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(57) ABSTRACT

A computer-implemented method of training a neural net-
work to improve a characteristic of a protein comprises
collecting a set of amino acid sequences from a database,
compiling each amino acid sequence into a three-dimen-
s1onal crystallographic structure of a folded protein, training
a neural network with a subset of the three-dimensional
crystallographic structures, identifying, with the neural net-
work, a candidate residue to mutate 1n a target protein, and
identifving, with the neural network, a predicted amino acid
residue to substitute for the candidate residue, to produce a
mutated protein, wherein the mutated protein demonstrates
an improvement 1n a characteristic over the target protein. A
system for improving a characteristic of a protein 1s also
described. Improved blue fluorescent proteins generated
using the system are also described.

Specification includes a Sequence Listing.
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SYSTEM AND METHODS FOR INCREASING
SYNTHESIZED PROTEIN STABILITY

RELATED APPLICATIONS

[0001] The present application claims the benefit of and
priority to U.S. Provisional Patent Application No. 62/841,
906, entitled “System and Method for Increasing Synthe-
sized Protein Stability,” filed May 2, 2019, the entirety of
which 1s incorporated by reference herein.

STAITEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

[0002] This invention was made with government support
under Grant no. R43 NS105463 awarded by the National
Institutes of Health, and Grant no. FA9550-14-1-0089

awarded by the Air Force Oflice of Scientific Research. The
government has certain rights 1n the mvention.

BACKGROUND

[0003] Protein engineering 1s a transformative approach in
biotechnology and biomedicine aimed at either imparting,
novel functionality on existing proteins or making proteins
more persistent 1n non-native environments. A design con-
sideration that influences both manners of engineering 1s the
overall stability of the protein. In the former case, gain-oi-
function mutations are introduced that expand the role of a
protein through rational design or directed evolution, fre-
quently at a thermodynamic cost. As most natural proteins
are only marginally stable, functional mutations that desta-
bilize a protein to the point of unfolding may be missed,
while increasing stability before a selection has been shown
to promote the evolvability of a protein.

[0004] A significant barrier 1n the translation from useful
naturally occurring biocatalyst to industrial use 1s the adap-
tation of a protemn to radically different environmental
conditions, temperature, and solvents. Increasing the stabil-
ity of a protein can alleviate many of these pressures to allow
for large quantity expression with higher yields and lower
cost. Thus, stabilization 1s critical to the success of many
protein engineering eflorts.

[0005] Numerous methods exist to engineer proteins, and
all generally represent a compromise between how quickly
and accurately protein variants can be measured, and how
ciliciently the landscape of protein variants can be sampled.
Techniques such as mutagenic Polymerase Chain Reaction
(PCR) require minimal knowledge about the relationship
between sequence and function, yet rely on high-throughput
screens or selections to segregate large libraries of protein
variants. Structural data and computational approaches can
be used to narrow the search space, and concomitantly
reduce the amount of downstream characterization. These
tools become increasingly important for proteins where the
desired properties are diflicult to measure, especially at
scale. However, due to our mcomplete understanding of
protein sequence/structure/function relationships, diflerent
computational tools for protein engineering will often pro-
vide completely different or even conflicting solutions. This
1s especially true for properties such as stability and folding,
which are often the result of many small interactions dis-
tributed throughout the entire protein sequence.

[0006] Typically, computational methods will 1dentily
residues that destabilize a protein by performing computa-
tionally intensive folding simulations. The level of detail
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involved 1n these simulations varies—some go as far as
invoking quantum mechanics (MOE) to explain molecular
interactions while others use more coarse grained methods
(Rosetta). To a first approximation, coarse grained
approaches identity problematic residues by either looking
for gaps 1n a protein structure (RosettaVIP), doing fast local
free energy calculations (foldX), or finding residues that are
evolutionary outliers (PROSS). A better {fitting residue 1s
then suggested by hydrophobic packing or reversion to
evolutionary consensus. Then, the effect of these substitu-
tions on stability of a protein 1s estimated via energetic
simulation of the mutant. In total, this process (residue
identification, substitution suggestion, refolding & {free
energy calculations) can take anywhere from several hours
to days.

[0007] Machine learning 1s an attractive alternative as 1t
requires no foreknowledge about particular protein features
or time-consuming manual inspection and assignment of
individual structural features. Recently, Torng and Altman
(Torng et al., “3D deep convolutional neural networks for
amino acid environment similarity analysis,” BMC Bioin-

formatics, 18:302, 2017, incorporated herein by reference)

described a general framework that applies 3D convolu-
tional neural networks (3DCNN) to protein structural analy-
s1s by predicting the 1dentity of amino acids given informa-
tion about the surrounding protein microenvironment. This
neural network achieved 42% predictive accuracy 1n assign-
ing amino acids relative to the wild-type sequence, and
outperformed other computational methods which relied on
identifying pre-assigned structure-based features. Further-
more, given structural data for a model protemn, T4
lysozyme, the 3D CNN typically predicted the wild-type
residue at locations where mutations are known to be
destabilizing, and displayed a strong preference for the
wild-type residue when given the structures of these known
destabilizing mutants.

SUMMARY

[0008] Given that the proteome must simultaneously
exhibit several unrelated or even contlicting phenotypes like
folding geometry, stability, catalysis, and binding specificity,
it 1s plausible that amino acids which are structural outliers
at locations away from the active site might affect folding
and stability, but not function. Therefore, there 1s a need 1n
the art for an 1improved protein engineering technique that
leverages artificial intelligence to learn the consensus
microenvironments for the different amino acids and scans
entire structures to 1dentily residues which deviate from the
structural consensus. These residues, considered to have a
low probability of wild-type, are thought to be loci of
instability, and as such are good candidates for mutagenesis
and stability engineering. Implementations of the systems
and methods discussed herein provide such improved pro-
tein engineering techniques.

[0009] In one aspect, a computer-implemented method of
training a neural network to improve a characteristic of a
protein comprises collecting a set of amino acid sequences
from a database, compiling a set of three-dimensional crys-
tallographic structures having chemical environments for
the set of amino acids, translating the chemical environ-
ments 1mto voxelized matrices, training a neural network
with a subset of the voxelized matrices, 1dentitying, with the
neural network, a candidate residue to mutate 1n a target
protein, and identifying, with the neural network, a predicted
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amino acid residue to substitute for the candidate residue, to
produce a mutated protein, wherein the mutated protein
demonstrates an improvement in a characteristic over the
target protein. In one embodiment, the method further com-
prises the step of adding the spatial arrangement of a feature
selected from the group consisting of hydrogen location,
partial charges, beta factors, secondary structure, aromatic-
ity, electron density, polarity and combinations thereof to at
least one of the three-dimensional crystallographic struc-
tures.

[0010] In one embodiment, the method further comprises
adjusting the set of amino acid sequences to reflect their
natural frequencies. In one embodiment, the method further
comprises sampling at least 50% of the amino acids 1n the
set of amino acid sequences from a random location 1n the
sequence. In one embodiment, the method further comprise
training a second 1independent neural network with a second
subset of three-dimensional crystallographic structures or
voxelized matrices, and 1dentifying candidate and predicted
residues based on the results of both neural networks. In one
embodiment, the characteristic 1s stability, maturation, fold-
ing, or combinations thereof.

[0011] In another aspect, a system for improving a char-
acteristic of a protein comprises a processor and a non-
transitory computer-readable medium with 1nstructions
stored thereon, that when executed by the processor perform
steps comprising providing a target protein comprising a
sequence of residues, providing a set of three-dimensional
models surrounding an amino acid and a set of protein
characteristic values for each three dimensional model,
estimating a set of parameters at various points in each three
dimensional model, training a neural network with the three
dimensional models, the parameters, and the protein char-
acteristic values, identitying, with the neural network, a
candidate residue to mutate 1n the target protein, and 1den-
tifying, with the neural network, a predicted amino acid
residue to substitute for the candidate residue, producing a
mutated protein, wherein the mutated protein demonstrates
an improvement 1n the characteristic over the target protein.

[0012] In one embodiment, the protein characteristic is
stability. In one embodiment, the steps include recompiling
at least one amino acid sequence of the folded amino acid
sequences to produce an updated three-dimensional model.
In one embodiment, the steps include adding a spatial
arrangement of a feature to at least one amino acid sequence
of the folded amino acid sequences before recompilation.

[0013] In another aspect, the invention relates to a protein
comprising a secBFP2 variant having one or more mutations
at one more residues selected from: T18, S28, Y96, S114,
V124, T127, D151, N173, and R198, in relation to full-
length wild-type secBFP2. In one embodiment, the protein
comprises a secBFP2 variant comprising an amino acid
sequence of one of SEQ ID NO:2 to SEQ ID NO:28. In one
embodiment, the secBFP2 variant comprises a variant of an
amino acid sequence of one of SEQ ID NO:2 to SEQ ID
NO:28. In one embodiment, the secBFP2 variant comprises
a Tusion protein comprising an amino acid sequence of one
of SEQ ID NO:2 to SEQ ID NO:28. In one embodiment, the

BEFP comprises a fragment of an amino acid sequence of one
of SEQ ID NO:2 to SEQ ID NO:28.

[0014] In another aspect, the invention relates to a nucleic
acid molecule comprising a nucleotide sequence encoding a
protein comprising the secBFP2 variant. In one embodi-
ment, the nucleotide sequence encodes an amino acid
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sequence as set forth in SEQ ID NO:2 to SEQ ID NO:28, a
variant thereof, a fusion protein thereolf or a Ifragment
thereof. In one embodiment, the molecule 1s a plasmid. In
one embodiment, the molecule 1s an expression vector. In
one embodiment, the nucleic acid molecule further com-
prises a multiple cloning site for insertion of a heterologous
protein encoding sequence. In another aspect, the present
invention includes a composition comprising a protein as
described above, a composition comprising a nucleic acid
molecule as described above, a kit comprising a protein as
described above, or a nucleic acid molecule as described
above.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] The patent or application file contains at least one
drawing executed 1n color. Copies of this patent or patent
application publication with color drawing(s) will be pro-
vided by the Ofilice upon request and payment of the
necessary fee.

[0016] The foregoing purposes and features, as well as
other purposes and features, will become apparent with
reference to the description and accompanying figures
below, which are included to provide an understanding of
the invention and constitute a part of the specification, in
which like numerals represent like elements, and 1n which:
[0017] FIG. 1A 1s a diagram of an implementation of a
computer-implemented neural network for increasing syn-
thesized protein characteristics;

[0018] FIG. 1B 1s a flow chart of an implementation of a
method for determining an amino acid residue at the center
of a microenvironment;

[0019] FIG. 1C 1s a flow chart of an implementation of a
method for increasing synthesized protein characteristics
during testing;

[0020] FIG. 1D 1s a block diagram of an implementation
of a neural network for increasing synthesized protein
characteristics during training;

[0021] FIG. 1E 1s a block diagram of an implementation of
a convolutional neural network for increasing synthesized
protein characteristics;

[0022] FIG. 2A 1s a graph of experimental results of an
implementation of a method and system for increasing
synthesized protein characteristics;

[0023] FIG. 2B 1s another graph of experimental results of
an 1mplementation of a method and system for increasing
synthesized protein characteristics;

[0024] FIG. 3A 1s another graph of experimental results of
an 1mplementation of a method and system for increasing
synthesized protein characteristics;

[0025] FIG. 3B 1s a photograph of a protein synthesized
using modifications suggested by an implementation of a
system for increasing synthesized protein characteristics;
[0026] FIG. 4A 1s another graph of experimental results of
an 1mplementation of a method and system for increasing
synthesized protein characteristics;

[0027] FIG. 4B 1s a diagram of suggested protein modi-
fications suggested by an implementation of a system for
increasing synthesized protein characteristics;

[0028] FIG. 5 1s a set of photographs of experimental
results of an implementation of a system for increasing
synthesized protein characteristics;

[0029] FIGS. 6 and 7 are graphs of experimental results of
implementations of a system for increasing synthesized
protein characteristics;
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[0030] FIG. 8 1s a graph demonstrating the fold change 1n
fluorescence of seventeen blue fluorescent protein variants
relative to the wild type protein;

[0031] FIG. 9 1s a graph demonstrating the fold change 1n
fluorescence of blue fluorescent protein variants relative to
the wild type protein;

[0032] FIG. 10 provides exemplary images of the tluores-
cence of the blue fluorescent protein variant “bluebonnet,”
which comprises S28A, S114T, N173H and T127L muta-
tions, as compared to the parental protein and other blue
fluorescent proteins; and

[0033] FIGS. 11A and 11B are block diagrams depicting
implementations of systems for increasing synthesized pro-
tein characteristics.

DETAILED DESCRIPTION

[0034] It 1s to be understood that the figures and descrip-
tions of the present mmvention have been simplified to
illustrate elements that are relevant for a clear understanding
of the present invention, while eliminating, for the purpose
of clarity, many other elements found 1n related systems and
methods. Those of ordinary skill in the art may recognize
that other elements and/or steps are desirable and/or required
in 1mplementing the present invention. However, because
such elements and steps are well known in the art, and
because they do not facilitate a better understanding of the
present mnvention, a discussion of such elements and steps 1s
not provided herein. The disclosure herein 1s directed to all
such varnations and modifications to such elements and
methods known to those skilled 1n the art.

[0035] Unless defined otherwise, all technical and scien-
tific terms used herein have the same meaning as commonly
understood by one of ordinary skill in the art to which this
invention belongs. Although any methods and matenals
similar or equivalent to those described herein can be used
in the practice or testing of the present invention, exemplary
methods and maternials are described.

[0036] As used herein, each of the following terms has the
meaning associated with 1t 1n this section.

[0037] The articles “a” and “an” are used herein to refer to
one or to more than one (1.e., to at least one) of the
grammatical object of the article. By way of example, “an
clement” means one element or more than one element.
[0038] “About” as used herein when referring to a mea-
surable value such as an amount, a temporal duration, and
the like, 1s meant to encompass variations of +20%, £10%,
+5%, £1%, and £0.1% from the specified value, as such
variations are appropriate.

[0039] The term “nucleic acid molecule” or “polynucle-
otide” refers to a deoxyribonucleotide or ribonucleotide
polymer 1n either single-stranded or double-stranded form,
and, unless specifically indicated otherwise, encompasses
polynucleotides containing known analogs of naturally
occurring nucleotides that can function 1n a similar manner
as naturally occurring nucleotides. It will be understood that
when a nucleic acid molecule 1s represented by a DNA
sequence, this also includes RNA molecules having the
corresponding RNA sequence in which “U” (undine)
replaces “1” (thymidine).

[0040] The term “recombinant nucleic acid molecule”
refers to a non-naturally occurring nucleic acid molecule
containing two or more linked polynucleotide sequences. A
recombinant nucleic acid molecule can be produced by
recombination methods, particularly genetic engineering,
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techniques, or can be produced by a chemical synthesis
method. A recombinant nucleic acid molecule can encode a
fusion protein, for example, a fluorescent protein variant
suggested by the systems and methods discussed herein
linked to a polypeptide of interest. The term “recombinant
host cell” refers to a cell that contains a recombinant nucleic
acid molecule. As such, a recombinant host cell can express
a polypeptide from a *“gene” that 1s not found within the
native (non-recombinant) form of the cell.

[0041] Reference to a polynucleotide “encoding” a poly-
peptide means that, upon transcription of the polynucleotide
and translation of the mRNA produced therefrom, a poly-
peptide 1s produced. The encoding polynucleotide 1s con-
sidered to 1include both the coding strand, whose nucleotide
sequence 1s 1dentical to an mRNA, as well as 1ts comple-
mentary strand. It will be recognized that such an encoding
polynucleotide 1s considered to include degenerate nucleo-
tide sequences, which encode the same amino acid residues.
Nucleotide sequences encoding a polypeptide can include

polynucleotides containing introns as well as the encoding
exons.

[0042] The term “expression control sequence” refers to a
nucleotide sequence that regulates the transcription or trans-
lation of a polynucleotide or the localization of a polypep-
tide to which to which 1t 1s operatively linked. Expression
control sequences are “operatively linked” when the expres-
s10n control sequence controls or regulates the transcription
and, as appropriate, translation of the nucleotide sequence
(1.e., a transcription or translation regulatory element,
respectively), or localization of an encoded polypeptide to a
specific compartment of a cell. Thus, an expression control
sequence can be a promoter, enhancer, transcription termi-
nator, a start codon (ATG), a splicing signal for intron
excision and maintenance of the correct reading frame, a
STOP codon, a ribosome binding site, or a sequence that
targets a polypeptide to a particular location, for example, a
cell compartmentalization signal, which can target a poly-
peptide to the cytosol, nucleus, plasma membrane, endo-
plasmic reticulum, mitochondrial membrane or matrix, chlo-
roplast membrane or lumen, medial trans-Golgi cisternae, or
a lysosome or endosome. Cell compartmentalization
domains 1nclude, for example, a peptide contaiming amino
acid residues 1 to 81 of human type II membrane-anchored
protein galactosyltransferase, or amino acid residues 1 to 12

of the presequence of subunit IV of cytochrome ¢ oxidase
(see, also, Hancock et al., EMBO J. 10:4033-4039, 1991;

Buss et al., Mol. Cell. Biol. 8:3960-3963, 1988; U.S. Pat.
No. 5,776,689, each of which 1s incorporated herein by
reference).

[0043] The term “operatively linked” or “operably linked”
or “operatively joined” or the like, when used to describe
chimeric proteins, refer to polypeptide sequences that are
placed 1n a physical and functional relationship to each
other. In a most preferred embodiment, the functions of the
polypeptide components of the chimeric molecule are
unchanged compared to the functional activities of the parts
in 1solation. For example, a fluorescent protein suggested by
the systems and methods discussed herein can be fused to a
polypeptide of interest. In this case, it 1s preferable that the
fusion molecule retains 1ts fluorescence, and the polypeptide
ol interest retains its original biological activity. In some
embodiments of the systems and methods discussed herein,
the activities of either the fluorescent protein or the protein
of interest can be reduced relative to their activities 1n
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1solation. Such fusions can also find use with the systems
and methods discussed herein.

[0044] The term “label” refers to a composition that 1s
detectable with or without the instrumentation, for example,
by wvisual 1inspection, spectroscopy, or a photochemical,
biochemical, immunochemical or chemical reaction. Usetul
labels include, for example, phosphorus-32, a fluorescent
dye, a fluorescent protein, an electron-dense reagent, an
enzyme (such as 1s commonly used i an ELISA), a small
molecule such as biotin, digoxigenin, or other haptens or
peptide for which an antiserum or antibody, which can be a
monoclonal antibody, 1s available. It will be recognized that
a fluorescent protein varnant suggested by implementations
of the systems and methods discussed herein, which 1s itself
a detectable protein, can nevertheless be labeled so as to be
detectable by a means other than 1ts own fluorescence, for
example, by incorporating a radionuclide label or a peptide
tag mto the protein so as to facilitate, for example, 1denti-
fication of the protein during 1ts expression and 1solation of
the expressed protein, respectively. A label useful for pur-
poses of implementations of the systems and methods dis-
cussed herein generally generates a measurable signal such
as a radioactive signal, fluorescent light, enzyme activity,
and the like, either of which can be used, for example, to
quantitate the amount of the fluorescent protein variant 1n a
sample.

[0045] The term “polypeptide” or “protein” refers to a
polymer of two or more amino acid residues. The terms
apply to amino acid polymers in which one or more amino
acid residue 1s an artificial chemical analogue of a corre-
sponding naturally occurring amino acid, as well as to
naturally occurring amino acid polymers. The term “recom-
binant protein” refers to a protein that 1s produced by
expression of a nucleotide sequence encoding the amino
acid sequence of the protein from a recombinant DNA
molecule.

[0046] The term “1solated” or “purified” refers to a mate-
rial that 1s substantially or essentially free from components
that normally accompany the material 1n 1ts native state in
nature. Purity or homogeneity generally are determined
using analytical chemistry techniques such as polyacrylam-
ide gel electrophoresis, high performance liquid chromatog-
raphy, and the like. A polynucleotide or a polypeptide 1s
considered to be 1solated when 1t 1s the predominant species
present 1n a preparation. Generally, an 1solated protein or
nucleic acid molecule represents greater than 80% of the
macromolecular species present 1n a preparation, oiten rep-
resents greater than 90% of all macromolecular species
present, usually represents greater than 93%, of the macro-
molecular species, and, 1n particular, 1s a polypeptide or
polynucleotide that purified to essential homogeneity such
that 1t 1s the only species detected when examined using
conventional methods for determining purity of such a
molecule.

[0047] The term “naturally-occurring™ 1s used to refer to a
protein, nucleic acid molecule, cell, or other matenial that
occurs 1n nature. For example, a polypeptide or polynucle-
otide sequence that 1s present in an organism, including in a
virus. A naturally occurring material can be 1n its form as it
exists 1n nature, and can be modified by the hand of man
such that, for example, 1s 1n an 1solated form.

[0048] The term “antibody” refers to a polypeptide sub-
stantially encoded by an immunoglobulin gene or immuno-
globulin genes, or antigen-binding fragments thereot, which
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specifically bind and recognize an analyte (antigen). The
recognized mmmunoglobulin genes include the kappa,
lambda, alpha, gamma, delta, epsilon and mu constant
region genes, as well as the myriad immunoglobulin vari-
able region genes. Antibodies exist as itact immunoglobu-
lins and as well characterized antigen-binding fragments of
an antibody, which can be produced by digestion with a
peptidase or can using recombinant DNA methods. Such
antigen-binding fragments of an antibody include, for
example, Fv, Fab' and F(ab)'2 fragments. The term “anti-
body,” as used herein, includes antibody fragments either
produced by the modification of whole antibodies or those
synthesized de novo using recombinant DNA methodolo-
gies. The term “immunoassay’ refers to an assay that utilizes
an antibody to specifically bind an analyte. An immunoassay
1s characterized by the use of specific binding properties of
a particular antibody to 1solate, target, and/or quantily the
analyte.

[0049] The term “1dentical,” when used 1n reference to two
or more polynucleotide sequences or two or more polypep-
tide sequences, refers to the residues 1n the sequences that
are the same when aligned for maximum correspondence.
When percentage of sequence 1dentity 1s used 1n reference to
a polypeptide, 1t 1s recognized that one or more residue
positions that are not otherwise identical can differ by a
conservative amino acid substitution, 1n which a first amino
acid residue 1s substituted for another amino acid residue
having similar chemical properties such as a similar charge
or hydrophobic or hydrophilic character and, therefore, does
not change the functional properties of the polypeptide.
Where polypeptide sequences difler 1n conservative substi-
tutions, the percent sequence identity can be adjusted
upwards to correct for the conservative nature of the sub-
stitution. Such an adjustment can be made, for example, by
scoring a conservative substitution as a partial rather than a
tull mismatch, thereby increasing the percentage sequence
identity. Thus, for example, where an 1dentical amino acid 1s
given a score of 1 and a non-conservative substitution 1s
given a score ol zero, a conservative substitution 1s given a
score between zero and 1. The scoring of conservative
substitutions can be calculated using, for example, the

algorithms discussed in Meyers and Miller, Comp. Appl.
Biol. Sci1. 4:11-17, 1988; Smith and Waterman, Adv. Appl.

Math. 2:482, 1981; Needleman and Wunsch, J. Mol. Biol.
48:443, 19°70; Pearson and Lipman, Proc. Natl. Acad. Sci.,
USA 85:2444 (1988); Higgins and Sharp, Gene 73:237-244,
1988; Higgins and Sharp, CABIOS 5:151-1353; 1989; Corpet
et al., Nucl. Acids Res. 16:10881-10890, 1988; Huang, et al.,
Comp. Appl. Biol. Sci. 8:155-165, 1992; Pearson et al.,
Meth. Mol. Biol., 24:307-331, 1994, each of which 1s
incorporated by reference herein. Alignment also can be
performed by simple visual inspection and manual align-
ment of sequences.

[0050] The term ‘“‘conservatively modified vanation,”
when used 1n reference to a particular polynucleotide
sequence, refers to different polynucleotide sequences that
encode 1dentical or essentially i1dentical amino acid
sequences, or where the polynucleotide does not encode an
amino acid sequence, to essentially identical sequences.
Because of the degeneracy of the genetic code, a large
number of functionally 1dentical polynucleotides encode any
given polypeptide. For istance, the codons CGU, CGC,
CGA, CGG, AGA, and AGG all encode the amino acid

arginine. Thus, at every position where an arginine 1s
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specified by a codon, the codon can be altered to any of the
corresponding codons described without altering the
encoded polypeptide. Such nucleotide sequence variations
are “silent variations,” which can be considered a species of
“conservatively modified variations.” As such, 1t will be
recognized that each polynucleotide sequence disclosed
herein as encoding a fluorescent protein variant also
describes every possible silent variation. It will also be
recognized that each codon in a polynucleotide, except
AUG, which 1s ordinarily the only codon for methionine,
and UUG, which 1s ordinarily the only codon for tryptophan,
can be modified to yield a functionally 1dentical molecule by
standard techmiques. Accordingly, each silent variation of a
polynucleotide that does not change the sequence of the
encoded polypeptide 1s implicitly described herein. Further-
more, 1t will be recognized that individual substitutions,
deletions or additions that alter, add or delete a single amino
acid or a small percentage of amino acids (typically less than
5%, and generally less than 1%) 1n an encoded sequence can
be considered conservatively modified varnations, provided
alteration results 1n the substitution of an amino acid with a
chemically similar amino acid. Conservative amino acid
substitutions providing functionally similar amino acids
may include the following six groups, each of which con-
tains amino acids that are considered conservative substi-
tutes for each another:

[0051] 1) Alanine (Ala, A), Serine (Ser, S), Threonine
(Thr, T);

[0052] 2) Aspartic acid (Asp, D), Glutamic acid (Glu, E);
[0053] 3) Asparagine (Asn, N), Glutamine (Gln, Q);
[0054] 4) Argimine (Arg, R), Lysine (Lys, K);

[0055] 5) Isoleucine (Ile, 1), Leucine (Leu, L), Methionine

(Met, M), Valine (Val, V); and

[0056] 6) Phenylalanine (Phe, F), Tyrosine (Tyr, Y), Tryp-
tophan (Trp, W).

[0057] Two or more amino acid sequences or two or more
nucleotide sequences are considered to be “substantially
identical” or “substantially similar” 1 the amino acid
sequences or the nucleotide sequences share at least 80%
sequence 1dentity with each other, or with a reference
sequence over a given comparison window. Thus, substan-
tially similar sequences include those having, for example,
at least 85% sequence 1dentity, at least 90% sequence
identity, at least 95% sequence identity, or at least 99%
sequence 1dentity.

[0058] A subject nucleotide sequence 1s considered “sub-
stantially complementary” to a reference nucleotide
sequence 1f the complement of the subject nucleotide
sequence 1s substantially identical to the reference nucleo-
tide sequence.

[0059] Fluorescent molecules are useful 1in fluorescence
resonance energy transier, FRET, which involves a donor
molecule and an acceptor molecule. To optimize the efli-
ciency and detectability of FRET between a donor and
acceptor molecule, several factors need to be balanced. The
emission spectrum of the donor should overlap as much as
possible with the excitation spectrum of the acceptor to
maximize the overlap integral. Also, the quantum yield of
the donor moiety and the extinction coetlicient of the accep-
tor should be as high as possible to maximize RO, which
represents the distance at which energy transier efliciency 1s
50%. However, the excitation spectra of the donor and
acceptor should overlap as little as possible so that a
wavelength region can be found at which the donor can be
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excited efliciently without directly exciting the acceptor
because fluorescence arising from direct excitation of the
acceptor can be diflicult to distinguish from fluorescence
arising from FRET. Similarly, the emission spectra of the
donor and acceptor should overlap as little as possible so that
the two emissions can be clearly distinguished. High fluo-
rescence quantum vield of the acceptor moiety 1s desirable
if the emission from the acceptor 1s to be measured either as
the sole readout or as part of an emission ratio. One factor
to be considered 1n choosing the donor and acceptor pair 1s
the efliciency of fluorescence resonance energy transier
between them. Preferably, the efliciency of FRET between
the donor and acceptor 1s at least 10%, more preferably at
least 50% and even more preferably at least 80%.

[0060] The term “fluorescent property” refers to the molar
extinction coeflicient at an approprlate excitation wave-
length, the fluorescence quantum e iciency, the shape of the
excitation spectrum or emission spectrum, the excitation
wavelength maximum and emission wavelength maximum,
the ratio of excitation amplitudes at two different wave-
lengths, the ratio of emission amplitudes at two different
wavelengths, the excited state lifetime, or the fluorescence
anisotropy. A measurable diflerence 1n any one of these
properties between a wild type or parental fluorescent pro-
tein and a spectral varniant, or a mutant thereof, 1s useful. A
measurable difference can be determined by determining the
amount ol any quantitative fluorescent property, e.g., the
amount of fluorescence at a particular wavelength, or the
integral of fluorescence over the emission spectrum. Deter-
mining ratios of excitation amplitude or emission amplitude
at two different wavelengths (“excitation amplitude ratio-
ing” and “emission amplitude ratioing,” respectively) are
particularly advantageous because the ratioing process pro-
vides an internal reference and cancels out vanations in the
absolute brightness of the excitation source, the sensitivity
of the detector, and light scattering or quenching by the
sample. As used herein, the term “tluorescent protein” refers
to any protein that can fluoresce when excited with an
appropriate electromagnetic radiation, except that chemi-
cally tagged proteins, wherein the fluorescence 1s due to the
chemical tag, and polypeptides that tluoresce only due to the
presence ol certain amino acids such as tryptophan or
tyrosine, whose emission peaks at ultraviolet wavelengths
(1.e., less that about 400 nm) are not considered fluorescent
proteins for purposes of implementations of the systems and
methods discussed herein. In general, a fluorescent protein
usetul for preparing a composition of implementations of the
systems discussed herein or for use in an implementation of
a method discussed herein 1s a protein that derives its
fluorescence from autocatalytically forming a chromophore.
A fluorescent protein can contain amino acid sequences that
are naturally occurring or that have been engineered (i.e.,
variants or mutants). When used in reference to a fluorescent
protein, the term “mutant” or “variant” refers to a protein
that 1s different from a reference protein.

[0061] The term “blue fluorescent protein”™ 1s used broadly
herein to refer to a protein that fluoresces blue light The
term “blue fluorescent protein,” or “BFP” 1s used in the
broadest sense and specifically covers mTagBFP secBFP2,
and blue fluorescent proteins from any species, as well as
variants thereof as long as they retain the ability to fluoresce

blue light.

[0062] The term “mutant” or ‘““variant” 1s used herein 1n
reference to a fluorescent protein that contains a mutation
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with respect to a corresponding wild type or parental fluo-
rescent protein. In addition, reference 1s made herein to a
“spectral vanant” or “spectral mutant” of a fluorescent
protein to indicate a mutant tluorescent protein that has a
different fluorescence characteristic with respect to the cor-
responding wild type fluorescent protein.

[0063] Throughout this disclosure, various aspects of
implementations of the systems and methods discussed
herein can be presented in a range format. It should be
understood that the description in range format 1s merely for
convenience and brevity and should not be construed as an
inflexible limitation on the scope of the invention. Accord-
ingly, the description of a range should be considered to
have specifically disclosed all the possible subranges as well
as 1ndividual numerical values within that range. For
example, description of a range such as from 1 to 6 should
be considered to have specifically disclosed subranges such
as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, {from
2 to 6, from 3 to 6 etc., as well as individual numbers within
that range, for example, 1, 2, 2.7, 3, 4, 5, 5.3, 6 and any
whole and partial increments therebetween. This applies
regardless of the breadth of the range.

[0064] In some aspects of the systems and methods dis-
cussed herein, software executing the instructions provided
herein may be stored on a non-transitory computer-readable
medium, wherein the software performs some or all of the
steps of 1mplementations of the methods discussed herein
when executed on a processor.

[0065] Aspects of the systems and methods discussed
herein relate to algorithms executed 1 computer solftware.
Though certain embodiments may be described as written 1n
particular programming languages, or executed on particular
operating systems or computing platforms, it 1s understood
that implementations of the systems and methods discussed
herein are not limited to any particular computing language,
platform, or combination thereof. Software executing the
algorithms described herein may be written, compiled, or
interpreted 1n any programming language, including but not
limited to C, C++, C#, Objective-C, Java, JavaScript,
Python, PHP, Perl, Ruby, or Visual Basic. It 1s further
understood that elements of the systems and methods dis-
cussed herein may be executed on any acceptable computing
platform, including but not limited to a server, a cloud
instance, a workstation, a thin client, a mobile device, an
embedded microcontroller, a television, or any other suitable
computing device.

[0066] Parts of implementations of the systems discussed
herein are described as software runming on a computing,
device. Though software described herein may be disclosed
as operating on one particular computing device (e.g., a
dedicated server or a workstation), soltware may be mtrin-
sically portable and software running on a dedicated server
may also be run, for the purposes of implementations of the
systems and methods discussed herein, on any of a wide
range of devices including desktop or mobile devices, lap-
tops, tablets, smartphones, watches, wearable electronics or
other wireless digital/cellular phones, televisions, cloud
instances, embedded microcontrollers, thin client devices, or
any other suitable computing device.

[0067] Similarly, parts of implementations of the systems
discussed herein are described as communicating over a
variety of wireless or wired computer networks. For the
purposes of implementations of the systems and methods
discussed herein, the words ‘“network,” “networked” and
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“networking” are understood to encompass wired Ethernet,
fiber optic connections, wireless connections including any
of the various 802.11 standards, cellular WAN infrastruc-
tures such as 3G, 4G/LTE, or 5G networks, Bluetooth®,
Bluetooth® Low Energy (BLE) or Zighee® communication
links, or any other method by which one electronic device 1s
capable of communicating with another. In some embodi-
ments, elements of the networked portion of 1mplementa-
tions of the systems discussed herein may be implemented
over a Virtual Private Network (VPN).

[0068] Aspects of implementations of the systems and
methods discussed herein relate to a machine learning
algorithm, machine learning engine, or neural network. A
neural network may be trained based on various attributes of
a protein, for example atomic environments of amino acids
within known proteins, and may output a proposed change
to one or more amino acids in the protein based on the
attributes. In some embodiments, attributes may include
atom types, electrostatics, beta factors, solvent accessibility,
secondary structure, aromaticity, or polarity. The resulting
amino acids may then be judged according to one or more
quality metrics, and the weights of the attributes may be
optimized to maximize the quality metrics. In this manner,
a neural network can be trained to predict and optimize for
any quality metric that can be experimentally measured.
Examples of quality metrics that a neural network can be
trained on include wild type amino acid accuracy, known
stabilizing/destabilizing positions, accuracy of amino acid
groups, and any other suitable type of quality metric that can
be measured. In some embodiments, the neural network may
have multi-task functionality and allow for simultaneous
prediction and optimization of multiple quality metrics.

[0069] In embodiments that implement such a neural
network, a query may be performed 1n various ways. A query
may request the neural network to identity amino acids
within a given protein to increase a desirable parameter, for
example protein stability, which may be embodied thermally
through melt curves or chemically with guanidine or urea
denaturation. A neural network of implementations of the
systems and methods discussed herein may identily one or
more amino acid residues of a protein whose predicted
identity (as evaluated by the neural network) diflers from 1ts
native 1dentity, thereby indicating that an improved protein
may be generated by mutating the native amino acid residue
to the predicted amino acid residue. As contemplated herein,
a predicted amino acid residue may be any natural or
unnatural (e.g., artificial or synthetic) amino acid.

[0070] In some embodiments, the neural network may be
updated by training the neural network using a value of the
desirable parameter associated with an mput amino acid
sequence or residue. Updating the neural network in this
manner may improve the ability of the neural network in
proposing optimal amino acid residues. In some embodi-
ments, training the neural network may include using a value
ol the desirable parameter associated with a protein mutated
at a predicted amino acid residue. For example, in some
embodiments, training the neural network may include
predicting a value of the desirable parameter for the pro-
posed amino acid, comparing the predicted value to a
corresponding value of a parameter associated with a known
amino acid, and traiming the neural network based on a result
of the comparison. If the predicted value 1s the same or
substantially similar to the known value, then the neural
network may be minimally updated or not updated at all. If
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the predicted value differs from that of the known amino
acid, then the neural network may be substantially updated
to better correct for this discrepancy. Regardless of how the
neural network 1s retrained, the retrained neural network
may be used to propose additional amino acids.

[0071] Although the techniques of the present application
are 1n the context of increasing protein stability, 1t should be
appreciated that this 1s a non-limiting application of these
techniques as they can be applied to other types of protein
parameters or attributes, for example half-life, activity, deg-
radation resistance, solubility, thermostability, post-transla-
tional modifications, expanded pH tolerance, decreased
maturation time, nucleic acid binding, protein-protein inter-
actions, hydrophobicity, or combinations thereof. Depend-
ing on the type of data used to train the neural network, the
neural network can be optimized for different types of
proteins, protein-protein interactions, and/or attributes of a
protein. In this manner, a neural network can be trained to
improve identification of an amino acid sequence, which can
also be referred to as a peptide, for a protein. Querying the
neural network may include mputting an initial amino acid
sequence for a protein. The neural network may have been
previously trained using different amino acid sequences. The
query to the neural network may be for a proposed amino
acid sequence for a protein of a higher stability than the
mitial amino acid sequence. A proposed amino acid
sequence 1ndicating a specific amino acid for each residue of
the proposed amino acid sequence may be received from the
neural network.

[0072] The techniques described herein associated with
iteratively querying a neural network by inputting a
sequence having a discrete representation, receiving an
output from the neural network that has a continuous rep-
resentation, and discretizing the output before successively
providing it as an 1input to the neural network, can be applied
to other machine learning applications. Such techniques may
be particularly useful in applications where a final output
having a discrete representation 1s desired. Such techniques
can be generalized for 1dentifying a series of discrete attri-
butes by applying a model generated by a neural network
trained using data relating the discrete attributes to a char-
acteristic of a series of the discrete attributes. In the context
of i1dentifying an amino acid i a sequence, the discrete
attributes may include different amino acids.

[0073] Insome embodiments, the model may receive as an
input an initial series having a discrete attribute located at
cach position of the series, including, but not limited, to data
resulting from molecular simulations. Each of the discrete
attributes within the mitial series 1s one of a plurality of
discrete attributes. Querying the neural network may include
inputting the mitial series of discrete attributes and gener-
ating an output series of discrete attributes having a level of
a characteristic that differs from a level of the characteristic
for the iitial series. In response to querying the neural
network, an output series and values associated with differ-
ent discrete attributes for each position of the output series
may be received from the neural network. For each position
of the series, the values for each discrete attribute may
correspond to predictions of the neural network regarding
levels of the characteristic if the discrete attribute 1s selected
for the position and form a continuous value data set. The
values may range across the discrete attributes for a position,
and may be used 1n identifying a discrete version of the
output series. In some embodiments, identifying the discrete

May 25, 2023

version of the output series may include selecting, for each
position of the series, the discrete attribute having the
highest value from among the values for the different
discrete attributes for the position. A proposed series of
discrete attributes may be received as an output of 1denti-
tying the discrete version.

[0074] In some embodiments, an iterative process 1s
formed by querying the neural network for an output series,
receiving the output series, and 1dentitying a discrete version
of the output series. An additional iteration of the iterative
process may include inputting the discrete version of the
output series from an immediately prior iteration. The 1tera-
tive process may stop when a current output series matches
a prior output series from the immediately prior iteration.

[0075] In some embodiments, a proposed amino acid
sequence having desired values for multiple quality metrics
(e.g., values higher than values for another sequence) 1s
identified, rather than a desired value for a single quality
metric, including for training a neural network to 1dentily an
amino acid sequence with multiple quality metrics. Such
techniques may be particularly usetul 1n applications where
identification of a proposed amino acid sequence for a
protein having different characteristics 1s desired. In 1mple-
mentations of such techniques, the training data may include
data associated with the different characteristics for each of
the amino acid sequences used to train a neural network. A
model generated by training the neural network may have
one or more parameters corresponding to different combi-
nations of the characteristics. In some embodiments, a
parameter may represent a weight between a first charac-
teristic and a second characteristic, which may be used to
balance a likelihood that a proposed amino acid sequence
has the first characteristic in comparison to the second
characteristic. In some embodiments, training the neural
network includes assigning scores for different characteris-
tics, and the scores may be used to estimate values for
parameters of the model that are used to predict a proposed
amino acid sequence. Training data in some such embodi-
ments may mnclude amino acid sequences associated atomic
microenvironments, which when used to train a neural
network generates a model used to predict a proposed amino
acid sequence. Traiming the neural network may involve
assigning scores, and a value for the parameter may be
estimated using the scores.

[0076] Biological applications for convolutional neural
networks are relatively scarce. Rather than being analyzed as
amino acid sequences, proteins, are increasingly being
evaluated 1n their crystallized form to solve their three-
dimensional structure. One aspect of implementations of the
methods discussed herein involves training a 3D convolu-
tional neural network that characterizes chemical environ-
ments unique to each of the 20 amino acids. The same neural
network can then predict the amino acid best fitting a given
environment. The neural network described herein has been
trained on 1.6 million amino acid environments across
19,000 phylogenetically distant protein structures. Follow-
ing training, this network’s 1n sample accuracy 1s 80.0% and
out of sample accuracy 1s 72.5%, a roughly 20 to 30%
improvement on the state of the art (approximately 40% out
of sample accuracy).

[0077] Sites with large discrepancies between the
expected amino acid and observed amino acid present
targets to engineer protein features like stability and folding
maturation. The systems and methods described herein
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experimentally characterized three biological cases—a beta-
lactamase antibiotic marker, a coral derived blue fluorescent
protein, and phosphomannose i1somerase from the yeast
Candida albicans—where predictions from the neural net-
work demonstrate increased protein function and stability in
vivo. These results forecast new biological tools at the
intersection of Al and molecular biology.

[0078] In one embodiment, implementations of the meth-
ods discussed herein utilize a neural network, for example
implementations of the neural network published by Torng
and Altman, referenced above. Implementations of the sys-
tems and methods discussed herein improve substantially on
the published neural network design, as the experimental
results discussed below show. The original Torng and Alt-
man sets contained 3696 training and 194 test protein
families, resulting 1n 32,760 training and 1601 test struc-
tures.

[0079] Implementations of the systems and methods dis-
cussed herein build on the Torng and Altman framework to
address the problem of protein stabilization. In a basic
example, crystal structures of a protein are treated like a 3D
image. In any given image there are a many observations of
individual amino acids and their atomic environments. Some
methods center a consistent frame of reference on one of
these amino acids. From this vantage, oxygen, nitrogen,
sulfur, and carbon atoms are separated mnside a 20x20x20
angstrom box and all atoms associated with the central
amino acid are removed. This set of environments and the
amino acid fitting 1n the environment may then be used as an
annotated training set for a 3D convolutional neural net-
work. With this trained neural network, experimentally
introduced destabilizing mutations can be detected.

[0080] Implementations of the systems and methods dis-
cussed herein improve on the basic model to 1dentity novel
stabilizing mutations. The improvements described herein
render the quality of predictions suilicient for not only
justifying known destabilizing mutations, but also 1dentify-
ing unknown destabilizing residues and suggesting a stabi-
lizing mutation.

[0081] Insome implementations, the systems and methods
discussed herein allow for 1dentification of wild-type amino
acids located in favorable environments on the input protein.
Such implementations may narrow the sequence space of
residues with very low wild-type probabilities. The
improvements provided by implementations of the systems
and methods discussed herein over the state of the art can be
described as several discrete improvements which, when
combined, form a significantly improved model for identi-
tying candidate protein residues for overall improved utility.

[0082] FIG. 1A 1s a diagram of an implementation of a
computer-implemented neural network for increasing syn-
thesized protein characteristics. Some characteristics of pro-
tein that an engineer may desire to alter are maturation
kinetics, thermal stability, K . K _ . dependence on cations
or anions for proper folding, and pH tolerance. At 101, a
protein may be translated into microenvironments for each
residue in the protein and a three dimensional model of the
protein and 1ts microenvironment 1s generated. Some meth-
ods for generating three-dimensional models include frag-
ment assembly, when an unknown protein model 1s built
from a pool of candidate fragments taken from known
protein structures; segment matching, when known protein
segments are matched to the amino acid sequence; or
comparative protein modeling based on satistaction of spa-
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tial restraints, when a known protein model 1s selected (“the
template™), the residues of the amino acid sequences are
mapped to the residues 1n the template sequence (“align-
ing’’), restraints on various distances, angles, and dihedral
angles 1n the sequence are derived from the alignment with
the template structure, and violations of restraints are mini-
malized, among other methods. When the three-dimensional
model of the protein crystal structure 1s generated, a corre-
sponding microenvironment associated with the structure 1s
generated.

[0083] In some embodiments, the three dimensional
model may merely 1llustrate or represent the protein without
the microenvironment. The three-dimensional model may be
mapped to a three-dimensional array in some implementa-
tions. In one example, the coordinates of the three dimen-
sional model are stored 1n a three-dimensional array. In some
embodiments, a three-dimensional 1mage may be generated
from the three-dimensional model and the three-dimensional
image may be mapped mto a three-dimensional array. The
image data 1n the array may be referred to as a voxelized
matrix. As a pixel may represent an addressable element of
an 1mage 1n two-dimensional space, a voxel represents an
addressable element in three-dimensional space.

[0084] In some implementations, features of the image
may be extracted via three-dimensional convolution and
max pooling layers. Three-dimensional filters 1n the three-
dimensional convolutional layers search for recurrent spatial
patterns that best capture the local biochemical features to
separate the 20 amino acid microenvironments. Max Pool-
ing layers perform down-sampling to the input to increase
translational invariances of the network. The convolutional
neural network architecture 1s discussed further below.

[0085] A first convolution layer 121 detects low level
features via a filter. Convolutional neural networks use
convolution to highlight features 1n a data set. In a convo-
lution layer of a convolutional neural network, a filter 1s
applied to the three-dimensional array to generate a feature
map. In the convolutional layer, the filter slides over the
inputs and the element by element dot product of the filter
and the mput 1s stored as a feature map. In some embodi-
ments, a 3x3x3 filter may be applied to the three-dimen-
sional 1image.

[0086] The feature map from the convolved filter and
image 1s shown by 102. In some embodiments, a frame of
reference may be created around a central amino acid 1n the
image and features may be extracted around that central
amino acid. The feature map created from the convolution of
the 1mage and the filter summarizes the presence of the
filter-specific feature 1n the 1mage. Increasing the number of
filters applied to the image increases the number of features
that can be tracked. In 102, 100 filters were applied to create
an 18x18x18 feature map. In other implementations, other
numbers of filters may be employed. The resulting feature
maps may subsequently be passed through an activation
function to account for nonlinear patterns in the features.

[0087] In some implementations, a rectifier linear func-
tion, having the formula {(x)=max(0,x) may be applied to
the feature maps as the activation function. The rectifier
linear activation function behaves linearly for positive val-
ues, making this function easy to optimize and subsequently
allows the neural network to achieve high prediction accu-
racy. The rectifier linear activation function also outputs zero
for any negative imput, meaning 1t 1s not a true linear
function. Thus, the output of a convolution layer in a
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convolutional neural network 1s a feature map, where the
values 1n the feature map may be passed through a rectifier
linear activation function.

[0088] A second convolutional layer 1s illustrated at 122.
Increasing the number of convolutional layers may increase
the complexity of the features that may be tracked. The
convolutional layer at 122 incorporates another 100 filters to
track features. In some embodiments, the filters are the same
as 1n the first convolutional layer to ensure the accuracy of
the tracked feature. In alternate embodiments, different
filters may be incorporated in the second convolutional
layer. In some embodiments, atoms associated with the
central amino acid may be removed via filters.

[0089] In some implementations, a smaller data set of
dimension 16x16x16 1s indicated by 103 (although 1n other
implementations, other dimensions may be utilized, or a
greater or fewer number of filters applied). The dot product
in the convolution at the second convolutional layer reduces
the size of the data set. Data set 103 comprises a feature map
that has tracked complex features from the original protein
image 101.

[0090] In some implementations, a first pooling layer with
dimensions 2x2x2 may be implemented at 123. A pooling
layer may be immplemented to down-sample the data. A
pooling window may be applied to the feature map. In some
embodiments, the pooling layer outputs the maximum value
of the data in the window, down-sampling the data in the
window. Max pooling highlights the most prominent feature
in the pooling window. In other embodiments, the pooling
layer outputs the average value of the data in the window.

[0091] The down-sampled data at 104 represents 200
independent 8x8x8 arrays. Down-sampling data allows the
neural network to retain relevant information. While having
an abundance of data may be advantageous because 1t allows
the network to fine tune the accuracy of its weights, as
discussed further below, large amounts of data may cause
the neural network to spend significant time processing.
Down-sampling data may be important in neural networks to
reduce the computations necessary in the network. Although
shown with pooling layer 123 with dimensions 2x2x2 and
down-sampled data with dimensions 8x8x8, in other imple-
mentations, other sizes of pooling windows and down-
sampled data may be utilized.

[0092] In some implementations, a subsequent convolu-
tional layer 124 uses 200 independent 2x2x2 filters to then
re-process the down-sampled data and highlight features in
a new feature map. A smaller filter, 2x2x2 as opposed to
3x3x3 1s implemented 1n the convolutional layer at 124 to
account for the down-sampled data. The depth of the con-
volutional filters should be the same as the depth of the data
to successiully perform dot product matrix multiplication. In
other implementations, other sizes or dimensions of filters
may be utilized, as discussed above.

[0093] The feature map from the convolved layer 124 and
image 1s shown i1n 105. The feature map created from the
convolution of the down-sampled data and the filter sum-
marizes the presence of the filter-specific feature in the
image. In the implementation illustrated at 105, there are
200 mdependent 7x7x7 arrays. The dot product from the
convolution further reduces the size of the data.

[0094] Convolution layer 125 may extract more complex
teatures using additional filters, such as by using 400 1nde-
pendent 2x2x2 filters from the lower resolution data set 105
as 1llustrated. Increasing the number of filters applied to the
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image increases the number of features that can be tracked.
As this data has been down-sampled from pooling layer 123
and reduced 1n size substantially, more filters may be applied
in this convolution layer to extract and highlight the features
of the image of protein 101 without requiring overwhelming
processing or memory requirements.

[0095] The feature map from the convolved layer 125 1s
shown 1n 106. The feature map created from the convolution
of the down-sampled data and the filter summarizes the
presence of the filter-specific feature in the image. In the
implementation illustrated at 106, there are 400 independent
6x6x6 arrays, although other numbers or sizes of arrays may
be utilized 1n various implementations. The dot product from
the convolution further reduces the size of the data.

[0096] In some implementations, a second pooling layer
with dimension 2x2x2 (or any other appropriate dimension
s1ze) 1s implemented at 126 to down-sample the data further.
In some embodiments, the same type of pooling layer may
be implemented 1n the second pooling layer as was imple-
mented 1n the first pooling layer. The type of pooling layer
determines the pooling window that 1s used to down-sample
the data. For example, a max pooling layer can be imple-
mented at 123 and 126. In other embodiments, different
pooling layers may be implemented in the convolutional
neural network. For example, a max pooling layer may be
implemented at 123 while an average pooling layer may be
implemented at 126. Max pooling layers highlight the most
prominent feature 1n the pooling window, while average
pooling layers output the average value of the data in the
window.

[0097] In the illustrated implementation, the down-
sampled data at 107 represents 400 independent 3x3x3
arrays, although other numbers or dimensions of arrays may
be utilized. While having lots of data may be advantageous
because 1t allows the network to fine tune the accuracy of its
weights, as discussed further below, large amounts of data
may cause the neural network to spend significant time
processing. Down-sampling data may be usetul in neural
networks to reduce the computations necessary in the net-
work.

[0098] Upon reducing the size of the data, the data may be
further flattened 1n some 1implementations, meaning the data
may be arranged into a one-dimensional vector. The data 1s
flattened for purposes of matrix multiplication that occurs 1n
the fully connected layers. The fully connected layer 127
may accordingly recerve a flattened one-dimensional vector
of length 10800 (e.g., from the 400x3x3x3 arrays of step
107, though the vector may have different lengths 1n other
implementations). In the convolutional neural network fully
connected layers, each number in the one-dimensional vec-
tor 1s applied to a neuron. The neuron sums the inputs and
applies the activation function. In some embodiments, the
activation function 1s the rectifier linear function. In alternate
embodiments, the activation function may be the hyperbolic
tangent or sigmoid function.

[0099] In the implementation illustrated, the first fully
connected layer 127 outputs a one-dimensional vector at 108
of length 10800 (although other lengths may be utilized, as
discussed above). The vector output by the fully connected
layer represents a vector of real numbers. In some embodi-
ments, the real numbers may be output and classified. In
other embodiments, the real numbers may further be mput
into subsequent fully connected layers to improve the accu-
racy of the convolutional neural network.
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[0100] In the present embodiment, the output of the first
tully connected layer 108 1s imput mto a second fully
connected layer, indicated by 128. The output of the first
tully connected layer 108 1s already a one-dimensional
vector so 1t does not need to be flattened before 1t 1s 1nput
into subsequent fully connected layers. In some embodi-
ments, additional fully connected layers are implemented to
improve the accuracy of the neural network. The number of
additional fully connected layers may be limited by the
processing power of the computer running the neural net-
work. Alternatively, the addition of fully connected layers
may be limited by insignificant increases in the accuracy
compared to increases 1n the computation time to process the
additional fully connected layers.

[0101] In the illustrated implementation, the second fully
connected layer 128 outputs a one-dimensional vector of
length 1000 at 109 (though other lengths may be utilized).
The vector output by the tully connected layer represents a
vector of real numbers. In some embodiments, the real
numbers may be output and classified. In other embodi-
ments, the real numbers may further be input into subse-
quent fully connected layers to improve the accuracy of the
convolutional neural network.

[0102] At 129, in some implementations, the output of the
tully connected layer 109 1s mput into a softmax classifier.
The softmax classifier uses a softmax function, or a normal-
1zed exponential function, to transform an nput of real
numbers i1nto a normalized probability distribution over
predicted output classes. In alternate embodiments, a sig-
moid function may be used to classily the output of the
convolutional neural network. Sigmoid functions may be
used 11 there 1s one class. A softmax function 1s a multi-class
sigmoid function.

[0103] At 110, the output of the softmax layer 1s the
probability of each of the 20 identified amino acids to
improve a characteristic of the target protein (although a
greater or lesser number of amino acids may be utilized 1n
other implementations). This output may be mput nto
additional convolutional neural networks such that the addi-
tional convolutional neural networks can perform diflerent
queries given the predicted amino acid sequence, or the
output 110 may be used directly as the predicted amino acids
that improve a characteristic of the target protein.

[0104] FIG. 1B 1s a flow chart of an implementation of a
method for determining an amino acid residue at the center
ol a microenvironment. A neural network may be traimned on
known input/output pairs such that the neural network can
learn how to classily an output given a certain input. Once
the neural network has learned how to classily known
input/output pairs, the neural network can operate on
unknown 1nputs to predict what the classified output should
be. In the present embodiment, the neural network 1s trained
to predict an amino acid at the center of a microenvironment.
During testing, the neural network may be provided with an
amino acid sequence, analyze the microenvironments sur-
rounding the amino acids, and predict an amino acid residue
that differs from the natural amino acid residue. The neural
network’s predicted amino acid indicates that an improved
protein may be generated by mutating the natural amino acid
residue to the predicted amino acid residue.

[0105] At step 130, 1n some implementations, a diverse
protein sample set may be compiled or built that will be used
to train the neural network. The more diverse the sample set
15, the more robust the neural network can be in 1its classi-
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fications. For example, a neural network will attempt to
classily mput/output pairs during a first iteration of learning.
If, during a next iteration of learning, the mput/output pairs
are similar to the learned iput/output pair of the first
iteration, the neural network may artificially perform higher
than 1t should perform merely because the data 1s similar,
and not because the neural network 1s robust. If a diverse
input/output pair 1s subsequently input to the network for the
third 1teration, the classification error will likely be much
higher than it would be 1t the first two 1nput/output pairs
were diverse. The similarity of the first two 1nput/output
pairs might cause the neural network to fine tuning itself to
learning the similar input/output pairs of the first two
iterations. This may be called “overtraiming” the network.

[0106] Alternatively, if the second iteration of training
used a distinct input/output pair compared to the mnput/
output pair of the first iteration, the neural network will be
forced to be able to classity a broader range of input/output
pairs. During testing, the outputs are not known so 1t 1s 1deal
for the network to be able to classily a broad range of
input/output pairs.

[0107] Accordingly, in some implementations of step 130,
a training data set for a neural network 1s built from proteins
that are all phylogenetically divergent over a certain thresh-
old. In various embodiments, the data set 1s built from
proteins that are at least 20%, 30%, 40%, or 50% phyloge-
netically divergent. Such filtering increases efliciency by
removing very similar/duplicate proteins that may occur
many times 1n the training set. Such an improvement may
reduce a bias present in the current state of the art towards
oversampled proteins.

[0108] In some embodiments, the individual proteins in
the training dataset were modified by adding hydrogen
atoms to those Protein DataBase (PDB) structures that
lacked annotations. In one embodiment, the addition of
hydrogen atoms 1s accomplished using a software converter,
for example pdb2pgr. In another embodiment, atoms are
turther segregated by the bonding capabilities of each atom
and the inclusion of other atoms like phosphorus in DNA
backbones.

[0109] In some embodiments, the individual proteins in
the training set were modified by adding biophysical chan-
nels to the protein model, taking mto account additional
characteristics of the protein, including but not limited to
partial charge, beta factors, secondary structure, aromaticity,
and polarty.

[0110] In some embodiments, training data may be
removed where high- and low-resolution models for the
same protein may coexist in a protein database. According
to some 1mplementations of the methods discussed herein,
all genes with an associated structure with a resolution
below a threshold may be grouped together 1 groups having
a sequence similarity above a certain percentage threshold.
As used herein, “resolution” refers to the resolvability of an
clectron density map of a molecule, typically measured 1n
angstroms (A). A molecular model with “lower” resolution
1s of higher quality than a molecular model with “higher”
resolution, because the electron density map 1s resolvable to
a lower distance between points, meaning that more features
of the molecular structure are visible. In one example, all
genes with an associated structure and a resolution below 2.5
A and a sequence similarity of at least 50% are grouped
together, and the available structure with the lowest resolu-
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tion 1s selected for use 1n a training model, with higher-
resolution (lower quality) molecular models removed.

[0111] In some embodiments, amino acid sampling was
normalized relative to cysteine 1n 1ts abundance 1n the PDB
as opposed to equal representation of all 20 amino acids. In
one embodiment, amino acid sampling may be normalized
relative to natural occurrence. In one embodiment, amino
acid sampling may be normalized relative to natural occur-
rence within a given species. Cysteine amino acids were
modified 1n the data sample because cysteine can artificially
be assigned a high probability at any given location. Cys-
teine 1s the rarest amino acid observed 1n the PDB, thus, 1t
1s possible that the more abundant amino acids were under-
sampled, and the diversity of protein microenvironments
that might occupy was being incompletely represented.
Moditying the cysteine amino acids 1n the data sample led
to a significant increase in wild-type accuracy. On a per

amino acid basis, the accuracy ranges from 96.7% to 32.8%
(see FIG. 2A).

[0112] In step 131, amino acids 1 a protein may be
sampled randomly from the amino acid sequence. In one
embodiment, up to 50% of the amino acids 1n a protein were
sampled unless the protein was large, 1n which case no more
than 100 amino acids were sampled from an individual
protein. In another embodiment, the upper limit was 200
amino acids per individual protein. The disclosed sampling
method removes a bias 1n the data set towards residues at the
outside of a protein.

[0113] In step 132, a three-dimensional model of protein
crystal structures, along with microenvironments associated
with each amino acid comprising the structure, may be
created. For example, some methods for generating the
three-dimensional models include fragment assembly, when
an unknown protein model 1s built from a pool of candidate
fragments taken from known protein structures; segment
matching, when known protein segments are matched to the
amino acid sequence; or comparative protein modeling
based on satisfaction of spatial restraints, when a known
protein model 1s selected (“‘the template™), the residues of
the amino acid sequences are mapped to the residues in the
template sequence (“aligning’), restraints on various dis-
tances, angels, and dihedral angels 1n the sequence are
derived from the alignment with the template structure, and
violations of restraints are minimalized, among other meth-
ods. When the three-dimensional model of the proten
crystal structure 1s generated, microenvironments associated
with each amino acid comprising the structure is also
generated. One difhiculty with existing protein structure
databases 1s that as new proteins get added, different meth-
ods are used to create the crystallographic structures. Dii-
terent methods of creating three-dimensional structures may
add different biases or artifacts that can affect the accuracy
of the models. Rebuilding structures using the latest, same
version of the same method ensures that the training struc-
tures vary in chemical composition rather than 1n artifacts or
errors presents 1 older versions.

[0114] In step 133, the generated three-dimensional model
from step 132 may be mapped into a three dimensional
array. In one example, the coordinates of the three dimen-
sional model are stored 1n a three-dimensional array. In some
embodiments, a three-dimensional 1mage may be generated
from the three-dimensional model and the three-dimensional
image may be mapped mto a three-dimensional array. The
image data in the array may be called a voxelized matrix. As
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a pixel represents an addressable element of an image 1n
two-dimensional space, a voxel represents an addressable
clement 1n three-dimensional space.

[0115] In step 134, the image 1s mput 1nto a convolution
layer in the convolutional neural network. Convolutional
layers detect features in i1mages via filters. Filters are
designed to detect the presence of certain features in an
image. In a simplified example, high-pass filters detect the
presence ol high frequency signals. The output of the
high-pass filter are the parts of the signal that have high
frequency. Similarly, image filters can be designed to track
certain features 1n an 1mage. The more filters that are applied
to the 1mage, the more features that can be tracked.

[0116] In step 1335, the image 1s convolved with the filter
in the convolutional layer to extract a filter-specific feature
in an 1mage. In the convolutional layer, the filter slides over
the inputs and the element by element dot product of the
filter and the nput 1s stored as a feature map.

[0117] The decision 1mn 136 depends on whether or not
there are more filters. As discussed above, more filters
implemented may mean more features that can be tracked 1n
the image. Each filter 1s convolved with the image indepen-
dently to create an independent feature map. If more filters
are to be convolved with the image, steps 134 and 135 may
be repeated. 1T all of the filters have been convolved with the
image, then the process proceeds to step 137. In some
embodiments, the Ifeature maps may be concatenated
together to create a feature map that 1s as deep as the number
of filters applied to the 1mage. In other embodiments, the
feature maps may be processed one at a time.

[0118] In step 137, an activation function 1s applied to the
feature maps 1n the convolutional layer of the convolutional
neural network. The activation function allows the neural
network to detect nonlinear patterns in the extracted feature
maps. A rectifier linear function, having the formula 1(x)
=max(0,x) may be applied to the feature maps. The rectifier
linear activation function behaves linearly for positive val-
ues, making this function easy to optimize and subsequently
allow the neural network to achieve higher accuracy. The
rectifier linear activation function also outputs zero for any
negative input, meaning 1t 1s not a true linear function. Thus,
the output of a convolution layer 1n a convolutional neural
network 1s a feature map, where the values 1n the feature
map have been passed through a rectifier linear activation
function.

[0119] The decision 1n 138 depends on whether or not
there are more convolutional layers. Increasing the number
of convolutional layers may increase the complexity of the
features that may be tracked. If there are additional convo-
lutional layers, a new filter may be applied to the image and
the process may repeat steps 134-138. In some embodi-
ments, the filters may be the same as 1n the first convolu-
tional layer to ensure the accuracy of the tracked feature. In
alternate embodiments, different filters may be incorporated
in the second convolutional layer. If there are not more
convolutional layers, then the process proceeds to step 139.

[0120] Instep 139, a pooling layer down-samples the data.
A pooling window may be applied to the feature map. In
some embodiments, the pooling layer outputs the maximum
value of the data 1n the window, down-sampling the data in
the window. Max pooling highlights the most prominent
feature 1n the pooling window. In other embodiments, the
pooling layer outputs the average value of the data in the
window.
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[0121] The decision 1 140 depends on whether or not
there are more convolutional layers. Increasing the number
of convolutional layers may increase the complexity of the
features that may be tracked. If there are additional convo-
lutional layers, a new filter may be applied to the image and
the process may repeat steps 134-140. In some embodi-
ments, the filters are the same as 1n the first convolutional
layer to ensure the accuracy of the tracked feature. In
alternate embodiments, different filters may be incorporated
in the second convolutional layer. Accordingly, the repeated
iterations of steps 134-136, 134-138, and 134-140 provide
flexibility and increased complexity of tracked features. If
there are not more convolutional layers, then the process
proceeds to step 141.

[0122] In step 141, 1n some implementations, the down-
sampled data 1s flattened. This means that the data 1s
arranged 1nto a one-dimensional vector. The data 1s flattened
for purposes of matrix multiplication that occurs 1n the fully
connected layers.

[0123] Instep 142, in some implementations, the flattened
one-dimensional vector 1s iput into a fully connected layer
of the neural network. In the convolutional neural network
tully connected layers, each number 1n the one-dimensional
vector 1s applied to a neuron as an 1mput. The neuron sums
the inputs and applies the activation function. In some
embodiments, the activation function 1s the rectifier linear
function. In alternate embodiments, the activation function
may be the hyperbolic tangent or sigmoid function.

[0124] In some embodiments, the output of the first set of
neurons in the fully connected layer may be input to another
set of neurons via weights. Each subsequent set of neurons
may be referred to as a “hidden layer” of neurons. The
number of hidden layers in the fully connected may be
pruned. In other words, the number of hidden layers in the
neural network may adaptively change as the neuron net-
work learns how to classily the outputs.

[0125] In step 143, in some implementations, the neurons
that comprise the fully connected network are connected to
other neurons by weights. The weights are adjusted to
strengthen the effect of some neurons and weaken the etiect
of other neurons. The adjustment of each neuron’s strength
allows the neural network to better classity outputs. The
weilghts connecting the neurons are adjusted while the neural
network 1s learming how to classify the mput, or “training.”
In some embodiments, the number of neurons in the neural
network may be pruned. In other words, the number of
neurons that are active in the neural network adaptively
changes as the neural network learns how to classily the
output.

[0126] The decision 1n 144 depends on whether or not
there are additional fully connected layers. In some embodi-
ments, the output of one fully connected layer may become
the 1input to a second fully connected layer. In some embodi-
ments, additional fully connected layers are implemented to
improve the accuracy of the neural network. The number of
additional fully connected layers may be limited by the
processing power ol the computer running the neural net-
work. Alternatively, the addition of fully connected layers
may be limited by insignificant increases 1 accuracy com-
pared to increase i1n computational time to process the
additional tully connected layers. In alternate embodiments,
the output of one fully connected layer may be sutlicient to
classily the image. If there are additional fully connected
layers, steps 142 and 143 are repeated such that the mput
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vector 1s supplied to neurons which are connected to each
other via weights. If there are not additional fully connected
layers, the process proceeds to step 145.

[0127] At step 145, in some implementations, the fully
connected layer outputs a vector of real numbers. In some
embodiments, the real numbers may be output and classi-
fied. In alternate embodiments, the output of the fully
connected layer 1s mput into a soltmax classifier. The
softmax classifier uses a softmax function, or a normalized
exponential Tunction, to transform an input of real numbers
into a normalized probability distribution over predicted
output classes. In other embodiments, a sigmoid function
may be used to classily the output of the convolutional
neural network. Sigmoid functions may be used 1f there 1s
one class. A softmax function 1s a multi-class sigmoid
function. In some embodiments, the output of the neural
network represents a predicted amino acid residue at the
center of the chemical microenvironment.

[0128] For example, the neural network may output a
vector with a length of 20, comprising 20 real numbers. The
vector has a length of 20 because of the 20 possible amino
acids that may exist at the center of the microenvironment.
The real numbers 1n the vector are passed through a softmax
classifier, such that the values 1n the vector represent the
likelihood of the amino acids existing at the center of the
microenvironment.

[0129] Instep 146, 1n some implementations, the predicted
amino acid residue 1s compared to the natural amino acid at
the center of the chemical environment. For example, the
true amino acid vector may be a vector of length 20, where
a single ‘1’ indicates the natural amino acid at the center of
the chemical environment and the other values 1n the vector
hold “0’.

[0130] This type of learning 1n a neural network, learning
that compares known 1nput/output pairs during training, 1s
called supervised learning. The differences between the
predicted values and known values may be determined, and
the information 1s back-propagated through the neural net-
work. The weights may be subsequently modified by the
error signal. This method of training the neural network 1s
called the back-propagation method.

[0131] In step 147, 1n some implementations, the weights
are updated via the steepest descent method. Equation 1
below 1llustrates how the weights are adjusted at each
iteration n.

wﬁ-(;«z+1)=wﬁ-(n)+£wﬁ (1)

[0132] In Equation 1 above, w, represents the weight that
connects neuron 1 to neuron J.

[0133] The steepest descent method 1s an optimization
technique that minimizes an objective function. In other
words, the steepest descent method 1s able to adjust
unknown parameters in the direction of steepest descent.
During training, the value of the weights that optimizes the
neural network’s classification accuracy 1s unknown. Thus,
the weights are the unknown parameters that are adjusted in
the direction of steepest descent.

[0134] In some embodiments, the objective function may
be the cross-entropy error function. Minimizing the cross-
entropy error function represents minimizing the differences
between the probability distribution of the predicted amino
acid vector and the probability distribution of the natural
amino acid vector. In other embodiments, the objective
function may be the square error function. Mimmizing the




US 2023/0162816 Al

square error objective function represents minimizing the
instantaneous error of each neuron.

[0135] During each training iteration, the weights are
adjusted to get closer to their optimal value. Depending on
the location of the neuron in the network, a different formula
1s used to determine how the weights are adjusted with
respect to the objective function. Equation 2 below 1illus-
frates how the weight between neuron 1 and neuron j 1s
adjusted with respect to the cross-entropy error function.

de(n) (2)

QW vy = —
@wﬁ(n)

Ji

[0136] If the weights are too small, meaning the output of
the neuron may not be having a significant effect on the
classification, there will be a positive change 1n the weight
because of the negative slope of the weight when a small
welght 1s compared to the optimal weight, and the negative
s1gn 1n the equation. If the weights are too large, there will
be a negative change 1n the weight because of the positive
slope of the weight when a large weight 1s compared to the
optimal weight, and the negative sign 1n the equation. Thus,
the weights train themselves to get closer to the optimal
value. The modification of the weights may be temporarily
stored, 1indicated by step 147.

[0137] In some embodiments, every time the modification
of the weights 1s determined, the weights may be adjusted.
This type of training may be called on-line or incremental
training. One advantage to incremental training includes the
neural network’s ability to track small changes 1n the 1inputs.
In some embodiments, the weights may be modified after the
neural network has received a batch of input/output pairs.
This type of training may be called batch tramning. One
advantage to batch training includes the neural network’s
faster convergence to optimized weight values. In the pres-
ent embodiments, a neural network was trained on 1.6
million amino acid and microenvironment pairings. In the
present embodiment, batch sizes of 20 were used. In step
148, a counter 1s incremented. The neural network com-
pletes one round of batch training when the counter reaches
20. In other words, when the neural network evaluates i1tself
based on 20 mnput/output pairs, one round of training 1s
completed.

[0138] The decision 1n 149 depends on whether the pres-
ent batch of training samples has been completed. If the
number of training samples required to satisfy one batch 1s
attained, the network conftinues to step 150. As discussed
above, 20 1nput/output pairs are required for one batch of
training. If the number of samples required to satisfying one
batch has not been attained, the neural network repeats steps

134-149.

[0139] In step 150, the weight modifications that were
temporarily stored 1n step 147 are summed. The values of the
welghts are modified according to the summed modifica-
tions such that a new batch of 20 mput/output pairs will be
evaluated using the newly modified weight values.

[0140] The decision 1n 151 depends on whether the maxi-
mum number of training iterations has been reached. One
fraining 1teration 1s completed when one round of batch
training 1s completed. In some circumstances, the weights
may never reach their optimal value because the weights
will keep oscillating around their optimal value. Thus, 1n
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some embodiments a maximum number of iterations can be
set to prevent the neural network from training the network
indefinitely:.

[0141] If the maximum number of iterations has not been
reached, the neural network may be permitted to train the
network again using another mput/output pair from the data
sample created 1n step 130. The iteration counter 1s increased
at step 153, after the neural network has completed one
batch of training.

[0142] If the maximum number of iterations has been
reached, the neural network may store the value of the
weilghts. Step 152 illustrates storing the value of the weights.
These weights will be stored in memory because they are the
welghts that have been trained by the network and will
subsequently be used when testing the neural network.

[0143] If the number of iterations has not been reached,
the error between the predicted amino acid residue and the
known natural amino acid residue may be evaluated. This
evaluation 1s performed at step 154. In some circumstances,
the error between the predicted values and the known natural
values 1s so small that the error may be deemed acceptable
and the neural network does not need to confinue training.
In these circumstances the value of the weights that yielded
such small error rates may be stored and subsequently used
1n testing. In some embodiments, the neural network must
maintain a small error rate for several 1terations to ensure
that the neural network did not learn how to predict one
output very well or accidentally predict one output very
well. Requiring the network to maintain a small error over
several 1terations 1ncreases the likelihood that the network 1s
properly classifying a diverse range of inputs. If the error
between the predicted and known values 1s still too large, the
neural network may continue training itself and repeat steps
131-154. In many implementations, during repeat iterations
of steps 131-154, the neural network will use a new data set
to train the neural network.

[0144] FIG. 1C 1s a flow chart of an implementation of a
method for increasing synthesized protein characteristics
during testing. In step 160, the weights that were stored from
the tramning scenario are set as the weights 1n the fully
connected layer 1n step 172. These weights are used when an
unknown 1nput needs to be classified because the weights
have been trained via a broad and diverse set of inputs such
that the weights should likely be able to classify the
unknown 1nput accurately.

[0145] In step 161, in some implementations, an unknown
protein 1s sampled randomly. In one embodiment, up to 50%
of the amino acids 1n a protein are sampled unless the protein
1s large, 1n which case no more than 100 amino acids were
sampled from an individual protein. In another embodiment,
the upper limit 1s 200 amino acids per individual protein.
The disclosed sampling method removes a bias 1n the data
set towards residues at the outside of a protein.

[0146] In step 162, a three-dimensional model of protein
crystal structures, along with microenvironments associated
with each amino acid comprising the structure, may be
created. Some methods for generating the three-dimensional
models mclude fragment assembly, when an unknown pro-
tein model 1s built from a pool of candidate fragments taken
from known proteimn structures; segment matching, when
known protein segments are matched to the amino acid
sequence; or comparative protein modeling based on satis-
faction of spatial restraints, when a known protein model 1s
selected (“the template™), the residues of the amino acid
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sequences are mapped to the residues in the template
sequence (“aligning”), restraints on various distances,
angels, and dihedral angels 1n the sequence are derived from
the alignment with the template structure, and violations of
restraints are minimalized, among other methods. When the
three-dimensional model of the protein crystal structure 1s
generated, a microenvironment associated with each amino
acid comprising the structure 1s also generated. One difli-
culty with existing protein structure databases 1s that as new
proteins get added, different methods are used to create the
crystallographic structures. Diflerent methods of creating
three-dimensional structures may add different biases or
artifacts that can aflect the accuracy of the models. Rebuild-
ing structures using the latest, same version of the same
method ensures that the training structures vary 1in chemical
composition rather than in artifacts or errors presents 1n
older versions.

[0147] In step 163, the generated three-dimensional model
from step 162 may be mapped into a three-dimensional
array. In one example, the coordinates of the three-dimen-
sional model are stored 1n a three-dimensional array. In some
embodiments, a three-dimensional 1mage may be generated
from the three-dimensional model and the three-dimensional
image may be mapped mto a three-dimensional array. The
image data in the array may be called a voxelized matrix. As
a pixel represents an addressable element of an 1image 1n
two-dimensional space, a voxel represents an addressable
clement 1n three-dimensional space.

[0148] In step 164, the image may be input into a convo-
lution layer in the convolutional neural network. Convolu-
tion layers detect features 1n 1mages via filters. Filters are
designed to detect the presence of certain features in an
image. In a simplified example, high-pass filters detect the
presence ol high frequency signals. The output of the
high-pass filter are the parts of the signal that have high
frequency. Similarly, image filters can be designed to track
certain features in an 1mage. The more filters that are applied
to the 1image, the more features that may be tracked.

[0149] In step 165, the image 1s convolved with the filter
in the convolutional layer to extract a filter-specific feature
in an 1mage. In the convolutional layer, the filter slides over
the mputs and the element by element dot product of the
filter and the mput 1s stored as a feature map.

[0150] The decision 1 166 depends on whether or not
there are more filters. As discussed above, the more filters
implemented means the more features that may be tracked 1n
the image. Each filter 1s convolved with the image indepen-
dently to create an independent feature map. If more filters
are to be convolved with the 1mage, steps 164 and 165 may
be repeat. It all of the filters have been convolved with the
image, then the process proceeds to step 167. In some
embodiments, the feature maps may be concatenated
together to create a feature map that 1s as deep as the number
of filters applied to the image. In other embodiments, the
feature maps may be processed one at a time.

[0151] Instep 167, 1n some implementations, an activation
function 1s applied to the feature maps 1n the convolutional
layer of the convolutional neural network. The activation
function allows the neural network to detect nonlinear
patterns 1n the extracted feature maps. A rectifier linear
function, having the formula 1{{x)=max(0,x) may be applied
to the feature maps as the activation function. The rectifier
linear activation function behaves linearly for positive val-
ues, making this function easy to optimize and subsequently
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allows the neural network to achieve high prediction accu-
racy. The rectifier linear activation function also outputs zero
for any negative iput, meaning 1t 1s not a true linear
function. Thus, the output of a convolution layer in a
convolutional neural network 1s a feature map, where the
values 1n the feature map may be passed through a rectifier
linear activation function.

[0152] The decision 1 168 depends on whether or not
there are more convolutional layers. Increasing the number
of convolutional layers may increase the complexity of the
features that may be tracked. If there are additional convo-
lutional layers, a new filter 1s applied to the image and steps
164-168 may be repeated. In some embodiments, the filters
are the same as 1n the first convolutional layer to ensure the
accuracy of the tracked feature. In alternate embodiments,
different filters may be incorporated 1n the second convolu-
tional layer. If there are not more convolutional layers, then
the process proceeds to step 169.

[0153] Instep 169, a pooling layer down-samples the data.
A pooling window may be applied to the feature map. In
some embodiments, the pooling layer outputs the maximum
value of the data 1n the window, down-sampling the data in
the window. Max pooling highlights the most prominent
feature 1n the pooling window. In other embodiments, the

pooling layer outputs the average value of the data in the
window.

[0154] The decision 1n 170 depends on whether or not
there are more convolutional layers. Increasing the number
ol convolutional layers may increase the complexity of the
features that may be tracked. If there are additional convo-
lutional layers, a new filter 1s applied to the image and steps
164-170 may be repeated. In some embodiments, the filters
are the same as in the first convolutional layer to ensure the
accuracy of the tracked feature. In alternate embodiments,
different filters may be incorporated 1n the second convolu-
tional layer. If there are not more convolutional layers, then
the process proceeds to step 171.

[0155] In step 171, 1n some implementations, the down-
sampled data 1s flattened. This means that the data 1s
arranged 1nto a one-dimensional vector. The data 1s flattened
for purposes of matrix multiplication that occurs 1n the fully
connected layers.

[0156] Instep 172, in some implementations, the tlattened
one-dimensional vector 1s mput 1mnto a fully connected layer
of the neural network. In the convolutional neural network
tully connected layers, each number in the one-dimensional
vector 1s applied to a neuron. The neuron sums the mputs
and applies the activation function. In some embodiments,
the activation function 1s the rectifier linear function. In
alternate embodiments, the activation function may be the
hyperbolic tangent or sigmoid function.

[0157] In step 173, 1n some implementations, the neurons
that comprise the fully connected network are multiplied by
weights. The weights 1n the fully connected network are the
weights that were 1mnitialized 1n step 160. These weights are
used when an unknown input 1s evaluated because the
weights have been trained via a broad and diverse set of
inputs such that the weights should likely be able to classity
the unknown 1nput accurately.

[0158] The decision 1 174 depends on whether or not
there are additional fully connected layers. In some embodi-
ments, the output of one fully connected layer may become
the 1input to a second fully connected layer. In some embodi-
ments, additional fully connected layers are implemented to
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improve the accuracy of the neural network. The number of
additional fully connected layers may be limited by the
processing power ol the computer running the neural net-
work. Alternatively, the addition of fully connected layers
may be limited by insignificant increases 1 accuracy com-
pared to increases in the computational time to process the
additional tully connected layers. In alternate embodiments,
the output of one fully connected layer may be suthicient to
classity the image. If there are additional fully connected
layers, steps 172 and 173 are repeated such that the input
vector 1s supplied to neurons which are connected to each
other via weights. If there are not additional fully connected
layers, the process proceeds to step 175.

[0159] At step 175, the fully connected layer outputs a
vector of real numbers. In some embodiments, the real
numbers may be output and classified. In alternate embodi-
ments, the output of the fully connected layer 1s mput 1nto
a softmax classifier. The soitmax classifier uses a softmax
function, or a normalized exponential function, to transform
an mput of real numbers mto a normalized probability
distribution over predicted output classes. In other embodi-
ments, a sigmoid function may be used to classity the output
of the convolutional neural network. Sigmoid functions may
be used 1f there 1s one class. A soltmax function 1s a
multi-class sigmoid function. In some embodiments, the
output of the neural network represents a predicted candi-
date residue and amino acid residue to improve a quality
metric ol a protein.

[0160] Instep 176, a synthesized protein may be generated
according to the output of the neural network. The synthe-
sized protein may be generated by the computing device
executing the neural network, by another computing device
in communication with the computing device executing the
neural network, by a third party manufacturer or laboratory,
or another entity making substitutions according to the
candidate and predicted amino acid residues identified by
the neural network. For example, in some embodiments, the
synthesized protein may be obtained by an entity making
one or more substitution according to the predicted amino
acid residues and candidate residues identified by the neural
network and/or at the direction of the neural network or
computing device executing the neural network. In some
embodiments, the neural network may predict an amino acid
residue that 1s the same as the natural amino acid residue. In
other embodiments, the neural network may predict an
amino acid residue that 1s different from the natural amino
acid residue. The neural network’s predicted amino acid
indicates than an improved protein may be generated by
mutating the natural amino acid residue to the predicted
amino acid residue. Thus, a synthesized protein may be
generated according to the output of the neural network.

[0161] FIG. 1D 1s a block diagram of a neural network
during training, according to some implementations. Inputs
are supplied to the neural network at 180. As discussed
above, a neural network 1s capable of accepting various
inputs. In some embodiments, the neural network accepts an
amino acid sequence or residue. In other embodiments, the
neural network may receive a series of amino acids have
discrete attributes located at each position of the series.

[0162] In the block diagram, 181 represents the neural
network changing over time. As discussed above, during
training, the neural network adaptively updates each itera-
tion of new puts/outputs. The neural network adaptively
updates because the weights are updated depending on the
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error signal calculated by the difference between the pre-
dicted output and the known output.

[0163] In the block diagram, 182 represents the outputs
that the neural network predicts will satisty a query. For
example, a neural network may be queried and trained to
identify a particular amino acid residue that may be modi-
fied. In these circumstances, the output of the neural network
may be an amino acid residue, wherein the amino acid
residue may be used to synthesize a new protein with
improved characteristics. In other embodiments, the output
of the neural network may be an amino acid residue that may
be used as a substitute, wherein the substitute may be used
to synthesize a new protein with improved characteristics. In
other embodiments, the neural network may be quened for
a proposed amino acid sequence for a protein of a different
parameter than an mitial amino acid sequence. In these
circumstances, the output of the neural network may be an
amino acid sequence indicating a specific amino acid for
cach residue of the amino acid sequence.

[0164] In the block diagram, 186 represents the desired
value. This type of tramning i1s called supervised traiming
because to train the neural network, the mputs that corre-
spond to the outputs must be known. During training, the
neural network 1s asked to output results that are as close to
possible to the desired value.

[0165] The desired value 186 and the output value from
the neural network 182 are compared at 185. The difference
between the output value and the desired value 1s determined
and becomes an error signal 183 that 1s propagated back
through the neural network so the neural network can learn
from this error. As 1llustrated in Equations 1 and 2 above, the
weilghts are updated based on the error signal.

[0166] FIG. 1E 1s a block diagram of a convolutional
neural network, according to some implementations. In the
block diagram, 190 represents a convolutional layer. Con-
volutional layers may detect features 1n 1mages via filters.
Filters are designed to detect the presence of certain features
in an 1mage. In a simplified example, high-pass filters detect
the presence of high frequency signals. The output of the
high-pass filter are the parts of the signal that have high
frequency. Similarly, image filters can be designed to track
certain features 1n an 1mage. The more filters that are applied
to the image, the more features that can be tracked.

[0167] In some implementations, an 1mage 1s convolved
with the filter 1in the convolutional layer to extract a filter-
specific feature in an 1mage. In the convolutional layer, the
filter slides over the mputs and the element by element dot
product of the filter and the 1nput 1s stored as a feature map.
An activation function 1s applied to the feature map in the
convolutional layer of the convolutional neural network.
The activation function allows the neural network to detect
nonlinear patterns in the extracted feature maps. A rectifier
linear function, having the formula {(x)=max(0,x) may be
applied to the feature maps. The rectifier linear activation
function behaves linearly for positive values, making this
function easy to optimize and subsequently allow the neural
network to achueve high prediction accuracy. The rectifier
linear activation function also outputs zero for any negative
input, meaning 1t 1s not a true linear function. Thus, the
output of a convolution layer in a convolutional neural
network 1s a feature map, where the values 1n the feature
map have been passed through a rectifier linear activation
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function. In other embodiments, a sigmoid function or
hyperbolic tangent function may be applied as activation
functions.

[0168] The extracted feature maps that have been acted on
by an activation function may subsequently be mput into a
pooling layer, as indicated by 191. The pooling layer down-
samples the data. A pooling window may be applied to the
feature map. In some embodiments, the pooling layer out-
puts the maximum value of the data in the window, down-
sampling the data 1n the window. Max pooling highlights the
most prominent feature in the pooling window.

[0169] The down-sampled pooling data may subsequently
be flattened before being nput into fully connected layers
192 of the convolutional neural network in some implemen-
tations.

[0170] In some embodiments, the fully connected layers
may only have one set of neurons. In alternate embodiments,
the fully connected layer may have a set of neurons 1n a first
layer 193, and a set of neurons 1n subsequent hidden layers
194. The number of hidden layers 1n the fully connected may
be pruned. In other words, the number of lidden layers 1n the
neural network may adaptively chance as the neuron net-
work learns how to classify the outputs.

[0171] Inthe fully connected layers, the neurons in each of
the layers 193 and 194 are connected to each other. The
neurons are connected by weights. During training, the
weights are adjusted to strengthen the effect of some neurons
and weaken the eflect of other neurons. The adjustment of
cach neuron’s strength allows the neural network to better
classily outputs. In some embodiments, the number of
neurons in the neural network may be pruned. In other
words, the number of neurons that are active in the neural
network adaptively changes as the neural network learns
how to classily the output.

[0172] After training, the error between the predicted
values and known values may be so small that the error may
be deemed acceptable and the neural network does not need
to continue training. In these circumstances the value of the
weights that yielded such small error rates may be stored and
subsequently used in testing. In some embodiments, the
neural network must satisiy the small error rate for several
iterations to ensure that the neural network did not learn how
to predict one output very well or accidentally predict one
output very well. Requiring the network to maintain a small
error over several 1terations increases the likelihood that the
network 1s properly classitying a diverse range of inputs.

[0173] In the block diagram, 195 represents the output of
the neural network. The output of the fully connected layer
1s a vector of real numbers. In some embodiments, the real
numbers may be output and classified. In alternate embodi-
ments, the output of the fully connected layer 1s mput 1nto
a softmax classifier.

[0174] In the block diagram, 196 represents the softmax
classifier layer. The softmax classifier uses a softmax func-
tion, or a normalized exponential function, to transform an
input of real numbers 1to a normalized probability distri-
bution over predicted output classes. In other embodiments,
a s1igmoid function may be used to classify the output of the
convolutional neural network. Sigmoid functions may be
used 11 there 1s one class. A softmax function 1s a multi-class
sigmoid function. In some embodiments, the output of the
neural network represents a predicted candidate residue and
amino acid residue to improve a quality metric of a protein.
In other embodiments, the output of the neural network may
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be an amino acid sequence indicating a specific amino acid
for each residue of the amino acid sequence.

[0175] In some embodiments, problematic residues are
identified, suggestions made for new residues, by combining
predictions from multiple, independently trained neural net-
works. By i1dentifying residues based on independently
trained neural networks, biases due to idiosyncrasies that
emerge while a neural network 1s training, and that are
unmique to any individual neural network, may be removed.
The average of many independent neural networks elimi-
nates quirks associated with any individual one.

[0176] The various improvements to existing algorithms
improved accuracy cumulatively. As shown i FIG. 2B, the
various improvements, taken together, 1n one embodiment
increased the model accuracy of the wild type amino acid
prediction from about 40% to over 70% across all amino
acids.

Engineered Proteins

[0177] Implementations of the systems and methods dis-
cussed herein further provide or 1dentity compositions com-
prising engineered proteins comprising one or more muta-
tions that modify a desired trait or property of the protein as
compared to a trait or property ol the native or parental
protein. In one embodiment, the modified proteins generated
or identified by implementations of the systems and methods
discussed herein comprise one or more mutations at one or
more amino acid residue predicted by the 3D convolutional
neural network (3ADCNN) predictive pipeline of implemen-
tations of the systems and methods discussed herein to
confer a desired trait or property to the protein. The engi-
neered proteins generated or identified by implementations
of the systems and methods discussed herein which have
been generated to include a mutation at a residue predicted
from analysis by the 3DCNN predictive pipeline are referred
to herein as 3ADCNN-engineered proteins.

[0178] Exemplary traits or properties that can be modified
in the 3DCNN-engineered proteins generated or identified
by implementations of the systems and methods discussed
herein, include, but are not limited to, stability, aflinity,
activity, half-life, a fluorescent property, and sensitivity to
photobleaching.

[0179] The 3DCNN-engineered proteins generated or
identified by implementations of the systems and methods
discussed herein may be made using chemical methods. For
example, 3DCNN-engineered proteins can be synthesized
by solid phase techniques (Roberge 1Y et al (1995) Science
269: 202-204), cleaved from the resin, and purified by
preparative high performance liquid chromatography. Auto-
mated synthesis may be achieved, for example, using the
ABI 431 A Peptide Synthesizer (Perkin Elmer) 1n accor-
dance with the instructions provided by the manufacturer.
[0180] The 3DCNN-engineered proteins may alterna-
tively be made by translation of an encoding nucleic acid
sequence, by recombinant means or by cleavage from a
longer protein sequence. The composition of a 3DCNN-
engineered protein may be confirmed by amino acid analysis
Or sequencing.

[0181] The vanants of the 3DCNN-engineered proteins
generated or identified by implementations of the systems
and methods discussed herein may be (1) one 1n which one
or more of the amino acid residues are substituted with a
conserved or non-conserved amino acid residue (preferably
a conserved amino acid residue) and such substituted amino
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acid residue may or may not be one encoded by the genetic
code, (11) one 1n which there are one or more modified amino
acid residues, e.g., residues that are modified by the attach-
ment of substituent groups, (111) fragments of the 3DCNN-
engineered proteins and/or (1v) one in which the 3DCNN-
engineered protein 1s fused with another protein or
polypeptide. The fragments include polypeptides generated
via proteolytic cleavage (including multi-site proteolysis) of
an original 3DCNN-engineered protein sequence. Variants
may be post-translationally, or chemically modified. Such
variants are deemed to be within the scope of those skilled
in the art from the teaching herein.

[0182] As known 1n the art the “similarity” between two
polypeptides 1s determined by comparing the amino acid
sequence and 1ts conserved amino acid substitutes of one
polypeptide to a sequence of a second polypeptide. Variants
are defined to include polypeptide sequences different from
the original sequence, different from the original sequence in
less than 40% of residues per segment of interest, different
from the original sequence 1n less than 25% of residues per
segment of interest, different by less than 10% of residues
per segment of 1interest, or diflerent from the original protein
sequence 1n just a few residues per segment of interest and
at the same time sufliciently homologous to the original
sequence to preserve the functionality of the original
sequence and/or the ability to bind to ubiquitin or to a
ubiquitylated protein. Implementations of the systems and
methods discussed herein may be used to generate or
identiy amino acid sequences that are at least 60%, 65%,
710%, 72%, 74%, 76%, 78%, 80%, 90%, 91%, 92%, 93%,
94%, 95%, 96%, 97%, 98%, or 99% similar or i1dentical to
the original amino acid sequence. The 1dentity between two
amino acid sequences 1s preferably determined by using the
BLASTP algorithm [BLAST Manual, Altschul, S., et al.,
NCBI NLM NIH Bethesda, Md. 20894, Altschul, S., et al.,
J. Mol. Biol. 213: 403-410 (1990)].

[0183] The 3DCNN-engineered proteins generated or
identified by implementations of the systems and methods
discussed herein can be post-translationally modified. For
example, post-translational modifications that fall within the
scope of implementations of the systems and methods
discussed herein include signal peptide cleavage, glycosy-
lation, acetylation, isoprenylation, proteolysis, myristoy-
lation, protein folding and proteolytic processing, etc. Some
modifications or processing events require mtroduction of
additional biological machinery. For example, processing
events, such as signal peptide cleavage and core glycosy-
lation, are examined by adding canine microsomal mem-
branes or Xenopus egg extracts (U.S. Pat. No. 6,103,489) to
a standard translation reaction.

[0184] The 3DCNN-engineered proteins generated or
identified by implementations of the systems and methods
discussed herein may include unnatural amino acids formed
by post-translational modification or by introducing unnatu-
ral amino acids during translation. A variety of approaches
are available for introducing unnatural amino acids during
protein translation. By way of example, special tRNAs, such
as tRNAs which have suppressor properties, suppressor
tRNAs, have been used 1n the process of site-directed
non-native amino acid replacement (SNAAR). In SNAAR,
a unique codon 1s required on the mRNA and the suppressor
tRNA, acting to target a non-native amino acid to a unique
site during the protein synthesis (described in WO90/
05785). However, the suppressor tRNA must not be recog-
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nizable by the aminoacyl tRNA synthetases present in the
protein translation system. In certain cases, a non-native
amino acid can be formed after the tRNA molecule 1is
aminoacylated using chemical reactions which specifically
modily the native amino acid and do not sigmificantly alter
the functional activity of the aminoacylated tRNA. These
reactions are referred to as post-aminoacylation modifica-
tions. For example, the epsilon-amino group of the lysine
linked to 1ts cognate tRNA (tRNA, ,..), could be modified
with an amine specific photoathinity label.

[0185] An 3DCNN-engineered protein generated or 1den-
tified by implementations of the systems and methods dis-
cussed herein may be conjugated with other molecules, such
as proteins, to prepare fusion proteins. This may be accom-
plished, for example, by the synthesis of N-terminal or
C-terminal fusion proteins provided that the resulting fusion
protein retains the functionality of the 3DCNN-engineered
protein.

3DCNN-Engineered Protein Mimetics

[0186] In some embodiments, the subject compositions
are peptidomimetics of the 3DCNN-engineered proteins.
Peptidomimetics are compounds based on, or derived from,
peptides and proteins. The peptidomimetics generated or
identified by implementations of the systems and methods
discussed herein typically can be obtained by structural
modification of a known 3DCNN-engineered protein
sequence using unnatural amino acids, conformational
restraints, 1sosteric replacement, and the like. The subject
peptidomimetics constitute the continuum of structural
space between peptides and non-peptide synthetic struc-
tures; peptidomimetics may be useful, therefore, 1n delin-
cating pharmacophores and in helping to translate peptides
into non-peptide compounds with the activity of the parent
3DCNN-engineered protein.

[0187] Moreover, as 1s apparent from the present disclo-
sure, mimetopes of the subject 3DCNN-engineered proteins
can be provided. Such peptidomimetics can have such
attributes as being non-hydrolyzable (e.g., increased stabil-
ity against proteases or other physiological conditions which
degrade the corresponding peptide), increased specificity
and/or potency, and increased cell permeability for intrac-
cllular localization of the peptidomimetic. For illustrative
purposes, peptide analogs generated or identified by 1imple-
mentations of the systems and methods discussed herein can
be generated using, for example, benzodiazepines (e.g., see
Freidinger et al. 1n Peptides: Chemistry and Biology, G. R.
Marshall ed., ESCOM Publisher: Leiden, Netherlands,
1988), substituted gama lactam rings (Garvey et al. 1n
Peptides: Chemistry and Biology, G. R. Marshall ed.,
ESCOM Publisher: Leiden, Netherlands, 1988, p 123), C-7

mimics (Huflman et al. in Peptides: Chemistry and Biology,
(. R. Marshall ed., ESCOM Publisher: Leiden, Netherlands,

1988, p. 103), keto-methylene pseudopeptides (Ewenson et
al. (1986) ] Med Chem 29:295; and Ewenson et al. 1n
Peptides: Structure and Function (Proceedings of the 9th

American Peptide Symposium) Pierce Chemical Co. Rock-
land, I11., 1985), p-turn dipeptide cores (Nagai1 et al. (1985)

Tetrahedron Lett 26:64°7; and Sato et al. (1986) J Chem Soc
Perkin Trans 1:1231), {-aminoalcohols (Gordon et al.
(19835) Biochem Biophys Res Commun 126:419; and Dann
et al. (1986) Biochem Biophys Res Commun 134:71),
diaminoketones (Natarajan et al. (1984) Biochem Biophys
Res Commun 124:141), and methylenecamino-modified
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(Roark et al. in Peptides: Chemistry and Biology, G. R.
Marshall ed., ESCOM Publisher: Leiden, Netherlands,
1988, p 134). Also, see generally, Session III: Analytic and
synthetic methods, in 1n Peptides: Chemistry and Biology,
(. R. Marshall ed., ESCOM Publisher: Leiden, Netherlands,
1988)

[0188] In addition to a variety of side chain replacements
which can be carried out to generate the 3DCNN-engineered
protein peptidomimetics, implementations of the systems
and methods discussed herein specifically contemplate the
use of conformationally restrained mimics of peptide sec-
ondary structure. Numerous surrogates have been developed
for the amide bond of peptides. Frequently exploited surro-
gates for the amide bond include the following groups (1)
trans-olefins, (11) fluoroalkene, (111) methyleneamino, (iv)
phosphonamides, and (v) sulfonamides.

Nucleic Acids

[0189] In one embodiment, implementations of the sys-
tems and methods discussed herein may be used to generate
or 1dentify an 1solated nucleic acid comprising a nucleotide
sequence encoding a 3DCNN-engineered protein.

[0190] The nucleotide sequences encoding a 3DCNN-
engineered protein can alternatively comprise sequence
variations with respect to the original nucleotide sequences,
for example, substitutions, insertions and/or deletions of one
or more nucleotides, with the condition that the resulting
polynucleotide encodes a polypeptide according to 1mple-
mentations of the systems and methods discussed herein.
Accordingly, implementations of the systems and methods
discussed herein may be used to generate or 1dentily nucleo-
tide sequences that are substantially identical to the nucleo-
tide sequences recited herein and encodes a 3DCNN-engi-
neered protein.

[0191] In the sense used in this description, a nucleotide
sequence 1s “substantially identical” to any of the nucleotide
sequences describe herein when its nucleotide sequence has

a degree of 1dentity with respect to the nucleotide sequence
of at least 60%, of at least 70%, at least 85%, at least 95%,

at least 96%, at least 97%, at least 98% or at least 99%. A
nucleotide sequence that 1s substantially homologous to a

nucleotide sequence encoding a 3DCNN-engineered protein
can typically be 1solated from a producer organism of the
polypeptide generated or identified by implementations of
the systems and methods discussed herein based on the
information contained in the nucleotide sequence by means
of introducing conservative or non-conservative substitu-
tions, for example. Other examples of possible modifications
include the insertion of one or more nucleotides in the
sequence, the addition of one or more nucleotides 1n any of
the ends of the sequence, or the deletion of one or more
nucleotides 1n any end or inside the sequence. The 1dentity
between two nucleotide sequences 1s preferably determined
by using the BLASTN algorithm [BLAST Manual, Altschul,
S., et al., NCBI NLLM NIH Bethesda, Md. 20894, Altschul,
S., et al., J. Mol. Biol. 215: 403-410 (1990)].

[0192] In another aspect, implementations of the systems
and methods discussed herein may be used to generate or
identify a construct, comprising a nucleotide sequence
encoding a 3DCNN-engineered protemn, or derivative
thereol. In a particular embodiment, the construct 1s opera-
tively bound to transcription, and optionally translation,
control elements. The construct can incorporate an opera-
tively bound regulatory sequence of the expression of the
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nucleotide sequence generated or identified by implemen-
tations of the systems and methods discussed herein, thus
forming an expression cassette.

[0193] A 3DCNN-engineered protein or chimeric
3DCNN-engineered protein may be prepared using recoms-
binant DNA methods. Accordingly, nucleic acid molecules
which encode a 3DCNN-engineered protein or chimeric
3DCNN-engineered protein may be incorporated into an
appropriate expression vector which ensures good expres-
sion of the 3ADCNN-engineered protein or chimeric 3DCNN-
engineered protein.

[0194] Therelore, in another aspect, implementations of
the systems and methods discussed herein may be used to
generate or i1dentity a vector, comprising the nucleotide
sequence or the construct generated or identified by 1mple-
mentations of the systems and methods discussed herein.
The choice of the vector will depend on the host cell 1n
which it 1s to be subsequently introduced. In a particular
embodiment, the vector generated or i1dentified by 1mple-
mentations of the systems and methods discussed herein 1s
an expression vector. Suitable host cells include a wide
variety of prokaryotic and eukaryotic host cells. In specific
embodiments, the expression vector i1s selected from the
group consisting of a viral vector, a bacterial vector and a
mammalian cell vector. Prokaryote- and/or eukaryote-vector
based systems can be employed for use with implementa-
tions of the systems and methods discussed herein to pro-
duce polynucleotides, or their cognate polypeptides. Many
such systems are commercially and widely available.

[0195] Further, the expression vector may be provided to
a cell 1n the form of a viral vector. Viruses, which are usetul
as vectors mnclude, but are not limited to, retroviruses,
adenoviruses, adeno-associated viruses, herpes viruses, and
lentiviruses. In general, a suitable vector contains an origin
of replication functional 1n at least one organism, a promoter
sequence, convenient restriction endonuclease sites, and one

or more selectable markers. (See, e.g., WO 01/96384; WO
01/29058; and U.S. Pat. No. 6,326,193,

[0196] Vectors suitable for the insertion of the polynucle-
otides are vectors derived from expression vectors in pro-

karyotes such as pUCI18, pUCI19, Bluescript and the deriva-
tives thereof, mpl8, mpl19, pBR322, pMB9, ColE1, pCRI1,

RP4, phages and ““shuttle” vectors such as pSA3 and pAT2S,
expression vectors 1n yeasts such as vectors of the type of 2
micron plasmids, integration plasmids, YEP vectors, cen-
tromere plasmids and the like, expression vectors 1n insect
cells such as vectors of the pAC series and of the pVL,
expression vectors in plants such as plIBI, pEarleyGate,
pAVA, pCAMBIA, pGSA, pGWB, pMDC, pMY, pORE
series and the like, and expression vectors 1n eukaryotic cells
based on viral vectors (adenoviruses, viruses associated to
adenoviruses such as retroviruses and, particularly, lentivi-
ruses) as well as non-viral vectors such as pSilencer 4.1-

CMV (Ambion), pcDNA3, pcDNA3.1/hyg, pHMCV/Zeo,
pCR3.1, pEFI/His, pIND/GS, pRc/HCMV?2, pSV40/7Zeo02,
pTRACER-HCMYV, pUB6/V3-His, pVAXI1, pZeoSV2, pCl,
pSVL and PKSV-10, pBPV-1, pML2d and pTDT]1.

[0197] By way of illustration, the vector in which the
nucleic acid sequence 1s mntroduced can be a plasmid which
1s or 1s not integrated 1n the genome of a host cell when 1t
1s introduced 1n the cell. Illustrative, non-limiting examples
of vectors 1n which the nucleotide sequence or the gene
construct generated or identified by implementations of the
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systems and methods discussed herein can be inserted
include a tet-on imnducible vector for expression 1n eukaryote
cells.

[0198] In a particular embodiment, the vector 1s a vector
usetul for transforming animal cells.

[0199] The recombinant expression vectors may also con-
tain nucleic acid molecules which encode a portion which
provides increased expression of the 3DCNN-engineered
protein or chimeric 3DCNN-engineered protein; increased
solubility of the 3DCNN-engineered protein or chimeric
3DCNN-engineered protein; and/or aid 1n the purification of
the 3DCNN-engineered protein or chimeric 3DCNN-engi-
neered protein by acting as a ligand 1n athnity purification.
For example, a proteolytic cleavage site may be inserted 1n
the 3DCNN-engineered protein to allow separation of the
3DCNN-engineered protein or chimeric 3DCNN-engi-
neered protein from the fusion portion after purification of

the fusion protein. Examples of fusion expression vectors
include pGEX (Amrad Corp., Melbourne, Australia), pMAL

(New England Biolabs, Beverly, Mass.) and pRITS5 (Phar-
macia, Piscataway, N.J.) which fuse glutathione S-transier-
ase (GST), maltose E binding protein, or protein A, respec-
tively, to the recombinant protein.

[0200] Additional promoter elements, 1.e., enhancers,
regulate the frequency of transcriptional initiation. Typi-
cally, these are located 1n the region 30-110 bp upstream of
the start site, although a number of promoters have recently
been shown to contain functional elements downstream of
the start site as well. The spacing between promoter ele-
ments frequently 1s flexible, so that promoter function 1s
preserved when elements are inverted or moved relative to
one another. In the thymidine kinase (tk) promoter, the
spacing between promoter elements can be increased to 50
bp apart before activity begins to decline. Depending on the
promoter, 1t appears that individual elements can function
either co-operatively or independently to activate transcrip-
tion.

[0201] A promoter may be one naturally associated with a
gene or polynucleotide sequence, as may be obtained by
1solating the 5' non-coding sequences located upstream of
the coding segment and/or exon. Such a promoter can be
referred to as “endogenous.” Similarly, an enhancer may be
one naturally associated with a polynucleotide sequence,
located eirther downstream or upstream of that sequence.
Alternatively, certain advantages will be gained by position-
ing the coding polynucleotide segment under the control of
a recombinant or heterologous promoter, which refers to a
promoter that 1s not normally associated with a polynucle-
otide sequence 1n 1ts natural environment. A recombinant or
heterologous enhancer refers also to an enhancer not nor-
mally associated with a polynucleotide sequence 1n 1its
natural environment. Such promoters or enhancers may
include promoters or enhancers of other genes, and promot-
ers or enhancers 1solated from any other prokaryotic, viral,
or eukaryotic cell, and promoters or enhancers not “naturally
occurring,” 1.e., containing different elements of different
transcriptional regulatory regions, and/or mutations that
alter expression. In addition to producing nucleic acid
sequences of promoters and enhancers synthetically,
sequences may be produced using recombinant cloning
and/or nucleic acid amplification technology, including
PCR™, 1n connection with the compositions disclosed
heremn (U.S. Pat. Nos. 4,683,202, 5,928,906). Furthermore,

it 1s contemplated the control sequences that direct tran-
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scription and/or expression of sequences within non-nuclear
organelles such as mitochondna, chloroplasts, and the like,
can be employed as well.

[0202] Naturally, 1t will be important to employ a pro-
moter and/or enhancer that eflectively directs the expression
of the DNA segment 1n the cell type, organelle, and organ-
1sm chosen for expression. The promoters employed may be
constitutive, tissue-specific, inducible, and/or useful under
the appropriate conditions to direct high level expression of
the introduced DNA segment, such as 1s advantageous in the
large-scale production of recombinant proteins and/or pep-
tides. The promoter may be heterologous or endogenous.

[0203] A promoter sequence exemplified in the experi-
mental examples presented herein 1s the immediate early
cytomegalovirus (CMV) promoter sequence. This promoter
sequence 1s a strong constitutive promoter sequence capable
of driving high levels of expression of any polynucleotide
sequence operatively linked thereto. However, other consti-
tutive promoter sequences may also be used, including, but
not limited to the simian virus 40 (SV40) early promoter,
mouse mammary tumor virus (MMTV), human immunode-
ficiency virus (HIV) long terminal repeat (L1R) promoter,
Moloney virus promoter, the avian leukemia virus promoter,
Epstein-Barr virus immediate early promoter, Rous sarcoma
virus promoter, as well as human gene promoters such as,
but not limited to, the actin promoter, the myosin promoter,
the hemoglobin promoter, and the muscle creatine promoter.
Further, implementations of the systems and methods dis-
cussed herein are not limited to the use of constitutive
promoters. Inducible promoters may also be generated or
identified via implementations of the systems and methods
discussed herein. The use of an 1inducible promoter gener-
ated or 1dentified via such systems or methods provides a
molecular switch capable of turning on expression of the
polynucleotide sequence which it 1s operatively linked when
such expression 1s desired, or turning ofl the expression
when expression 1s not desired. Examples of inducible
promoters include, but are not limited to a metallothionine
promoter, a glucocorticoid promoter, a progesterone pro-
moter, and a tetracycline promoter. Further, implementations
of the systems and methods discussed herein may allow the
use of a tissue specific promoter, which promoter 1s active
only 1n a desired tissue. Tissue specific promoters include,
but are not limited to, the HER-2 promoter and the PSA
associated promoter sequences.

[0204] In one embodiment, the expression of the nucleic
acid 1s externally controlled. For example, 1n one embodi-
ment, the expression 1s externally controlled using a doxy-
cycline Tet-On system or other inducible or repressible
expression system.

[0205] The recombinant expression vectors may also con-
tain a selectable marker gene which facilitates the selection
ol transformed or transiected host cells. Suitable selectable
marker genes are genes encoding proteins such as G418 and
hygromycin which confer resistance to certain drugs, [3-ga-
lactosidase, chloramphenicol acetyltransierase, firefly
luciferase, or an immunoglobulin or portion thereof such as
the Fc portion of an immunoglobulin preferably IgG. The

selectable markers may be introduced on a separate vector
from the nucleic acid of interest.

[0206] Reporter genes are used for 1dentifying potentially
transiected cells and for evaluating the functionality of
regulatory sequences. In general, a reporter gene 1s a gene
that 1s not present 1n or expressed by the recipient organism
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or tissue and that encodes a protein whose expression 1s
manifested by some easily detectable property, e.g., enzy-
matic activity. Expression of the reporter gene 1s assayed at
a suitable time after the DNA has been introduced 1nto the
recipient cells.

[0207] Exemplary reporter genes may include genes
encoding luciferase, beta-galactosidase, chloramphenicol
acetyl transferase, secreted alkaline phosphatase, or tluores-
cent proteins including, but not limited to, green tluorescent
protein gene (see, e.g., Ui-Te1 et al.,, 2000 FEBS Lett.
4'79:79-82).

[0208] In one embodiment, the 3DCNN-engineered pro-
tein generated or identified by implementations of the sys-
tems and methods discussed herein 1s a reporter gene and 1s
included 1n a suitable expression system. For example, 1n
one embodiment, the 3DCNN-engineered protein generated
or 1dentified by such systems or methods 1s a blue fluores-
cent protein having increased fluorescent activity. In such an
embodiment, a nucleotide sequence encoding the 3DCNN-
engineered protein generated or i1dentified by implementa-
tions of the systems and methods discussed herein may be
incorporated 1nto an expression system to allow for detec-
tion of a heterologous protein sequence.

[0209] Recombinant expression vectors may be intro-
duced 1nto host cells to produce a recombinant cell. The cells
can be prokaryotic or eukaryotic. The vector generated or
identified by implementations of the systems and methods
discussed herein can be used to transform eukaryotic cells
such as yeast cells, Saccharomyces cerevisiae, or mammal
cells for example epithelial kidney 293 cells or U20S cells,
or prokaryotic cells such as bacteria, Escherichia coli or
Bacillus subtilis, for example. Nucleic acid can be intro-
duced mto a cell using conventional techniques such as
calcium phosphate or calcium chloride co-precipitation,
DEAE-dextran-mediated transiection, lipofectin, electropo-
ration or microinjection. Suitable methods for transforming,
and transfecting host cells may be found 1n Sambrook et al.
(Molecular Cloning: A Laboratory Manual, 2nd Edition,
Cold Spring Harbor Laboratory press (1989)), and other
laboratory textbooks.

[0210] For example, a 3DCNN-engineered protein or chi-
meric 3DCNN-engineered protein generated or 1dentified by
implementations of the systems and methods discussed
herein may be expressed 1n bacterial cells such as E. coli,
isect cells (using baculovirus), yeast cells or mammalian
cells. Other suitable host cells can be found 1n Goeddel,
Gene Expression Technology: Methods 1n Enzymology 185,
Academic Press, San Diego, Calif. (1991).

Modified Blue Fluorescent Proteins

[0211] In one embodiment, implementations of the sys-
tems and methods discussed herein may be used to identify
or generate a secBFP2 variant protein. In certain aspects the
composition relates to a secBFP2 varnant protein comprising
one or more mutations that enhance stability. In certain
aspects the secBFP2 variant protein displays one or more of
enhanced stability, enhanced fluorescence, enhanced hali-
lite, and slower photobleaching, relative to wild-type
secBFP2.

[0212] In some embodiments, the secBFP2 variant protein
comprises secCBFP2 comprising one or more mutations. For
example, in some embodiments, the secBFP2 variant protein
comprises secBFP2 comprising one or more mutations at

one more residues selected from: T18, S28, Y96, S114,
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V124, T127, D151, N173, and R198, 1n relation to full-
length wild-type secBFP2. In one embodiment, full-length

wild-type secBFP2 comprises the amino acid sequence of:

(SEQ ID NO: 1)
SEELIKENMHMKLYMEGTVDNHHFKCTSEGCECGKPYEGTQTMR

IKVVEGGPLPFAFDILATSEFLYGSKTEF IDHTOGIPDEFKOSE
PEGFTWERVTTYEDGGVLTATODTSLODGSLIYNVKIRGYVDE
TSNGPVMOQKKTLGWEAFTETLYPADGGLEGRNDMALKLVGGS
HLIANAKTTYRSKKPAKNLKMPGVYYVDYRLERIKEANDETY

VEQHEVAVARYSDLPSKLGHKLN*

[0213] In certain embodiments, the notation of the muta-

tions within the secBFP2 varnant protein described herein
are relative to SEQ ID NO: 1. For example a secBFP2

variant protein comprising a mutation at T18 refers to
secBFP2 but having a mutation at a residue that correlates
with the threonine at position 18 of full-length wild-type
secBFP2 (SEQ ID NO: 1).

[0214] In some embodiments, the secBFP2 variant protein
comprises secBFP2 comprising one or more mutations

selected from: T18X, S28X, Y96X, S114X, V124X, T127X,
D151X, N173X, and R198X, 1n relation to full-length wild-
type secBFP2, where X 1s any amino acid. In some embodi-
ments, the secBFP2 varnant protein comprises secBFP2
comprising one or more mutations selected from: T18 W,
T18V, T18E, S28A, Y96F, S114V, S114T, V12471, V124Y,
V124 W, T127P, T127L, T127R, T127D, D151G, N173T,
N173H, N173R, N173S, R198V and R198L, in relation to
tull-length wild-type secBFP2.

[0215] In one embodiment, the secBFP2 variant protein
comprises secBFP2 comprising a T18X mutation, where X
1s any amino acid. In one embodiment, the secBFP2 variant
protein comprises seCBFP2 comprising a T18 W mutation,
T18V mutation, or a T18F mutation, 1in relation to full-
length wild-type secBFP2.

[0216] For example, in one embodiment, the secBFP2
valiant protein comprises: SEELIKENMHMKLYMEG

WVDNHHFKCITSEGEGKPYEGTQTMRIKVVEGGPLP

FAFDIL ATSFLYGSKTFIDHTQ-
GIPDFFKQSFPEGFTWERVTTYEDGGVLTATQDT-
SLQDGSLIYN VKIRGVDFTSNGPVMQKKTLGWEAF-
TETLYPADGGLEGRNDMALKLVGGSHLIANAKT
TYRSKKPAKNLKMPGVYYVDYRLERIKEANDE-
TYVEQHEVAVARYSDLPSKLGHKLN (SEQ ID NO: 2),
or a variant or fragmen‘[ thereof.

[0217] For example, in one embodiment, the secBFP2
variant protein comprises: SEELIKENMHMKLYMEG
VVDNHHFKCTSEGEGKPYEGTQTMRIKVVEGGPLPF
AFDILA TSFLYGSKTFIDHTQ-
GIPDFFKQSFPEGFTWERVTTYEDGGVLTATQDT-
SLQDGSLIYNV KIRGVDFTSNGPVMQKKTLGWEAF-
TETLYPADGGLEGRNDMALKLVGGSHLIANAKTT
YRSKKPAKNLKMPGVYYVDYRLERIKEANDE-
TYVEQHEVAVARYSDLPSKLGHKLN (SEQ ID NO: 3),
Or a variant or fragmen‘[ thereof.

[0218] For example, in one embodiment, the secBFP2
variant protein comprises: SEELIKENMHMKLYMEG

EVDNHHFKCISEGEGKPYEGTQTMRIKVVEGGPLPFE
AFDILA ISFLYGSKTFIDHTQ-
GIPDFFKQSFPEGEF TWERV I TYEDGGVLIATQD -
SLOQDGSLIYNYV KIR-
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GVDEFISNGPVMQKKTLGWEALFTETLY PADGG-
LEGRNDMALKLVGGSHLIANAKTT
YRSKKPAKNLKMPGVYYVDYRLERIKEANDE-
TYVEQHEVAVARYSDLPSKLGHKLN (SEQ ID NO: 4),

or a variant or fragment thereof.

[0219] In one embodiment, the secBFP2 varant protein
comprises secBFP2 comprising a S28X mutation, where X
1s any amino acid. In one embodiment, the secBFP2 variant

protein comprises secBFP2 comprising a S28 A mutation in
relation to full-length wild-type secBFP2.

[0220] For example, in one embodiment, the secBFP2
variant protein COMprises: SEELIKENMHMK -
LYMEGTVDNHHFKCT
AEGEGKPYEGTQTMRIKVVEGGPLPFAFDIL ATSFLY-
GSKTFIDHTQGIPDFFKQSFPEGFTWERVT-
TYEDGGVLTATQDTSLQDGSLIYN VKIRGVDETS
NGPVMQKKTLGWEAFTETLYPADGGLEGRNDMAL-
KLVGGSHLIANAKT TYR-
SKKPAKNLKMPGVYYVDYRLERIKEANDE-
TYVEQHEVAVARYSDLPSKLGHKLN (SEQ ID NO: 35),

or a variant or fragment thereof.

[0221] In one embodiment, the secBFP2 variant protein
comprises secCBFP2 comprising a Y96X mutation, where X
1s any amino acid. In one embodiment, the secBFP2 variant
protein comprises secCBFP2 comprising a Y96F mutation in
relation to full-length wild-type secBFP2.

[0222] For example, in one embodiment, the secBFP2
variant protein COmprises: SEELIKENMHMK -

LYMEGTVDNHHFKCITSEGEGKPYEGTQTM-
RIKVVEGGPLPFAFDILA ISFLYGSKTFIDHTQ-
GIPDFFKQSFPEGEF TWERVTT
FEDGGVLIATQDTSLQDGSLIYNV
GVDFTSNGPVMQKKTLGWEA CTETLY PADGG-
LEGRNDMALKLVGGSHLIANAKTT
YRSKKPAKNLKMPGVYYVDYRLERIKEANDIE-

TYVEQHEVAVARYSDLPSKLGHKLN (SEQ ID NO: 6),
or a variant or fragment thereof.

[0223] In one embodiment, the secBFP2 vanant protein
comprises secBFP2 comprising a S114X mutation, where X
1s any amino acid. In one embodiment, the secBFP2 variant
protein comprises secBFP2 comprising a S114V mutation or
a S114T mutation, 1 relation to full-length wild-type
secBFP2.

[0224] For example, in one embodiment, the secBFP2
variant protein COmMprises: SEELIKENMHMK -
LYMEGTVDNHHFKCTSEGEGKPYEGTQTM-
RIKVVEGGPLPFAFDILA TSFLYGSKTFIDHTQ-
GIPDFFKQSFPEGFTWERVTTYEDGGVLTATQDTSLQ
DGVLIYNV KIRGVDFTSNGPVMQKKTLGWEAFTET-
LYPADGGLEGRNDMALKLVGGSHLIANAKTT
YRSKKPAKNLKMPGVYYVDYRLERIKEANDE-

TYVEQHEVAVARYSDLPSKLGHKLN (SEQ ID NO: 7),
or a variant or fragment thereof.

[0225] For example, in one embodiment, the secBFP2
variant protein COmMprises: SEELIKENMHMK -

LYMEGTVDNHHFKCITSEGEGKPYEGTQTM-
RIKVVEGGPLPFAFDILA ISFLYGSKTFIDHTQ-
GIPDFFKQSFPEGEFTWERVITYEDGGVLIATQDTSLQ
DGILIYNV KIRGVDFISNGPVMQKKTLGWEAFTET-
LYPADGGLEGRNDMALKLVGGSHLIANAKTT
YRSKKPAKNLKMPGVYYVDYRLERIKEANDE-
TYVEQHEVAVARYSDLPSKLGHKLN (SEQ ID NO: 8),

or a variant or fragment thereof.

KIR-
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[0226] In one embodiment, the secBFP2 variant protein
comprises secBFP2 comprising a V124X mutation, where X
1s any amino acid. In one embodiment, the secBFP2 varant
protein comprises secBFP2 comprising a V124 T mutation, a

V124Y mutation, or a V124 W mutation, 1n relation to
tull-length wild-type secBFP2.

[0227] For example, in one embodiment, the secBFP2
variant protein COMpPrises: SEELIKENMHMK -
LYMEGTVDNHHFKCTSEGEGKPYEGTQTM-
RIKVVEGGPLPFAFDILA TSFLYGSKTFIDHTQ-
GIPDFFKQSFPEGFTWERVTTYEDGGVLTATQDTSL
QDGSLIYNV KIRGTDFTSNGPVMQKKTLG
WEAFTETLYPADGGLEGRNDMALKLVGGSHLI-
ANAKTT YRSKKPAKNLKMPGVYYVDYRLERIKE-

ANDETYVEQHEVAVARYSDLPSKLGHKLN (SEQ ID
NO: 9), or a vanant or fragment thereof.

[0228] For example, in one embodiment, the secBFP2
variant protein COMprises: SEELIKENMHMK -
LYMEGTVDNHHFKCTSEGEGKPYEGTQTM-
RIKVVEGGPLPFAFDILA TSFLYGSKTFIDHTQ-
GIPDFFKQSFPEGFTWERVTTYEDGGVLTATQDTSLQ
DGSLIYNV KIRGYDFTSNGPVMQKK
TLGWEAFTETLYPADGGLEGRNDMALKLVGGSHLI-
ANAKTT  YRSKKPAKNLKMPGVYYVDYRLERIKE-

AND. JTYVEQHEVAVARYSDLPSKLGHKLN (SEQ ID
NO: 10), or a vaniant or fragment thereof.

[0229] For example, in one embodiment, the secBFP2
variant protein COMpIrises: SEELIKENMHMK -

LYMEGTVDNHHFKCITSEGEGKPYEGTQTM-
RIKVVEGGPLPFAFDILA ISFLYGSKTFIDHTQ-
GIPDFFRKQSFPEGEF TWERV I TYEDGGVLIATQD TSLQ
DGSLIYNYV KIRGWDEFISNGPVMQKKTL
OWEAFTETLYPADGGLEGRNDMALKLVGGSHLI-
ANAKT TYRSKKPAKNLKMPGVYYVDYRLERIKE-
ANDETYVEQHEVAVARYSDLPSKLGHKLN (SEQ 1D

NO: 11), or a variant or fragment thereof.

[0230] In one embodiment, the secBFP2 variant protein
comprises secBFP2 comprising a T127X mutation, where X
1s any amino acid. In one embodiment, the secBFP2 variant
protein comprises secBFP2 comprising a T127P mutation, a
11271 mutation, a T127R mutation, or a T127D mutation,
in relation to full-length wild-type secBFP2.

[0231] For example, in one embodiment, the secBFP2
valiant protein COmMprises: SEELIKENMHMK -
LYMEGTVDNHHFKCTSEGEGKPYEGTQTM-
RIKVVEGGPLPFAFDILA TSFLYGSKTFIDHTQ-
GIPDFFKQSFPEGFTWERVTTYEDGGVLTATQDTSLQ
DGSLIYNV KIRGVDFPSNGPVMQKKTLG
WEAFTETLYPADGGLEGRNDMALKLVGGSHLI-
ANAKTT  YRSKKPAKNLKMPGVYYVDYRLERIKE-

ANDETYVEQHEVAVARYSDLPSKLGHKLN (SEQ ID
NO: 12), or a variant or fragment thereof.

[0232] For example, in one embodiment, the secBFP2
variant protein COMprises: SEELIKENMHMK -
LYMEGTVDNHHFKCTSEGEGKPYEGTQTM-
RIKVVEGGPLPFAFDILA TSFLYGSKTFIDHTQ-
GIPDFFKQSFPEGFTWERVTTYEDGGVLTATQDTSLQ
DGSLIYNV KIRGVDFLSNGPVMQKKTLGWEA
FIETLYPADGGLEGRNDMALKLVGGSHLIANAKTT
YRSKKPAKNLKMPGVYYVDYRLERIKEANDE-

TYVEQHEVAVARYSDLPSKLGHKLN (SEQ ID NO: 13),
or a variant or fragment thereof.

[0233] For example, in one embodiment, the secBFP2
variant protein COMprises: SEELIKENMHMK -
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LYMEGTVDNHHFKCTSEGEGKPYEGTQTM-
RIKVVEGGPLPFAFDILA TSFLYGSKTFIDHTQ-
GIPDFFKQSFPEGFTWERVTTYEDGGVLTATQDTSLQ
DGSLIYNV KIRGVDF
RSNGPVMQKKTLGWEAFTETLYPADGGLEGRNDM
ALKLVGGSHLIANAKTT
YRSKKPAKNLKMPGVYYVDYRLERIKEANDE-
TYVEQHEVAVARYSDLPSKLGHKLN (SEQ ID NO: 14),
or a variant or fragment thereof.

[0234] For example, in one embodiment, the secBFP2
variant protein COmMprises: SEELIKENMHMK -

LYMEGTVDNHHFKCTSEGEGKPYEGTQTM-
RIKVVEGGPLPFAFDILA TSFLYGSKTFIDHTQ-
GIPDFFKQSFPEGFTWERVTTYEDGGVLTATQDTSL
QDGSLIYNV  KIRGVDFDSNGPVMQKKTLGWEAF-
TETLYPADGGLEGRNDMALKLVGGSHLIANAKTT
YRSKKPAKNLKMPGVYYVDYRLERIKEANDE-
TYVEQHEVAVARYSDLPSKLGHKLN (SEQ ID NO: 15),
or a variant or fragment thereof.

[0235] In one embodiment, the secBFP2 vanant protein
comprises secBFP2 comprising a D151X mutation, where X
1s any amino acid. In one embodiment, the secBFP2 variant
protein comprises secBFP2 comprising a D131G mutation
in relation to full-length wild-type secBFP2. For example 1n

one embodiment, the secBFP2 variant protein comprises:
SEELIKENMHMKLYMEGTVDNHHFKCT-

SEGEGKPYEGTQTMRIKVVEGGPLPFAFDILA TSFLY-
OSKTFIDHTQGIPDEFFKQSFPEGEF T WERV |-
TYEDGGVLIATQDTSLOQDGSLIYNY
KIRGVDFISNGPVMQKKTLGWEAFTETLYPA
GOGGOGLEGRNDMALKLVGGSHLIANAKTT
YRSKKPAKNLKMPGVYYVDYRLERIKEANDE-
TYVEQHEVAVARYSDLPSKLGHKLN (SEQ ID NO: 16),

or a variant or fragment thereof.

[0236] In one embodiment, the secBFP2 variant protein
comprises secBFP2 comprising a N173X mutation, where X
1s any amino acid. In one embodiment, the secBFP2 variant
protein comprises secBFP2 comprising a N173T mutation, a
N173H mutation, a N173R mutation, or a N173S mutation,
in relation to full-length wild-type secBFP2.

[0237] For example, in one embodiment, the secBFP2
variant protein COmprises: SEELIKENMHMK -
LYMEGTVDNHHFKCTSEGEGKPYEGTQTM-
RIKVVEGGPLPFAFDILA TSFLYGSKTFIDHTQ-
GIPDFFKQSFPEGFTWERVTTYEDGGVLTATQDTSL
QDGSLIYNV  KIRGVDFITSNGPVMQKKTLGWEAF-
TETLYPADGGLEGRNDMALKLVGGSHLIATAKTT
YRSKKPAKNLKMPGVYYVDYRLERIKEANDE-

TYVEQHEVAVARYSDLPSKLGHKLN (SEQ ID NO: 17),
or a variant or fragment thereof.

[0238] For example, in one embodiment, the secBFP2
variant protein COmprises: SEELIKENMHMK -
LYMEGTVDNHHFKCTSEGEGKPYEGTQTM-
RIKVVEGGPLPFAFDILA TSFLYGSKTFIDHTQ-
GIPDFFKQSFPEGFTWERVTTYEDGGVLTATQDTSLQ
DGSLIYNV KIRGVDFISNGPVMQKKTLGWEAFTET-
LYPADGGLEGRNDMALKLVGGSHLIAHAKTT
YRSKKPAKNLKMPGVYYVDYRLERIKEANDE-

TYVEQHEVAVARYSDLPSKLGHKLN (SEQ ID NO: 18),
or a variant or fragment thereof.

[0239] For example, in one embodiment, the secBFP2
variant protein COmprises: SEELIKENMHMK -
LYMEGTVDNHHFKCTSEGEGKPYEGTQTM-

RIKVVEGGPLPFAFDILA TSFLYGSKTFIDHTQ-
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GIPDFFKQSFPEGFTWERVTTYEDGGVLTATQDTSLQ
DGSLIYNV KIRGVDFTSNGPVMQKKTLGWEAFTET-
LYPADGGLEGRNDMALKLVGGSHLIARAKTT
YRSKKPAKNLKMPGVYYVDYRLERIKEANDE-
TYVEQHEVAVARYSDLPSKLGHKLN (SEQ ID NO: 19),
or a variant or fragment thereof.

[0240] For example, in one embodiment, the secBFP2
variant protein COMprises: SEELIKENMHMK -

LYMEGTVDNHHFKCTSEGEGKPYEGTQTM-
RIKVVEGGPLPFAFDILA TSFLYGSKTFIDHTQ-
GIPDFFKQSFPEGFTWERVTTYEDGGVLTATQDTSL
QDGSLIYNV  KIRGVDFITSNGPVMQKKTLGWEAF-
TETLYPADGGLEGRNDMALKLVGGSHLIASAKTT
YRSKKPAKNLKMPGVYYVDYRLERIKEANDE-
TYVEQHEVAVARYSDLPSKLGHKLN (SEQ ID NO: 20),
or a variant or fragment thereof.

[0241] In one embodiment, the secBFP2 variant protein
comprises secBFP2 comprising a R198X mutation, where X
1s any amino acid. In one embodiment, the secBFP2 varant
protein comprises secBFP2 comprising a R198V mutation
or a R198L mutation, in relation to full-length wild-type
secBEFP2.

[0242] For example, in one embodiment, the secBFP2
variant protein COMprises: SEELIKENMHMK -
LYMEGTVDNHHFKCTSEGEGKPYEGTQTM-
RIKVVEGGPLPFAFDILA TSFLYGSKTFIDHTQ-
GIPDFFKQSFPEGFTWERVTTYEDGGVLTATQDTSL
QDGSLIYNV  KIRGVDFITSNGPVMQKKTLGWEAF-
TETLYPADGGLEGRNDMALKLVGGSHLIANAKTT
YRSKKPAKNLKMPGVYYVDY
VLERIKEANDETYVEQHEVAVARYSDLPSKLGHKLN
(SEQ ID NO: 21), or a variant or fragment thereof.

[0243] For example, in one embodiment, the secBFP2
variant protein COMprises: SEELIKENMHMK -
LYMEGTVDNHHFKCTSEGEGKPYEGTQTM-
RIKVVEGGPLPFAFDILA TSFLYGSKTFIDHTQ-
GIPDFFKQSFPEGFTWERVTTYEDGGVLTATQDTSLQ
DGSLIYNV KIRGVDFTSNGPVMQKKTLGWEAFTET-
LYPADGGLEGRNDMALKLVGGSHLIANAKTT
YRSKKPAKNLKMPGVYYVDY

LLERIKEANDETY VEQHEVAVARYSDLPSKLGHKLN

(SEQ ID NO: 22), or a vanant or fragment thereof.

[0244] In one embodiment, the secBFP2 variant protein
comprises secBFP2 comprising a one or more, two or more,
three or more, four or more, five or more, six or more, seven
or more, eight or more, or all nine of the mutations of T18X,
S28X, YO96X, S114X, V124X, T127X, D151X, N173X, and
R198X 1n relation to full-length wild-type secBFP2, where
X 1s any amino acid. In one embodiment, the secBFP2
variant protein comprises secBFP2 comprising a one or
more, two or more, three or more, four or more, five or more,
S1IX Or more, seven or more, eight or more, or nine or more
of T18 W, T18V, T18E, S28A, YO6F, S114V, S114T, V124T,
V124Y, V124 W, T127P, T127L, T127R, T127D, D151G,
N173T, N173H, N173R, N173S, R198V and R198L, m
relation to full-length wild-type secBFP2.

[0245] In one embodiment, the secBFP2 variant protein
comprises secBFP2 comprising the mutations of T18X,
S28X, S114X, V124X, T127X, DI151X, NI173X, and
R198X, 1n relation to full-length wild-type secBFP2, where
X 1s any amino acid. In one embodiment, the secBFP2
variant protein comprises secBFP2 comprising the muta-
tions of T18 W, S28A, S114V, V124T, T127P, D151G,
N173T, and R198L, i relation to full-length wild-type
secBEFP2.
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[0246] For example, in one embodiment, the secBFP2
variant protein comprises: SEELIKENMHIVIKLYMEG

WVDNHHFKCT
A SOEGKPYEGTQTMRIKVVEGGPLPFAFDIL ATSEFLY-
OSKTFIDHTQGIPDEFFKQSFPEGEF T WERV -

TYEDGGVLIATQDTSLEDGVLIYN VKIRGITDF
PSNGPVMQKKTLGWEAFTETLYPA
GOGLEGRNDMALKILIVGGSHLIATAKT TYR-

SKKPAKNLKMPGVYYVDY
LLERIKEANDETYVEQHEVAVARYSDLPSKLGHKLN
(SEQ ID NO: 23), or a variant or fragment thereof.

[0247] In one embodiment, the secBFP2 variant protein
comprises secBFP2 comprising the mutations of S28X,
S114X, T127X, and N173X 1n relation to full-length wild-
type secBFP2, where X 1s any amino acid. In one embodi-
ment, the secBFP2 variant protein comprises secBFP2 com-
prising the mutations of S28A, S1147T, T127L, and N173H,

in relation to full-length wild-type secBFP2.

[0248] For example, in one embodiment, the secBFP2
variant protein COmMprises: SEELIKENMHMK -

LYMEGTVDNHHFKCT
AEGEGKPYEGTQTMRIKVVEGGPLPFAFDIL ATSFLY-
GSKTFIDHTQGIPDFFKQSFPEGEFTWERV'T-
TYEDGGVLTATQDTSLQDGTLIYN VKIRGVDF
LSNGPVMQKKTLGWEAFTETLYPADGGLEGRNDMA
LKLVGGSHLIAHAK TTYR-
SKKPAKNLKMPGVYYVDYRLERIKEANDE-
TYVEQHEVAVARYSDLPSKLGHKLN (SEQ ID NO: 24),
or a variant or fragment thereof.

[0249] In one embodiment, the secBFP2 vanant protein
comprises secBFP2 comprising the mutations of S28X and
S114X 1n relation to full-length wild-type secBFP2, where X
1s any amino acid. In one embodiment, the secBFP2 variant

protein comprises secBFP2 comprising the mutations of
S28A and S1147T, in relation to {full-length wild-type

secBFP2.

[0250] For example, in one embodiment, the secBFP2
variant protein COmMprises: SEELIKENMHMK -

LYMEGITVDNHHEFKCT
AFEGEGKPYEGITQTMRIKVVEGGPLPFAFDIL AISFLY-
OSKTFIDHTQGIPDFFKQSFPEGEFTWERV T-
TYEDGGVLIATQDITSLQEDGILIYN VKIRGVDETSN
GPVMQKKTLGWEAFTETLYPADGGLEGRNDMAL-
KLVGGSHLIANAKT TYR-
SKKPAKNLKMPGVYYVDYRLERIKEANDE-

TYVEQHEVAVARYSDLPSKLGHKLN (SEQ ID NO: 25),
or a variant or fragment thereof.

[0251] In one embodiment, the secBFP2 variant protein
comprises secBFP2 comprising the mutations of S28X,
S114X, and N173X 1n relation to full-length wild-type
secBFP2, where X 1s any amino acid. In one embodiment,
the secBFP2 variant protein comprises secBFP2 comprising
the mutations of S28A, S1147T, and N173H, 1n relation to
tull-length wild-type secBFP2.

[0252] For example, in one embodiment, the secBFP2
valiant protein COMprises: SEELIKENMHMK -
LYMEGTVDNHHFKCT
AEGEGKPYEGTQTMRIKVVEGGPLPFAFDIL ATSFLY-
GSKTFIDHTQGIPDFFKQSFPEGFTWERVT-
TYEDGGVLTATQDTSLQDGTLIYN VKIRGVDEF
TSNGPVMQKKTLGWEAFTETLYPADGGLEGRND-
MALKLVGGSHLIAHAK TTYR-
SKKPAKNLKMPGVYYVDYRLERIKEAND:.

T
|
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TYVEQHEVAVARYSDLPSKLGHKLN (SEQ ID NO: 26),
or a variant or fragment thereof.

[0253] In one embodiment, the secBFP2 variant protein
comprises secBFP2 comprising the mutations of S28X,
Y96X, S114X, and N173X 1n relation to full-length wild-
type secBFP2, where X 1s any amino acid. In one embodi-
ment, the secBFP2 variant protein comprises secBFP2 com-
prising the mutations of S28A, YO96F, S114T, and N173H, in
relation to full-length wild-type secBFP2.

[0254] For example, in one embodiment, the secBFP2
variant protein COMprises: SEELIKENMHMK -
LYMEGTVDNHHFKCT

AEGEGKPYEGTQTMRIKVVEGGPLPFAFDIL ATSFLY-
GSKTFIDHTQGIPDFFKQSFPEGFTWERVTT
FEDGGVLTATQDTSLQDGTLIYN
GVDFTSNGPVMQKKTLGWEAFTETLYPADGG-
LEGRNDMALKLVGGSHLIAHAK TTYRSKKPA
KNLKMPGVYYVDYRLERIKEANDETYVEQHEVA-
VARYSDLPSKLGHKLN (SEQ ID NO: 27), or a variant or
fragment thereol.

[0255] In one embodiment, the secBFP2 variant protein
comprises secBFP2 comprising the mutations of S28X,
YO96X, S114X, T127X, and N173X 1n relation to tull-length
wild-type secBFP2, where X 1s any amino acid. In one
embodiment, the secBFP2 variant protemn comprises

secBFP2 comprising the mutations of S28A, Y96F, S1147,
T127L, and N173H, 1n relation to full-length wild-type

VKIR-

secBFP2.

[0256] For example, in one embodiment, the secBFP2
valiant protein COmMprises: SEELIKENMHMK -
LYMEGTVDNHHFKCT

AEGEGKPYEGTQTMRIKVVEGGPLPFAFDIL ATSFLY-
GSKTFIDHTQGIPDFFKQSFPEGFTWERVTT
FEDGGVLTATQDTSLQDGTLIYN VKIRGVDFLSN
GPVMQKKTLGWEAFTETLYPADGGLEGRNDMAL -
KLVGGSHLIAHAK TTYR-
SKKPAKNLKMPGVYYVDYRLERIKEANDE-
TYVEQHEVAVARYSDLPSKLGHKLN (SEQ ID NO: 28),
or a variant or fragment thereof.

[0257] In one embodiment, compositions generated or
identified by implementations of the systems and methods
discussed herein include an isolated nucleic acid molecule
comprising a nucleotide sequence encoding a secBFP2
variant protein. In various embodiments, the nucleic acid
molecule comprises a sequence encoding for at least one
amino acid sequence as set forth in SEQ ID NO:2 through
SEQ ID NO:28, or a variant or fragment thereof.

[0258] A fusmn protein, which includes a fluorescent
protein variant operatively linked to one or more polypep-

tides of interest also 1s provided. The polypeptides of the
fusion protein can be linked through peptide bonds, or the
fluorescent protein variant can be linked to the polypeptide
ol interest through a linker molecule. In one embodiment,
the fusion protein 1s expressed from a recombinant nucleic
acid molecule containing a polynucleotide encoding a fluo-
rescent protein variant operatively linked to one or more
polynucleotides encoding one or more polypeptides of inter-
est.

[0259] A polypeptide of interest can be any polypeptide,
including, for example, a peptide tag such as a polyhistidine
peptide, or a cellular polypeptide such as an enzyme, a
G-protein, a growth factor receptor, or a transcription factor;
and can be one of two or more proteins that can associate to
form a complex. In one embodiment, the fusion protein 1s a
tandem fluorescent protein variant construct, which includes
a donor fluorescent protein variant, an acceptor fluorescent
protein variant, and a peptide linker moiety coupling said
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donor and said acceptor, wherein cyclized amino acids of the
donor emit light characteristic of said donor, and wherein the
donor and the acceptor exhibit fluorescence resonance
energy transier when the donor i1s excited, and the linker
moiety does not substantially emit light to excite the donor.
As such, a fusion protein generated or identified by 1mple-
mentations of the systems and methods discussed herein can
include two or more operatively linked fluorescent protein
variants, which can be linked directly or indirectly, and can
turther comprise one or more polypeptides ol interest.

Kits

[0260] In some implementations, kits may be provided to
tacilitate and/or standardize use of compositions provided or
identified by implementations of the systems and methods
discussed herein, as well as facilitate the methods discussed
herein. Materials and reagents to carry out these various
methods can be provided 1n kits to facilitate execution of the
methods. As used herein, the term “kit” 1s used 1n reference
to a combination of articles that facilitate a process, assay,
analysis or manipulation.

[0261] Kits can contain chemical reagents (e.g., polypep-
tides or polynucleotides) as well as other components. In
addition, kits discussed herein can also include, for example
but not limited to, apparatus and reagents for sample col-
lection and/or purification, apparatus and reagents for prod-
uct collection and/or purification, reagents for bacterial cell
transformation, reagents for eukaryotic cell transfection,
previously transformed or transifected host cells, sample
tubes, holders, trays, racks, dishes, plates, instructions to the
kit user, solutions, buflers or other chemical reagents, suit-
able samples to be used for standardization, normalization,
and/or control samples. Kits can also be packaged {for
convenient storage and safe shipping, for example, 1n a box
having a lid.

[0262] In some embodiments, for example, kits discussed
herein can provide a fluorescent protein generated or i1den-
tified by implementations of the systems and methods dis-
cussed herein, a polynucleotide vector (e.g., a plasmid)
encoding a fluorescent protein generated or identified by
implementations of the systems and methods discussed
herein, bacternial cell strains suitable for propagating the
vector, and reagents for purification of expressed fusion
proteins. In some embodiments, a kit as discussed herein can
provide the reagents necessary to conduct mutagenesis of an
Anthozoan fluorescent protein 1n order to generate a protein
variant having a reduced propensity to oligomerize.

[0263] A kit can contain one or more compositions gen-
crated or i1dentified by implementations of the systems and
methods discussed herein, for example, one or a plurality of
fluorescent protein variants, which can be a portion of a
fusion protein, or one or a plurality of polynucleotides that
encode the polypeptides. The fluorescent protein variant can
be a mutated tluorescent protein having a reduced propensity
to oligomerize, such as a non-oligomerizing monomer, or
can be a tandem dimer fluorescent protein and, where the kit
comprises a plurality of fluorescent protein variants, the
plurality can be a plurality of the mutated fluorescent protein
variants, or of the tandem dimer fluorescent proteins, or a
combination thereof.

[0264] A kit as discussed herein also can contain one or a
plurality of recombinant nucleic acid molecules, which
encode, 1n part, fluorescent protein variants, which can be
the same or different, and can further include, for example,

May 25, 2023

an operatively linked second polynucleotide containing or
encoding a restriction endonuclease recognition site or a
recombinase recognition site, or any polypeptide of interest.
In addition, the kit can contain instructions for using the
components of the kit, particularly the compositions gener-
ated or i1dentified by implementations of the systems and
methods discussed herein that are contained in the kat.
[0265] Such kits can be particularly useful where they
provide a plurality of different fluorescent protein variants
because the artisan can conveniently select one or more
proteins having the fluorescent properties desired for a
particular application. Similarly, a kit containing a plurality
of polynucleotides encoding different fluorescent protein
variants provides numerous advantages. For example, the
polynucleotides can be engineered to contain convenient
restriction endonuclease or recombinase recognition sites,
thus facilitating operative linkage of the polynucleotide to a
regulatory element or to a polynucleotide encoding a poly-
peptide of interest or, if desired, for operatively linking two
or more the polynucleotides encoding the fluorescent protein
variants to each other.

Uses of Fluorescent Protein Variants

[0266] A fluorescent protein variant generated or identi-
fied by implementations of the systems and methods dis-
cussed herein 1s useful in any method that employs a
fluorescent protein. Thus, the fluorescent protein variants,
including the monomeric, dimeric, and tandem dimer fluo-
rescent proteins, are useful as fluorescent markers in the
many ways fluorescent markers already are used, including,
for example, coupling fluorescent protein variants to anti-
bodies, polynucleotides or other receptors for use 1n detec-
tion assays such as immunoassays or hybridization assays,
or to track the movement of proteins in cells. For intracel-
lular tracking studies, a first (or other) polynucleotide encod-
ing the fluorescent protein variant 1s fused to a second (or
other) polynucleotide encoding a protein of interest and the
construct, 1f desired, can be iserted to an expression
vector. Upon expression inside the cell, the protein of
interest can be localized based on fluorescence, without
concern that localization of the protein 1s an artifact caused
by oligomerization of the fluorescent protein component of
the fusion protein. In one embodiment of this method, two
proteins of interest independently are fused with two fluo-
rescent protein variants that have different fluorescent char-
acteristics.

[0267] The fluorescent protein variants generated or 1den-
tified by implementations of the systems and methods dis-
cussed herein are useful in systems to detect induction of
transcription. For example, a nucleotide sequence encoding
a non-oligomerizing monomeric, dimeric or tandem dimeric
fluorescent protein can be fused to a promoter or other
expression control sequence of interest, which can be con-
tamned 1n an expression vector, the construct can be trans-
fected into a cell, and induction of the promoter (or other
regulatory element) can be measured by detecting the pres-
ence or amount of fluorescence, thereby allowing a means to
observe the responsiveness of a signaling pathway from
receptor to promotetr.

[0268] A fluorescent protein variant generated or identi-
fied by implementations of the systems and methods dis-
cussed herein also 1s useful 1n applications involving FRET,
which can detect events as a function of the movement of
fluorescent donors and acceptors towards or away from each
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other. One or both of the donor/acceptor pair can be a
fluorescent protein variant. Such a donor/acceptor pair pro-
vides a wide separation between the excitation and emission
peaks of the donor, and provides good overlap between the
donor emission spectrum and the acceptor excitation spec-
trum

[0269] FRET can be used to detect cleavage of a substrate
having the donor and acceptor coupled to the substrate on
opposite sides of the cleavage site. Upon cleavage of the
substrate, the donor/acceptor pair physically separate, elimi-
nating FRET. Such an assay can be performed, for example,
by contacting the substrate with a sample, and determining
a qualitative or quantitative change in FRET (see, for
example, U.S. Pat. No. 5,741,657, which 1s incorporated
herein by reference). A fluorescent protein variant donor/
acceptor pair also can be part of a fusion protein coupled by
a peptide having a proteolytic cleavage site (see, for
example, U.S. Pat. No. 5,981,200, which 1s incorporated
herein by reference). FRET also can be used to detect
changes 1n potential across a membrane. For example, a
donor and acceptor can be placed on opposite sides of a
membrane such that one translates across the membrane in
response to a voltage change, thereby producing a measur-
able FRET (see, for example, U.S. Pat. No. 5,661,035,

which 1s incorporated herein by reference).

[0270] In other embodiments, a fluorescent protein gen-
erated or 1dentified by implementations of the systems and
methods discussed herein 1s useful for making fluorescent
sensors for protein kinase and phosphatase activities or
indicators for small 1ons and molecules such as Ca', Zn',
cyclic 3', 5'-adenosine monophosphate, and cyclic 3,
S'-guanosine monophosphate.

[0271] Fluorescence 1mn a sample generally 1s measured
using a fluorimeter, wherein excitation radiation from an
excitation source having a first wavelength, passes through
excitation optics, which cause the excitation radiation to
excite the sample. In response, a fluorescent protein variant
in the sample emits radiation having a wavelength that 1s
different from the excitation wavelength. Collection optics
then collect the emission from the sample. The device can
include a temperature controller to maintain the sample at a
specific temperature while 1t 1s being scanned, and can have
a multi-axis translation stage, which moves a microtiter
plate holding a plurality of samples 1mn order to position
different wells to be exposed. The multi-axis translation
stage, temperature controller, auto-focusing feature, and
clectronics associated with imaging and data collection can
be managed by an appropriately programmed digital com-
puter, which also can transform the data collected during the
assay 1nto another format for presentation. This process can
be mimaturized and automated to enable screening many
thousands of compounds 1n a high throughput format. Some
methods of performing assays on fluorescent materials
include Lakowicz, “Principles of Fluorescence Spectros-
copy”’ (Plenum Press 1983); Herman, “Resonance energy

transier microscopy” In “Fluorescence Microscopy of Liv-
ing Cells 1n Culture” Part B, Meth. Cell Biol. 30:219-243

(ed. Taylor and Wang; Academic Press 1989); Turro, “Mod-
ern Molecular Photochemistry” (Benjamin/Cummings Publ.
Co., Inc. 1978), pp. 296-361, each of which 1s imncorporated

herein by reference.

[0272] Accordingly, the present disclosure also provides
implementations of a method for identitying the presence of
a molecule 1 a sample. Such a method can be performed, for
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example, by linking a fluorescent protein variant generated
or identified by implementations of the systems and methods
discussed heremnto the molecule and detecting fluorescence
due to the fluorescent protein variant 1n a sample suspected
of containing the molecule. The molecule to be detected can
be a polypeptide, a polynucleotide, or any other molecule,
including, for example, an antibody, an enzyme, or a recep-
tor, and the fluorescent protein variant can be a tandem
dimer fluorescent protein.

[0273] The sample to be examined can be any sample,
including a biological sample, an environmental sample, or
any other sample for which i1t 1s desired to determine
whether a particular molecule 1s present therein. Preferably,
the sample 1includes a cell or an extract thereof. The cell can
be obtained from a vertebrate, including a mammal such as
a human, or from an 1nvertebrate, and can be a cell from a
plant or an animal. The cell can be obtained from a culture
of such cells, for example, a cell line, or can be 1solated from
an organism. As such, the cell can be contained 1n a tissue
sample, which can be obtained from an organism by any
means commonly used to obtamn a tissue sample, for
example, by biopsy of a human. Where the method 1is
performed using an intact living cell or a freshly isolated
tissue or organ sample, the presence of a molecule of interest
in living cells can be 1dentified, thus providing a means to
determine, for example, the intracellular compartmentaliza-
tion of the molecule. The use of the fluorescent protein
variants generated or identified by implementations of the
systems and methods discussed herein for such a purpose
provides a substantial advantage in that the likelthood of
aberrant 1dentification or localization due to oligomerization
the fluorescent protein 1s greatly minimized.

[0274] A fluorescent protein variant can be linked to the
molecule directly or indirectly, using any linkage that 1s
stable under the conditions to which the protein-molecule
complex 1s to be exposed. Thus, the fluorescent protein and
molecule can be linked via a chemical reaction between
reactive groups present on the protein and molecule, or the
linkage can be mediated by linker moiety, which contains
reactive groups specific for the fluorescent protein and the
molecule. It will be recognized that the appropriate condi-
tions for linking the fluorescent protein variant and the
molecule are selected depending, for example, on the chemi-
cal nature of the molecule and the type of linkage desired.
Where the molecule of interest 1s a polypeptide, a conve-
nient means for linking a fluorescent protein variant and the
molecule 1s by expressing them as a fusion protein from a
recombinant nucleic acid molecule, which comprises a poly-
nucleotide encoding, for example, a tandem dimer fluores-
cent protein operatively linked to a polynucleotide encoding
the polypeptide molecule.

[0275] A method of identifying an agent or condition that
regulates the activity of an expression control sequence also
1s provided. Such a method can be performed, for example,
by exposing a recombinant nucleic acid molecule, which
includes a polynucleotide encoding a fluorescent protein
variant operatively linked to an expression control sequence,
to an agent or condition suspected of being able to regulate
expression ol a polynucleotide from the expression control
sequence and detecting tluorescence of the fluorescent pro-
tein variant due to such exposure. Such a method 1s useful,
for example, for 1dentifying chemical or biological agents,
including cellular proteins, that can regulate expression from
the expression control sequence, including cellular factors
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involved 1n the tissue specific expression from the regulatory
clement. As such, the expression control sequence can be a
transcription regulatory element such as a promoter,
enhancer, silencer, intron splicing recognition site, polyade-
nylation site, or the like; or a translation regulatory element
such as a ribosome binding site.

[0276] The fluorescent protein variants generated or 1den-
tified by implementations of the systems and methods dis-
cussed herein also are useful 1n a method of 1dentitying a
specific 1nteraction of a first molecule and a second mol-
ecule. Such a method can be performed, for example, by
contacting the first molecule, which 1s linked to a donor first
fluorescent protein variant, and the second molecule, which
1s linked to an acceptor second fluorescent protein variant,
under conditions that allow a specific interaction of the first
molecule and second molecule; exciting the donor; and
detecting fluorescence or luminescence resonance energy
transier from the donor to the acceptor, thereby 1dentifying
a specilic interaction of the first molecule and the second
molecule. The conditions for such an interaction can be any
conditions under which 1s expected or suspected that the
molecules can specifically interact. In particular, where the
molecules to be examined are cellular molecules, the con-
ditions generally are physiological conditions. As such, the
method can be performed 1n vitro using conditions of bufler,
pH, 1onic strength, and the like, that mimic physmloglcal
conditions, or the method can be performed 1n a cell or using
a cell extract.

[0277] Luminescence resonance energy transfer entails
energy transier from a chemiluminescent, bioluminescent,
lanthanide, or transition metal donor to the red fluorescent
protein moiety. The longer wavelengths of excitation of red
fluorescent proteins permit energy transfer from a greater
variety of donors and over greater distances than possible
with green fluorescent protein variants. Also, the longer
wavelengths of emission 1s more efliciently detected by
solid-state photodetectors and 1s particularly valuable for 1n
vivo applications where red light penetrates tissue far better
than shorter wavelengths. Chemiluminescent donors include
but are not limited to luminol derivatives and peroxyoxalate
systems. Bioluminescent donors include but are not limited
to aequorin, obelin, firefly luciferase, Renilla luciferase,
bacterial luciferase, and variants thereof. Lanthanide donors
include but are not limited to terbium chelates containing
ultraviolet-absorbing sensitizer chromophores linked to
multiple liganding groups to shield the metal 1on from
solvent water. Transition metal donors include but are not
limited to ruthenium and osmium chelates of oligopyridine
ligands. Chemiluminescent and bioluminescent donors need
no excitation light but are energized by addition of sub-
strates, whereas the metal-based systems need excitation
light but offer longer excited state lifetimes, facilitating
time-gated detection to discriminate against unwanted back-
ground fluorescence and scattering.

[0278] The first and second molecules can be cellular
proteins that are being investigated to determine whether the
proteins specifically interact, or to confirm such an interac-
tion. Such first and second cellular proteins can be the same,
where they are being examined, for example, for an ability
to oligomerize, or they can be different where the proteins
are being examined as specific binding partners mmvolved,
for example, in an intracellular pathway. The first and
second molecules also can be a polynucleotide and a poly-
peptide, for example, a polynucleotide known or to be
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examined for transcription regulatory element activity and a
polypeptide known or being tested for transcription factor
activity. For example, the first molecule can comprise a
plurality of nucleotide sequences, which can be random or
can be variants of a known sequence, that are to be tested for
transcription regulatory element activity, and the second
molecule can be a transcription factor, such a method being
useful for identifying novel transcription regulatory ele-
ments having desirable activities.

[0279] The present disclosure also provides implementa-
tions ol a method for determining whether a sample contains
an enzyme. Such a method can be performed, for example,
by contacting a sample with a tandem fluorescent protein
variant generated or identified by implementations of the
systems and methods discussed herein; exciting the donor,
and determining a fluorescence property in the sample,
wherein the presence of an enzyme 1n the sample results 1n
a change in the degree of fluorescence resonance energy
transter. Similarly, the present disclosure provides imple-
mentations of a method for determining the activity of an
enzyme 1n a cell. Such a method can be performed, for
example, providing a cell that expresses a tandem fluores-
cent protein variant construct, wherein the peptide linker
moiety comprises a cleavage recognition amino acid
sequence speciiic for the enzyme coupling the donor and the
acceptor; exciting said donor, and determining the degree of
fluorescence resonance energy transier in the cell, wherein
the presence of enzyme activity in the cell results 1n a change
in the degree of fluorescence resonance energy transier.

EXPERIMENTAL EXAMPLES

[0280] Implementations of the systems and methods dis-
cussed herein are further described 1n detail by reference to
the following experimental examples. These examples are
provided for purposes of illustration only, and are not
intended to be limiting unless otherwise specified. Thus, the
systems and methods discussed herein should in no way be
construed as being limited to the following examples, but
rather, should be construed to encompass any and all varia-
tions which become evident as a result of the teaching
provided herein.

[0281] Without further description, 1t 1s believed that one
of ordinary skill 1n the art can, using the preceding descrip-
tion and the following illustrative examples, make and
utilize implementations of the systems and methods dis-
cussed herein. The following working examples therefore,
specifically point out the exemplary embodiments of the
systems and methods discussed herein, and are not to be
construed as limiting 1 any way the remainder of the
disclosure.

Example 1: Protein Engineering Using Neural
Networks

[0282] To empirically validate the neural network, three
different model proteins were chosen, each representing a
distinct protein engineering challenge. The first validation
model protein was tem-1 beta lactamase 1n large part
because 1) the susceptibility to the antibiotic 1s directly
related to the overall stability of the protein and 2) the
protein has been well-characterized in illuminating both
stabilizing and destabilizing mutations. Next, stability was
improved to repurpose the metalloprotein phosphomannose
1Isomerase mto a reporter for icorporation of the nonca-
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nonical amino acid, L-DOPA. However, the poor stability of
the enzyme prevents 1ts use to act as a reporter. The final
protein case 1s an improvement to a blue fluorescent protein
variant, seccBFP2. Though blue fluorescent proteins have
been well characterized, rapid photobleaching, slow matu-
ration and folding, and relatively dim fluorescence prevent
more widespread use.

[0283] First, the true negative rate of the neural network
was assessed by 1solating the analysis to residues where the
wild type amino acid has been experimentally validated as
the best residue at the position. This was tested using
previously published mutational scans 1n tem-1 {3-lactamase
where the effect of each individual amino acid change was
quantitated with organismal fitness. Of the 263 positions
tested in tem-1, 136 sites had a relative fitness value less than
zero (1.e., sites that could not tolerate mutations away from
the wild type residue without a cost to organismal fitness).
This collection of 136 sites constituted the complete collec-
tion of true negatives 1 tem-1 beta lactamase and for each
discrete change made to the neural network, the true nega-
tive sensitivity was benchmarked. The final version accu-
rately i1dentified 92.6% of the 136 true negatives, nearly a
30% 1ncrease over the initial models. Thus, the developed
model has an increased ability to identify sites within a
protein that are not amenable to mutation.

[0284] The results of the experiment are shown 1n FIG. 3A
and FIG. 3B. FIG. 3A shows a bar graph of sites predicted
by the neural network to improve BFP fluorescence, and by
how much. The rightmost bar 301 shows the improvement
in fluorescence observed by implementing a particular com-
bination of amino acid substitutions to the wild type protein,
cach suggested individually by the neural network. A visual
representation of the improvement 1s shown in FIG. 3B. The
modified blue tluorescent protein 302 glows far brighter than
the wild type blue fluorescent protein 303.

[0285] Additional results are shown 1n FIG. 4A and FIG.
4B. The bar graph in FIG. 4B shows the neural network
proposed 1mprovements to phosphomannose i1somerase
(PMI). The individual stabilizing mutations each provide a
15% to 50% increase over the wild type, but when used 1n
combination (bar 401), the improvements are additive, lead-
ing to a significant improvement 1n stability of nearly 600%.

[0286] The Venn diagrams 411 (blue fluorescent protein,
pdb: 3m24) and 412 (phosphomannose isomerase, pdb:
1pmi1) 1n FIG. 4B 1llustrate that the neural network predicts
unique candidate residues not i1dentified by other computa-
tional protein stabilization techniques (Foldx PositionScan
and Rosetta pmut scan).

[0287] FIG. 5 1llustrates that the TEM-1 3-lactamase vari-
ants 1dentified by the neural network enabled £. coli growth
at higher ampicillin concentrations than the ancestral pro-
tein. E. coli expressing singly mutagenized {3-lactamase
mutants N52K, F60Y, M182T, E197D or A249V could each
grow on ampicillin concentrations at or greater than 125
ug/ml; a concentration at which E. coli expressing the
ancestral enzyme, labelled *WT,” could not grow. E. coli
expressing a single enzyme variant contaimng all five of
these mutations (N52K, F60Y, M182T, E197D and A249V,
labelled “All”) could grow at 3000 ug/mL ampicillin con-
centrations. In other words, the neural network improved a
phenotype associated with catalysis, 1 the present embodi-
ment a phenotype that allows FE. coli to exhibit greater
resistance to an antibiotic, ampicillin.
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[0288] FIG. 6 shows that the neural network improved the
thermal stability of a blue fluorescent protein. In one
example, residual fluorescence—after a 10 minute thermal
challenge—was less for the ancestral protein, SecBFP2.1,
than for the derived protein, Bluebonnet. Punified blue
fluorescent proteins were diluted to 0.01 mg/mL in PBS pH
7.4 and 100 uL aliquots were heat treated for 10 minutes 1n
PCR strips on a thermal gradient using a thermal cycler. The
fluorescence of thermally challenged variants and controls
incubated at room temperature were assayed using excita-
tion and emission wavelengths of 402 nm and 457 nm,
respectively. Fluorescence readings were normalized to the
mean of solutions incubated at room temperature (e.g., a
measurement of 0.8 indicates that a heat treated protein
retained 80% of 1ts untreated fluorescence). As shown in
FIG. 6, Bluebonnet exhibited greater thermal stability versus
SecBFP2.1 across an entire range of temperatures, irom
about 84° C. to about 100° C.— for example, retaining over
20% of its untreated fluorescence when no fluorescence 1s

retained by the ancestral protein after a 10-minute thermal
challenge at 100° C.

[0289] FIG. 7 shows that the neural network improved the
chemical stability of a blue fluorescent protein. In another
example, the fluorescence half-life 1n a guanidinium melt
was less for the ancestral protein, SecBFP2.1, than for the
derived protein, Bluebonnet. Purified blue fluorescent pro-
teins were diluted to 0.01 mg/mL m 6 M guanidinium
hydrochloride. 100 ulL aliquots 1n triplicate were added to
wells of a 96-well clear-bottom black-walled plate and
incubated at 25° C. for 23 hours. These purified fluorescent
proteins were assayed at 30 minute intervals using excitation
and emission wavelengths of 402 nm and 457 nm, respec-
tively. Plates were agitated preceding each measurement.
Fluorescence values measured at time zero were used to
normalize tluorescence through the remainder of the assay
(e.g., a measurement ol 0.8 indicates that the protein
retained 80% of its initial fluorescence). As shown 1n FIG.
7, Bluebonnet exhibited greater chemical stability than
SecBFP2.1 across all time points greater than time=0 up to
about time=24 hours.

Example 2: Bluebonnet, a Brighter Blue
Fluorescent Protein

[0290] When looking at how and where proteins move
throughout a cell, scientists need specialized genetic tools.
One of these tools 1s a family of proteins that fluoresce under
UV light, 1.e. fluorescent proteins. Blue fluorescent protein
(BFP, pdb: 3m24) i1s a derivative of the much more com-
monly used red fluorescent protein but suflers from poor in
vivo activity. The 3D convolutional neural network pipeline
was used to predict vaniants of BFP that would result in
increased fluorescence when expressed within £. coli cells.
FIG. 8 provides data demonstrating that seventeen neural
network predictions were tested for the ability to increase
fluorescence (shown normalized to wild-type). FIG. 9 pro-
vides data demonstrating that when the beneficial mutations
were combined, an increase of >8 fold fluorescence over
wild-type was observed. FIG. 10 shows that the increase in
fluorescence of the Bluebonnet blue fluorescent protein,
which comprises the combination of S28A, S1147T, T127L
and N173H mutations, 1s visible when compared to the
parental strain as well as other blue fluorescent proteins.
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System Diagram of Computers

[0291] FIGS. 11A and 11B are block diagrams depicting

embodiments of computers useful 1n connection with imple-
mentations of the systems and methods discussed herein.
FIGS. 11A and 11B depict block diagrams of a typical
computer 1100. As shown in FIGS. 11A and 11B, computer
1100 includes a central processing umt 1102 and a main
memory unit 1104. Computer 1100 may also include other
optional elements, such as one or more mput/output devices
130a-1307 (generally referred to using reference numeral
1130), a co-processor 1106, and a cache memory 1140 1n
communication with the central processing unit 1102 and
co-processor 1106.

[0292] The central processing unit 1102 1s any logic
circuitry that responds to and processes instructions fetched
from the main memory unit 1104. In many embodiments, the
central processing unit 1s provided by a microprocessor unit,
such as those manufactured by Intel Corporation of Moun-
tain View, Calif.; those manufactured by Motorola Corpo-
ration of Schaumburg, I11.; those manufactured by Interna-
tional Business Machines of White Plains, N.Y.; or those
manufactured by Advanced Micro Devices ol Sunnyvale,
Calif.

[0293] Similarly, the co-processor 1106 1s any logic cir-
cuitry that responds to and processes instructions fetched
from the main memory unit 1104. In some embodiments, the
co-processor 1106 may include a tensor processing unit
(“I'PU”) which 1s an Artificial Intelligence application-
specific integrated circuit, such as those manufactured by
Google of Mountain View, Calif.

[0294] Main memory umt 1104 may be one or more
memory chips capable of storing data and allowing any
storage location to be directly accessed by a microprocessor
in the main processor 1102 or the co-processor 1106, such as
Static random access memory (SRAM), Burst SRAM or
SynchBurst SRAM (BSRAM), Dynamic random access
memory (DRAM), Fast Page Mode DRAM (FPM DRAM),
Enhanced DRAM (EDRAM), Extended Data Output RAM
(EDO RAM), Extended Data Output DRAM (EDO
DRAM), Burst Extended Data Output DRAM (BEDO
DRAM), Enhanced DRAM (EDRAM), synchronous
DRAM (SDRAM), JEDEC SRAM, PC100 SDRAM,
Double Data Rate SDRAM (DDR SDRAM), Enhanced
SDRAM (ESDRAM), SyncLink DRAM (SLDRAM),
Direct Rambus DRAM (DRDRAM), or Ferroelectric RAM
(FRAM).

[0295] In the embodiment shown in FIGS. 11A, the pro-
cessor 1102 communicates with main memory 1104 via a
system bus 1120 (described 1n more detail below). Similarly,
the co-processor 1106 communicates with main memory
1104 via the system bus 1120. FIG. 11B depicts an embodi-
ment of a computer system 1100 1n which the processor 1102
communicates directly with main memory 1104 via a
memory port. For example, in FIG. 11B, the main memory
1104 may be DRDRAM. In some embodiments, a neural
network engine may reside within the main memory as the
main memory may be responsible for storing the value of the
trained weights.

[0296] FIGS. 11A and 11B depict embodiments 1in which
the main processor 1102 communicates directly with cache
memory 1140 via a secondary bus, sometimes referred to as
a “backside” bus. In some embodiments, the co-processor
1106 may communicate directly with cache memory 1140
via the secondary bus. In other embodiments, the main
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processor 1102 communicates with cache memory 1140
using the system bus 1120. In other embodiments, the
co-processor 1106 may communicate with cache memory
1140 using the system bus 1120. Cache memory 1140
typically has a faster response time than main memory 1104
and 1s typically provided by SRAM, BSRAM, or EDRAM.
In some embodiments, the co-processor may comprise a
tensor processing unit (TPU) or other co-processor, such an
application-specific integrated circuit (ASIC) for performing
calculations related to the neural network (which may be
faster or more ethicient than performing such calculations on
the primary processor 1102).

[0297] In the embodiment shown i1n FIG. 11A, the pro-
cessor 1102 and co-processor 1106 communicate with vari-
ous I/0 devices 1130 via a local system bus 1120. Various

busses may be used to connect the central processing unit
1102 and co-processor 1106 to the I/O devices 1130, includ-

ing a VESA VL bus, an ISA bus, an EISA bus, a Micro-
Channel Architecture (MCA) bus, a PCI bus, a PCI-X bus,
a PCI-Express bus, or a NuBus. For embodiments 1n which
the I/O device 1s a video display, the processor 1102 and/or
co-processor 1106 may use an Advanced Graphics Port
(AGP) to communicate with the display. FIG. 11B depicts an
embodiment of a computer system 1100 1n which the main
processor 1102 communicates directly with I/O device
113056 via HyperTransport, Rapid I/O, or InfiniBand. FIG.
11B also depicts an embodiment 1n which local busses and
direct communication are mixed: the processor 1102 com-
municates with I/0 device 1130q using a local interconnect
bus while communicating with I/O device 113056 directly.

[0298] A wide variety of I/O devices 1130 may be present
in the computer system 1100. Input devices include key-
boards, mice, trackpads, trackballs, microphones, and draw-
ing tablets. Output devices include video displays, speakers,
inkjet printers, laser printers, and dye-sublimation printers.
An I/O device may also provide mass storage for the
computer system 1100 such as a hard disk drive, a tloppy
disk drive for receiving floppy disks such as 3.5-inch,
5.25-1nch disks or ZIP disks, a CD-ROM drive, a CD-R/RW
drive, a DVD-ROM drive, tape drives of various formats,
and USB storage devices such as the USB Flash Drive line
of devices manufactured by Twintech Industry, Inc. of Los
Alamitos, Calif., and the 1Pod Shuflle line of devices manu-
factured by Apple Computer, Inc., of Cupertino, Calif.

[0299] In further embodiments, an I/O device 1130 may be
a bridge between the system bus 1120 and an external

communication bus, such as a USB bus, an Apple Desktop
Bus, an RS-232 serial connection, a SCSI bus, a FireWire
bus, a FireWire 800 bus, an Ethernet bus, an AppleTalk bus,
a Gigabit Ethernet bus, an Asynchronous Transier Mode
bus, a HIPPI bus, a Super HIPPI bus, a SerialPlus bus, a

SCI/LAMP bus, a FibreChannel bus, or a Serial Attached
small computer system interface bus.

[0300] General-purpose desktop computers of the sort
depicted 1n FIGS. 11A and 11B typically operate under the
control of operating systems, which control scheduling of
tasks and access to system resources. Typical operating
systems include: MICROSOFT WINDOWS, manufactured
by Microsoit Corp. of Redmond, Wash.; MacOS, manufac-
tured by Apple Computer of Cupertino, Calif.; OS/2, manu-
factured by International Business Machines of Armonk,
N.Y.; and Linux, a freely-available operating system distrib-
uted by Caldera Corp. of Salt Lake City, Utah, among others.
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[0301] The disclosures of each and every patent, patent
application, and publication cited herein are hereby incor-
porated herein by reference in their entirety. While this
invention has been disclosed with reference to specific
embodiments, 1t 1s apparent that other embodiments and
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variations of this invention may be devised by others skilled
in the art without departing from the true spirit and scope of
the invention. The appended claims are intended to be
construed to include all such embodiments and equivalent
variations.

Sequence total quantity:

SEQ ID NO: 1
FEATURE
source

SEQUENCE: 1

SEELIKENMH MKLYMEGTVD
SFLYGSKTE1I DHTOQGIPDFEF
IRGVDEFTSNG PVMQKKTLGW
KKPAKNLKMP GVYYVDYRLE

SEQ ID NO: 2
FEATURE
source

SEQUENCE: 2

SEELIKENMH MKLYMEGWVD
SFLYGSKTEF1I DHTOQGIPDFEF
IRGVDEFTSNG PVMQKKTLGW
KKPAKNLKMP GVYYVDYRLE

SEQ ID NO: 23
FEATURE
source

SEQUENCE: 3

SEELIKENMH MKLYMEGVVD
SFLYGSKTEF1I DHTOQGIPDFEF
IRGVDEFTSNG PVMQKKTLGW
KKPAKNLKMP GVYYVDYRLE

SEQ ID NO: 4
FEATURE
source

SEQUENCE: 4

SEELIKENMH MKLYMEGEVD
SFLYGSKTEF1I DHTOQGIPDFEF
IRGVDEFTSNG PVMQKKTLGW
KKPAKNLKMP GVYYVDYRLE

SEQ ID NO: b5
FEATURE

SOl Yrce

SEQUENCE: 5

SEELIKENMH MKLYMEGTVD
SFLYGSKTEF1I DHTOQGIPDFEF
IRGVDEFTSNG PVMQKKTLGW
KKPAKNLKMP GVYYVDYRLE

SEQ ID NO: o
FEATURE
source

SEQUENCE: 6
SEELIKENMH MKLYMEGTVD
SFLYGSKTEF1I DHTOQGIPDFEF

IRGVDFTSNG PVMOKKTLGW
KKPAKNLKMP GVYYVDYRLE

SEQ ID NO: 7

SEQUENCE LISTING

28
moltype = AA length
Location/Qualifiers
1..233

mol type =
organism =

protein
synthetic

NHHFKCTSEG EGKPYEGTQT
KOSFPEGFTW ERVTTYEDGG
EAFTETLYPA DGGLEGRNDM
RIKEANDETY VEQHEVAVAR

moltype = AA length
Location/Qualifiers
1..233

mol type =
organism =

protein
synthetic

NHHFKCTSEG EGKPYEGTQT
KOSFPEGEFTW ERVTTYEDGG
EAFTETLYPA DGGLEGRNDM
RIKEANDETY VEQHEVAVAR

moltype = AA length
Location/Qualifiers
1..233
mol type
organism =

protein
synthetic

NHHFKCTSEG EGKPYEGTQT
KOSFPEGEFTW ERVTTYEDGG
EAFTETLYPA DGGLEGRNDM
RIKEANDETY VEQHEVAVAR

moltype = AA length
Location/Qualifiers
1..233

mol type =
organism =

protein
synthetic

NHHFKCTSEG EGKPYEGTQT
KOSFPEGEFTW ERVTTYEDGG
EAFTETLYPA DGGLEGRNDM
RIKEANDETY VEQHEVAVAR

moltype = AA length
Location/Qualifiers
1..233

mol type =
organism =

protein
synthetic

NHHFKCTAEG EGKPYEGTQT
KOSFPEGEFTW ERVTTYEDGG
EAFTETLYPA DGGLEGRNDM
RIKEANDETY VEQHEVAVAR

moltype = AA length
Location/Qualifiers
1..233
mol type
organism =

protein
synthetic

NHHFKCTSEG EGKPYEGTQT
KOSFPEGEFTW ERVTTEEDGG

EAFTETLYPA DGGLEGRNDM
RIKEANDETY VEQHEVAVAR
FAVAY

moltype = length

233

construct

MR IKVVEGGP
VLTATQDTSL
ALKLVGGSHL
YSDLPSKLGH

= 233

construct

MR IKVVEGGP
VLTATQDTSL
ALKLVGGSHL
YSDLPSKLGH

= 233

construct

MR IKVVEGGP
VLTATQDTSL
ALKLVGGSHL

YSDLPSKLGH

= 233

construct

MR IKVVEGGP
VLTATQDTSL
ALKLVGGSHL

YSDLPSKLGH

= 233

construct

MR IKVVEGGP
VLTATQDTSL
ALKLVGGSHL
YSDLPSKLGH

= 233

construct

MR IKVVEGGP
VLTATQDTSL
ALKLVGGSHL
YSDLPSKLGH

= 233

LPFAFDILAT
QDGSLIYNVK
IANAKTTYRS
KL.N

LPFAFDILAT
QDGSLIYNVK
IANAKTTYRS
KL.N

LPFAFDILAT
QDGSLIYNVK
IANAKTTYRS
KL.N

LPFAFDILAT
QDGSLIYNVK
IANAKTTYRS
KL.N

LPFAFDILAT
QDGSLIYNVK
IANAKTTYRS
KLN

LPFAFDILAT
QDGSLIYNVK
IANAKTTYRS
KL.N

60

120
180
233

60

120
180
233

60

120
180
233

60

120
180
233

60

120
180
233

60
120

180
233
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FEATURE
source

SEQUENCE : 7

SEELIKENMH MKLYMEGTVD
SEFLYGSKTFI DHTQGIPDFEF
IRGVDFTSNG PVMQKKTLGW
KKPAKNLKMP GVYYVDYRLE

SEQ ID NO: 8
FEATURE
source

SEQUENCE: 8

SEELIKENMH MKLYMEGTVD
SEFLYGSKTFI DHTQGIPDFEF
IRGVDEFTSNG PVMQKKTLGW
KKPAKNLKMP GVYYVDYRLE

SEQ ID NO: 9
FEATURE

SOUYXrCce

SEQUENCE :

SEELIKENMH MKLYMEGTVD
SFLYGSKTFI DHTQGIPDFF
IRGTDFTSNG PVMQKKTLGW
KKPAKNLKMP GVYYVDYRLE
SEQ ID NO: 10

FEATURE

SOUXrCce

SEQUENCE: 10
SEELIKENMH MKLYMEGTVD
SFLYGSKTFI DHTQGIPDFF
IRGYDFTSNG PVMQKKTLGW
KKPAKNLKMP GVYYVDYRLE
SEQ ID NO: 11

FEATURE

SOUXrCce

SEQUENCE: 11
SEELIKENMH MKLYMEGTVD
SFLYGSKTFI DHTQGIPDFF
IRGWDFTSNG PVMQKKTLGW
KKPAKNLKMP GVYYVDYRLE
SEQ ID NO: 12

FEATURE

SOUXrCce

SEQUENCE: 12
SEELIKENMH MKLYMEGTVD
SFLYGSKTFI DHTQGIPDFF
IRGVDFPSNG PVMQKKTLGW
KKPAKNLKMP GVYYVDYRLE
SEQ ID NO: 13

FEATURE

SOUXrCce

SEQUENCE: 13

SEELIKENMH MEKLYMEGTVD
SFLYGSKTFI DHTQGIPDFF
IRGVDFLSNG PVMQKKTLGW
KKPAKNLKMP GVYYVDYRLE

Location/Qualifiers
1..233

mol type protein
organism = gynthetic

NHHEFKCTSEG BEGKPYEGTQT
KQSEFPEGFTW ERVITTYEDGG
EAFTETLYPA DGGLEGRNDM
RIKEANDETY VEQHEVAVAR

moltype = AA length
Location/Qualifiers
1..233

mol type protein
organism = gynthetic

NHHEFKCTSEG EGKPYEGTQT
KQSEFPEGFTW ERVITTYEDGG
EAFTETLYPA DGGLEGRNDM
RIKEANDETY VEQHEVAVAR

moltype = AA length
Location/Qualifiers
1..233

mol type protein
organism = gynthetic

NHHEFKCTSEG EGKPYEGTQT
KQSEFPEGFTW ERVITTYEDGG
EAFTETLYPA DGGLEGRNDM
RIKEANDETY VEQHEVAVAR

moltype = AA length
Location/Qualifiers
1..233

mol type protein
organism = gynthetic

NHHEFKCTSEG EGKPYEGTQT
KQSEFPEGFTW ERVITTYEDGG
EAFTETLYPA DGGLEGRNDM
RIKEANDETY VEQHEVAVAR

moltype = AA length
Location/Qualifiers
1..233

mol type protein
organism = gynthetic

NHHEFKCTSEG EGKPYEGTQT
KQSEFPEGFTW ERVITTYEDGG
EAFTETLYPA DGGLEGRNDM
RIKEANDETY VEQHEVAVAR

moltype = AA length
Location/Qualifiers
1..233

mol type protein
organism = gynthetic

NHHEFKCTSEG EGKPYEGTQT
KOQSEFPEGEFTW ERVITTYEDGG

EAFTETLYPA DGGLEGRNDM
RIKEANDETY VEQHEVAVAR

moltype = AA length
Location/Qualifiers
1..233

mol type protein
organism = gsynthetic

NHHEKCTSEG EGKPYEGTQT
KOQSFPEGFTW ERVTTYEDGG
EAFTETLYPA DGGLEGRNDM
RIKEANDETY VEQHEVAVAR

30

-continued

construct

MRIKVVEGGP
VLTATQDTSL
ALKLVGGSHL

YSDLPSKLGH

= 233

construct

MRIKVVEGGP
VLTATQDTSL
ALKLVGGSHL
YSDLPSKLGH

= 233

construct

MRIKVVEGGP
VLTATQDTSL
ALKLVGGSHL
YSDLPSKLGH

= 233

construct

MRIKVVEGGP

VLTATQDTSL
ALKLVGGSHL
YSDLPSKLGH

= 233

construct

MRIKVVEGGP

VLTATQDTSL
ALKLVGGSHL
YSDLPSKLGH

= 233

construct

MRIKVVEGGP
VLTATQDTSL

ALKLVGGSHL
YSDLPSKLGH

= 233

construct

MRIKVVEGGP
VLTATQDTSL
ALKLVGGSHL
YSDLPSKLGH

LPFAFDILAT
QDGVLIYNVEK
IANAKTTYRS

KLN

LPFAFDILAT
QDGTLIYNVEK
IANAKTTYRS
KLN

LPFAFDILAT
QDGSLIYNVEK
IANAKTTYRS
KLN

LPFAFDILAT

QDGSLIYNVEK
IANAKTTYRS
KLN

LPFAFDILAT

QDGSLIYNVEK
IANAKTTYRS
KLN

LPFAFDILAT
QDGSLIYNVEK

IANAKTTYRS
KLN

LPFAFDILAT
QDGSLIYNVK
IANAKTTYRS
KLN

60

120
180
233

60

120
180
233

60

120
180
233

60

120
180
233

60

120
180
233

60
120

180
233

60

120
180
233
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SskEQ ID NO:
FEATURE
source

SEQUENCE :

SEELIKENMH
SFLYGSKTFEI
IRGVDEFRSNG
KKPAKNLKMP

SkEQ ID NO:
FEATURE
source

SEQUENCE :

SEELIKENMH
SFLYGSKTFEI
IRGVDEDSNG
KKPAKNLKMP

SEQ ID NO:
FEATURE
source

SEQUENCE :

SEELIKENMH
SFLYGSKTFEI
IRGVDEFTSNG
KKPAKNLKMP

SEQ ID NO:
FEATURE
source

SEQUENCE :

SEELIKENMH
SFLYGSKTFEI
IRGVDEFTSNG
KKPAKNLKMP

SEQ ID NO:
FEATURE
source

SEQUENCE :

SEELIKENMH
SFLYGSKTFEI
IRGVDEFTSNG
KKPAKNLKMP

SEQ ID NO:
FEATURE
source

SEQUENCE :
SEELIKENMH

SEFLYGSKTFEI
IRGVDFTSNG
KKPAKNLKMP

SEQ ID NO:

FEATURE
source

SEQUENCE :

14

14

MKLYMEGTVD
DHTOGIPDFF
PVMQKKTLGW
GVYYVDYRLE

15

15

MKLYMEGTVD
DHTOGIPDFEF
PVMOQKKTLGW
GVYYVDYRLE

16

16

MKLYMEGTVD
DHTOGIPDFF
PVMOQKKTLGW
GVYYVDYRLE

17

17

MKLYMEGTVD
DHTOGIPDFF
PVMOQKKTLGW
GVYYVDYRLE

18

18

MKLYMEGTVD
DHTOGIPDFF
PVMOQKKTLGW
GVYYVDYRLE

19

19

MKLYMEGTVD

DHTOGIPDFEF
PVMQKKTLGW
GVYYVDYRLE

20

20

SEELIKENMH MKLYMEGTVD
SFLYGSKTFI DHTQGIPDFEF
IRGVDEFTSNG PVMQKKTLGW
KKPAKNLKMP GVYYVDYRLE

moltype = AA length
Location/Qualifiers
1..233

mol type protein
organism = gsynthetic

NHHEKCTSEG EGKPYEGTQT
KOQSFPEGFTW ERVTTYEDGG
EAFTETLYPA DGGLEGRNDM
RIKEANDETY VEQHEVAVAR

moltype = AA length
Location/Qualifiers
1..233

mol type protein
organism = gsynthetic

NHHEKCTSEG EGKPYEGTQT
KOQSFPEGFTW ERVTTYEDGG
EAFTETLYPA DGGLEGRNDM

RIKEANDETY VEQHEVAVAR

moltype = AA length
Location/Qualifiers
1..233

mol type protein
organism = gynthetic

NHHEKCTSEG EGKPYEGTQT
KQSFPEGFTW ERVTTYEDGG
EAFTETLYPA GGGLEGRNDM
RIKEANDETY VEQHEVAVAR

moltype = AA length
Location/Qualifiers
1..233

mol type protein
organism = gynthetic

NHHEKCTSEG EGKPYEGTQT
KQSFPEGFTW ERVTTYEDGG
EAFTETLYPA DGGLEGRNDM
RIKEANDETY VEQHEVAVAR

moltype = AA length
Location/Qualifiers
1..233

mol type protein
organism = gynthetic

NHHEKCTSEG EGKPYEGTQT
KQSFPEGFTW ERVTTYEDGG
EAFTETLYPA DGGLEGRNDM
RIKEANDETY VEQHEVAVAR

moltype = AA length
Location/Qualifiers
1..233

mol type protein
organism = gynthetic

NHHEKCTSEG EGKPYEGTQT
KOQSEFPEGEFTW ERVITTYEDGG
EAFTETLYPA DGGLEGRNDM
RIKEANDETY VEQHEVAVAR

moltype = AA length
Location/Qualifiers
1..233

mol type protein
organism = gynthetic

NHHFKCTSEG EGKPYEGTQT
KQSFPEGFTW ERVTTYEDGG
EAFTETLYPA DGGLEGRNDM
RIKEANDETY VEQHEVAVAR

31

-continued

= 233

construct

MRIKVVEGGP
VLTATQDTSL
ALKLVGGSHL
YSDLPSKLGH

= 233

construct

MRIKVVEGGP
VLTATQDTSL
ALKLVGGSHL
YSDLPSKLGH

= 233

construct

MRIKVVEGGP
VLTATQDTSL
ALKLVGGSHL
YSDLPSKLGH

= 233

construct

MRIKVVEGGP
VLTATQDTSL
ALKLVGGSHL
YSDLPSKLGH

= 233

construct

MRIKVVEGGP
VLTATQDTSL
ALKLVGGSHL
YSDLPSKLGH

= 233

construct

MRIKVVEGGP

VLTATQDTSL
ALKLVGGSHL
YSDLPSKLGH

= 233

construct

MRIKVVEGGP
VLTATQDTSL
ALKLVGGSHL
YSDLPSKLGH

LPFAFDILAT
QDGSLIYNVK
IANAKTTYRS
KLN

LPFAFDILAT
QDGSLIYNVK
IANAKTTYRS
KLN

LPFAFDILAT
QDGSLIYNVK
IANAKTTYRS
KLN

LPFAFDILAT
QDGSLIYNVK
IATAKTTYRS
KLN

LPFAFDILAT
QDGSLIYNVK
IAHAKTTYRS
KLN

LPFAFDILAT
QDGSLIYNVEK
IARAKTTYRS
KLN

LPFAFDILAT
QDGSLIYNVK
IASAKTTYRS
KLN

60

120
180
233

60

120
180
233

60

120
180
233

60

120
180
233

60

120
180
233

60

120
180
233

60

120
180
233
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SEQ ID NO: 21 moltype = AA length
FEATURE Location/Qualifiers
source 1..233

mol type = proteiln

organism = gynthetic
SEQUENCE: 21
SEELIKENMH MKLYMEGTVD NHHEFKCTSEG EGKPYEGTQT
SFLYGSKTEFI DHTOGIPDFEF KOSFPEGEFTW ERVTTYEDGG
IRGVDFTSNG PVMQKKTLGW EAFTETLYPA DGGLEGRNDM
KKPAKNLKMP GVYYVDYVLE RIKEANDETY VEQHEVAVAR
SEQ ID NO: 22 moltype = AA length
FEATURE Location/Qualifiers
source 1..233

mol type = proteiln

organism = gynthetic
SEQUENCE: 22
SEELIKENMH MKLYMEGTVD NHHFKCTSEG EGKPYEGTQT
SFLYGSKTEFI DHTOGIPDFF KOSFPEGEFTW ERVTTYEDGG
IRGVDFTSNG PVMQKKTLGW EAFTETLYPA DGGLEGRNDM
KKPAKNLKMP GVYYVDYLLE RIKEANDETY VEQHEVAVAR
SEQ ID NO: 23 moltype = AA length
FEATURE Location/Qualifiers
source 1..233

mol type = proteiln

organism = gynthetic
SEQUENCE: 23
SEELIKENMH MEKLYMEGWVD NHHFKCTAEG EGKPYEGTQT
SFLYGSKTEFI DHTOGIPDFF KOSFPEGEFTW ERVTTYEDGG
IRGTDFPSNG PVMOQKKTLGW EAFTETLYPA GGGLEGRNDM
KKPAKNLKMP GVYYVDYLLE RIKEANDETY VEQHEVAVAR
SEQ ID NO: 24 moltype = AA length
FEATURE Location/Qualifiers
source 1..233

mol type = proteiln

organism = gynthetic
SEQUENCE: 24
SEELIKENMH MKLYMEGTVD NHHFKCTAEG EGKPYEGTQT
SFLYGSKTEFI DHTOGIPDFF KOSFPEGEFTW ERVTTYEDGG
IRGVDFLSNG PVMQKKTLGW EAFTETLYPA DGGLEGRNDM
KKPAKNLKMP GVYYVDYRLE RIKEANDETY VEQHEVAVAR
SEQ ID NO: 25 moltype = AA length
FEATURE Location/Qualifiers
source 1..233

mol type = proteiln

organism = gynthetic
SEQUENCE: 25
SEELIKENMH MKLYMEGTVD NHHFKCTAEG EGKPYEGTQT
SFLYGSKTEFI DHTOGIPDFF KOSFPEGEFTW ERVTTYEDGG
IRGVDFTSNG PVMQKKTLGW EAFTETLYPA DGGLEGRNDM
KKPAKNLKMP GVYYVDYRLE RIKEANDETY VEQHEVAVAR
SEQ ID NO: 26 moltype = AA length
FEATURE Location/Qualifiers
source 1..233

mol type = proteiln

organism = gynthetic
SEQUENCE: 26
SEELIKENMH MEKLYMEGTVD NHHFKCTAEG EGKPYEGTQT
SFLYGSKTEFI DHTOGIPDEFEF KOSEFPEGEFTW ERVTTYEDGG
IRGVDFTSNG PVMQKKTLGW EAFTETLYPA DGGLEGRNDM
KKPAKNLKMP GVYYVDYRLE RIKEANDETY VEQHEVAVAR
SEQ ID NO: 27 moltype = AA length
FEATURE Location/Qualifiers
source 1..233

mol type = proteiln

organism = gynthetic

32

-continued

233

construct

MRIKVVEGGP

VLTATQDTSL
ALKLVGGSHL
YSDLPSKLGH

= 233

construct

MRIKVVEGGP
VLTATQDTSL
ALKLVGGSHL
YSDLPSKLGH

= 233

construct

MRIKVVEGGP
VLTATQDTSL
ALKLVGGSHL
YSDLPSKLGH

= 233

construct

MRIKVVEGGP
VLTATQDTSL
ALKLVGGSHL

YSDLPSKLGH

= 233

construct

MRIKVVEGGP
VLTATQDTSL
ALKLVGGSHL

YSDLPSKLGH

= 233

construct

MRIKVVEGGP
VLTATQDTSL
ALKLVGGSHL
YSDLPSKLGH

= 233

construct

LPFAFDILAT
QDGSLIYNVK
IANAKTTYRS
KLN

LPFAFDILAT
QDGSLIYNVEK
IANAKTTYRS
KLN

LPFAFDILAT
QDGVLIYNVEK
IATAKTTYRS
KLN

LPFAFDILAT
QDGTLIYNVEK
IAHAKTTYRS
KLN

LPFAFDILAT
QDGTLIYNVEK
IANAKTTYRS
KLN

LPFAFDILAT
QDGTLIYNVK
IAHAKTTYRS
KLN

SEQUENCE: 27

SEELIKENMH MKLYMEGTVD NHHFKCTAEG EGKPYEGTQT
SFLYGSKTFI DHTQGIPDFF KOSFPEGETW ERVTTFEDGG
IRGVDEFTSNG PVMQKKTLGW EAFTETLYPA DGGLEGRNDM

MRIKVVEGGP LPFAFDILAT
VLTATQDTSL QDGTLIYNVK
ALKLVGGSHL IAHAKTTYRS

60

120
180
233

60

120
180
233

60

120
180
233

60

120
180
233

60

120
180
233

60

120
180
233

60
120
180
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-continued

KKPAKNLKMP GVYYVDYRLE RIKEANDETY VEQHEVAVAR YSDLPSKLGH KLN 233

SEQ ID NO: 28 moltype = AA length = 233

FEATURE Location/Qualifiers
source 1..233
mol type = protein
organism = synthetic construct

SEQUENCE: 28

SEELIKENMH MEKLYMEGTVD NHHFKCTAEG EGKPYEGTQT MRIKVVEGGP LPFAFDILAT 60

SEFLYGSKTFEFI DHTQGIPDFEF KOSFPEGETW ERVTTFEDGG VLTATODTSL QDGTLIYNVK 120
IRGVDFLSNG PVMQKKTLGW EAFTETLYPA DGGLEGRNDM ALKLVGGSHL IAHAKTTYRS 180
KKPAKNLKMP GVYYVDYRLE RIKEANDETY VEQHEVAVAR YSDLPSKLGH KLN 233

1-10. (canceled)

11. A blue fluorescent protein (BFP) variant comprising
an amino acid sequence comprising one or more mutations
at one more residues selected from: T18, S28, Y96, S114,
V124, T127, D151, N173, and R198, relative to SEQ ID
NO:1.

12-30. (canceled)

31. The BFP variant of claim 11, wherein the one or more
mutations are substitutions.

32. The BFP variant of claim 11, wherein the amino acid
sequence comprises one or more mutations at one or more
residues selected from: T18, S28, 5114, V124, T127, D151,
N173, and R198, relative to SEQ ID NO: 1.

33. The BFP variant of claim 32, wherein the one or more
mutations are substitutions.

34. The BFP variant of claim 32, wherein the one or more

mutations at one or more residues are selected from: T18 W,
S28A, S114V, V1247, T127P, D151G, N173T, and R198L,

relative to SEQ ID NO: 1.

35. The BFP variant of claim 11, wherein the amino acid
sequence comprises substitution mutations of T18 W, S28A,
S114V, V1247T, T127P, D151G, N1737T, and R198L., relative
to SEQ ID NO: 1.

36. The BFP variant of claim 11, wherein the amino acid
sequence comprises any one of SEQ ID NOs: 2-28.

37. The BFP variant of claim 36, wherein the amino acid

sequence comprises SEQ ID NO: 23.

38. The BFP varniant of claim 11, wherein the amino acid
sequence consists of any one of SEQ ID NOs: 2-28.

39. The BRP variant of claim 38, wherein the amino acid
sequence consists of SEQ ID NO: 23.

40. A fusion protein, comprising an amino acid sequence
comprising any one of SEQ ID NOs: 2-28.

41. The fusion protein of claim 40, wherein the amino
acid sequence comprises SEQ ID NO: 23,

42. A protemn Iragment, comprising an amino acid
sequence comprising any one of SEQ ID NOs: 2-28.

43. The protein fragment of claim 42, wherein the amino
acid sequence comprises SEQ ID NO: 23,

44. A nucleic acid molecule, comprising a nucleotide
sequence encoding the BFP variant of claim 11.

45. The nucleic acid molecule of claim 44, wherein the
molecule 1s a plasmid or an expression vector.

46. A nucleic acid molecule, comprising a nucleotide
sequence encoding the BFP variant of claim 37.

47. The nucleic acid molecule of claim 46, wherein the
molecule 1s a plasmid or an expression vector.

48. A kit comprising the nucleic acid molecule of claim
44.

49. A kit comprising the nucleic acid molecule of claim
46.
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