels 108.

[0035] Referring now to FIG. 3, a method of optimizing an
application’s code 1s shown. Block 302 selects a new scope
from among the different scopes in the application. Block
304 gathers properties for each data region accessed 1n the
scope. Block 304 may re-use the same data properties
determined by the process of FIG. 2. Block 306 then
performs compiler analysis, augmented by this information.
Compiler analysis may include, for example, analyses such
as control and data tlow analysis, alias analysis, and depen-
dence analysis, that help determine the set of data elements
accessed 1n the code and the access patterns.

[0036] Block 308 calculates data setup costs for each of
the different computing locations available at the system
100. For each location, information about the set of data
clements accessed in the code, the access patterns, and the
data handling policies 1s used to determine the number, size,
and direction of data transfers that will be needed if the
scope 1s executed at that computing location. Then, the cost
ol all of the data transfers can be estimated for the commu-
nication channel(s) 108 selected by the data handling poli-
cies. An applicable cost metric can include any subset of the
system parameters being optimized for including, e.g.,
execution time, power/energy efliciency, and/or bandwidth
usage.

[0037] Block 310 selects a computing location for the
scope based on the calculated costs. The computing location
1s selected according to one or more needs in the application.
For example, some computing locations may lack features
that the application needs, or may have a higher cost
associated with those features, such that a different comput-
ing location may be selected. In another example, the cost
may characterize the power consumption of processing, with
processing in some locations incurring a higher power cost.
Block 312 then applies the data handling policies to the
scope at the relevant computing location(s). For each data
region 1n the scope, the communication channel 108 1s
selected based on the data handling policy for the data region
and the communication channels 108 available for that

US 2023/0244530 Al

location. The selected communication channel 108 1s used
tor all data transfers 1n the scope that correspond to elements
of that data region.

[0038] Block 314 determines whether there are any addi-
tional scopes 1n the application that have not been handled
yet. IT so, processing returns to block 302 where a new scope
1s selected. If not, block 316 generates optimized code using
the selected computing location(s) and the data handling
policies. This optimized code takes 1into account the needs of
the application across scopes and in a manner that 1s closely
based on the properties of the data regions involved, without
necessitating explicit placement by the programmer. As a
result, when the code 1s executed 1n block 318, the appli-
cation runs with better performance.

[0039] The optimization criteria that are used to determine
the best memory locations for data regions will depend on
the specific application and system parameters being used.
Optimization criteria (1.e., goals to be achieved by the
optimization process) may include, for example, improve-
ments 1n data transier time, amount/frequency of data being,
transierred, overhead of data copying, or cost of maintaining,
coherence/consistency or meeting power/bandwidth con-
straints 1n the system.

[0040] The present invention may be a system, a method,
and/or a computer program product. The computer program
product may include a computer readable storage medium
(or media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present mvention.

[0041] The computer readable storage medium can be a
tangible device that can retain and store mnstructions for use
by an instruction execution device. The computer readable
storage medium may be, for example, but 1s not limited to,
an electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium 1ncludes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
1s not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

[0042] Computer readable program instructions described
herein can be downloaded to respective computing/process-
ing devices from a computer readable storage medium or to
an external computer or external storage device via a net-
work, for example, the Internet, a local area network, a wide
area network and/or a wireless network. The network may
comprise copper transmission cables, optical transmission
fibers, wireless transmission, routers, firewalls, switches,
gateway computers and/or edge servers. A network adapter
card or network interface 1n each computing/processing

Aug. 3, 2023

device receives computer readable program instructions
from the network and forwards the computer readable
program 1nstructions for storage in a computer readable
storage medium within the respective computing/processing
device.

[0043] Computer readable program instructions for carry-
ing out operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware istructions, state-setting data, or
either source code or object code written 1n any combination
ol one or more programming languages, including an object
oriented programming language such as Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program 1nstructions by utilizing state information
of the computer readable program 1nstructions to personalize
the electronic circuitry, 1n order to perform aspects of the
present invention.

[0044] Aspects of the present invention are described
herein with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems), and computer
program products according to embodiments of the mven-
tion. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks 1n the flowchart 1llustrations and/or block diagrams,
can be implemented by computer readable program instruc-
tions.

[0045] These computer readable program instructions may
be provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the tlowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function 1n a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
istructions which implement aspects of the function/act

specified 1n the flowchart and/or block diagram block or
blocks.

[0046] The computer readable program instructions may
also be loaded onto a computer, other programmable data
processing apparatus, or other device to cause a series of
operational steps to be performed on the computer, other
programmable apparatus or other device to produce a com-

US 2023/0244530 Al

puter implemented process, such that the istructions which
execute on the computer, other programmable apparatus, or
other device implement the functions/acts specified 1n the
flowchart and/or block diagram block or blocks.

[0047] The tflowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of
possible 1implementations of systems, methods, and com-
puter program products according to various embodiments
of the present mvention. In this regard, each block 1n the
flowchart or block diagrams may represent a module, seg-
ment, or portion of instructions, which comprises one or
more executable mnstructions for implementing the specified
logical function(s). In some alternative implementations, the
functions noted in the blocks may occur out of the order
noted in the figures. For example, two blocks shown in
succession may, 1n fact, be executed substantially concur-
rently, or the blocks may sometimes be executed in the
reverse order, depending upon the functionality involved. It
will also be noted that each block of the block diagrams
and/or flowchart illustration, and combinations of blocks in
the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems
that perform the specified functions or acts or carry out
combinations ol special purpose hardware and computer
instructions.

[0048] Reference in the specification to “one embodi-
ment” or “an embodiment™ of the present principles, as well
as other variations thereol, means that a particular feature,
structure, characteristic, and so forth described 1n connection
with the embodiment 1s included in at least one embodiment
of the present principles. Thus, the appearances of the phrase
“in one embodiment” or “in an embodiment™, as well any
other variations, appearing 1n various places throughout the
specification are not necessarily all referring to the same
embodiment.

[0049] It 1s to be appreciated that the use of any of the
tollowing *“/”, “and/or”, and *“at least one of”, for example,
in the cases of “A/B”, “A and/or B” and “at least one of A
and B”, 1s intended to encompass the selection of the first
listed option (A) only, or the selection of the second listed
option (B) only, or the selection of both options (A and B).
As a further example, 1n the cases of “A, B, and/or C” and
“at least one of A, B, and C”, such phrasing 1s intended to
encompass the selection of the first listed option (A) only, or
the selection of the second listed option (B) only, or the
selection of the third listed option (C) only, or the selection
of the first and the second listed options (A and B) only, or
the selection of the first and third listed options (A and C)
only, or the selection of the second and third listed options
(B and C) only, or the selection of all three options (A and
B and C). This may be extended, as readily apparent by one
of ordinary skill 1n this and related arts, for as many 1tems
listed.

[0050] Referring now to FIG. 4, an optimization system
400 1s shown. The system 400 1includes a hardware processor
402 and memory 404. The system 400 may further include
one or more functional modules. The functional modules
may be implemented as software that 1s stored in the
memory 404 and executed by the hardware processor 402.
In alternative embodiments, the functional modules may be
implemented as one or more discrete hardware components
in the form of, e.g., application specific integrated chips or
field programmable gate arrays.

Aug. 3, 2023

[0051] A developer environment 406 runs on the system
400 and allows a programmer to make changes to source
code 408, which 1s stored 1n the memory 404. The developer
environment 406 provides the ability to manually specity
properties 410 for data regions across various scopes of the
source code 408. A compiler module 414 uses the data
properties and system description 412 to select data handling
policies to apply to the source code and selects computing
locations for each data region. The compiler module 414
then outputs a compiled application for execution on a
system 100 having multiple computing and memory loca-
tions.

[0052] Referring now to FIG. 5, an exemplary processing
system 500 1s shown which may represent the optimizing
system 400. The processing system 300 includes at least one
processor (CPU) 504 operatively coupled to other compo-
nents via a system bus 502. A cache 506, a Read Only
Memory (ROM) 508, a Random Access Memory (RAM)
510, an mput/output (I/0O) adapter 520, a sound adapter 530,
a network adapter 540, a user intertace adapter 350, and a
display adapter 560, are operatively coupled to the system

bus 502.

[0053] A first storage device 3522 and a second storage
device 524 are operatively coupled to system bus 502 by the
I/O adapter 520. The storage devices 522 and 524 can be any
of a disk storage device (e.g., a magnetic or optical disk
storage device), a solid state magnetic device, and so forth.
The storage devices 522 and 524 can be the same type of
storage device or diflerent types of storage devices.

[0054] A speaker 532 15 operatively coupled to system bus
502 by the sound adapter 530. A transceiver 542 is opera-
tively coupled to system bus 502 by network adapter 340. A
display device 562 1s operatively coupled to system bus 502
by display adapter 560.

[0055] A first user mput device 552, a second user input
device 554, and a third user input device 556 are operatively
coupled to system bus 502 by user interface adapter 550. The
user mput devices 552, 554, and 5356 can be any of a
keyboard, a mouse, a keypad, an 1mage capture device, a
motion sensing device, a microphone, a device icorporating
the functionality of at least two of the preceding devices, and
so forth. Of course, other types of mput devices can also be
used, while maintaining the spirit of the present principles.
The user 1input devices 552, 554, and 556 can be the same
type of user mput device or different types of user input
devices. The user mput devices 552, 554, and 556 are used
to mput and output information to and from system 500.

[0056] Of course, the processing system 300 may also
include other elements (not shown), as readily contemplated
by one of skill in the art, as well as omit certain elements.
For example, various other mput devices and/or output
devices can be 1mcluded 1n processing system 500, depend-
ing upon the particular implementation of the same, as
readily understood by one of ordinary skill in the art. For
example, various types of wireless and/or wired input and/or
output devices can be used. Moreover, additional processors,
controllers, memories, and so forth, 1n various configura-
tions can also be utilized as readily appreciated by one of
ordinary skill in the art. These and other variations of the
processing system 500 are readily contemplated by one of
ordinary skill in the art given the teachings of the present
principles provided herein.

[0057] Referring now to FIG. 6, illustrative cloud com-
puting environment 30 1s depicted. As shown, cloud com-

US 2023/0244530 Al

puting environment 50 comprises one or more cloud com-
puting nodes 10 with which local computing devices used by
cloud consumers, such as, for example, personal digital
assistant (PDA) or cellular telephone 34A, desktop com-
puter 54B, laptop computer 54C, and/or automobile com-
puter system 54N may communicate. Nodes 10 may com-
municate with one another. They may be grouped (not
shown) physically or virtually, in one or more networks,
such as Private, Community, Public, or Hybrid clouds as
described hereinabove, or a combination thereof. This
allows cloud computing environment 50 to offer infrastruc-
ture, platforms and/or software as services for which a cloud
consumer does not need to maintain resources on a local
computing device. It 1s understood that the types of com-
puting devices 54A-N shown in FIG. 6 are intended to be
illustrative only and that computing nodes 10 and cloud
computing environment 30 can commumnicate with any type
of computerized device over any type ol network and/or
network addressable connection (e.g., using a web browser).

[0058] Referring now to FIG. 7, a set of functional
abstraction layers provided by cloud computing environ-
ment 50 (FIG. 6) 1s shown. It should be understood in
advance that the components, layers, and functions shown 1n
FIG. 6 are intended to be illustrative only and embodiments
of the invention are not limited thereto. As depicted, the
tollowing layers and corresponding functions are provided:

[0059] Hardware and software layer 60 includes hardware
and software components. Examples of hardware compo-
nents include: mainframes 61; RISC (Reduced Instruction
Set Computer) architecture based servers 62; servers 63;
blade servers 64; storage devices 65; and networks and
networking components 66. In some embodiments, software
components include network application server software 67
and database soitware 68.

[0060] Virtualization layer 70 provides an abstraction
layer from which the following examples of virtual entities
may be provided: virtual servers 71; virtual storage 72;
virtual networks 73, including virtual private networks;

virtual applications and operating systems 74; and virtual
clients 75.

[0061] In one example, management layer 80 may provide
the functions described below. Resource provisioning 81
provides dynamic procurement of computing resources and
other resources that are utilized to perform tasks within the
cloud computing environment. Metering and Pricing 82
provide cost tracking as resources are utilized within the
cloud computing environment, and billing or invoicing for
consumption of these resources. In one example, these
resources may comprise application software licenses. Secu-
rity provides i1dentity verification for cloud consumers and
tasks, as well as protection for data and other resources. User
portal 83 provides access to the cloud computing environ-
ment for consumers and system administrators. Service level
management 84 provides cloud computing resource alloca-
tion and management such that required service levels are
met. Service Level Agreement (SLA) planning and fulfill-
ment 85 provide pre-arrangement for, and procurement of,
cloud computing resources for which a future requirement 1s
anticipated 1n accordance with an SLA.

[0062] Workloads layer 90 provides examples of Tunction-
ality for which the cloud computing environment may be
utilized. Examples of workloads and functions which may
be provided from this layer include: mapping and navigation
91; software development and lifecycle management 92;

Aug. 3, 2023

virtual classroom education delivery 93; data analytics pro-
cessing 94; transaction processing 95; and source code
optimization 96.

[0063] Having described preferred embodiments of flex-
ible optimized data handling 1n systems with multiple
memories (which are intended to be illustrative and not
limiting), 1t 1s noted that modifications and variations can be
made by persons skilled in the art in light of the above
teachings. It 1s therefore to be understood that changes may
be made 1n the particular embodiments disclosed which are
within the scope of the invention as outlined by the
appended claims. Having thus described aspects of the
invention, with the details and particularity required by the
patent laws, what 1s claimed and desired protected by Letters
Patent 1s set forth in the appended claims.

What 1s claimed 1s:
1. A computer-implemented method comprising:

selecting a scope from a plurality of scopes 1n the appli-
cation, each scope of the plurality of scopes being
defined by a section of application code;

determining, by a compiler, one or more data handling
properties of a data region accessed 1n a selected scope;

determiming, by the compiler at compile time, one or more
data handling policies for the data region based on the
one or more data handling properties, wherein the data
handling policies perform data transiers implemented
by software libraries pushing and pulling the data; and
optimizing, by the compiler, the application by selecting
one or memory locations in which to store the data

region 1n accordance with at least the determined one or
more data handling properties.

2. The computer-implemented method of claim 1,
wherein the section of application code 1s demarcated by
syntactic structures in the application code.

3. The computer-implemented method of claim 1,
wherein the software libraries include a first software library
and a second soitware library.

4. The computer-implemented method of claim 3,
wherein the first software library includes a policy to at least
push data to a next location 11 the data 1s written exactly once
in the selected scope.

5. The computer-implemented method of claim 4,
wherein the first software library pushes the data to other
locations after a write access by copying the data.

6. The computer-implemented method of claim 3,
wherein the second software library pulls the data from the
location where the data was last updated on a read access.

7. The computer-implemented method of claim 1, turther
comprising determining, at compile time, one or more data
handling policies for the data region based on the one or
more data handling properties.

8. The computer-implemented method of claim 1, further
comprising determining data setup costs for a plurality of
scopes 1n the application.

9. The computer-implemented method of claim 8,
wherein the plurality of scopes use the data region in
different memory locations based on the one or more data
handling properties.

10. The computer-implemented method of claim 1,
wherein optimizing the application includes selecting one or
memory locations 1n which to store the data region.

US 2023/0244530 Al

11. The computer-implemented method of claim 1, further
comprising selecting one or more communications channels
by which the data region i1s transierred between memory
locations.
12. The computer-implemented method of claim 1,
wherein the one or more data handling properties further
include coverage information.
13. A computer program product for optimizing an appli-
cation for a computing system having multiple distinct
memory locations, the program instructions executable by a
computer to cause the computer to:
select a scope from a plurality of scopes 1n the application,
cach scope of the plurality of scopes being defined by
a section of application code;

determine, by a compiler, one or more data handling
properties of a data region accessed 1n a selected scope;

determine, by the compiler at compile time, one or more
data handling policies for the data region based on the
one or more data handling properties, wherein the data
handling policies perform data transfers implemented
by software libraries pushing and pulling the data; and

optimize, by the compiler, the application by selecting one
or memory locations 1n which to store the data region
in accordance with the determined one or more data
handling properties.

Aug. 3, 2023

14. The computer program product of claim 13, wherein
the section of application code 1s demarcated by syntactic
structures 1n the application code.

15. The computer program product of claim 13, wherein
the software libraries include a first software library and a
second software library.

16. The computer program product of claim 135, wherein
the first software library includes a policy to at least push
data to a next location 1f the data 1s written exactly once 1n
the selected scope.

17. The computer program product of claim 16, wherein
the first software library pushes the data to other locations
alter a write access by copying the data.

18. The computer program product of claim 135, wherein
the second soitware library pulls the data from the location
where the data was last updated on a read access.

19. The computer program product of claim 13, wherein
the one or more data handling properties further include
access frequency information.

20. The computer program product of claim 13, wherein
the one or more data handling properties further include data
layout information.

	Front Page
	Drawings
	Specification
	Claims

