a9y United States
12y Patent Application Publication o) Pub. No.: US 2023/0244416 Al

Brewer

US 20230244416A1

43) Pub. Date: Aug. 3, 2023

(54)

(71)

(72)

(21)
(22)

(63)

COMMUNICATING A PROGRAMMABLE
ATOMIC OPERATOR TO A MEMORY
CONTROLLER

Applicant: Micron Technology, Inc., Boise, 1D

(US)

Inventor: Tony Brewer, Plano, TX (US)

Appl. No.: 18/126,869

Filed: Mar. 27, 2023

Related U.S. Application Data

Continuation of application No. 17/074,937, filed on
Oct. 20, 2020, now Pat. No. 11,614,891.

Publication Classification

Int. CI.
GO6F 3/06

U.S. CL
CPC

(51)

(52)

(2006.01)

GOGF 3/0659 (2013.01); GOGF 3/0679
(2013.01); GOGF 3/0604 (2013.01); GO6F
3/0644 (2013.01)

(57) ABSTRACT

Devices and techniques for communicating a programmable
atomic operator to a memory controller are described herein.
A memory controller can receive a memory request and
extract a command indicator that indicates a programmable
atomic operator (PAO) command from the memory request.
The memory controller can then extract a PAO index from
the request and invoke the PAO based on the PAO index.

185

—
H

“'"'It-
e
it.h
b M
oy
g

H-.‘ a2 r'_ r
o ~

I it e e e e e i At 105
110 A
135 ya 1-~"\
HOST EMORY
_ | s MEMORY
W A H AAEC
INTERFACE CHIPLET MESH ~ONTROLLER
(£.G., PUIE)
T CcHpPLET 155 ~ CHIPLET j‘T
NETWORK ar NETWORK y
NETWORK ON CHIP (NOC) i INTERFAGE
PLET - (F.G., DDR)
C““iET—f 45— |
IHETWUHE‘{
APPLICATION MEMORY
CHIPLET DEVICE
PACKAGE

Patent Application Publication Aug. 3,2023 Sheet 1 of 8 US 2023/0244416 Al

T T TTFTITTITITITIYTITITYTTTT T T T T T T T T T T T T T T T T TT T T T T T T T T T T T T TT

4
4

--LI

*+ * ¥ *T T TTYTTT

1 4 4 4

T T T T

RN R AN AR BN R
A EOE W EW
k]

KN NN BN AN
44
44444

e
?
§

L ' PR e

B
-
-
-
-
-
-
-
L
-
-
-
B
-
-
-
-
-
- T T T TTTTTTT - T T T
- -

-
- r T T T T T TTTTTTT

s i, i gl " s - - - o o - e o - e o - - e o - -

l__*.

o

-

HUST 160

-

L}
" -
-
1 o -
e
i | L
F 'il' «x

E\,’E EWI O lY

! -

-

[] -
I

CHIPLET 19 CHIPLET '
NETWORK L ETWORK™ ooy
b ' W "1. l L
ETWORK ON NTERFAG
- ' 24 e A
HPLET 4 - (EG,DOR)
NETWORK T—

APPLICAT VIEMORY

CH DEVICE

PACKAGE

T T YT TTTTTTTTTTTTTTTTTTTTTTTTTTTTT T T ¥ T T TTTTTTTTTTTTTTTTTTTTTTTTTTTT

* * ¥ * T T TYTTTYTT T

f:l"_'I

Patent Application Publication Aug. 3,2023 Sheet 2 of 8 US 2023/0244416 Al

T
-
-
-

T
T T T TTTTTTTTT T

T *TT™TTT®TTTTTT®TTOTTT T

4 4 4 4 4 4 4 4 4 4 444

Vil

- F o [+ = - -]
H.- . m
"llq‘“_- -
- ,.' -,-Tﬁ
N . i—-
. ::_L
:-."qil' -
n""'ll..r . :
-
[] M i
) M
————
-
- ::
- e
1 [-
r
- ’.'qﬂ
i -
p—— T
T .
™ N
M 1
-
-
-
Eﬂ - .
-
- L—— -
———
- -]
- :
-
-
i
-
- -
- *
e
- T
-
ﬂ'. -
-
E -
*
P -
3 el
- -
|] -
i i r*TTTTTTTTTTTTTTTTTTTTTTTTTOT
* st
L
r v ¥
T L]
- L= -
-+ rrTT
*
r -
- -
* -
- -
- -
* -
- -
r T
- -
- -
- -
* -
- -
- -
* -
- -
- -
T - -
T T ._-_.-li'-‘”
- -
* -
- -
- - i
* : -
- -
- - H‘ . ‘.-?
- - * -
LK -
r = - -
r
- -
* -
- -
- -
* - i
- -
- -
* o - I
- -
- -
w,
* - o
- -
- - ————
A hd . .
- -
-
T T T L
* - r.-.-.-.?
- - #
- - ﬂ-.
* -
- -
- -
* -
- -
T T T - -
-+ rTrTTTTTTTTTTTTTTTTTTTTTTTOT rrTrTTTTTrTTTTTTTTTTTTTTTTTT T rTrTTTTTTTTTTTTTTTTTTTTTTT ™
r v L)
-+
- -
r T
T
r T
r
-+
-+
*
C\-
- -
- W ———
i M
-
-
-
-
-
-
-
-
-
L
-
-
-
Q—-— -
-
-
-
-
]] M
iy —— -
-
-
r
-
d T
- - r
B r T
+r*+ T TTTTFTTTTTTFTTTTTTTTTTTTFTTTTTTTTTTTTTTTTTTTTTTTTTTOOITIYTTY
r T
- -
-
i i .
-
L ——— T
-
r \ -
. I -
e -
l -
] -
-
-+
i - -
-
1 -
|E -
E -
-
- rTTTTTTTTTTT
-
- -
-
- T
-
-
-
-
-
r T T TTTTTTTTTTTTTTTTTTTTTTT
r T T B M
T L] L]
- r T T
T T
- - -
- rTTTTTTTTTTTTTTTTTTTTTTTTT T rrTrTTTTTTTTTTYTTTTTTTTTTTTT T
L;--j
-
-
-+
-+

L]
4
4 4

4 4 4
4
1
4
4
4
L]
4

4 4 4
L]
4

4 4 4 4 4 4 4 4444494 49 4994994949499 4994949494944

4
L]

4 4 4
4
4
4
4
L]
4
4
L]
4
1
L]

P!ﬁ
L1

4 4 4 4 4 4 4 4 4 4 4 4 444 4444944944994 9449999949499 9A4999A999494949494949

NETWORK INTERFACE

1

*+ * ¥ * T TTT

MEMORY CONTROLLER

- T T*TT™TTT™TT®TTTTTTTTTT®TTOTTTTTT

Patent Application Publication Aug. 3, 2023 Sheet 3 of 8 US 2023/0244416 Al

R IIEEEENEEEENEEEENEEENEEENEE ENEE]

NOC

r .
- -
-
F i L]
r .
- .
r -
" N
. .
. .
L]
a .
. '_.:-l'l"""""""‘l"l-p. .
' i—-L—-i)
" w X
. A b N
. !! .
L] .
rnle—
- -
Pl -
a 1 "
. T .]
]
- .
- -
- rlrrmy :
. .
- .
r -
3 W N
- -
r iﬁ .
. -
-4.‘,# -
- N
¥ . skl St i+l
. .
i . L]
- H .
. -
- o
B -
¥ -y "
v . o
; - e »
rr . -
r T T ToT W T FETWTFETETTrTITrETTTrTETTT®RTTTTTTTAT I T TTT®ETTETTTTTATTTTTTT T T T TTARTTT™ .
- - -
] -
r 1 T
. —
¥ 4 1
. =
- . -
- =
r . T
r -
- B -
- r
i it ikl it =gl T i et i i el i iy ol gl - ™ R a-
r .
B
r
T
-
-
..
v
.
T
-
-
T
-
o
"
-
L
r
-
r
-
.
1
.
-
]
-
r
T
)
a
-
B
T
-
-
T
..
"
.
-
L]
*
r
-
d
a
LY
-
r
*
-
-
T
a
] r -
- -
- - -
r T -
T rT T - T T
+ — 4 -
o N
a
ra
2
- Lo
-
r
- Faromm -
r
u 1
" w
¥
-
-
r
T
)
a
" '
-
T
-
-
T
r -
1
” . -
car e rrrrErrwoT oA oy
L] -
- - - -
r - - r -
EE - T 1A r==arFr==arFrT11r=-T3°r==1n1 -
r I [aTa
¥ v oo b
]
- = Y
.
T T T T T TATTTETT TN T 9 T T 1T TTERTTTTT TTTTTTEITTAICrTT T T T TA1TTTIWTTTETT Ly
-
-
L
N a
" u
T T
-
-
-
-
- -
a-
. "
W
. -
-
L] -
-
r -
1
" o
I
] r
-
r
-
-
o N
-
- -
-
- -
L]
r -
-
o -
- F
- -~ - -
- T
r r -
-
] -
o
] a N
-
r -
-
. -
-
- : L]
o
u .
L)
. -
-
r -
-
- -
; o
ra .
o
. -
-
L] rr T TTTTTATTTAT T T CFTA T TSR rTTTrTTTFTTTATTTFETTTEPrTT R T YO rTrTTETTTTTTTARTYTYTTARTTITATTYT CATY PR -
- -
r - - "
- - - a
- P a a v ¥
- v T r - - r
L] = v T =T rr T e
- : - -
-
- L)
r R
o
.
.
]
-
r
-
.
a
. : 3 st it 1 R S R Il e i e R e R (]
-
Ly
-
-
T
r
L
.
-
-
-
-
-
r
-
"
-
-
T
-
-
L)
"
n
.
-
-
-
-
-
¢
o
.
-
-
-
-
-
ra
P i . H Sy . S o
r
L
-
-
T
-
-
B
.
-
-
-
-
-
.
a
-
-
]
-
r
T
.
1
.
-
L] -
-
- -
-
. a
a
.
-
r
T
-
-
.
u
.
-
- .
L]
1 o
a
.
u
.
1
r ’ﬁ.
-
r
-
N
.
r g g g e M r s T r rr T T rrrTrrr rra T e TR T TP P TFITFPFIFTERSFRAI TR FSFTEE
rTrTrTErTT -
-
-
L]
-
ra
“
.
-
]
-
r
L
.
¥
.
-
]
-
-
-
" '
a
] r
-
- -
L
r
- -
d Iy
el L}
. -
-+ -
- -
o -
-
-
a
; o
.
L
r
-
r
T
"
"
.
-
]
-
r
T
¥
a
.
-
-
-
- -
+ -
. a
.y 14
.
-
-
m 4 T TFPTTTTTTTCETTTTTT T
r r
-
F ’
a
. -
-..
r -
-
.
-
F
u
"
T
-
-
T
-
o
a
-
L]
r
-
L]
- -
¥ "
" A .
r o)
- T -
r r
-
- rrTTrrTrTTrTTTETTCY
L)
-
- n
” Hy
-
- -
-
- -
-
. u
a
. ™
-
- -
L
r -
-
d u
o
a -
-
r -
-
. -
-
- ¥
a
. -
Ly
- -
-
T L
-
o u
o
L T
.
r -
-
L] -
-
¥ ¥
a
" -
-
. T
-
- -
L
- u
a
r T
-
] -
-
r -
-
. o
a
., r
-
. -
-
r -
-
o u
o
- T
N
r -
-
r ™
-
r
1
-
- L]
-
-
-
-
-
- “
"
- -
.
-
-
L)
r
I
a
-
-
-
-
-
r
a
.
-
-
™ * T
- - -
r v - -
T T - T T
oy PR a
a
-
r
L]
-
-
"
T
-
- -
v
F
-
-
_-? a
o
:D ;
m .
o
-
-
-
:’ -..
i—- T
-
r
LL)
"
ﬁ-. N
-
m :
o
-
-
n
u
-
L)
o
.
-
L]

m o e e g e e

Patent Application Publication Aug. 3,2023 Sheet 4 of 8 US 2023/0244416 Al

00

PROGRAMMABLE ATOMIC

{

~ 410
OCAL MEMORY

r * * T T TTT T T T T T TTT T T

N
)

T T T T T
T T T TTT T T

LOCAL MEMORY CON

T *TT™TTOT
-

L] T T T T

PROCESSOR —NMEMORY CO

—
&
-
11

Lt

*frrTrTTTTTTTrTrTITTITrTTTTTTTITTTTTTTFTTTTTTTTTTTTTTTTTTTTTFTTTYTTTTOTTTTTTTTTTTTTT

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 44 4 444 4449444944949 49499449949499494994999499A49949499 9499449949499 4949944994949 9499994999499 9499949999999 99994999449 994 944 d 44 d 44 d 44 d 44 d 4 d 44 d 444 A A d A d A A A d A d A d A d A d A A A d A A d A A A d A A A A d A A A d A A A A A d A A A A A A A d A d A d A A A d A A A A d A A A A A d A dd A A A A dd

US 2023/0244416 Al

o0y

ddard dard drad fard rarErtocrdrtar Frand
[FEYE FELEF EEWE FLED FLE R FLE N FLY E FEY,

b
k

b

b

—_-_...-.1-_...-.-.-_...-..1-a..i.#.n-..-..q..—..nr.-u-.—..ﬂuiﬁ....liﬁ
RN N NN R EE R FEE R RN A N R
Ma ¢ r B Fa LB P artd P v E*rara B Aot Fand P d
rd {hrrgurrprepirFr{h I phr iy
"R TN Y L N L I LR L
e m ikt mbh- ek r'dtrr- it rerdorr- o
YT IE Y E I T]
LN RN N LY N NN LR LN LT L LY
Hontr e kP kb r e b b b c vy
L’ # 'k PR F R R TR LR
A srin oL P rd Fara o rad rorad rrnd daad
LR RS S LN LS R LT LN AR LT E R Y,
R L AN e L L NN ELL

[N A W) RN]
1-I Ll q 0T

YT T Y
K4 P KTl W

IR Y
EIFRETFEEA
A dar g Pagd ¥ g
L RN LW Y

EEE ALY LW
i"TanLEANlE
Fpehdaydhdand
F T T RLF

T N AN F A L LN

EIFEI FEI A FFL LT EFLT IR

deard dvard Ffard tard T oL daaddar b aud

L FEYE FLN N FENE FFLENF FTEIFRFLE N FLY R,

[N RN R NN RN N T]
.- .

AL FF LR LR gL F g L LR TR
e TR R T FL I AT OLR
T ondl ek o ¥ S

AL FF LR LR LA PRI R T AR TRy
EIFEI TR FEALTTREATFRIFRETTFRLCT

IEE N EEE E REER AL N KN NN NEE
FarB docn P A a T+ EFarrd Fand o d
L RN FLEY N AR S L N U LN LY LY

Fr Frrwanw

IR L L L L LN LN
Ny FHF' FHE' PRI FEEFEL kLA RN
L I T B e I I LR K
[N N R
i FFa FFph I

Y LTI
i3I ALi-aqE'RE
dpaf oy
LT B4 KW

ALER G LE L R PN PR Y I T

[RN N NN N N RN

ddayd dayd Py B Fand S and el darsded aud

FE A F L EuF FEAF DT A 3T E 4T E 4T

RN NN R RN RN AL Ll LN]

EIF R FEIA AR IEL T LEEELCR

ddard Fard dard dasd band daaddard dand

LA FEYE FLNE FENY N ILENF ITENFFLE N FLY L

EI'FEI'PEI'FFF " FEL"TEFI " FRI"FIL' ¥
ddardfTuLtBEFard b s EF s b Frnd Fond Forad
L Rt RS SRl R LT T el N]
Era kP e T P F TP
ke rds'FEL-FF s Frr'wrrn-w

He'’Frmb'Fiebh'mmt' PRt s " AN

IR LN L L L L L LTl L
¥E' FREFE FRFEFPEF: - FRL I RT-Frid iy
NrpLhra b rai b rrdkrrnd
Foa g% PR df & @5 F &L 0 Ff L ST

ST L L Tl Bl e ol i B T i

AL EE L EF L F AL A a3 AL I Ry
B F R FAA AL F AL F LT LL-A LN
ddpyddpcd g d gL gy fa ol d g
LA NEN I AN LW R LT R ELE R ELE I FLE FNLY
AL R Fg g L e AL A LRy
B F R PRI A AT E AT FELI" I L E L ELCR
ddayd dgrd Pard das BT oL wandbdarldard
FE |~ FEALFE A F SRS FETFET P o
RIS R R R NI L N NN L L

I'FE I+ FFIFEI FEL-TEL

dad darditasBdaaddar bdand
FE(ZF o F o F U F X D LT E 4™ o JuF
TR T N e T L S L B S
EI'FEITFEREA I'*F}RELIE

e EreeErn
L ERLE FET N N
AL R L ERPF LRy

(R RN RN
ElTFEITTF RN

e dard Faud
T Y
AFF L AR LRy
£ °F*FF 'R ELP

FanL Far krand
LN Y Y
Al N TPy
IFFIFELLEP

s

L
%

#

W
L

o

gy

.x"

o

L)
[

.

.

A
-

ol

"
-

o
.

Y

-

.
P

)

L

L]
W

L]
L]

.."l-
“

ey

£

.
.
L]

o

] -._1- -‘1
L]
e

-

,.!""

- T TTTTTTTTTTTTTT

" % T TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT TP

rT T TTTTTTTTTTTTTTTTTTTTTTTTTTTT T P&

2

"8-3

N

T
]

“8-1

N

\

=

rr=-TTTTTTT

r-rr-Aa 97T T T

r T T T =1

rT T TTTTTT - — == === T T T = = = = 1

Aug. 3, 2023 Sheet 5 of 8

Patent Application Publication

AL P gL FF LR gL o T T N PR T
BRI TR T YT TAIFRF FREr RELY
ddri Bl da B F v P Fr Bt E Yl Sl
rFd jhrrpaTd gt Eph Aty S e
R R N RS R R L Lt Tl

kBt kbt rroFkF A e o

R

,‘,-r:‘
i

L]
N ;r
el

|

¥
-
13
"".‘
F

" T TTTTTTTTTTTTTTTTTTTTTTTTTTTTT T T
rT T TTTTTTTTTTT - TTTTTT - — = = = = =17

=<
- .
r

o

»
-

LN
r
&

D L N o T T
BECE R R ERBEE PRI A NLA
ddaynd b Py A rp syt] ray g
FEATFF RO A P LN g L L

k]

£
P
v
o
“f

.
- T T r -

]
.‘ .‘ . . "
A...{ ..,_.... - -:m
RN RN N RS RN NR R RN L] - ‘l. ‘l. .
EI'FEI' #4444+ 81"+ £ 3 A1 "TLié"F 41" F m L m kL
e, ..t. "a, : .M r.m
ll. -ll. -ll. - "
o TR T TR !
Fah PRl F LA R TP P L Py .I-”'il. .—-”'il..l-”' "
d oo d o ..Il .--L....!l.l-_ -....-.l.-......nh.-.n.n.-.u...” rH...nH....u.L” ..._...-.l-. -.1. ..Il) .I.ll.- ’ .I.-I.- ’ .I.ll.- ’ 1
‘l. -il. -il. " - “. ”.
m m m b m m b
*, .-.”.-.‘1 ...”.-.‘1 .-.”.-.‘1 -, .-.”.-.-1 ...m-t ”
m m i ‘m ‘m ‘n k r
F
O ,
m o r
., i.m-.‘ o I_._.i-u' .-.__._._.w-l ‘f ”
. .l.ll.- ol .-“-_‘vﬂ [r—— 1].!!! - .”. ”
e, "% C ._l..{“uu ¥ 7#1 f)
.n. .L_ 1' r -
- .__.m____._. Wit .-..T.___ ” .
Jx-.‘.s”_.-n.__ , t_.-.___ FHtr .__r_._..___ : ”
...-_t. [- [.R....-. L .
n v h L L r "
", ey :
™ ,
o, ”

A

P 2
L]

Y
.]
L
.
.

A
S

%
i)
W

A

L

L A4t Fg
l.l-...!.ln-.-l.. 1" k1"
an kP oaLd

‘%
)

FE | FE I W E U F O+ 4= O urF
[N RN R RN RN NS EEE LT R E R] n ‘
E I FEICFEEFEE T FLFELRTICFALLNT

L L]

FE W FEJuFE . E AT F P LE DR AN =Tl
RN RN N NN N RN NN L L T]

AL R LR LR g A R LA LA TRy
TEFPTFEREI»IIEFI ERICT

BN FLE Fr
+"-Frer-wsar'vm
Torad S d Fara d
T fE v A ghr
LT EEE N
+ k- b
LT LD Twad S X T
Lol e o LRl N Sl T N O R el T
AL R AN A R LRl SN o]
' LR R AR A O N I

1.‘;*“ |

r T T T TTTTTTTTTTTTTTTTTTTTTTTTTTT T P& TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT T T P&

rT ¥ TTTTTTTTTTTTTTTTTTTT T - — = = 1

.
£
r

T

HEe'FWE-F R FHbE' ' FH: Rt "Fed-d -

CL.3
Cra

Aug. 3,2023 Sheet 6 of 8 US 2023/0244416 Al

Patent Application Publication

Fankpp b b kP renrrpndrinid i/ N
FERP' ARl ER b P T FAd bt A
e R R R R Ll L LTl LK Ty
Fre kP p L PP P PP b bl e sl
LR I L
Ardd =g Faa
L£1-3 L d"F E01°
e d s
cd dard Fard T acP tard T ar R Faoard Ford Fan
PLE FRLE NI FET S N NI NN L el
LT TF}"TEFr-"FrEa-rHe
Ll Ak S sl Sl o
. . 2l . 2 wle A
Fru b o kP LR F e et Fe TP in Ty
i FRLa gy
A a gy Aok,
FEI'FEICFEIA AT AL TETT I LT EICR
cd dard dard Fasdbdard danE v aaddar Fdar
IRF N BREE FAE N ELEN AL N NEE
dad daad T arhdar L Far koo
FEQLFEAaFCiaTEfaTE 4o gl
LRSS RN R [N L LT R o
LRSS RN AN R I NER N AL RN WL AR
:) . = : el 3 il .--
YN FRYT N A LY N SR b LT BT LT L b +
LA R A NN I N N NS SR PR Ly
Gt
o]
:Jiii
\Wi *
PR F'FER A FECEALLI- I X144
vl L g d o kg A rpa A ya L Ay Ty
PR RN LY LR LT I IR BRI LW L .
FE IR E T F R EFEL L1 1 ‘H
cd dprd dprf daad A el S e st d gk o,
FaLEFF L LE
FEI'FEI"FTERE
BRI RN FAER N LN LN LR
el Tl rEI-TEI-FEFFI-FrEI-T
d "
r N N ol R ol ek o B ok L BT,
Fan L PP R b rren b roydrcnrr 8
rdsn"rn TR TEs YR FFL - FrrTrr-d
..r‘l._..r-.I.-.-r.Tl-r__.-_.-.-r._..l.nru.l.-....._f.-_.n.n.l#i:...._
Frabrpn bprpbrpn bl drpidr i rnrd
]
]
.
]
]
]
]
b
.
.
]
.
]
b
.
-
-
3
-
-
-
]
H]
] 2
o L F E L N L E AT E gt AT bk of o u[d
AL FR g FF g RE g r bbb by bl LY R
FRI BRI MHEIERSG: Ry ek a-y f L KN
LA FRYE RN R N LR N L R L RN LY
LR L RN TR L I R
v F F F F F F F F F F F FFFEFFEFEFEEFEEFEFE D > 4 3
R E NEE R EER R ELE S NN RN NN],
rd AL UL B A P N E Sl S Fand s
MLEREY AN L0 R
L) "
BEHE'F R PR FPEE PR EE DK KA
L AL W e d Wy g
IRPLIRLIR

N*8-32>

*8-1

\/
<1
_Iq
<
-

gL

e e e e el i e i o s e e T T e]

H

e i e Al i

e)

A a4 A d o

oL LK 4 4 A A 4 A A A & UK

N Y

Mot

S)

o a

Lk

L e e

uoa

L e

o

L i i i i e

e

WMot S

o

A o o o A

u LAy

.

CLX
{2}

Patent Application Publication Aug. 3, 2023 Sheet 7 of 8 US 2023/0244416 Al

p— (U0

705
OBTAIN MEMORY REQUEST
710] |
EXTRACT PAO COMMAND INDICATOR FROM
715 _ ..
EXTRACT PAC INDEX FROM MEMORY REQUES
720 —

INVOKE PAC USING PAD INDEX

Patent Application Publication Aug. 3, 2023 Sheet 8 of 8 US 2023/0244416 Al

p— 800

T X F F *F FreFe-rre-rrr-rrr>->->->-°"®"w®"w""WETTTTTTTTTTTTTTTTTTFEREF SR FFPSEPFEPSFEPSTS S 8B = 8 33

PRUCESSOR

X0
™2
N

DISFLAY DEVICE

;
:
_
,
:
_
,
_
:
:
_
:
L]
:
-
:
T
E .
_
:
:
_
:
_
_
_
:
-
- P
- T
+
-
: d
:
:
.
‘
_
;
:
-
:
-
-
-
-
_
H_
:
,
,
:
,
T
L
:
,_
:
T
_
_
:
:
_
:
:
_
:
:
:
_
:

MAIN MEMORY o INPUT DEVICE

rrrrrrrrrrrrrrrrrrrrrrrrrrrrr

[INSTRUCTIONS ||

U NAVIGATION DEVICE

STATIC MEMORY

G
G
T

| INSTRUCTIONS

rrr

INTERLINK

MASS STORAGE

L
R, IS MR SGEEMOR MRICMOM MERGNLM CMEEGE GBGILME
F
4
L]

--

NSTRUCTIONS || 4

W W

Jevib SIGNAL GENERAT

DEVICE

OUTPUT CONTROLLER

NETWORK

US 2023/0244416 Al

COMMUNICATING A PROGRAMMABLE
ATOMIC OPERATOR TO A MEMORY
CONTROLLER

PRIORITY APPLICATION

[0001] This application 1s a continuation of U.S. applica-
tion Ser. No. 17/074,937, filed Oct. 20, 2020, which 1s
incorporated herein by reference 1n 1ts entirety.

STATEMENT REGARDING GOVERNMENT
SUPPORT

[0002] This invention was made with U.S. Government

support under Agreement No. HR00111890003, awarded by
DARPA. The U.S. Government has certain rights in the
invention.

BACKGROUND

[0003] Chiplets are an emerging technique for integrating
various processing functionalities. Generally, a chiplet sys-
tem 1s made up of discrete modules (each a “chiplet™) that
are 1ntegrated on an interposer, and in many examples
interconnected as desired through one or more established
networks, to provide a system with the desired functionality.
The interposer and included chiplets can be packaged
together to facilitate mterconnection with other components
of a larger system. Each chiplet can include one or more
individual integrated circuits (ICs), or “chips”, potentially 1n
combination with discrete circuit components, and com-
monly coupled to a respective substrate to facilitate attach-
ment to the interposer. Most or all chiplets 1n a system will
be 1individually configured for communication through the
one or more established networks.

[0004] The configuration of chiplets as individual modules
of a system 1s distinct from such a system being imple-
mented on single chips that contain distinct device blocks
(e.g., intellectual property (IP) blocks) on one substrate (e.g.,
single die), such as a system-on-a-chip (SoC), or multiple
discrete packaged devices integrated on a printed circuit
board (PCB). In general, chiplets provide better performance
(e.g., lower power consumption, reduced latency, etc.) than
discrete packaged devices, and chiplets provide greater
production benefits than single die chips. These production
benefits can include higher yields or reduced development
costs and time.

[0005] Chiplet systems can include, for example, one or
more application (or processor) chiplets and one or more
support chiplets. Here, the distinction between application
and support chiplets 1s simply a reference to the likely design
scenarios for the chiplet system. Thus, for example, a
synthetic vision chiplet system can include, by way of
example only, an application chiplet to produce the synthetic
vision output along with support chiplets, such as a memory
controller chiplet, a sensor interface chiplet, or a communi-
cation chiplet. In a typical use case, the synthetic vision
designer can design the application chiplet and source the
support chiplets from other parties. Thus, the design expen-
diture (e.g., 1n terms of time or complexity) 1s reduced
because by avoiding the design and production of function-
ality embodied 1n the support chiplets. Chiplets also support
the tight integration of IP blocks that can otherwise be
difficult, such as those manufactured using different pro-
cessing technologies or using different feature sizes (or
utilizing different contact technologies or spacings). Thus,

Aug. 3, 2023

multiple IC’s or IC assemblies, with different physical,
electrical, or communication characteristics can be
assembled 1n a modular manner to provide an assembly
providing desired functionalities. Chiplet systems can also
facilitate adaptation to suit needs of different larger systems
into which the chiplet system will be incorporated. In an
example, IC’s or other assemblies can be optimized for the
power, speed, or heat generation for a specific function—as
can happen with sensors—can be integrated with other
devices more easily than attempting to do so on a single die.
Additionally, by reducing the overall size of the die, the
yield for chiplets tends to be higher than that of more
complex, single die devices.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] The disclosure will be understood more fully from
the detailed description given below and from the accom-
panying drawings of various embodiments of the disclosure.
The drawings, however, should not be taken to limit the
disclosure to the specific embodiments, but are for expla-
nation and understanding only.

[0007] FIGS. 1A and 1B 1llustrate an example of a chiplet
system, according to an embodiment.

[0008] FIG. 2 illustrates components of an example of a
memory controller chiplet, according to an embodiment.
[0009] FIG. 3 illustrates components of an example of a
memory controller chiplet, according to an embodiment.
[0010] FIG. 4 illustrates components 1 an example of a
programmable atomic unit (PAU), according to an embodi-
ment.

[0011] FIG. 5 illustrates a chiplet protocol interface
request packet, according to an embodiment.

[0012] FIG. 6 1illustrates a chiplet protocol interface
response packet, according to an embodiment.

[0013] FIG. 7 1s a flow chart of an example of a method
for communicating a programmable atomic operator to a
memory controller, according to an embodiment.

[0014] FIG. 8 1s a block diagram of an example of a
machine with which, in which, or by which embodiments of
the present disclosure can operate.

DETAILED DESCRIPTION

[0015] FIG. 1, described below, offers an example of a
chiplet system and the components operating therein. The
illustrated chiplet system includes a memory controller. The
chiplet system includes a packet-based network to commu-
nicate between chiplets. The memory controller includes a
programmable atomic umt (PAU) with a processor to
execute a custom program, a programmable atomic operator
(PAO), 1n response to a memory request for the program-

mable atomic operator. Additional details about the PAU are
described below with respect to FIGS. 2 and 4.

[0016] Supporting POAs involves the ability to transmit
an operation to be performed as well as possible arguments
to the PAU from a requesting process or chiplet. Once the
operation 1s complete, the completion should be signaled to
the requesting process with any potential return values. In
conventional processor systems, access to memory 1s gen-
erally supported by using read and write operations on a
dedicated memory connection (e.g., bus, interconnect, etc.).
The interconnect 1s often very strict with respect to timing
and content, often hampering efforts to implement function-
ality such as that embodied in the PAU.

US 2023/0244416 Al

[0017] To address traditional architectural limitations, the
present disclosure describes a packet-based request and
response technique to specily the PAO as well as return a
response to the request. Specifically, PAOs can be initiated
from a requesting process (e.g., on an application chiplet)
and routed to the memory controller 1n a packet. The
memory controller decodes the packet, 1dentifies the PAO
from several supported by the PAU, and invokes the PAO.
When the PAO 1s completed, a packet i1s created that
contains the response (e.g., return code, result data, etc.).
The response 1s then transmitted by the chiplet network to
the requesting process.

[0018] The request and response packets are generally
formed like other memory request and response packets 1n
the chiplet system. However, the request packet includes
additional fields (e.g., an extended header) to identity which
of several PAOs to invoke based on the request. By using the
packet-based PAO invocation approach described herein, a
flexible and eflicient invocation of PAOs can be achieved.
Additional details and examples are provided below.

[0019] FIGS. 1A and 1B illustrate an example of a chiplet
system 110, according to an embodiment. FIG. 1A 1s a
representation of the chiplet system 110 mounted on a
peripheral board 1035, that can be connected to a broader
computer system by a peripheral component interconnect
express (PCle), for example. The chiplet system 110
includes a package substrate 115, an interposer 120, and four
chiplets, an application chiplet 125, a host interface chiplet
135, a memory controller chiplet 140, and a memory device
chuiplet 150. Other systems can include many additional
chiplets to provide additional functionalities as will be
apparent from the following discussion. The package of the
chuplet system 110 1s i1llustrated with a lid or cover 165,
though other packaging techniques and structures for the
chuplet system can be used. FIG. 1B 1s a block diagram
labeling the components 1n the chiplet system for clarty.

[0020] The application chiplet 125 i1s 1llustrated as includ-
ing a network-on-chip (NOC) 130 to support a chiplet
network 133 for inter-chiplet communications. In example
embodiments NOC 130 can be included on the application
chuplet 125. In an example, NOC 130 can be defined 1n
response to selected support chiplets (e.g., chiplets 135, 140,
and 150) thus enabling a designer to select an appropriate
number or chiplet network connections or switches for the
NOC 130. In an example, the NOC 130 can be located on a
separate chiplet, or even within the interposer 120. In

examples as discussed herein, the NOC 130 implements a
chuplet protocol interface (CPI) network.

[0021] The CPI 1s a packet-based network that supports
virtual channels to enable a flexible and high-speed inter-
action between chiplets. CPI enables bridging from intra-
chiplet networks to the chiplet network 155. For example,
the Advanced eXtensible Interface (AXI) 1s a widely used
specification to design intra-chip communications. AXI
specifications, however, cover a great variety of physical
design options, such as the number of physical channels,
signal timing, power, etc. Within a single chip, these options
are generally selected to meet design goals, such as power
consumption, speed, etc. However, to achieve the flexibility
of the chiplet system, an adapter, such as CPI, 1s used to
interface between the various AXI design options that can be
implemented 1n the various chiplets. By enabling a physical
channel to virtual channel mapping and encapsulating time-

Aug. 3, 2023

based signaling with a packetized protocol, CPI bridges
intra-chuplet networks across the chiplet network 155.

[0022] CPI can use a variety of diflerent physical layers to
transmit packets. The physical layer can include simple
conductive connections, or can include drivers to increase
the voltage, or otherwise facilitate transmitting the signals
over longer distances. An example of one such physical
layer can include the Advanced Interface Bus (AIB), which
in various examples, can be implemented in the interposer
120. AIB transmits and receives data using source synchro-
nous data transfers with a forwarded clock. Packets are
transierred across the AIB at single data rate (SDR) or dual
data rate (DDR) with respect to the transmitted clock.
Various channel widths are supported by AIB. AIB channel
widths are in multiples of 20 bits when operated 1n SDR
mode (20, 40, 60, . . .), and multiples of 40 bits for DDR
mode: (40, 80, 120, . . .). The AIB channel width includes
both transmit and receive signals. The channel can be
configured to have a symmetrical number of transmit (TX)
and receive (RX) mput/outputs (I/Os), or have a non-
symmetrical number of transmitters and receivers (e.g.,
either all transmuitters or all receivers). The channel can act
as an AIB principal or subordinate depending on which
chuplet provides the principal clock. AIB I/O cells support
three clocking modes: asynchronous (i.e. non-clocked),
SDR, and DDR. In various examples, the non-clocked mode

1s used for clocks and some control signals. The SDR mode
can use dedicated SDR only 1I/O cells, or dual use SDR/DDR

I/O cells.

[0023] In an example, CPI packet protocols (e.g., point-
to-point or routable) can use symmetrical receive and trans-
mit I/O cells within an AIB channel. The CPI streaming
protocol allows more flexible use of the AIB I/O cells. In an
example, an AIB channel for streaming mode can configure
the I/0 cells as all TX, all RX, or half TX and half RX. CPI
packet protocols can use an Al B channel 1n either SDR or

DDR operation modes. In an example, the AIB channel 1s
configured 1n increments of 80 I/O cells (1.e. 40 TX and 40

RX) for SDR mode and 40 I/O cells for DDR mode. The CPI
streaming protocol can use an AIB channel in either SDR or
DDR operation modes. Here, 1n an example, the AIB chan-
nel 1s 1n mcrements of 40 I/O cells for both SDR and DDR
modes. In an example, each AIB channel 1s assigned a
unmique interface 1dentifier. The identifier 1s used during CPI
reset and initialization to determine paired AIB channels
across adjacent chiplets. In an example, the interface 1den-
tifier 1s a 20-bit value comprising a seven-bit chiplet 1den-
tifier, a seven-bit column 1dentifier, and a six-bit link 1den-
tifier. The AIB physical layer transmits the interface
identifier using an AIB out-of-band shiit register. The 20-bit
interface 1dentifier 1s transferred 1n both directions across an
AIB mterface using bits 32-51 of the shiit registers.

[0024] AIB defines a stacked set of AIB channels as an
AIB channel column. An AIB channel column has some
number of AIB channels, plus an auxiliary channel. The
auxiliary channel contains signals used for AIB nitializa-
tion. All AIB channels (other than the auxiliary channel)
within a column are of the same configuration (e.g., all TX,
all RX, or half TX and half RX, as well as having the same
number of data I/O signals). In an example, AIB channels

are numbered 1n continuous increasing order starting with
the AIB channel adjacent to the AUX channel. The AIB
channel adjacent to the AUX 1s defined to be AIB channel

/CroO.

US 2023/0244416 Al

[0025] Generally, CPI interfaces on individual chiplets can
include serialization-deserialization (SERDES) hardware.
SERDES interconnects work well for scenarios in which
high-speed signaling with low signal count are desirable.
SERDES, however, can result in additional power consump-
tion and longer latencies for multiplexing and demultiplex-
ing, error detection or correction (e.g., using block level
cyclic redundancy checking (CRC)), link-level retry, or
forward error correction. However, when low latency or
energy consumption 1s a primary concern for ultra-short
reach, chiplet-to-chiplet interconnects, a parallel interface
with clock rates that allow data transfer with minimal
latency can be utilized. CPI includes elements to minimize
both latency and energy consumption in these ultra-short
reach chiplet interconnects.

[0026] For tlow control, CPI employs a credit-based tech-
nique. A recipient, such as the application chiplet 125,
provides a sender, such as the memory controller chiplet
140, with credits that represent available buflers. In an
example, a CPI recipient includes a bufler for each virtual
channel for a given time-unit of transmission. Thus, i1f the
CPI recipient supports five messages 1n time and a single
virtual channel, the recipient has five buflers arranged 1n five
rows (e.g., one row for each unit time). If four wvirtual
channels are supported, then the recipient has twenty builers
arranged 1n five rows. Fach bufler holds the payload of one

CPI packet.

[0027] When the sender transmits to the recipient, the
sender decrements the available credits based on the trans-
mission. Once all credits for the recipient are consumed, the
sender stops sending packets to the recipient. This ensures
that the recipient always has an available bufler to store the
transmission.

[0028] As the recipient processes received packets and
frees bullers, the recipient communicates the available bui-
ter space back to the sender. This credit return can then be
used by the sender allow transmitting of additional infor-
mation.

[0029] Also 1llustrated 1s a chiplet mesh network 160 that
uses a direct, chiplet-to-chiplet technique without the need
for the NOC 130. The chiplet mesh network 160 can be
implemented in CPI, or another chiplet-to-chiplet protocol.
The chiplet mesh network 160 generally enables a pipeline
of chiplets where one chiplet serves as the interface to the
pipeline while other chiplets 1n the pipeline interface only
with themselves.

[0030] Additionally, dedicated device interfaces, such as
one or more industry standard memory interfaces 145 (such
as, for example, synchronous memory interfaces, such as
DDRS, DDR 6), can also be used to interconnect chiplets.
Connection of a chiplet system or individual chiplets to
external devices (such as a larger system can be through a
desired interface (for example, a PCIE interface). Such as
external interface can be mmplemented, 1n an example,
through a host interface chiplet 135, which 1n the depicted
example, provides a PCIE interface external to chiplet
system 110. Such dedicated interfaces 1435 are generally
employed when a convention or standard in the industry has
converged on such an interface. The illustrated example of
a Double Data Rate (DDR) interface 145 connecting the
memory controller chiplet 140 to a dynamic random access
memory (DRAM) memory device 150 1s just such an
industry convention.

Aug. 3, 2023

[0031] Of the vanety of possible support chiplets, the
memory controller chiplet 140 1s likely present in the chiplet
system 110 due to the near ommipresent use of storage for
computer processing as well as sophisticated state-oi-the-art
for memory devices. Thus, using memory device chiplets
150 and memory controller chiplets 140 produced by others
gives chiplet system designers access to robust products by
sophisticated producers. Generally, the memory controller
chiplet 140 provides a memory device specific interface to
read, write, or erase data. Often, the memory controller
chuplet 140 can provide additional features, such as error
detection, error correction, maintenance operations, oOr
atomic operator execution. For some types of memory,
maintenance operations tend to be specific to the memory
device 150, such as garbage collection in NAND flash or
storage class memories, temperature adjustments (e.g., cross
temperature management) 1n NAND flash memories. In an
example, the maintenance operations can include logical-
to-physical (L2P) mapping or management to provide a
level of indirection between the physical and logical repre-
sentation of data. In other types of memory, for example
DRAM, some memory operations, such as refresh can be
controlled by a host processor or of a memory controller at
some times, and at other times controlled by the DRAM
memory device, or by logic associated with one or more
DRAM devices, such as an interface chip (1n an example, a

butler).

[0032] Atomic operators are a data manipulation that, for
example, can be performed by the memory controller chiplet
140. In other chiplet systems, the atomic operators can be
performed by other chiplets. For example, an atomic opera-
tor of “increment” can be specified in a command by the
application chiplet 125, the command 1ncluding a memory
address and possibly an increment value. Upon receiving the
command, the memory controller chiplet 140 retrieves a
number from the specified memory address, increments the
number by the amount specified in the command, and stores
the result. Upon a successtul completion, the memory con-
troller chiplet 140 provides an indication of the commands
success to the application chiplet 125. Atomic operators
avold transmitting the data across the chiplet network 160,
resulting 1n lower latency execution of such commands.

[0033] Atomic operators can be classified as built-in atom-
ics or programmable (e.g., custom) atomics. Built-in atomics
are a finite set of operations that are immutably implemented
in hardware. Programmable atomics are small programs that
can execute on a programmable atomic unit (PAU) (e.g., a
custom atomic unit (CAU)) of the memory controller chiplet

140. FIG. 1 1llustrates an example of a memory controller
chuplet that discusses a PAU.

[0034] The memory device chiplet 150 can be, or include
any combination of, volatile memory devices or non-volatile
memories. Examples of volatile memory devices include,
but are not limited to, random access memory (RAM)—such
as DRAM) synchronous DRAM (SDRAM), graphics double
data rate type 6 SDRAM (GDDR6 SDRAM), among others.
Examples of non-volatile memory devices include, but are
not limited to, negative-and-(NAND)-type flash memory,

storage class memory (e.g., phase-change memory or mem-
ristor based technologies), ferroelectric RAM (FeRAM),

among others. The illustrated example includes the memory
device 150 as a chiplet, however, the memory device 150
can reside elsewhere, such as 1n a diflerent package on the
peripheral board 105. For many applications, multiple

US 2023/0244416 Al

memory device chiplets can be provided. In an example,
these memory device chiplets can each implement one or
multiple storage technologies. In an example, a memory
chiplet can include, multiple stacked memory die of different
technologies, for example one or more static random access
memory (SRAM) devices stacked or otherwise in commu-
nication with one or more dynamic random access memory
(DRAM) devices. Memory controller 140 can also serve to
coordinate operations between multiple memory chiplets 1n
chiplet system 110; for example, to utilize one or more
memory chiplets 1n one or more levels of cache storage, and
to use one or more additional memory chiplets as main
memory. Chiplet system 110 can also include multiple
memory controllers 140, as can be used to provide memory
control functionality for separate processors, sensors, net-
works, etc. A chiplet architecture, such as chiplet system 110
offers advantages 1n allowing adaptation to different
memory storage technologies; and different memory inter-
taces, through wupdated chiplet configurations, without
requiring redesign of the remainder of the system structure.

[0035] FIG. 2 illustrates components of an example of a
memory controller chiplet 205, according to an embodiment.
The memory controller chiplet 203 includes a cache 210, a
cache controller 215, an ofi-die memory controller 220 (e.g.,
to communicate with off-die memory 273), a network com-
munication interface 225 (e.g., to interface with a chiplet
network 285 and communicate with other chiplets), and a set
of atomic and merge units 250. Members of this set can
include, for example, a write merge unit 255, a memory
hazard unit 260, built-in atomic unit 265, or a PAU 270. The
various components are illustrated logically, and not as they
necessarily would be implemented. For example, the built-in
atomic unit 265 likely comprises different devices along a
path to the off-die memory. For example, the built-in atomic
unit 265 could be 1n an mtertace device/builer on a memory
chiplet, as discussed above. In contrast, the programmable
atomic unit 270 could be implemented 1n a separate proces-
sor on the memory controller chiplet 205 (but in various
examples can be mmplemented in other locations, for
example on a memory chiplet).

[0036] The ofi-die memory controller 220 1s directly
coupled to the ofl-die memory 275 (e.g., via a bus or other
communication connection) to provide write operations and
read operations to and from the one or more ofl-die memory,
such as off-die memory 275 and off-die memory 280. In the
depicted example, the off-die memory controller 220 1s also
coupled for output to the atomic and merge unit 250, and for
input to the cache controller 215 (e.g., a memory side cache
controller).

[0037] In the example configuration, cache controller 215
1s directly coupled to the cache 210, and can be coupled to
the network communication interface 223 for mput (such as
incoming read or write requests), and coupled for output to
the off-die memory controller 220.

[0038] The network communication interface 225
includes a packet decoder 230, network 1nput queues 233, a
packet encoder 240, and network output queues 2435 to
support a packet-based chiplet network 283, such as CPI.
The chuplet network 285 can provide packet routing between
and among processors, memory controllers, hybrid thread-
Ing processors, configurable processing circuits, or commu-
nication interfaces. In such a packet-based communication
system, each packet typically includes destination and
source addressing, along with any data payload or instruc-

Aug. 3, 2023

tion. In an example, the chiplet network 285 can be 1imple-
mented as a collection of crossbar switches having a folded
Clos configuration, or a mesh network providing for addi-
tional connections, depending upon the configuration.

[0039] In varnious examples, the chiplet network 285 can
be part of an asynchronous switching fabric. Here, a data
packet can be routed along any of various paths, such that
the arrival of any selected data packet at an addressed
destination can occur at any of multiple different times,
depending upon the routing. Additionally, chiplet network
2835 can be implemented at least 1n part as a synchronous
communication network, such as a synchronous mesh com-
munication network. Both configurations of commumnication
networks are contemplated for use for examples 1n accor-
dance with the present disclosure.

[0040] The memory controller chiplet 205 can receive a
packet having, for example, a source address, a read request,
and a physical address. In response, the off-die memory
controller 220 or the cache controller 2135 will read the data
from the specified physical address (which can be in the
ofl-die memory 275 or in the cache 210), and assemble a
response packet to the source address containing the
requested data. Similarly, the memory controller chiplet 205
can receive a packet having a source address, a write request,
and a physical address. In response, the memory controller
chuplet 205 will write the data to the specified physical
address (which can be 1n the cache 210 or in the ofif-die
memories 275 or 280), and assemble a response packet to
the source address containing an acknowledgement that the
data was stored to a memory.

[0041] Thus, the memory controller chiplet 205 can
receive read and write requests via the chiplet network 283
and process the requests using the cache controller 215
interfacing with the cache 210, 1t possible. If the request
cannot be handled by the cache controller 215, the ofl-die
memory controller 220 handles the request by communica-
tion with the off-die memories 275 or 280, the atomic and
merge unit 250, or both. As noted above, one or more levels
of cache can also be implemented 1n off-die memories 275
or 280; and in some such examples can be accessed directly
by cache controller 215. Data read by the off-die memory
controller 220 can be cached 1n the cache 210 by the cache
controller 215 for later use.

[0042] The atomic and merge unit 250 are coupled to
receive (as mput) the output of the ofl-die memory controller
220, and to provide output to the cache 210, the network
communication interface 225, or directly to the chiplet
network 283. The memory hazard unit 260, write merge unit
255 and the built-in (e.g., predetermined) atomic unit 265
can each be implemented as state machines with other
combinational logic circuitry (such as adders, shifters, com-
parators, AND gates, OR gates, XOR gates, or any suitable
combination thereot) or other logic circuitry. These compo-
nents can also include one or more registers or buillers to
store operand or other data. The PAU 270 can be imple-
mented as one or more processor cores or control circuitry,
and various state machines with other combinational logic
circuitry or other logic circuitry, and can also include one or
more registers, builers, or memories to store addresses,
executable instructions, operand and other data, or can be
implemented as a processor.

[0043] The write merge unit 255 receives read data and
request data, and merges the request data and read data to
create a single unit having the read data and the source

US 2023/0244416 Al

address to be used 1n the response or return data packet). The
write merge unit 255 provides the merged data to the write
port of the cache 210 (or, equivalently, to the cache con-
troller 215 to write to the cache 210). Optionally, the write
merge unit 255 provides the merged data to the network
communication interface 225 to encode and prepare a
response or return data packet for transmission on the chiplet
network 285.

[0044] When the request data i1s for a built-in atomic
operator, the built-in atomic unit 265 receives the request
and reads data, either from the write merge unit 255 or
directly from the ofl-die memory controller 220. The atomic
operator 1s performed, and using the write merge unit 255,
the resulting data 1s written to the cache 210, or provided to
the network communication interface 225 to encode and
prepare a response or return data packet for transmission on
the chiplet network 285.

[0045] The built-in atomic unit 265 handles predefined
atomic operators such as fetch-and-increment or compare-
and-swap. In an example, these operations perform a simple
read-modify-write operation to a single memory location of
32-bytes or less 1n size. Atomic memory operations are
iitiated from a request packet transmitted over the chiplet
network 285. The request packet has a physical address,
atomic operator type, operand size, and optionally up to
32-bytes of data. The atomic operator performs the read-
modity-write to a cache memory line of the cache 210,
filling the cache memory 1f necessary. The atomic operator
response can be a simple completion response, or a response

with up to 32-bytes of data. Example atomic memory
operators include fetch-and-AND, fetch-and-OR, fetch-and-

XOR, fetch-and-add, fetch-and-subtract, fetch-and-incre-
ment, fetch-and-decrement, fetch-and-minimum, fetch-and-
maximum, fetch-and-swap, and compare-and-swap. In
various example embodiments, 32-bit and 64-bit operations
are supported, along with operations on 16 or 32 bytes of
data. Methods disclosed herein are also compatible with
hardware supporting larger or smaller operations and more
or less data.

[0046] Built-in atomic operators can also involve requests
for a “standard” atomic operator on the requested data, such
as comparatively simple, single cycle, integer atomics—
such as fetch-and-increment or compare-and-swap—which
will occur with the same throughput as a regular memory
read or write operation not mnvolving an atomic operator. For
these operations, the cache controller 215 can generally
reserve a cache line 1n the cache 210 by setting a hazard bit
(in hardware), so that the cache line cannot be read by
another process while 1t 1s 1n transition. The data 1s obtained
from either the off-die memory 273 or the cache 210, and 1s
provided to the built-in atomic unit 265 to perform the
requested atomic operator. Following the atomic operator, in
addition to providing the resulting data to the packet encoder
240 to encode outgoing data packets for transmission on the
chiplet network 285, the built-in atomic unit 265 provides
the resulting data to the write merge unit 255, which waill
also write the resulting data to the cache 210. Following the
writing ol the resulting data to the cache 210, any corre-
sponding hazard bit which was set will be cleared by the
memory hazard unit 260.

[0047] The PAU 270 enables high performance (high

throughput and low latency) for programmable atomic
operators (also referred to as “custom atomic transactions”
or “custom atomic operators™), comparable to the perfor-

Aug. 3, 2023

mance ol built-in atomic operators. Rather than executing
multiple memory accesses, in response to an atomic operator
request designating a programmable atomic operator and a
memory address, circuitry in the memory controller chiplet
205 transfers the atomic operator request to PAU 270 and
sets a hazard bit stored in a memory hazard register corre-
sponding to the memory address of the memory line used 1n
the atomic operator, to ensure that no other operation (read,
write, or atomic) 1s performed on that memory line, which
hazard bit 1s then cleared upon completion of the atomic
operator. Additional, direct data paths provided for the PAU
270 executing the programmable atomic operators allow for
additional write operations without any limitations imposed
by the bandwidth of the communication networks and
without increasing any congestion of the commumnication
networks.

[0048] The PAU 270 includes a multi-threaded processor,
for example, such as a RISC-V ISA based multi-threaded
processor, having one or more processor cores, and further
having an extended instruction set for executing program-
mable atomic operators. When provided with the extended
instruction set for executing programmable atomic opera-
tors, the PAU 270 can be embodied as one or more hybrid
threading processors. In some example embodiments, the
PAU 270 provides barrel-style, round-robin instantaneous
thread switching to maintain a high instruction-per-clock
rate.

[0049] Programmable atomic operators can be performed
by the PAU 270 mvolving requests for a programmable
atomic operator on the requested data. A user can prepare
programming code to provide such programmable atomic
operators. For example, the programmable atomic operators
can be comparatively simple, multi-cycle operations such as
floating-point addition, or comparatively complex, multi-
instruction operations such as a Bloom filter insert. The
programmable atomic operators can be the same as or
different than the predetermined atomic operators, insofar as
they are defined by the user rather than a system vendor. For
these operations, the cache controller 215 can reserve a
cache line in the cache 210, by setting a hazard bit (in
hardware), so that cache line cannot be read by another
process while 1t 1s 1n transition. The data 1s obtained from
either the cache 210 or the oft-die memories 275 or 280, and
1s provided to the PAU 270 to perform the requested
programmable atomic operator. Following the atomic opera-
tor, the PAU 270 will provide the resulting data to the
network communication interface 225 to directly encode
outgoing data packets having the resulting data for trans-
mission on the chiplet network 285. In addition, the PAU
270 will provide the resulting data to the cache controller
215, which will also write the resulting data to the cache
210. Following the writing of the resulting data to the cache
210, any corresponding hazard bit which was set will be
cleared by the cache control circuit 215.

[0050] In selected examples, the approach taken for pro-
grammable atomic operators 1s to provide multiple, generic,
custom atomic request types that can be sent through the
chiplet network 285 to the memory controller chiplet 205
from an originating source such as a processor or other
system component. The cache controllers 215 or off-die
memory controller 220 identily the request as a custom
atomic and forward the request to the PAU 270. In a
representative embodiment, the PAU 270: (1) 1s a program-
mable processing element capable of efliciently performing

US 2023/0244416 Al

a user defined atomic operator; (2) can perform load and
stores to memory, arithmetic and logical operations and
control tlow decisions; and (3) leverages the RISC-V ISA
with a set of new, specialized mstructions to facilitate
interacting with such controllers 215, 220 to atomically
perform the user-defined operation. In desirable examples,
the RISC-V ISA contains a full set of instructions that
support high level language operators and data types. The
PAU 270 can leverage the RISC-V ISA, but will commonly
support a more limited set of instructions and limited
register file size to reduce the die size of the unit when
included within the memory controller chiplet 203.

[0051] To implement flexible and eflicient programmable
atomic operator requests, the network interface 205 1s con-
figured to obtain (e.g., recerve) a memory request. In an
example, the memory request 1s 1n the form of a CPI packet,
such as the CPI memory request packet 500 described below
with respect to FIG. 5. In the context of FIGS. 1 and 2, the
memory request packet, originating, for example, at the
application chiplet 125 (or from a process operating on the
application chiplet 125) or the host interface chiplet 135
creates the CPI memory request packet and transmits 1t to
the memory controller 205 (e.g., memory controller 140)

through the NOC 2835 (e.g., NOC 130).

[0052] The packet decoder 230, the cache controller 215,
the off-die memory controller, the PAU 270, or other cir-
cuitry of the memory controller 203 1s configured to extract
a command indicator from the memory request. Here, the
command indicator 1dentifies a programmable atomic opera-
tor command. In an example, when the memory request 1s a
CPI packet, the command indicator 1s 1n a first thirty-six bits
of a header for the CPI packet. This programmable atomic
operator command 1indicates that a programmable atomic
operator 1s requested but does not identity the specific
programmable atomic operator of possibly several sup-
ported by the PAU 270. Rather, the programmable atomic
operator command prompts further ispection of the packet
information to ascertain the specific PAO as well as any
possible arguments provided for the programmable atomic
operator in the request. With respect to the CPI memory
request of FIG. 5, the programmable atomic operator com-

mand can correspond to the CMD field 505.

[0053] In response to the command indicator 1dentifying
the programmable atomic operator command, a program-
mable atomic operator index 1s extracted from the request.
Here, the extraction of the programmable atomic operator
index can be performed by the packet decoder 230, the cache
controller 215, the ofl-die memory 220, the PAU 270, or
other circuitry of the memory controller 205. In an example,
when the memory request 1s 1n the form of a CPI packet, the
programmable atomic operator index 1s 1n a field in an
extension portion of a CPI extended header. For example,
the shaded line 4 of the packet 500 1s the extended header
510 i1n the packet 500. Here, the programmable atomic
operator index can be the CaPIdx field of the extended
header 510. In an example, the extended header includes a
second extension portion that includes an argument to the
PAO. In reference to the request packet 500, the extension
portion includes any of the DATA fields in lines 5 and
beyond. In an example, the second extension portion
includes between one and four sixty-four bit arguments.
Here, in the context of the request packet 500, the DATA
field lines each hold a thirty-two bit DATA field, resulting 1n

Aug. 3, 2023

the illustrated data packet including two arguments, each
argument comprising two DATA fields.

[0054] The PAU 270 1s configured to invoke the program-
mable atomic operator based on the programmable atomic
operator mdex. For example, given the PAU 400, the pro-
cessor 405 can used the programmable atomic operator
index to local a partition in the atomic instructions 4235 and
retrieve a kernel for the programmable atomic operator. This
kernel can then be executed by the processor 405 to perform
the programmable atomic operator. Thus, 1n an example,
invoking the programmable atomic operator based on the
programmable atomic operator index includes retrieving a
kernel from a programmable atomic operator memory (e.g.,
the atomic mstructions 425 in the local memory 410) of the
PAU 270 based on the programmable atomic operator index.
Then, the kernel can be executed on by the PAU 270. In an
example, retrieving the kernel based on the programmable
atomic operator index includes reading a partition from the
programmable atomic operator memory starting at the PAO
index. Here, the index refers to a starting point 1n the PAU
instruction memory (e.g., the atomic instruction 4235. The
starting point can be multiplied by memory offsets to convert
a partition number, for example 2, into a memory address. To
retrieve the kernel, the local memory 1s read from the
starting point until an ending point. The ending point can be
specified as a number of words, or extents, in the memory,
a 1inal memory address, or a fixed memory address. In an
example, the partition includes a terminating symbol, such
that the memory 1s read from the starting point until the
terminating symbol 1s encountered.

[0055] Once the PAU 270 executes the programmable
atomic operator, a result 1s produced. In an example, the
result 1s simply the return value of the programmable atomic
operator, for example, indicating success or failure of the
programmable atomic operator. In an example, the result 1s
more complex, icluding data produced from the program-
mable atomic operator.

[0056] The PAU 270 can be configured to package the
result by generating a memory response and communicating
the memory response to a requestor that provided the
memory request. Other components of the memory control-
ler 205 can also participate in obtaining the result from the
PAU 270 and generating the memory response, such as the
ofl-die memory controller 220 or the packet encoder 204. In
an example, the memory response 1s CPI packet (e.g., CPI
response packet 600). In an example, the memory request
was obtained from a CPI wvirtual channel one and the
memory response 1s communicated using CPI virtual chan-
nel two.

[0057] As mentioned above, prior to the writing of the
read data to the cache 210, the set hazard bit for the reserved
cache line 1s to be cleared, by the memory hazard clear unit
260. Accordingly, when the request and read data 1s received
by the write merge unit 255, a reset or clear signal can be
transmitted by the memory hazard clear unit 260 to the cache
210 to reset the set memory hazard bit for the reserved cache
line. Also, resetting this hazard bit will also release a
pending read or write request mnvolving the designated (or
reserved) cache line, providing the pending read or write
request to an mbound request multiplexer for selection and
processing.

[0058] FIG. 3 illustrates components of an example of a
memory controller chiplet, according to an embodiment.
FIG. 3 1s another representation of a memory controller from

US 2023/0244416 Al

the memory controller 205 1llustrated 1n FIG. 2. Many of the
same components shown 1 FIG. 2 are 1llustrated here. For
example, the cache 302 and 385 are examples of cache 210;
DRAM(s) 340 are examples of ofl-die memory 275-280;
atomic/write merge 370 and the programmable atomic unit
380 may be an example of atomics and merge unit 250.
Other components of FIG. 3 may be examples of other
components of FIG. 2 such as off-die memory controller 220
and cache controller 215.

[0059] Other components, not specifically represented 1n
the memory controller 205, can include the following. A
NOC Request Queue 305 to recerve requests from the
network-on-chip and provide a small amount of queuing. An
Atomic Request Queue 310 that receives requests from the
programmable atomic unit 380 and provides a small amount
of queuing. An Inbound Request Multiplexer (IRM) that
selects between inbound memory request sources. In an
example, the three memory request sources, in order of
priority are: Memory Hazard Requests, Atomic Requests,

and Inbound NOC Requests.

[0060] The Cache (Read) 325 and Cache (Write) 375 are

a single device implemented as, 1n an example, an SRAM
data cache. The diagram 1llustrates the cache as two separate
blocks (325 and 375), one providing read access, the other
providing write access. A Delay Block 320 provides one or
more pipeline stages to mimic the delay for an SRAM cache
read operation. Generally, a cache miss accesses to the
ofl-die memory 340 (e.g., off-die memory 280) to bring the
desired data into the cache. While waiting for the memory
response (e.g., access time for the DRAM 340), the memory
line 1s not available for other requests. A Memory Hazard
block (Set block 315 and Clear block 360) can maintain a
table of hazard bits indicating which memory lines are
unavailable for access. Thus, an inbound request that tries to
access a line with a hazard 1s held by the Memory Hazard
block until the hazard is cleared. Once the hazard 1s cleared
then the request i1s resent through the Inbound Request
Multiplexer. In an example, the memory line tag address 1s
hashed to a hazard bit index. The number of hazard bits may
be chosen to set the hazard collision probability to a suili-
ciently low level.

[0061] An Inbound DRAM Control Multiplexer (IDCM)
selects from an mmbound NOC request and a cache eviction

request. For the Bank Request Queues 330, each separately
managed DRAM bank has a dedicated bank request queue

to hold requests until they can be scheduled on the associ-
ated DRAM bank.

[0062] The scheduler 333 selects across the bank request
queues 335 to choose a request for an available DRAM
bank. A Request Hit Data Queue 360 holds request data from

cache hits until selected. A Request Miss Data Queue 355
holds data read from the DRAM(s) until selected. A Miss
Request Queue 350 1s used to hold request packet informa-
tion for cache misses until the request 1s selected. A Hit
Request Queue 345 holds request packet information for

cache hits until selected. A Data Selection Multiplexer
(DSM) selects between DRAM read data and cache hit read

data. The selected data 1s wrntten to the SRAM cache.
Request Selection Multiplexer (RSM) selects between hit
and miss request queues 345 and 355.

[0063] The Atomic/Write Merge 370 either merges the
request data and DRAM read data, or, if the request 1s a
built-in atomic (e.g., built-in atomic operation block 2635),
the memory data and request data are used as inputs for an

Aug. 3, 2023

atomic operation. The Cache (Write) block 375 represents
the write port for the SRAM cache. Data from a NOC write
request and data from DRAM read operations are written to
the SRAM cache. The Memory Hazard (Clear) block 3635
represents the hazard clear operation for the memory hazard
structure. Clearing a hazard may release a pending NOC
request and send 1t to the Inbound Request Multiplexer. The
programmable Atomic Unit 380 processes programmable
atomic operations (e.g., transactions). The NOC Outbound
Response Multiplexer (ORM) selects between memory con-
troller responses and custom atomic unit responses and
sends the selection to the NOC.

[0064] FIG. 4 illustrates components 1 an example of a
programmable atomic unit 400 (PAU), such as those noted
above with respect to FIG. 1 (e.g., in the memory controller
140) and FIG. 2 (e.g., PAU 270), according to an embodi-
ment. As 1llustrated, the PAU 400 1ncludes a processor 403,
local memory 410 (e.g., SRAM), and a controller 415 for the

local memory 410.

[0065] In an example, the processor 405 1s a pipelined
such that multiple stages of diflerent instructions are
executed together per clock cycle. The processor 405 1s also
a barrel-multithreaded processor, with circuitry to switch
between diflerent register files (e.g., sets of registers con-
taining current processing state) upon cach clock cycle of
the processor 405. This enables eflicient context switching
between currently executing threads. In an example, the
processor 405 supports eight threads, resulting in eight
register files. In an example, some or all of the register files
are not integrated into the processor 405, but rather reside 1n
the local memory 410 (registers 420). This reduces circuit
complexity i1n the processor 405 by eliminating the tradi-
tional thp-flops used for these registers 420.

[0066] The local memory 410 can also house a cache 430
and 1nstructions 425 for atomic operators. The atomic
istructions 425 comprise sets of mstructions to support the
vartous application-loaded atomic operators. When an
atomic operator 1s requested—by the application chiplet
125, for example—a set of instructions (e.g., a kernel)
corresponding to the atomic operator are executed by the
processor 4035. In an example, the atomic instructions 4235
are partitioned to establish the sets of instructions. In this
example, the specific programmable atomic operator being
requested by a requesting process can 1dentily the program-
mable atomic operator by the partition number. The partition
number can be established when the programmable atomic
operator 1s registered with (e.g., loaded onto) the PAU 400.
Additional metadata for the programmable atomic instruc-

tions 425 can also be stored 1n the local memory 410, such
as the partition tables.

[0067] Atomic operators manipulate the cache 430, which
1s generally synchronmized (e.g., flushed) when a thread for an
atomic operator completes. Thus, aside from 1nitial loading
from the external memory, such as the ofl-die memory 275
or 280, latency 1s reduced for most memory operations
during execution of a programmable atomic operator thread.

[0068] FIG. 3 illustrates a chiplet protocol interface
request packet 500, according to an embodiment. The fol-
lowing 1s a table for an example of CPI field descriptions and
bit lengths corresponding to the CPI request packet 500.

US 2023/0244416 Al

Field
Field Name Width Value Field Description
Line 1
CMD 8 126 Extended virtual channel 1 (VC1)
LEN 5 Packet Length
SC 1 0 Sequence Continue (1gnored for
external memory device (EMD))
DID 12 Destination NOC endpoint
PATH 8 Endpoint Offset <14:7>
CP 2 1 Credit/Path Order (Credit Return
enabled in flits 3-N and PATH
field based path ordering)
Line 2
TU 2 Transaction ID <9:8>
EPO1 <6:0> 7 Endpoint Offset <6:0>
TA 8 Transaction IS <7:0>
EpOfifset 19 Endpoint Offset <33:15>
<33:15>
Line 3
EXCMD 8 Extended Command
BTYPE 4 8 BTYPE of 8 1s EMD vendor defined
SID 12 Source NOC Endpoint
EpOflset 4 Endpoint Offset <37:34>
<37:34>
RSV 4 0 Reserved
CR/RSV 4 Credit Return
Line 4
CrPKnd 4 Credit Pool Kind
CrPIdx 8 Credit Pool Index
RSV 4 0 Reserved
CaPldx 8 Custom (Programmable) Atomic
Partition Index
Calntv 8 Interleave Size
CR/RSV 4 Credit Return
Lines 5 and Beyond
DATA 32 Argument data: 0, 1, 2, or 4,
64-bit values
CR/RSV 4 Credit Return
[0069] As 1llustrated, line 4, the shaded line 1s an extended

header 510. The command field 505 indicates that the

request 500 1s for a PAO. However, the entity decoding the
request 500 and providing the PAO parameter to a PAU (e.g.,

PAU 270) will either pass the extended header 510 infor-
mation to the PAU or decode the extended header 510 and

provide the constituent fields as mputs to the PAU.

[0070] FIG. 6 illustrates a chiplet protocol interface
response packet 600, according to an embodiment. The
following 1s a table for an example of CPI field descriptions
and bit lengths corresponding to the CPI response packet

600.
Field
Field Name Width Field Description
Line 1
CMD 8 Packet command
LEN 5 Encoded packet Length
SC 1 Sequence Continue. When set, this packet 1s part
of a multi-packet transfer and this packet is not
the last packet 1n the sequence. In an example,
this bit 1s present in the first flit of all
packet types.
DID 8 Destination NOC Endpoint ID bits <7:0>
STAT 4 Response Status

Aug. 3, 2023

-continued

Field

Field Name Width Field Description

PATH TID 8 The PATH field used to specify a path through a

CPI fabric to force ordering between packets.
For both CPI native and AXI over CPI, the read
response packet’s PATH field can contain a
transaction identifier (TID) value.
Credit Present/Path Ordering. The CP field
contains an encoded value that specifies both
whether the field CR of flits 3-N of the packet
contains credit return information and whether
path ordering 1s enabled.

Lines 2 and beyond

CP 2

DATA 32
CR/RSV
RSV

Read Response Data, bits N*8-1:0
Credit Return Information
Reserved

I

[0071] FIG. 7 1s a flow chart of an example of a method
700 for communicating a programmable atomic operator
(PAO) to a memory controller according to an embodiment.
Operations of the method 700 are performed by computer
hardware, such as that described with respect to FIG. 1 (e.g.,
memory controller chiplet 140), FIG. 2 (e.g., memory con-
troller 205, FIG. 3, or FIG. 8 (e.g., processing circuitry).

[0072] At operation 705, a memory controller obtains
(e.g., receives or retrieves) a memory request. In an
example, the memory request 1s 1n the form of a CPI packet

(e.g., CPI request 500).

[0073] At operation 710, a command indicator 1s extracted
from the memory request. Here, the command indicator
identifies a PAO command. In an example, when the
memory request 1s a CPI packet, the command indicator 1s
in a {irst thirty-six bits of a header for the CPI packet. In an
example, the header 1s an extended header.

[0074] At operation 715, in response to the command
indicator identitying the PAO command, a PAO 1index 1is
extracted from the request. In an example, when the memory
request 1s 1n the form of a CPI packet, the PAO index 1s 1n
a field 1 an extension portion of a CPI extended header. In
an example, the extended header includes a second exten-
sion portion that includes an argument to the PAO. In an
example, the second extension portion includes between one
and four arguments.

[0075] At operation 720, the PAO 1s invoked based on the
PAO index. In an example, invoking the PAO based on the
PAO 1ndex includes retrieving a kernel from a PAO memory
of the memory controller based on the PAO index and
executing the kernel on a PAU of the memory controller. In
an example, retrieving the kernel based on the PAO index

includes reading a partition from the PAO memory starting
at the PAO 1ndex.

[0076] In an example, the operations of the method 700
can be extended to include generating a memory response
and communicating the memory response to a requestor that
provided the memory request. Here, the memory response 1s
generated 1n response to completion of the PAO and the
memory response includes output from the PAO 1n data
fields of the memory response. In an example, generating the
memory response includes creating a CPI packet (e.g., CPI
response packet 600). In an example, the memory request
was obtained from a CPI wvirtual channel one and the
memory response 1s communicated using CPI virtual chan-
nel two.

US 2023/0244416 Al

[0077] FIG. 8 illustrates a block diagram of an example
machine 800 with which, in which, or by which any one or
more ol the techmiques (e.g., methodologies) discussed
herein can be implemented. Examples, as described herein,
can include, or can operate by, logic or a number of
components, or mechanisms in the machine 800. Circuitry
(e.g., processing circuitry) 1s a collection of circuits imple-
mented 1n tangible entities of the machine 800 that include
hardware (e.g., simple circuits, gates, logic, etc.). Circuitry
membership can be flexible over time. Circuitries include
members that can, alone or 1n combination, perform speci-
fied operations when operating. In an example, hardware of
the circuitry can be immutably designed to carry out a
specific operation (e.g., hardwired). In an example, the
hardware of the circuitry can include variably connected
physical components (e.g., execution units, transistors,
simple circuits, etc.) including a machine readable medium
physically modified (e.g., magnetically, electrically, move-
able placement of invariant massed particles, etc.) to encode
instructions of the specific operation. In connecting the
physical components, the underlying electrical properties of
a hardware constituent are changed, for example, from an
insulator to a conductor or vice versa. The instructions
enable embedded hardware (e.g., the execution units or a
loading mechanism) to create members of the circuitry 1n
hardware via the variable connections to carry out portions
of the specific operation when 1n operation. Accordingly, 1n
an example, the machine-readable medium elements are part
of the circuitry or are communicatively coupled to the other
components of the circuitry when the device 1s operating. In
an example, any of the physical components can be used 1n
more than one member of more than one circuitry. For
example, under operation, execution units can be used 1n a
first circuit of a first circuitry at one point in time and reused
by a second circuit 1n the first circuitry, or by a third circuit
in a second circuitry at a different time. Additional examples
of these components with respect to the machine 800 follow.

[0078] In alternative embodiments, the machine 800 can
operate as a standalone device or can be connected (e.g.,
networked) to other machines. In a networked deployment,
the machine 800 can operate 1n the capacity of a server
machine, a client machine, or both 1n server-client network
environments. In an example, the machine 800 can act as a
peer machine i peer-to-peer (P2P) (or other distributed)
network environment. The machine 800 can be a personal
computer (PC), a tablet PC, a set-top box (STB), a personal
digital assistant (PDA), a mobile telephone, a web appli-
ance, a network router, switch or bridge, or any machine
capable of executing instructions (sequential or otherwise)
that specily actions to be taken by that machine. Further,
while only a single machine 1s 1illustrated, the term
“machine” shall also be taken to include any collection of
machines that individually or jointly execute a set (or
multiple sets) of instructions to perform any one or more of
the methodologies discussed herein, such as cloud comput-
ing, soltware as a service (SaaS), other computer cluster
configurations.

[0079] The machine (e.g., computer system) 800 can
include a hardware processor 802 (e.g., a central processing
unit (CPU), a graphics processing unit (GPU), a hardware
Processor core, or any combination thereof), a main memory
804, a static memory (e.g., memory or storage for firmware,
microcode, a basic-input-output (BIOS), unified extensible
firmware interface (UEFI), etc.) 806, and mass storage 808

Aug. 3, 2023

(e.g., hard dnives, tape drives, flash storage, or other block
devices) some or all of which can communicate with each
other via an interlink (e.g., bus) 830. The machine 800 can
further include a display unit 810, an alphanumeric mnput
device 812 (e.g., a keyboard), and a user interface (UI)
navigation device 814 (e.g., a mouse). In an example, the
display unit 810, input device 812 and UI navigation device
814 can be a touch screen display. The machine 800 can
additionally include a storage device (e.g., drive unit) 808,
a signal generation device 818 (e.g., a speaker), a network
interface device 820, and one or more sensors 816, such as
a global positioning system (GPS) sensor, compass, accel-
erometer, or other sensor. The machine 800 can include an
output controller 828, such as a senal (e.g., universal serial
bus (USB), parallel, or other wired or wireless (e.g., infrared
(IR), near field communication (NFC), etc.) connection to
communicate or control one or more peripheral devices
(e.g., a printer, card reader, etc.).

[0080] Registers of the processor 802, the main memory

804, the static memory 806, or the mass storage 808 can be,
or include, a machine readable medium 822 on which 1s
stored one or more sets of data structures or instructions 824
(e.g., software) embodying or utilized by any one or more of
the techniques or functions described herein. The nstruc-
tions 824 can also reside, completely or at least partially,
within any of registers of the processor 802, the main
memory 804, the static memory 806, or the mass storage 808
during execution thereof by the machine 800. In an example,
one or any combination of the hardware processor 802, the
main memory 804, the static memory 806, or the mass
storage 808 can constitute the machine readable media 822.
While the machine readable medium 822 1s illustrated as a
single medium, the term “machine readable medium” can
include a single medium or multiple media (e.g., a central-
1zed or distributed database, or associated caches and serv-
ers) configured to store the one or more instructions 824.

[0081] The term “machine readable medium™ can include
any medium that 1s capable of storing, encoding, or carrying
instructions for execution by the machine 800 and that cause
the machine 800 to perform any one or more of the tech-
niques of the present disclosure, or that 1s capable of storing,
encoding or carrying data structures used by or associated
with such instructions. Non-limiting machine-readable
medium examples can include solid-state memories, optical
media, magnetic media, and signals (e.g., radio frequency
signals, other photon-based signals, sound signals, etc.). In
an example, a non-transitory machine-readable medium
comprises a machine-readable medium with a plurality of
particles having invaniant (e.g., rest) mass, and thus are
compositions of matter. Accordingly, non-transitory
machine-readable media are machine readable media that do
not 1nclude {transitory propagating signals. Specific
examples ol non-transitory machine readable media can
include: non-volatile memory, such as semiconductor
memory devices (e.g., electrically programmable read-only
memory (EPROM), electrically erasable programmable
read-only memory (EEPROM)) and flash memory devices;

magnetic disks, such as internal hard disks and removable
disks; magneto-optical disks; and CD-ROM and DVD-
ROM disks.

[0082] In an example, mformation stored or otherwise
provided on the machine readable medium 822 can be
representative of the instructions 824, such as instructions
824 themselves or a format from which the instructions 824

US 2023/0244416 Al

can be derived. This format from which the instructions 824
can be derived can include source code, encoded instructions
(e.g., 1n compressed or encrypted form), packaged instruc-
tions (e.g., split mnto multiple packages), or the like. The
information representative of the instructions 824 in the
machine readable medium 822 can be processed by process-
ing circuitry into the instructions to implement any of the
operations discussed herein. For example, deriving the
instructions 824 from the information (e.g., processing by
the processing circuitry) can include: compiling (e.g., from
source code, object code, etc.), interpreting, loading, orga-
nizing (e.g., dynamically or statically linking), encoding,
decoding, encrypting, unencrypting, packaging, unpackag-
ing, or otherwise manipulating the information into the
instructions 824.

[0083] In an example, the derivation of the instructions
824 can include assembly, compilation, or interpretation of
the information (e.g., by the processing circuitry) to create
the instructions 824 from some intermediate or preprocessed
format provided by the machine readable medium 822. The
information, when provided 1n multiple parts, can be com-
bined, unpacked, and modified to create the instructions 824.
For example, the information can be 1n multiple compressed
source code packages (or object code, or binary executable
code, etc.) on one or several remote servers. The source code
packages can be encrypted when in transit over a network
and decrypted, uncompressed, assembled (e.g., linked) 1f
necessary, and compiled or interpreted (e.g., into a library,
stand-alone executable etc.) at a local machine, and executed
by the local machine.

[0084] The 1nstructions 824 can be further transmitted or
received over a communications network 826 using a trans-
mission medium via the network interface device 820 uti-
lizing any one of a number of transfer protocols (e.g., frame
relay, internet protocol (IP), transmission control protocol
(TCP), user datagram protocol (UDP), hypertext transier
protocol (HTTP), etc.). Example communication networks
can mclude a local area network (LAN), a wide area network
(WAN), a packet data network (e.g., the Internet), mobile
telephone networks (e.g., cellular networks), plain old tele-
phone (POTS) networks, and wireless data networks (e.g.,
Institute of Electrical and Electronics Engineers (IEEE)
802.11 family of standards known as Wi-Fi®, IEEE 802.16
family of standards known as WiMax®), IEEE 802.15.4
family of standards, peer-to-peer (P2P) networks, among
others. In an example, the network interface device 820 can
include one or more physical jacks (e.g., Ethernet, coaxial,
or phone jacks) or one or more antennas to connect to the
communications network 826. In an example, the network
interface device 820 can include a plurality of antennas to
wirelessly communicate using at least one of single-input
multiple-output (SIMO), multiple-input multiple-output
(MIMO), or multiple-input single-output (MISO) tech-
niques. The term “transmission medium” shall be taken to
include any intangible medium that 1s capable of storing,
encoding or carrying instructions for execution by the
machine 800, and includes digital or analog communications
signals or other intangible medium to facilitate communi-
cation of such software. A transmission medium 1s a
machine readable medium. To better 1llustrate the methods
and apparatuses described herein, a non-limiting set of
Example embodiments are set forth below as numerically
identified Examples.

Aug. 3, 2023

[0085] Example 1 1s a memory controller for communi-
cating a programmable atomic operator (PAO) to a memory
controller, the memory controller comprising: a network
interface configured to obtain a memory request; a packet
decoder configured to extract from the memory request: a
command indicator, the command indicator indicating a
PAO command; and a PAO 1ndex in response to the com-
mand indicator indicating the PAO command; and a pro-
grammable atomic unit (PAU) configured to invoke the PAO
based on the PAO index.

[0086] In Example 2, the subject matter of Example 1,
wherein the memory request 1s in the form of a chiplet
packet iterface (CPI) packet.

[0087] In Example 3, the subject matter of Example 2,

wherein the command 1ndicator 1s 1n a first thirty-six bits of
a header for the CPI packet.

[0088] In Example 4, the subject matter of Example 3,
wherein the header 1s an extended header; and wherein the
PAO 1ndex 1s 1 a field in an extension portion of the
extended header.

[0089] In Example 5, the subject matter of Example 4,
wherein the extended header includes a second extension
portion that includes an argument to the PAO.

[0090] In Example 6, the subject matter of Example 3,
wherein the second extension portion includes between one
and four arguments.

[0091] In Example 7, the subject matter of any of
Examples 1-6, wherein, to invoke the PAO based on the
PAO index, the PAU 1s configured to: retrieve, based on the
PAO index, a kernel from a PAO memory in the PAU; and
execute the kernel.

[0092] In Example 8, the subject matter of Example 7,
wherein, to retrieve the kernel based on the PAO index, the
PAU 1s configured to read a partition from the PAO memory
starting at the PAO 1ndex.

[0093] In Example 9, the subject matter of any of
Examples 1-8, comprising: a packet encoder configured to
generate a memory response in response to completion of
the PAO, the memory response including output from the
PAO 1n data fields; and wherein the network interface i1s
configured to communicate the memory response to a
requestor that provided the memory request.

[0094] In Example 10, the subject matter of Example 9,
wherein, to generate the memory response, the packet
encoder 1s configured to create a chiplet packet interface
(CPI) packet.

[0095] In Example 11, the subject matter of Example 10,
wherein the memory request was obtained from a CPI
virtual channel one; and wherein, to communicate the
memory response, the network interface 1s configured to use
CPI virtual channel two.

[0096] Example 12 1s a method comprising: obtaining, at
the memory controller, a memory request; extracting, from
the memory request, a command 1indicator, the command
indicator 1ndicating a PAO command; extracting, 1n
response to the command indicator indicating the PAO
command, a PAO index from the request; and invoking the
PAQO based on the PAO 1ndex.

[0097] In Example 13, the subject matter of Example 12,
wherein the memory request 1s in the form of a chiplet
packet interface (CPI) packet.

[0098] In Example 14, the subject matter of Example 13,

wherein the command mdlcator 1s 1n a first thirty-six bits of
a header for the CPI packet.

US 2023/0244416 Al

[0099] In Example 15, the subject matter of Example 14,
wherein the header 1s an extended header; and wherein the
PAO 1ndex 1s 1 a field in an extension portion of the
extended header.

[0100] In Example 16, the subject matter of Example 15,
wherein the extended header includes a second extension
portion that includes an argument to the PAO.

[0101] In Example 17, the subject matter of Example 16,
wherein the second extension portion includes between one
and four arguments.

[0102] In Example 18, the subject matter of any of
Examples 12-17, wherein mvoking the PAO based on the
PAO index includes a programmable atomic unit (PAU) of
the memory controller: retrieving, based on the PAO index,
a kernel from a PAO memory 1n the PAU; and executing the
kernel.

[0103] In Example 19, the subject matter of Example 18,
wherein retrieving the kernel based on the PAO index

includes reading a partition from the PAO memory starting
at the PAO index.

[0104] In Example 20, the subject matter of any of
Examples 12-19, comprising: generating a memory
response, the memory response generated in response to
completion of the PAO, the memory response including
output from the PAO 1n data fields; and communicating the
memory response to a requestor that provided the memory
request.

[0105] In Example 21, the subject matter of Example 20,
wherein generating the memory response includes creating,

a chiplet packet interface (CPI) packet.

[0106] In Example 22, the subject matter of Example 21,
wherein the memory request was obtained from a CPI
virtual channel one; and wherein communicating the
memory response includes using CPI virtual channel two.

[0107] Example 23 1s a machine-readable medium includ-
ing 1nstructions that, when executed by circuitry of a
memory controller, cause the memory controller to perform
operations comprising: obtaining a memory request; extract-
ing, from the memory request, a command indicator, the
command 1ndicator indicating a PAO command; extracting,
in response to the command indicator indicating the PAO
command, a PAO index from the request; and invoking the

PAO based on the PAO index.

[0108] In Example 24, the subject matter of Example 23,
wherein the memory request 1s 1n the form of a chiplet

packet interface (CPI) packet.

[0109] In Example 25, the subject matter of Example 24,
wherein the command indicator 1s 1n a first thirty-six bits of
a header for the CPI packet.

[0110] In Example 26, the subject matter of Example 25,
wherein the header 1s an extended header; and wherein the
PAO 1ndex 1s 1 a field in an extension portion of the
extended header.

[0111] In Example 27, the subject matter of Example 26,
wherein the extended header includes a second extension

portion that includes an argument to the PAO.

[0112] In Example 28, the subject matter of Example 27,
wherein the second extension portion includes between one
and four arguments.

[0113] In Example 29, the subject matter of any of
Examples 23-28, wherein invoking the PAO based on the
PAO index includes a programmable atomic unit (PAU) of

Aug. 3, 2023

the memory controller: retrieving, based on the PAO index,
a kernel from a PAO memory in the PAU; and executing the
kernel.

[0114] In Example 30, the subject matter of Example 29,
wherein retrieving the kernel based on the PAO index
includes reading a partition from the PAO memory starting
at the PAO 1ndex.

[0115] In Example 31, the subject matter of any of
Examples 23-30, wherein the operations comprise: generat-
Ing a memory response, the memory response generated 1n
response to completion of the PAO, the memory response
including output from the PAO 1n data fields; and commu-
nicating the memory response to a requestor that provided
the memory request.

[0116] In Example 32, the subject matter of Example 31,
wherein generating the memory response includes creating
a chiplet packet interface (CPI) packet.

[0117] In Example 33, the subject matter of Example 32,
wherein the memory request was obtained from a CPI
virtual channel one; and wherein communicating the
memory response includes using CPI virtual channel two.
[0118] Example 34 1s a system comprising: means for
obtaining a memory request; means for extracting, from the
memory request, a command indicator, the command indi-
cator indicating a PAO command; means for extracting, in
response to the command indicator indicating the PAO
command, a PAO index from the request; and invoking the
PAO based on the PAO index.

[0119] In Example 35, the subject matter of Example 34,
wherein the memory request 1s in the form of a chiplet
packet iterface (CPI) packet.

[0120] In Example 36, the subject matter of Example 35,
wherein the command 1ndicator 1s 1n a first thirty-six bits of
a header for the CPI packet.

[0121] In Example 37/, the subject matter of Example 36,
wherein the header 1s an extended header; and wherein the
PAO 1ndex 1s 1 a field in an extension portion of the
extended header.

[0122] In Example 38, the subject matter of Example 37,
wherein the extended header includes a second extension
portion that includes an argument to the PAO.

[0123] In Example 39, the subject matter of Example 38,
wherein the second extension portion includes between one
and four arguments.

[0124] In Example 40, the subject matter of any of
Examples 34-39, wherein the system includes a program-
mable atomic unit comprising: means for retrieving, based
on the PAO index, a kernel from a PAO memory 1n the PAU;
and means for executing the kernel.

[0125] In Example 41, the subject matter of Example 40,
wherein the means for retrieving the kernel based on the
PAO index include means for reading a partition from the
PAO memory starting at the PAO 1ndex.

[0126] In Example 42, the subject matter of any of
Examples 34-41, comprising: means for generating a
memory response, the memory response generated in
response to completion of the PAO, the memory response
including output from the PAO in data fields; and means for
communicating the memory response to a requestor that
provided the memory request.

[0127] In Example 43, the subject matter of Example 42,
wherein the means for generating the memory response
include means for creating a chiplet packet intertace (CPI)
packet.

US 2023/0244416 Al

[0128] In Example 44, the subject matter of Example 43,
wherein the memory request was obtained from a CPI
virtual channel one; and wherein the means for communi-
cating the memory response include means for using CPI

virtual channel two.

[0129] Example 45 1s at least one machine-readable
medium including instructions that, when executed by pro-
cessing circuitry, cause the processing circuitry to perform
operations to implement of any of Examples 1-44.

[0130] Example 46 1s an apparatus comprising means to
implement of any of Examples 1-44.

[0131] Example 47 1s a system to implement of any of
Examples 1-44.
[0132] Example 48 1s a method to implement of any of

Examples 1-44.

[0133] The above detailed description includes references
to the accompanying drawings, which form a part of the
detailed description. The drawings show, by way of 1llus-
tration, specific embodiments 1n which the invention can be
practiced. These embodiments are also referred to herein as
“examples”. Such examples can include elements 1n addi-
tion to those shown or described. However, the present
inventors also contemplate examples 1 which only those
clements shown or described are provided. Moreover, the
present 1nventors also contemplate examples using any
combination or permutation of those elements shown or
described (or one or more aspects thereof), either with
respect to a particular example (or one or more aspects
thereol), or with respect to other examples (or one or more
aspects thereol) shown or described herein.

[0134] In this document, the terms “a” or “an” are used, as
1s common 1n patent documents, to include one or more than
one, independent of any other instances or usages of “at least
one” or “one or more.” In this document, the term “or” 1s
used to refer to a nonexclusive or, such that “A or B” can
include “A but not B,” “B but not A,” and “A and B,” unless
otherwise indicated. In the appended claims, the terms
“including” and “in which” are used as the plain-English
equivalents of the respective terms “comprising” and
“wherein”. Also, 1n the following claims, the terms “includ-
ing” and “comprising”’ are open-ended, that 1s, a system,
device, article, or process that includes elements 1n addition
to those listed after such a term 1n a claim are still deemed
to fall within the scope of that claim. Moreover, in the
following claims, the terms *“first,” “second,” and *“third,”
ctc. are used merely as labels, and are not intended to 1impose
numerical requirements on their objects.

[0135] The above description 1s intended to be illustrative,
and not restrictive. For example, the above-described
examples (or one or more aspects thereol) can be used 1n
combination with each other. Other embodiments can be
used, such as by one of ordinary skill in the art upon
reviewing the above description. It 1s submitted with the
understanding that 1t will not be used to interpret or limit the
scope or meaning of the claims. Also, 1n the above Detailed
Description, various features can be grouped together to
streamline the disclosure. This should not be interpreted as
intending that an unclaimed disclosed feature 1s essential to
any claim. Rather, inventive subject matter can lie 1 less
than all features of a particular disclosed embodiment. Thus,
the following claims are hereby incorporated into the
Detailed Description, with each claim standing on 1ts own as
a separate embodiment, and 1t 1s contemplated that such
embodiments can be combined with each other 1n various

Aug. 3, 2023

combinations or permutations. The scope of the mvention
should be determined with reference to the appended claims,
along with the full scope of equivalents to which such claims
are entitled.
What 1s claimed 1s:
1. A memory controller comprising:
an interface configured to receive a memory request;
a kernel memory configured to hold multiple atomic
operator kernels, each atomic operator kernel held by
the kernel memory at a respective imndex; and
processing circuitry configured to:
locate, 1n response to a generic programmable atomic
operator command 1n the memory request, an atomic
operator kernel i the kernel memory based on an
index in the memory request; and

execute the atomic operator kernel located 1n the kernel
memory to satisty the memory request.

2. The memory controller of claim 1, wherein the kernel
memory 1s divided into partitions, and wherein each index
into the kernel memory corresponds to a start address or an
end address of a single partition in the partitions.

3. The memory controller of claim 1, wherein the pro-
cessing circuitry 1s configured to:

receive, via the interface, a request to load the atomic
operator kernel;

write the atomic operator kernel into an open segment of
the kernel memory; and

return the index as part of a response to the request to load
the atomic operator kernel.

4. The memory controller of claim 1, wherein the memory
controller 1s a chiplet in a chiplet system, and wherein the
memory request originated with another chiplet in the chip-
let system.

5. The memory controller of claim 1, wherein the memory
request 1s contained 1n a packet.

6. The memory controller of claim 5, wherein an 1indicator
for the generic programmable atomic operator command 1s
in a first thirty-six bits of a header for the packet.

7. The memory controller of claim 6, wherein the index 1s
a field of the header.

8. The memory controller of claim 7, wherein the field 1s
in an extension portion of the header.

9. The memory controller of claim 7, wherein the header
includes an argument to the atomic operator kernel in the
kernel memory.

10. The memory controller of claim 9, wherein the
argcument 1s 1 an extension portion of the header, and
wherein the extension portion of the header 1s configured to
hold one, two, three, or four arguments to the atomic
operator kernel.

11. A method comprising:

locating an atomic operator kernel 1n kernel memory of a

memory controller based on an index in a memory
request that also includes a generic programmable
atomic operator command, the memory request
received at an interface of the memory controller, the
kernel memory configured to hold multiple atomic
operator kernels at respective indices; and

executing the atomic operator kernel located at the kernel

memory to satisiy the memory request.

12. The method of claim 11, wherein the kernel memory
1s divided into partitions, and wherein each index into the
kernel memory corresponds to a start address or an end
address of a single partition in the partitions.

US 2023/0244416 Al

13. The method of claim 11, comprising:

receiving, via the interface, a request to load the atomic

operator kernel;

writing the atomic operator kernel into an open segment

of the kernel memory; and

returning the index as part of a response to the request to

load the atomic operator kernel.

14. The method of claim 11, wherein the memory con-
troller 1s a chiplet 1n a chiplet system, and wherein the
memory request originated with another chiplet in the chip-
let system.

15. The method of claim 11, wherein the memory request
1s contained in a packet.

16. The method of claim 15, wherein an indicator for the
generic programmable atomic operator command 1s 1n a {irst
thirty-six bits of a header for the packet.

17. The method of claim 16, wherein the index 1s a field
of the header.

18. The method of claim 17, wherein the field 1s 1n an
extension portion of the header.

19. The method of claim 17, wherein the header includes
an argument to the atomic operator kemnel i the kernel
memory.

20. The method of claim 19, wherein the argument 1s 1n
an extension portion of the header, and wherein the exten-
sion portion of the header i1s configured to hold one, two,
three, or four arguments to the atomic operator kernel.

G e x Gx ex

13

Aug. 3, 2023

	Front Page
	Drawings
	Specification
	Claims

